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Abstract We present a method for learning multi-stage

tasks from demonstrations by learning the logical struc-

ture and atomic propositions of a consistent linear tem-

poral logic (LTL) formula. The learner is given success-

ful but potentially suboptimal demonstrations, where

the demonstrator is optimizing a cost function while

satisfying the LTL formula, and the cost function is un-

certain to the learner. Our algorithm uses the Karush-

Kuhn-Tucker (KKT) optimality conditions of the demon-

strations together with a counterexample-guided falsifi-

cation strategy to learn the atomic proposition param-

eters and logical structure of the LTL formula, respec-

tively. We provide theoretical guarantees on the conser-

vativeness of the recovered atomic proposition sets, as

well as completeness in the search for finding an LTL

formula consistent with the demonstrations. We eval-
uate our method on high-dimensional nonlinear sys-

tems by learning LTL formulas explaining multi-stage

tasks on a simulated 7-DOF arm and a quadrotor, and

show that it outperforms competing methods for learn-

ing LTL formulas from positive examples. Finally, we

demonstrate that our approach can learn a real-world

multi-stage tabletop manipulation task on a physical

7-DOF Kuka iiwa arm.

Keywords Learning from demonstration · Linear

temporal logic · Motion planning

1 Introduction

Imagine demonstrating a multi-stage task to a robot

arm delivery worker, such as finding and delivering a
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set of objects from a storage area to some customers

(Fig. 1). How should the robot understand and gen-

eralize the demonstration? One popular method is in-

verse reinforcement learning (IRL), which assumes a

level of optimality on the demonstrations, and aims to

learn a reward function that replicates the demonstra-

tor’s behavior when optimized [1, 4, 38, 42]. Due to this

representation, IRL works well on short-horizon goal-

directed tasks, but can struggle to scale to multi-stage,

constrained tasks [15, 34, 49]. Transferring reward func-

tions across environments (e.g. from one storage area to

another) can also be difficult, as IRL may overfit to as-

pects of the training environment. It may instead be

fruitful to decouple the high- and low-level task struc-

ture, learning a logic-based temporal abstraction of the

task that is valid for different environments which can

combine low-level, environment-dependent skills. Lin-

ear temporal logic (LTL) is well-suited for represent-

ing this abstraction, since it can unambiguously specify

high-level temporally-extended constraints [5] as a func-

tion of atomic propositions (APs), which can be used

to describe salient low-level state-space regions. To this

end, a growing community in controls and anomaly de-

tection has focused on learning linear temporal logic

(LTL) formulas to explain trajectory data. However,

the vast majority of these methods require both positive

and negative examples in order to regularize the learn-

ing problem. While this is acceptable in anomaly de-

tection, where one expects to observe formula-violating

trajectories, in the context of robotics, it can be un-

safe to ask a demonstrator to execute formula-violating

behavior, such as dropping a fragile object or crashing

into obstacles.

In this paper, our insight is that by assuming that

demonstrators are goal-directed (i.e. that they approx-

imately optimize an objective function that may be
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Fig. 1 Multi-stage delivery task: place the soup in an open-top box and deliver it, then deliver the Cheez-Its to a second
delivery location. To avoid spills, a pose constraint is enforced while the soup is being delivered in the open-top box.

uncertain to the learner), we can regularize the LTL

learning problem without being provided any formula-

violating behavior. In particular, we learn LTL formu-

las which are parameterized by their high-level logical

structure and low-level AP regions, and we show that

to do so, it is important to consider demonstration opti-

mality both in terms of the quality of the discrete high-

level logical decisions and the continuous low-level con-

trol actions. We use the Karush-Kuhn-Tucker (KKT)

optimality conditions from continuous optimization to

learn the shape of the low-level APs, along with notions

of discrete optimality to learn the high-level task struc-

ture. We solve a mixed integer linear program (MILP)

to jointly recover LTL and cost function parameters

which are consistent with the demonstrations. We make

the following contributions:

1. We develop a method for time-varying, constrained

inverse optimal control, where the demonstrator op-

timizes a cost function while respecting an LTL for-

mula, where the parameters of the atomic proposi-

tions, formula structure, and an uncertain cost func-

tion are to be learned. We require only positive demon-

strations, can handle demonstration suboptimality,

and for fixed formula structure, can extract guaran-

teed conservative estimates of the AP regions.

2. We develop conditions on demonstrator optimality

needed to learn high- and low-level task structure:

AP regions can be learned with discrete feasibility,

while logical structure requires various levels of dis-

crete optimality. We develop variants of our method

under these different assumptions.

3. We provide theoretical analysis of our method, show-

ing that under mild assumptions, it is guaranteed to

return the shortest LTL formula which is consistent

with the demonstrations, if one exists. We also prove

various results on our method’s conservativeness and

on formula learnability.

4. We evaluate our method on learning complex LTL

formulas demonstrated on nonlinear, high-dimensional

systems, show that we can use demonstrations of the

same task on different environments to learn shared

high-level task structure, and show that we outper-

form previous approaches.

Components of this work were first presented in our

Robotics: Science and Systems conference paper [17].

The primary contributions specific to this journal paper

include a hardware demonstration of our approach on

a real-world 7-DOF manipulation task, an overview of

extensions and variants of the method in [17], expanded

theoretical analysis, including proofs that were omitted

from [17], and expanded discussion.

2 Related Work

There is extensive literature on inferring temporal logic

formulas from data via decision trees [9], genetic algo-

rithms [11], and Bayesian inference [47, 49]. However,

most of these methods require positive and negative

examples as input [14, 31, 32, 37], while our method is

designed to only use positive examples. Other methods

require a space-discretization [3, 48, 49], while our ap-

proach learns LTL formulas in the original continuous

space. Some methods learn AP parameters, but do not

learn logical structure or perform an incomplete search,

relying on formula templates [6, 35, 53], while other

methods learn structure but not AP parameters [47].

Perhaps the method most similar to ours is [27], which

learns parametric signal temporal logic (pSTL) formu-

las from positive examples by fitting formulas that the

data tightly satisfies. However, the search over logical

structure in [27] is incomplete, and tightness may not be

the most informative metric given goal-directed demon-

strations (cf. Sec. 9). To our knowledge, this is the first

method for learning LTL formula structure and param-

eters in continuous spaces on high-dimensional systems

from only positive examples.

IRL [1, 23, 28, 29, 42, 45] searches for a reward func-

tion that replicates a demonstrator’s behavior when op-

timized, but these methods can struggle to represent

multi-stage, long-horizon tasks [34]. To alleviate this,

[34, 41] learn sequences of reward functions, but in con-

trast to temporal logic, these methods are restricted

to learning tasks which can be described by a single

fixed sequence. Temporal logic [5, 33] generalizes this,

being able to represent tasks that involve more choices

and can be completed with multiple different sequences.

Some work [40, 55] aims to learn a reward function
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given that the demonstrator satisfies a known temporal

logic formula; we will learn both jointly.

Finally, there is relevant work in constraint learn-

ing. These methods generally focus on learning time-

invariant constraints [12, 15, 16, 19] or a fixed sequence

of task constraints [39], which our method subsumes by

learning time-dependent constraints that can be satis-

fied by different sequences.

3 Preliminaries and Problem Statement

We consider discrete-time nonlinear systems

xt+1 = f(xt, ut, t),

with state x ∈ X and control u ∈ U , where we de-

note state/control trajectories of the system as ξxu
.
=

(ξx, ξu).

We use linear temporal logic (LTL) [5], which aug-

ments standard propositional logic to express properties

holding on trajectories over (potentially infinite) peri-

ods of time. In this paper, we will be given finite-length

trajectories demonstrating tasks that can be completed

in finite time. To ensure that the formulas we learn

can be evaluated on finite trajectories, we focus on

learning formulas, given in positive normal form, which

are described in a parametric temporal logic similar to

bounded LTL [25], and which can be written with the

grammar

ϕ ::= p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | �[t1,t2]ϕ |
ϕ1 U[t1,t2] ϕ2,

(1)

where p ∈ P .
= {pi}NAP

i=1 are atomic propositions (APs)

and NAP is known to the learner. t1 ≤ t2 are nonneg-

ative integers. Here, ¬p denotes the negation of atomic

proposition p, the “or” operator ϕ1 ∨ ϕ2 denotes the

disjunction of formulas ϕ1 and ϕ2, the “and” operator

ϕ1∧ϕ2 denotes the conjunction of formulas ϕ1 and ϕ2,

the “bounded-time always” operator �[t1,t2]ϕ denotes

that ϕ “always” has to hold over the interval [t1, t2],

and the “bounded-time until” operator ϕ1 U[t1,t2] ϕ2

denotes that ϕ2 must eventually hold during the inter-

val [t1, t2], and ϕ1 must hold for all timesteps prior to

that. Due to the positive normal form structure, nega-

tion can only appear directly before APs. Let the size

of the grammar be Ng = NAP + No, where No is the

number of temporal/boolean operators in the grammar.

A useful derived operator is “bounded-time eventually”

♦[t1,t2]ϕ
.
= > U[t1,t2] ϕ, which denotes that a formula ϕ

eventually has to hold during the interval [t1, t2].

In this paper, we will consider LTL formulas ϕ(θs, θp)

that are parameterized by θs ∈ Θs, which encode the

logical and temporal structure of the formula, and by

θp
.
= {θpi }NAP

i=1 , where θpi ∈ Θpi defines the shape of

the region where pi holds. Furthermore, we will con-

sider APs of the form: x |= pi ⇔ gi(ηi(x), θpi ) ≤ 0,

where ηi(·) : X → C is a known nonlinear function,

gi(·, ·) .
= [gi,1(·, ·), . . . , gi,N ineq

i
(·, ·)]> is a vector-valued

parametric function, and C is the space in which the AP

constraint is evaluated, elements of which are denoted

constraint states κ ∈ C.
To show how this notation maps onto a concrete

robotics example, consider a 7-DOF arm. We can de-

fine the state x as the joint angles, the control u as the

joint velocities, the constraint state κ as the end effector

pose, and the mapping from the state to constraint state

space η : X → C ⊆ R3 as the forward kinematics, map-

ping from joint space to workspace. One possible atomic

proposition is x |= p ⇔ g(η(x), θp) = Aη(x) − θp ≤ 0,

where A = [I3×3,−I3×3]> and In×n is the n × n iden-

tity matrix. This atomic proposition p is satisfied if the

end effector position is contained within an axis-aligned

rectangle in the workspace with extents described by

θp = [x̄, ȳ, z̄,−x,−y,−z], where x̄, ȳ, and z̄ denote the

upper extents in the x-, y-, and z-dimensions, and x,

y, and z denote the lower extents in the x-, y-, and

z-dimensions. Finally, we can write an LTL formula

♦[t1,t2]p to enforce that all trajectories must satisfy this

workspace constraint at some point between time t1 and

t2.

We formalize the discussion above by defining the

semantics, which describe the satisfaction of an LTL

formula ϕ by a trajectory ξxu. Specifically, we denote

the satisfaction of a formula ϕ on a finite-duration tra-

jectory ξxu of total duration T , evaluated at time t ∈
{1, 2, . . . , T}, as (ξxu, t) |= ϕ. Then, the formula sat-

isfaction is defined recursively in the formal semantics

(ξxu, t) |= pi ⇔ gi(ηi(xt), θ
p
i ) ≤ 0

(ξxu, t) |= ¬pi ⇔ ¬((ξxu, t) |= pi)
(ξxu, t) |= ϕ1 ∨ ϕ2 ⇔ (ξxu, t) |= ϕ1 ∨ (ξxu, t) |= ϕ2

(ξxu, t) |= ϕ1 ∧ ϕ2 ⇔ (ξxu, t) |= ϕ1 ∧ (ξxu, t) |= ϕ2

(ξxu, t) |= �[t1,t2]ϕ ⇔ (t+ t1 ≤ T ) ∧ (∀t̃ ∈ [t+ t1,min(t+ t2, T )], (ξxu, t̃) |= ϕ)
(ξxu, t) |= ϕ1U[t1,t2]ϕ2 ⇔ (t+ t1 ≤ T ) ∧ (∃t̃ ∈ [t+ t1,min(t+ t2, T )] s.t. (ξxu, t̃) |= ϕ2) ∧ (∀ť ∈ [t, t̃− 1], (ξxu, ť) |= ϕ1)

(ξxu, t) |= ♦[t1,t2]ϕ ⇔ (t+ t1 ≤ T ) ∧ (∃t̃ ∈ [t+ t1,min(t+ t2, T )] s.t. (ξxu, t̃) |= ϕ)

(2)
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(2). We will write ϕ |= ξxu as shorthand for (ξxu, 1) |=
ϕ. We emphasize that since we consider discrete-time

trajectories, a time interval [t1, t2] is evaluated only on

integer time instants {t1, t1 + 1, . . . , t2}; this is made

concrete in (2).

We consider tasks that involve optimizing a para-

metric cost function (encoding efficiency concerns, etc.),

while satisfying an LTL formula ϕ(θs, θp) (encoding

constraints for task completion):

Problem 1 (Demonstrator’s forward problem)

minimize
ξxu

c(ξxu, θ
c)

subject to ξxu |= ϕ(θs, θp)
η̄(ξxu) ∈ S̄ ⊆ C

where c(·, θc) is a potentially non-convex cost function,

parameterized by θc ∈ Θc. Any a priori known con-

straints are encoded in S̄, where η̄(·) is known. In this

paper, we encode in S̄ the system dynamics, start state,

and if needed, a goal state separate from the APs.

Next, to ease notation, we will define Gi(κ, θ
p
i )

.
=

maxm∈{1,...,N ineq
i }

(
gi,m(κ, θpi )

)
. Define the subset of C

where pi holds/does not hold, as

Si(θpi )
.
= {κ | Gi(κ, θpi ) ≤ 0} (3)

Ai(θpi )
.
= cl({κ | Gi(κ, θpi ) > 0}) = cl(Si(θpi )c) (4)

To ensure that Problem 1 admits an optimum, we have

definedAi(θpi ) to be closed; that is, states on the bound-

ary of an AP can be considered either inside or outside.

For these boundary states, our learning algorithm can

automatically detect if the demonstrator intended to
visit or avoid the AP (cf. Sec. 4.2).

We are given Ns demonstrations {ξdemj }Nsj=1 of dura-

tion Tj , which approximately solve Prob. 1, in that they

are feasible (satisfy the LTL formula and known con-

straints) and achieve a possibly suboptimal cost. Note

that Prob. 1 can be modeled with continuous (ξxu) and

boolean decision variables (referred to collectively as

Z) [52]; the boolean variables determine the high-level

plan, constraining the trajectory to obey boolean deci-

sions that satisfy ϕ(θs, θp), while the continuous com-

ponent synthesizes a low-level trajectory implementing

the plan. We will use different assumptions of demon-

strator optimality on the continuous/boolean parts of

the problem, depending on if θp (Sec. 4), θs (Sec. 5), or

θc (Sec. 6) are being learned, discuss extensions and

variants of these methods (Sec. 7), and discuss how

these different degrees of optimality can affect the learn-

ability of LTL formulas (Sec. 8).

Our goal is to learn the unknown structure θs and

AP parameters θp of the LTL formula ϕ(θs, θp), as well

as unknown cost function parameters θc, given demon-

strations {ξdemj }Nsj=1 and the a priori known safe set S̄.

4 Learning Atomic Proposition Parameters

(θp)

We develop methods for learning unknown AP param-

eters θp when the cost function parameters θc and for-

mula structure θs are known. We first review recent

results [19] on learning time-invariant constraints via

the KKT conditions (Sec. 4.1). Then, we show how the

framework can be extended to learn θp (Sec. 4.2), and

develop a method for extracting states which are guar-

anteed to satisfy or to violate pi (Sec. 4.3). In all of

Sec. 4, we will assume that demonstrations are locally-

optimal for the continuous component and feasible for

the discrete component.

KKT(ξdemj ):

Primal feasibility: hk(η(xjt)) = 0, t = 1, . . . , Tj (5a)

gk(η(xjt)) ≤ 0, t = 1, . . . , Tj (5b)

g¬k(η(xjt), θ
p) ≤ 0, t = 1, . . . , Tj (5c)

Lagrange multiplier nonnegativity: λj,kt ≥ 0, t = 1, . . . , Tj (5d)

λj,¬kt ≥ 0, t = 1, . . . , Tj (5e)

Complementary slackness: λj,kt � gk(η(xjt)) = 0, t = 1, . . . , Tj (5f)

λj,¬kt � g¬k(η(xjt), θ
p) = 0, t = 1, . . . , Tj (5g)

Stationarity: ∇xtc(ξdemj ) + λj,kt
>∇xtgk(η(xjt)) + λj,¬kt

>∇xtg¬k(η(xjt), θ
p)

+ νj,kt
>∇xthk(η(xjt)) = 0, t = 1, . . . , Tj (5h)



Learning Temporal Logic Formulas from Suboptimal Demonstrations: Theory and Experiments 5

4.1 Learning time-invariant constraints via KKT

Consider a simplified variant of Prob. 1 that only in-

volves always satisfying a single AP; this reduces Prob.

1 to a standard trajectory optimization problem:

minimize
ξxu

c(ξxu)

subject to g(η(x), θp) ≤ 0, ∀x ∈ ξxu
η̄(ξxu) ∈ S̄ ⊆ C

(6)

To ease notation, θc is assumed known in Sec. 4-5 and

reintroduced in Sec. 6. Suppose we rewrite the con-

straints of (6) as hk(η(ξxu)) = 0, gk(η(ξxu)) ≤ 0, and

g¬k(η(ξxu), θp) ≤ 0, where k and ¬k group together the

known and unknown constraints, respectively. Then,

with Lagrange multipliers λ and ν, the KKT condi-

tions (first-order necessary conditions for local opti-

mality [10]) of the jth demonstration ξdemj , denoted

KKT(ξdemj ) are as written in (5), where � denotes el-

ementwise multiplication. Intuitively, primal feasibility

ensures that the demonstrations satisfy the learned con-

straint, complementary slackness encodes that a La-

grange multiplier for some constraint can only be nonzero

if that constraint is active, and stationarity encodes

that the cost cannot be locally improved without vi-

olating a constraint.

We vectorize the multipliers λj,kt ∈ RN
ineq
k , λj,¬kt ∈

RN
ineq
¬k , and νj,kt ∈ RN

ineq
k , i.e. λj,kt = [λj,kt,1 , . . . , λ

j,k

t,Nkineq
]>.

We drop (5a)-(5b), as they involve no decision vari-

ables. Then, we can find a constraint which makes the

Ns demonstrations locally-optimal by finding a θp that

satisfies the KKT conditions for each demonstration:

Problem 2 (Inverse KKT problem, exact)

find θp, {λj,kt ,λj,¬kt ,νj,kt }
Tj
t=1, j = 1, ..., Ns

subject to {KKT(ξdemj )}Nsj=1

If the demonstrations are only approximately locally-

optimal, Prob. 2 may become infeasible. In this case,

we can relax stationarity and complementary slackness

to cost penalties:

Problem 3 (Inverse KKT problem, suboptimal)

minimize
θp,λj,kt ,λj,¬kt ,νj,kt

Ns∑

j=1

(
‖stat(ξdemj )‖1 + ‖comp(ξdemj )‖1

)

subject to (5c)− (5e), ∀ξdemj , j = 1, . . . , Ns

where stat(ξdemj ) denotes the left hand side (LHS) of

Eq. (5h) and comp(ξdemj ) denotes the concatenated LHSs

♦ ♦
∧

p1 p2[Zj
1,1, ..., Z

j
1,Tj

]

[
∨Tj

i=1Z
j
1,i, ...,

∨Tj

i=Tj
Zj

1,i]

[Zj
2,1, ..., Z

j
2,Tj

]

[
∨Tj

i=1Z
j
2,i, ...,

∨Tj

i=Tj
Zj

2,i]

(
[
∨Tj

i=1Z
j
1,i, ...,

∨Tj

i=Tj
Zj

1,i]
)∧(

[
∨Tj

i=1Z
j
2,i, ...,

∨Tj

i=Tj
Zj

2,i]
)

Fig. 2 A directed acyclic graph (DAG) model of the LTL
formula ϕ = (♦[0,Tj−1]p1)∧ (♦[0,Tj−1]p2) (eventually satisfy
p1 and eventually satisfy p2). The DAG representation can be
interpreted as a parse tree for ϕ (cf. Sec. 5.1). The Tj boolean
values for each node represent the truth value of the formula
associated with the DAG subtree when evaluated on ξdem

j ,

starting at times t = 1, . . . , Tj , respectively. Each ξdemj |= ϕ

iff the first entry at the root node, (
∨Tj
i=1 Z

j
1,i)

∧
(
∨Tj
i=1 Z

j
2,i),

is true.

of Eqs. (5f) and (5g). Please see Sec. 7.4 for more dis-

cussion on the effect of demonstration suboptimality on

learning θp. Note that while we have written Prob. 2-3

for general constraint parameterizations, not all param-

eterizations admit computationally-tractable inverse KKT

problems. For some constraint parameterizations (e.g.

unions of boxes or ellipsoids [19]), Prob. 2-3 are MILP-

representable1 and can be efficiently solved; we consider

such parameterizations in further detail in Sec. 4.2. In

the experiments of this paper, we focus on constraints

which are parameterized as axis-aligned boxes in the

constraint space C ⊆ Rc, i.e. g(η(x), θp) ≤ 0⇔ Aη(x)−
θp ≤ 0, where A = [Ic×c,−Ic×c]> and θp = [x̄1, . . . , x̄c,

x1, . . . , xc]
> contains the upper extents x̄1, . . . , x̄c and

lower extents x1, . . . , xc of the box in each coordinate.

4.2 Modifying KKT for multiple atomic propositions

Having built intuition with the single AP case, we re-

turn to Prob. 1 and discuss how the KKT conditions

change in the multiple-AP setting. We first adjust the

primal feasibility condition (5c). Recall from Sec. 3 that

we can solve Prob. 1 by finding a continuous trajec-

tory ξxu and a set of boolean variables Z enforcing that

ξxu |= ϕ(θs, θp). For each ξdemj , let Zj(θpi ) ∈ {0, 1}NAP×Tj ,

and let the (i, t)th index Zji,t(θ
p
i ) indicate if on ξdemj ,

constraint state κt |= pi for parameters θpi ; that is,

Zji,t(θ
p
i ) = 1⇔ κt ∈ Si(θpi ),

Zji,t(θ
p
i ) = 0⇔ κt ∈ Ai(θpi ).

(7)

Since LTL operators have equivalent boolean encodings

[52], the truth value of ϕ(θs, θp) can be evaluated as a

1 This problem can also be represented and solved with
satisfiability modulo theories (SMT) solvers.
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function of Zj , θp, and θs, denoted as Φ(Zj , θp, θs) (we

suppress θs, as it is assumed known for now). For exam-

ple, consider the LTL formula ϕ(θs, θp) = (♦[0,Tj−1]p1)∧
(♦[0,Tj−1]p2), which enforces that the system must even-

tually satisfy p1 and eventually satisfy p2. Two trajec-

tories which satisfy this formula are shown in Fig. 3. We

can evaluate the truth value of ϕ(θs, θp) on ξdemj by cal-

culating Φ(Zj , θp) = (
∨Tj
t=1 Z

j
1,t(θ

p
1)) ∧ (

∨Tj
t=1 Z

j
2,t(θ

p
2))

(cf. Fig. 2). Boolean encodings of common temporal

and logical operators can be found in [8]. Enforcing that

Zji,t(θ
p
i ) satisfies (7) can be done with a big-M formula-

tion and binary variables sji,t ∈ {0, 1}N
ineq
i [7]:

gi(κ
j
t , θ

p
i ) ≤M(1N ineq

i
− sji,t)

1>
N ineq
i

sji,t −N ineq
i ≤MZji,t −Mε

gi(κ
j
t , θ

p
i ) ≥ −Msji,t

1>
N ineq
i

sji,t −N ineq
i ≥ −M(1− Zji,t)

(8)

where 1d is a d-dimensional vector of ones, M is a

large positive number, and Mε ∈ (0, 1). In practice, M

and Mε can be carefully chosen to improve the solver’s

performance. Note that sji,m,t, the mth component of

sji,t, encodes if κjt satisfies a negated gi,m(κjt , θ
p
i ), i.e. if

sji,m,t = 1 or 0, then κjt satisfies gi,m(κjt , θ
p
i ) ≤ or ≥ 0.

We can more compactly rewrite the constraint enforced

on the demonstrations as gi(κ
j
t , θ

p
i )�(2sji,t−1N ineq

i
) ≤ 0

for each i, t; we use this form to adapt the remaining

KKT conditions. While enforcing (8) is hard in gen-

eral, if gi(κ, θ
p
i ) is affine in θpi for fixed κ, (8) is MILP-

representable; henceforth, we assume gi(κ, θ
p
i ) is of this

form. Note that this can still describe non-convex re-

gions in the constraint space, as the dependency on κ

can be nonlinear.

As a concrete example, for the blue trajectory in

Fig. 3, Z1 = [0, 1, 0, 0, 0] and Z2 = [0, 0, 0, 1, 0]. Con-

sider the first AP p1. Here, since p1 is a box in the state

space, g1,m(κt, θ
p
1) ≤ 0 can be written as xt,m − θp1,m ≤

0, where θp1,m defines the offset for the mth hyperplane

that defines the boundary of the box for AP p1. Then,

s1,m,t determines if the polarity of halfspace constraint

m is flipped at time t on the blue trajectory.

To modify complementary slackness (5g) for the multi-

AP case, we note that the elementwise product in (5g)

is MILP-representable:
[
λj,¬ki,t , −gi(κ

j
t , θ

p
i )� (2sji,t − 1N ineq

i
)
]
≤MQj

i,t

Qj
i,t12 ≤ 1N ineq

i

(9)

where Qj
i,t ∈ {0, 1}N

ineq
i ×2. Intuitively, (9) enforces that

either 1) the Lagrange multiplier is zero and the con-

straint is inactive, i.e. gi,m(κ, θpi ) ∈ [−M, 0] if sji,m,t = 1

or gi,m(κ, θpi ) ∈ [0,M ] if sji,m,t = 0, 2) the Lagrange

multiplier is nonzero and gi,m(κt, θ
p
i ) = 0, or both;

the value of Q toggles between these options. The sta-

tionarity condition (5h) must also be modified to con-

sider whether a particular constraint is negated; this

can be done by modifying the second line of (5h) to

terms of the form
(
λj,¬ki,t

>�(2sji,t−1)
)
∇xtg¬ki (η(xt), θ

p).

The KKT conditions for the multi-AP case, denoted

KKTLTL(ξdemj ), then can be written as in (10).

As mentioned in Sec. 3, if κjt lies on the boundary

of AP i, the KKT conditions will automatically deter-

mine if κjt ∈ Si(θpi ) or κjt ∈ Ai(θpi ) based on whichever

option enables sji,t to take values that satisfy (10). To

summarize, our approach is to (A) find Zj , which deter-

mines the feasibility of ξdemj for ϕ(θs, θp), (B) find sji,m,t,

which link the value of Zj from the AP-containment

level (i.e. κjt ∈ Si(θpi )) to the single-constraint level (i.e.

gi,m(κjt , θ
p
i ) ≤ 0), and (C) enforce that ξdemj satisfies the

KKT conditions for the continuous optimization prob-

lem defined by θp and fixed values of sji,t. Finally, we

can write the problem of recovering θp for a fixed θs as:

Problem 4 (Learning θp, for fixed template)

find θp,λj,kt ,λj,¬ki,t ,νj,kt , sji,t,Q
j
i,t,Z

j , ∀i, j, t
subject to {KKTLTL(ξdemj )}Nsj=1

We can also encode prior knowledge in Prob. 4, e.g.

known AP labels or a prior on θpi , which we discuss in

Sec. 7.1.

4.3 Extraction of guaranteed learned AP

As with the constraint learning problem, the LTL learn-

ing problem is also ill-posed: there can be many θp

which explain the demonstrations. Despite this, we can

measure our confidence in the learned APs by check-

ing if a constraint state κ is guaranteed to satisfy/not

satisfy pi for a given AP parameterization. This check

is particularly useful when planning trajectories which

satisfy the learned LTL formula, as we discuss shortly.

Denote Fi as the feasible set of Prob. 4, projected onto

Θpi (feasible set of θpi ). Then, we say κ is learned to

be guaranteed contained in Si(θpi ) if for all θpi ∈ Fi,
Gi(κ) ≤ 0 (i.e. κ |= pi, for all feasible θpi ). Similarly, we

say κ is learned to be guaranteed excluded from Si(θpi )

if for all θpi ∈ Fi, Gi(κ) ≥ 0. Denote by:

Gis
.
=
⋂

θ∈Fi

{κ | Gi(κ, θ) ≤ 0} (11)
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KKTLTL(ξdemj ):

Primal feasibility: Equations (5a)− (5b), t = 1, . . . , Tj (10a)

Equation (8), i = 1, . . . , NAP, t = 1, . . . , Tj (10b)

Lagrange multiplier nonnegativity: Equation (5d), t = 1, . . . , Tj (10c)

λj,¬ki,t ≥ 0, i = 1, . . . , NAP, t = 1, . . . , Tj (10d)

Complementary slackness: Equation (5f), t = 1, . . . , Tj (10e)

Equation (9), i = 1, . . . , NAP, t = 1, . . . , Tj (10f)

Stationarity: ∇xtc(ξdemj ) + λj,kt
>∇xtgk(η(xjt)) +

Nineq∑
i=1

[(
λj,¬ki,t

> � (2sji,t − 1)
)
∇xtg¬ki (η(xjt), θ

p
i )
]

+ νj,kt
>∇xthk(η(xjt)) = 0, t = 1, . . . , Tj (10g)

Gi¬s
.
=
⋂

θ∈Fi

{κ | Gi(κ, θ) ≥ 0} (12)

as the sets of κ which are guaranteed to satisfy/not sat-

isfy pi. Having the ability to check if a constraint state

lies within Gis or Gi¬s is useful when planning with the

learned LTL formula, as we can design our plans to be

robust to any uncertainty in the learned APs. For in-

stance, if some constraint state κ on a candidate plan

must satisfy/not satisfy AP i for the plan to satisfy

the learned LTL formula, we can instead force κ to be

contained in Gis or Gi¬s, respectively. Then, plans gener-

ated in this fashion are guaranteed to satisfy the LTL

formulas corresponding to any consistent θp.

Concretely, to query if κ is guaranteed to satisfy/not

satisfy pi, we can check the feasibility of the following

problem:

Problem 5 (Query containment of κ in/outside

of Si(θpi ))

find θp,λj,kt ,λj,¬ki,t ,νj,kt , sji,t,Q
j
i,t,Z

j , ∀i, j, t
subject to {KKTLTL(ξdemj )}Nsj=1

Gi(κ, θ
p
i ) ≥ 0 OR Gi(κ, θ

p
i ) ≤ 0

If forcing κ to (not) satisfy pi renders Prob. 5 infeasi-

ble, we can deduce that to be consistent with the KKT

conditions, κ must (not) satisfy pi. Similarly, continu-

ous volumes of κ which must (not) satisfy pi can be

extracted by solving:

Problem 6 (AP volume extraction)

minimize
ε,κnear,θ

p,λj,kt ,λj,¬ki,t ,

νj,kt ,sji,t,Q
j
i,t,Z

j

ε

subject to {KKTLTL(ξdemj )}Nsj=1

‖κnear − κquery‖∞ ≤ ε
Gi(κnear, θ

p
i ) > 0 OR Gi(κnear, θ

p
i ) ≤ 0

Prob. 6 searches for the largest box centered around

κquery contained in Gis/Gi¬s. An explicit approximation

of Gis/Gi¬s can then be obtained by solving Prob. 6 for

many different κquery.

Finally, we note that another avenue to handle the

ambiguity in the learned θp is to directly recover the set

of all θp which are consistent with the demonstration,

and planning to satisfy the LTL formulas associated

with as many consistent θp as possible. This method is

described in detail in [18] for time-invariant constraints,

and a detailed investigation in applying this approach

to temporal logic constraints is the subject of future

work.

5 Learning Temporal Logic Structure (θp, θs)

We will discuss how to frame the search over LTL struc-

tures θs (Sec. 5.1), the learnability of θs based on demon-

stration optimality (Sec. 5.2), and how we combine no-

tions of discrete and continuous optimality to learn θs

and θp (Sec. 5.3).

5.1 Representing LTL structure

We adapt [37] to search for a directed acyclic graph

(DAG), D, that encodes the structure of a parametric

LTL formula and is equivalent to its parse tree, with
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∨(♦p2)

(♦p1) ∧ (♦p2)

♦((p1 ∨ ¬p1) ∧ (p2 ∨ ¬p2))

(¬p2 U p1) ∧ ♦p2

♦(p1∨¬p1)∨p2 p1∨♦(p2∨¬p2)

x1

x1

Fig. 3 Left: Two demonstrations which satisfy the LTL for-
mula ϕ = (¬p2 U[0,Tj−1] p1) ∧ ♦[0,Tj−1]p2 (first satisfy p1,
then satisfy p2). The demonstrations satisfy kinematic con-
straints and are minimizing path length while satisfying input
constraints and start/goal constraints. The blue and yellow
demonstrations begin at the corresponding x1 states and end
at x5 and x9, respectively. Right: Some example formulas
that are consistent with ϕ, for various levels of discrete opti-
mality (ϕf : discrete feasibility, ϕs: spec-optimality, ϕg: dis-
crete global optimality).

identical subtrees merged. Hence, each node still has at

most two children, but can have multiple parents. This

framework enables both a complete search over length-

bounded LTL formulas and encoding of specific formula

templates through constraints on D [37].

Each node in D is labeled with an AP or operator

from (1) and has at most two children; binary operators

like ∧ and ∨ have two, unary operators like ♦[t1,t2] have

one, and APs have none (see Fig. 2). Formally, a DAG

with NDAG nodes, D = (X,L,R), can be represented

as: X ∈ {0, 1}NDAG×Ng , where Xu,v = 1 if node u is

labeled with element v of the grammar and 0 else, and

L,R ∈ {0, 1}NDAG×NDAG , where Lu,v = 1 / Ru,v = 1 if

node v is the left/right child of node u and 0 else. The

DAG is enforced to be well-formed (i.e. there is one root

node, no isolated nodes, etc.) with further constraints;

see [37] for more details. Since D defines a parametric

LTL formula, we set θs = D.

As a concrete example, consider the DAG in Fig. 2.
Let the grammar be ϕ ::= p1 | p2 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 |
�ϕ | ♦ϕ, with DAG nodes labeled by {p1, p2,∨,∧,�,♦}.
We refer to element 1 of the grammar as p1, element 2

as p2, element 3 as ∨, and so on. The DAG in Fig. 2,

encoding (♦p1) ∧ (♦p2), can be represented with:

X =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 1



, L =




0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0



, R =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0




where p1, p2, ∧, the left ♦, and the right ♦, are labeled

as nodes 1, 2, 3, 4, and 5 respectively. As convention, the

unary operators are defined to have only left children.

To ensure that demonstration j satisfies the LTL

formula encoded by D, we introduce a satisfaction ma-

trix Sdem
j ∈ {0, 1}NDAG×Tj , where Sdem

j,(u,t) encodes the

truth value of the subformula for the subgraph with

root node u at time t (i.e., Sdem
j,(u,t) = 1 iff the suffix of

ξdemj starting at time t satisfies the subformula). This

can be encoded with constraints:

|Sdem
j,(u,t) − Φtuv| ≤M(1−Xu,v) (13)

where Φtuv is the truth value of the subformula for the

subgraph rooted at u if labeled with v, evaluated on

the suffix of ξdemj starting at time t. The truth values

are recursively generated, and the leaf nodes, each la-

beled with some AP i, have truth values set to Zji (θ
p
i ).

Next, we can enforce that the demonstrations satisfy

the formula encoded in D by enforcing:

Sdem
j,(root,1) = 1, j = 1, . . . , Ns (14)

Continuing our example, consider again the blue

trajectory in Fig. 3, which satisfies the aforementioned

LTL formula (♦p1)∧ (♦p2). For this trajectory, Sdem is:

Sdem =




0 1 0 0 0

0 0 0 1 0

1 1 0 0 0

1 1 0 0 0

1 1 1 1 0




Note that Sdem
(root=3,1) = 1, which reflects that the tra-

jectory satisfies the formula. Furthermore, our method

will also use synthetically-generated invalid trajectories

{ξ¬s}N¬sj=1 (Sec. 5.3). To ensure {ξ¬s}N¬sj=1 do not satisfy

the formula, we add more satisfaction matrices S¬sj and

enforce:

S¬sj,(root,1) = 0, j = 1, . . . , N¬s. (15)

After discussing learnability, we will show how D can

be integrated into the KKT-based learning framework

in Sec. 5.3.

5.2 A detour on learnability

When learning only the AP parameters θp (Sec. 4),

we assumed that the demonstrator chooses any feasi-

ble assignment of Z consistent with the specification,

then finds a locally-optimal trajectory for those fixed

Z. Feasibility is enough if the structure θs of ϕ(θs, θp)

is known: to recover θp, we just need to find some Z

which is feasible with respect to the known θs (i.e.

Φ(Zj , θp, θs) = 1) and makes ξdemj locally-optimal; that

is, the demonstrator can choose an arbitrarily subop-

timal high-level plan as long as its low-level plan is

locally-optimal for the chosen high-level plan. However,

if θs is also unknown, only using boolean feasibility is
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not enough to recover meaningful logical structure, as

this makes any formula ϕ for which Φ(Zj , θp, θs) = 1

consistent with the demonstration, including trivially

feasible formulas always evaluating to >. Formally, we

will refer to the set of formulas for which the demonstra-

tions are feasible in the discrete variables and locally-

optimal in the continuous variables as ϕf .

On the other end of the spectrum, we can assume

the demonstrator is globally-optimal in solving Prob. 1,

i.e. there does not exist any trajectory with lower cost

than the demonstration which satisfies both the specifi-

cation and the known constraints. Let the set of all for-

mulas which make the demonstrations globally-optimal

be denoted ϕg. Assuming global optimality invalidates

many structures in ϕf , as any formula which accepts

a trajectory with a lower cost than the demonstration

cannot belong in ϕg.

To make things concrete, consider again the exam-

ple in Fig. 3. Assume for now that θp1 , θ
p
2 are known.

Assuming boolean feasibility, we cannot distinguish be-

tween formulas in ϕf , a subset of which are written in

the Venn diagram in Fig. 3. ϕf contains trivial formu-

las like > or ϕ = (♦[0,Tj−1]p1)∨(♦[0,Tj−1]p2), Assuming

global optimality, on the other hand, invalidates many

structures in ϕf , i.e. the blue trajectory should not visit

both S1 and S2 if ϕ = (♦[0,Tj−1]p1) ∨ (♦[0,Tj−1]p2); we

achieve a lower cost by only visiting one. Using global

optimality, we can distinguish between all but the for-

mulas with globally-optimal trajectories of equal cost

(formulas in ϕg), i.e. we cannot learn the ordering con-

straint (¬p2 U[0,Tj−1] p1) from only the blue trajectory,

as it coincides with the globally-optimal trajectory for

ϕ = (♦[0,Tj−1]p1) ∧ (♦[0,Tj−1]p2); we need the yellow

trajectory to distinguish the two.

From this discussion, we see that imposing global

optimality of the demonstrations in the learning prob-

lem can be quite powerful for reducing the set of consis-

tent LTL formulas (provided that the demonstrations

are actually globally-optimal). Unfortunately, enforcing

global optimality of the demonstrations in the learn-

ing problem is challenging, as it requires an exhaus-

tive verification that there are no feasible trajectories

with lower cost than the demonstrations. To overcome

this challenge, we define an optimality condition that

is more restrictive than feasibility and less restrictive

than global optimality, and which crucially is easier to

impose in learning:

Definition 1 (Spec-optimality) A demonstration ξdemj

is µ-spec-optimal (µ-SO), where µ ∈ Z+, if for every

index set ι
.
= {(i1, t1), ..., (iµ, tµ)} in I .

= {ι | im ∈
{1, ..., NAP}, tm ∈ {1, ..., Tj},m = 1, ..., µ}, at least one

of the following holds:

– ξdemj is locally-optimal after removing the constraints

associated with pim on κjtm , for all (im, tm) ∈ ι.
– For each index (im, tm) ∈ ι, the formula is not satis-

fied for a perturbed Z, denoted Ẑ, where Ẑim,tm(θpim) =

¬Zim,tm(θpim), for all m = 1, . . . , µ, and Ẑi′,t′(θ
p
i′) =

Zi′,t′(θ
p
i′) for all (i′, t′) /∈ ι.

– ξdemj is infeasible with respect to Ẑ.

Spec-optimality enforces a level of logical optimal-

ity, evaluated locally around a demonstration: if a state

κjt on demonstration ξdemj lies inside/outside of AP i

(i.e. Gi(κ
j
t , θ

p
i ) ≤ 0 / ≥ 0), and the cost c(ξdemj ) can be

lowered if that AP constraint is relaxed, then the con-

straint must hold to satisfy the specification. Intuitively,

this means that the demonstrator does not visit/avoid

APs which will needlessly increase the cost and are not

needed to complete the task. Note that the conditions in

Def. 1 are essentially checking how the local optimality

of a demonstration changes as a result of local pertur-

bations to the assignments of the discrete variables Z.

The three conditions in Def. 1 capture the three possi-

bilities upon perturbing Z: the demonstration could be-

come infeasible if Z is perturbed (this is what the third

condition checks), the demonstration could remain fea-

sible but local optimality may not change (this is what

the first condition checks), or the demonstration could

remain feasible and no longer be locally-optimal (this is

what the second condition checks). By enforcing that a

demonstration is spec-optimal with respect to the for-

mula being satisfied, we enforce that this last possibil-

ity (feasible but not locally-optimal) never occurs. We

would want to enforce this, for instance, if the demon-

stration is assumed to be globally-optimal for the true

LTL formula, because there should be no alternative

assignment of Z which admits a feasible direction in

which the demonstration cost can be improved.

Returning to the discussion on the example in Fig. 3,

we will show how spec-optimality can be used to distin-

guish between ϕ = (¬p2 U[0,Tj−1] p1) ∧ ♦[0,Tj−1]p2 and

ϕ̂ = ♦[0,Tj−1]p1∨♦[0,Tj−1]p2 using only the blue demon-

stration. Specifically, we show the demonstration is 1-

SO with respect to ϕ but not for ϕ̂. For both formulas

ϕ and ϕ̂, we can see that I = {(1, 1), . . . , (1, 5), (2, 1),

. . . , (2, 5)}. Let’s consider ϕ first. In this case, for values

of ι ∈ {(1, 1), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 5)},
the third condition in Def. 1 will hold, since for these

time-AP pairs, the demonstration is not on the bound-

ary of the paired AP. For ι ∈ {(1, 2), (2, 4)}, the second

condition in Def. 1 will hold, since perturbing Z at ei-

ther of these time-AP pairs (from Z1,2(θp1) = 1 to 0 or

from Z2,4(θp2) = 1 to 0) will cause ϕ to be not satisfied.

Thus, the demonstration is spec-optimal with respect

to ϕ. On the other hand, for ϕ̂, again for values of ι ∈
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{(1, 1), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 5)}, the

third condition in Def. 1 will hold. However, none of the

three conditions will hold for ι ∈ {(1, 2), (2, 4)}, since

the demonstration will not be locally-optimal upon re-

laxing the constraints for either p1 or p2, and since ϕ̂

only enforces that either one of S1 or S2 are visited, ϕ̂

is still satisfied if either Z1,2(θp1) or Z2,4(θp2) is flipped

to 0. Hence, the demonstration is not spec-optimal with

respect to ϕ̂.

In contrast, we can show that it is not possible

to use spec-optimality to distinguish between the for-

mulas ϕ = (¬p2 U[0,Tj−1] p1) ∧ ♦[0,Tj−1]p2 and ϕ̂ =

♦[0,Tj−1]p1∧♦[0,Tj−1]p2 using the yellow demonstration

in Fig. 3. This follows from noting that perturbing any

combination of Z1,4(θp1), Z2,6(θp2) from their values of 1

to 0 will cause both ϕ and ϕ̂ to be not satisfied. Hence,

the yellow demonstration is spec-optimal with respect

to both ϕ and ϕ̂; however, it is not globally-optimal for

ϕ̂, as the demonstrator can achieve a lower cost by first

satisfying p2 and then satisfying p1.

We will conclude this subsection with some theo-

retical results which motivate how demonstration spec-

optimality can be used to help the learning of LTL for-

mulas. We first show that all globally-optimal demon-

strations must also be µ-spec-optimal for the true spec-

ification, for any positive integer µ.

Lemma 1 All globally-optimal trajectories are µ-SO.

Proof We show that it is not possible for a demonstra-

tion ξdemj to be globally-optimal while failing to satisfy

(a), (b), and (c). If the constraints corresponding to pim
at κjtm are relaxed, for some {(im, tm)}µm=1, then ξdemj

can either remain locally-optimal (which means (a) is

satisfied, and happens if all the constraints are inactive

or redundant) or become not locally-optimal. If ξdemj

becomes not locally-optimal for the relaxed problem

(i.e. (a) is not satisfied), then at least one of the original

constraints is active, implying
∨µ
m=1

(
Gim(κjtm) = 0

)
.

In this case, one of the following holds: either (1) each

κjtm lies on its constraint boundary:
∧µ
m=1

(
Gim(κjtm) =

0
)
, or (2) at least one κtm does not lie on its constraint

boundary. If (2) holds, then ξdemj must be infeasible

for Ẑ, so (c) must be satisfied. If (1) holds, then ξdemj is

both feasible for Ẑ and not locally-optimal with respect

to the relaxed constraints. Then, there exists some tra-

jectory ξ̂xu such that c(ξ̂xu) < c(ξdemj ), and for at least

one m in 1, . . . , µ, Gim(κ̂jtm) > 0, where κ̂jtm is the con-

straint state at time tm on ξ̂xu. ξ̂xu cannot be feasible

with respect to the true specification, since it makes

ξdemj not globally-optimal, so in this case (b) must hold.

ut

Given this result, we can use spec-optimality to vastly

reduce the search space when searching for formulas

which make the demonstrations globally-optimal (Sec.

5.3). To formalize this search space reduction, we prove

that the set of consistent formulas shrinks as µ in-

creases, approaching ϕf with lower values of µ and ap-

proaching ϕg with higher values of µ.

Theorem 1 (Distinguishability) For the consistent

formula sets defined in Sec. 5.2, we have ϕg ⊆ ϕµ̃-SO ⊆
ϕµ̂-SO ⊆ ϕf , for µ̃ > µ̂.

Proof ϕg ⊆ ϕµ̃-SO, since per Lemma 1, all globally-

optimal trajectories are µ̃-SO. Thus, restricting Prob.

8 to enforce global optimality requires more constraints

than restricting Prob. 8 to enforce µ̃-SO. With more

constraints, the feasible set of consistent formulas can-

not be larger for global optimality. Similarly, as enforc-

ing µ̃-SO requires more constraints than enforcing µ̂-

SO, the feasible set of consistent formulas cannot be

larger for µ̃-SO than for µ̂-SO. ϕµ-SO ⊆ ϕf , since en-

forcing µ-SO also enforces feasibility. Thus, restricting

Prob. 8 to enforce µ-SO requires more constraints than

the standard Prob. 8. With more constraints, the feasi-

ble set of consistent formulas cannot be larger for µ-SO.

ut

Algorithm 1: Falsification

1 Input: {ξdemj }Ns

j=1, S̄, Output: θ̂s, θ̂p

2 NDAG ← 0, {ξ¬s} ← {}
3 while ¬ consistent do
4 NDAG ← NDAG + 1
5 while Problem 8 is feasible do

6 θ̂s, θ̂p ← Problem 8({ξdemj }Ns

j=1, {ξ¬s}, NDAG)

7 for j = 1 to Ns do

8 ξjxu ← Problem 7(ξdemj )

9 if Problem 7 is feasible then

{ξ¬s} ← {ξ¬s} ∪ ξjxu ;

10 if Prob. 7 infeasible, for all j = 1, . . . , Ns then
11 consistent ← >; break

5.3 Counterexample-guided framework

In this section, we will assume that the demonstra-

tor returns a solution to Prob. 1 which is boundedly-

suboptimal with respect to the globally optimal solution,

in that c(ξdemj ) ≤ (1 + δ)c(ξ∗j ), for a known subopti-

mality slack parameter δ, where c(ξ∗j ) is the cost of the

optimal solution. This is reasonable as the demonstra-

tion should be feasible (completes the task), but may

be suboptimal in terms of cost (e.g. path length, etc.),
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and δ can be estimated from repeated demonstrations.

We sketch one way δ can be estimated in Sec. 7.4.

Under the bounded-suboptimality assumption, any

trajectory ξxu satisfying the known constraints η̄(ξxu) ∈
S̄ at a cost lower than the suboptimality bound, i.e.

c(ξxu) ≤ c(ξdemj )/(1+δ), must violate ϕ(θs, θp) [15, 16].

We can use this to reject candidate structures θ̂s and

parameters θ̂p. If we can find a counterexample trajec-

tory that satisfies the candidate LTL formula ϕ(θ̂s, θ̂p)

at a lower cost by solving Prob. 7,

Problem 7 (Counterexample search)

find ξxu
subject to ξxu |= ϕ(θ̂s, θ̂p)

η̄(ξxu) ∈ S̄(ξdemj ) ⊆ C
c(ξxu) < c(ξdemj )/(1 + δ)

then ϕ(θ̂s, θ̂p) cannot be consistent with the demon-

stration. Thus, we can search for a consistent θ̂s and

θ̂p by iteratively proposing candidate θ̂s / θ̂p by solving

Prob. 8 (a modified version of Prob. 4, which we will

discuss shortly) and searching for counterexamples that

can prove the parameters are invalid/valid; this is sum-

marized in Alg. 1. Heuristics on the falsification loop

are discussed in Sec. 7.3.

We note that the structure of the falsification loop

in Alg. 1 is crucial for enforcing that the returned LTL

formula makes the demonstrations globally-optimal (or

boundedly-suboptimal), since as discussed in Sec. 5.2,

it is challenging to encode global optimality directly.

As a result, we will rely on encoding conditions that

are weaker than global optimality but which can be ef-

ficiently enforced, proposing LTL formulas which make

the demonstration feasible or spec-optimal (see Prob.

8). Thus, the loop is needed to reject formulas which

make the demonstrations feasible or spec-optimal but

not globally-optimal, in order to ensure that the for-

mula that is eventually returned makes the demonstra-

tions globally-optimal. We now discuss in detail the core

components of Alg. 1: counterexample generation, ad-

dressed in Prob. 7, and a combined search for θp and

θs, addressed in Prob. 8).

Counterexample generation: We propose different

methods to solve Prob. 7 based on the dynamics. For

piecewise affine systems, Prob. 7 can be solved directly

as a MILP [52]. However, the LTL planning problem

for general nonlinear systems is challenging [24, 36].

Probabilistically-complete sampling-based methods [24,

36] or falsification tools [2] can be applied, but can be

slow on high-dimensional systems. For simplicity and

speed, we solve Prob. 7 by finding a trajectory ξ̂xu |=
ϕ(θ̂s, θ̂p) and boolean assignment Z for a kinematic ap-

proximation of the dynamics via solving a MILP, then

warm-start the nonlinear optimizer with ξ̂xu and con-

strain it to be consistent with Z, returning some ξxu. We

use IPOPT [50] and TrajOpt [46] to solve these nonlin-

ear optimization problems for the simulation and hard-

ware experiments, respectively. If c(ξxu) < c(ξdemj )/(1+

δ), then we return, otherwise, we generate a new ξ̂xu.

Whether this method returns a valid counterexample

depends on if the nonlinear optimizer converges to a

feasible solution; hence, this approach is not complete.

However, we show that it works well in practice (see Sec.

9-10); moreover, the optimal sampling-based planning

approaches (e.g. [36]) can always be used as a complete

alternative, at the expense of higher computation time.

Unifying parameter and structure search: When

both θp and θs are unknown, they must be jointly learned

due to their interdependence: learning the structure in-

volves finding an unknown boolean function of θp, pa-

rameterized by θs, while learning the AP parameters θp

requires knowing which APs were selected or negated,

determined by θs. This can be done by combining the

KKT (10) and DAG constraints (13)-(15) into a single

MILP, which can then be integrated into Alg. 1:

Problem 8 (Combined search for θp, θs)

find
D,Sdem

j ,S¬sj , θp,λj,kt ,λj,¬ki,t ,νj,kt , sji,t,Q
j
i,t,Z

j ,

∀i, j, t
s.t. {KKTLTL(ξdemj )}Nsj=1

topology constraints (except single root) for D
Equation (13), j = 1, . . . , Ns
Equation (14), j = 1, . . . , Ns
Equation (15), j = 1, . . . , N¬s

In Prob. 8, since 1) the Zji (θ
p
i ) at the leaf nodes of

D are constrained via (8) to be consistent with θp and

ξdemj and 2) the formula defined by D is constrained

to be satisfied for the Z via (13), the low-level demon-

stration ξdemj must be feasible for the overall LTL for-

mula defined by the DAG, i.e. ϕ(θs, θp), where θs = D.

KKTLTL(ξdemj ) then chooses AP parameters θp to make

ξdemj locally-optimal for the continuous optimization in-

duced by a fixed realization of boolean variables. Over-

all, Prob. 8 finds a pair of θp and θs which makes

ξdemj locally-optimal for a fixed Zj which is feasible for

ϕ(θs, θp), i.e. Φ(Zj , θp, θs) = 1, for all j. To also im-

pose the spec-optimality conditions (Def. 1), we can

add these constraints to Prob. 8:
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S
dem,Ẑjn
j,(root,1) ≤ b1nj (16a)

‖λj,¬kim,tm

>∇xtg¬kim (η(xjt ), θ
p
im

)‖ ≤M(1− b2nj),
m = 1, ..., µ

(16b)

g¬kim (η(xjt ), θ
p
im

) ≥ −M(1− ejnm), m = 1, ..., µ (16c)

1>
Nimineq

ejnm ≥ Ẑjimtm(θpim)− b3nj , m = 1, ..., µ (16d)

g¬kim (η(xjt ), θ
p
im

) ≤M(Ẑjim,tm + b3nj) (16e)

b1nj + b2nj + b3nj ≤ 1, bnj ∈ {0, 1}3,
ejnm ∈ {0, 1}N

im
ineq

(16f)

for n = 1, . . . , |I|, where S
dem,Ẑjn
j is the satisfaction ma-

trix for ξdemj where the leaf nodes are perturbed to take

the values of Ẑjn, where n indexes an ι ∈ I. (16a) mod-

els the case when the formula is not satisfied, (16b)

models when ξdemj remains locally-optimal upon relax-

ing the constraint (zero stationarity contribution), and

(16c)-(16e) model the infeasible case. Generally, with-

out spec-optimality, the falsification loop in Alg. 1 will

need to eliminate more formulas on the way to find-

ing a formula which makes the demonstrations globally-

optimal. We conclude this section with some remarks

on spec-optimality and the falsification loop:

Remark 1 If µ = 1, the infeasibility constraints (16c)-

(16e) can be ignored (since together with (16a), they are

redundant), and we can modify (16f) to b1nj + b2nj ≤ 1,

bnj ∈ {0, 1}2.

Remark 2 It is only useful to enforce spec-optimality

on index pairs (i1, t1), . . . , (iµ, tµ) where Gim(κjtm , θ
p
im

) =

0 for all m = 1, ..., µ; otherwise the infeasibility case

automatically holds. If θp is unknown, we won’t know a

priori when this holds, but if θp are (approximately)

known, we can pre-process so that spec-optimality is

only enforced for salient ι ∈ I.

Remark 3 We can interpret µ as a tuning knob for

shifting the computation between the falsification loop

and Prob. 8; imposing a larger µ can potentially rule

out more formulas at the cost of adding additional con-

straints and decision variables to Problem 8.

Remark 4 Prob. 8 with spec-optimality constraints (16)

can be used to directly search for a ϕ(θ̂s, θ̂p) which can

be satisfied by visiting a set of APs in any order (e.g.

surveillance-type tasks) without using the loop in Alg.

1, since (16) directly enforces that any AP (1-SO) or a

set of APs (µ-SO) which were visited and which prevent

the trajectory cost from being lowered must be visited for

any candidate ϕ(θ̂s, θ̂p).

6 Learning Cost Function Parameters (θp, θs,

θc)

If θc is unknown, it can be learned by modifying KKTLTL

to also consider θc in the stationarity condition: all

terms containing ∇ξxuc(ξdemj ) should be modified to

∇ξxuc(ξdemj , θc). When c(·, ·) is affine in θc for fixed

ξdemj , the stationarity condition is representable with a

MILP constraint. However, the falsification loop in Alg.

1 requires a fixed cost function in order to judge if a tra-

jectory is a counterexample. Thus, one valid approach

is to first solve Prob. 8, searching also for θc, then fixing

θc, and running Alg. 1 for the fixed θc. Specifically, the

approach is the same as Alg. 1, apart from an additional

outer while loop, where candidate θc are selected. We

formally write this procedure in Alg. 2, where we refer

to the Prob. 8 variant that searches over θc as Prob. 8′,

and to the Prob. 7 variant that takes in θc as input as

Prob. 7′. Upon the failure of a θc to yield a consistent

θp and θs, the θc is added into a set of cost parame-

ters for Problem 8 to avoid, Θcav. The avoidance condi-

tion can be implemented with integer constraints, i.e.

|θci − θ̂ci | ≥ εav− (1−ziav),
∑
i z
i
av ≥ 1, for i = 1, . . . , |θc|

and for binary variables ziav. Here, εav is a hyperparam-

eter that defines the size of an infinity-norm ball around

θ̂i which should be avoided in future iterations. One can

also achieve a similar effect without this hyperparame-

ter by adding an objective function maxθc ‖θc − θ̂ci ‖∞
to Prob. 8′, which is MILP-representable.

Algorithm 2: Falsification, unknown cost

function

1 Input: {ξdemj }Ns

j=1, S̄, Output: θ̂s, θ̂p, θ̂c

2 NDAG ← 0, {ξ¬s} ← {}, Θcav ← {}
3 while true do

4 θ̂s, θ̂p, θ̂c←Problem

8′({ξdemj }Ns

j=1, {ξ¬s}, NDAG, Θcav)

5 while ¬ consistent do
6 NDAG ← NDAG + 1
7 while Problem 8 is feasible do

8 θ̂s, θ̂p ← Problem

8({ξdemj }Ns

j=1, {ξ¬s}, NDAG, θ̂c)

9 for j = 1 to Ns do

10 ξjxu ← Problem 7′(ξdemj , θ̂c)

11 if Problem 7′ is feasible then
12 {ξ¬s} ← {ξ¬s} ∪ ξxu
13 if Prob. 7′ infeasible, for all

j = 1, . . . , Ns then
14 consistent ← >; break

15 if consistent then return;

16 else Θcav ← Θcav ∪ θ̂c; break;

Note that this procedure either eventually returns

an LTL formula consistent with the fixed θc, or Alg. 1
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becomes infeasible, and a new θc must be generated and

Alg. 1 rerun. This is guaranteed to eventually return

a set of θc, θs, and θp which make each ξdemj globally-

optimal with respect to c(ξxu, θ
c) under ϕ(θs, θp). How-

ever, it may require iterating through an infinite num-

ber of candidate θc and hence is not guaranteed to ter-

minate in finite time (Cor. 3). Nonetheless, we note that

for a certain class of formulas (Rem. 4), a consistent set

of θc, θs, and θp can be recovered in one shot.

7 Method extensions, variants, and discussion

In this section, we discuss some extensions and vari-

ants of our approach which can improve learning (Sec.

7.1) and computational performance (Sec. 7.2, Sec. 7.3).

Finally, we discuss the effect of suboptimality on the

learning procedure and how the suboptimality slack pa-

rameter δ can be estimated (Sec. 7.4).

7.1 Encoding prior knowledge

In some situations, we may have some a priori knowl-

edge on the atomic propositions, e.g. which labels corre-

spond to which atomic proposition regions, or a rough

estimate of the AP parameters θp. We describe how this

knowledge can be integrated into our method.

Known labels: We have assumed that the demonstra-

tions only include state/control trajectories and not the

AP labels; this can lead to ambiguity as to which S
should be assigned to which proposition pi. For exam-

ple, consider the example in Fig. 3 (left), where the

aim is to recover ϕ(θp) = ♦S1(θp1)∨♦S2(θp2). The KKT

conditions will imply that the demonstrator had to visit

two boxes and their locations, but not whether the left

box should be labeled S1 or S2. However, in some set-

tings it may be reasonable that the labels for each AP

are provided, e.g. for an AP which requires a robot arm

to grasp an object, we might have sensor data determin-

ing if the object has been grasped. In this case, we can

incorporate this by simply constraining Zji (θ
p
i ) to be

the labels; this then removes the ambiguity mentioned

earlier.

Prior knowledge on θp: In some settings, we may

have a rough idea of θp, e.g. as noisy bounding boxes

from a vision system. We might then want to avoid devi-

ating from these nominal parameters, denoted θpnom, or

restrict θp to some region around θpnom, denoted Θi,nom,

subject to the KKT conditions holding. This can be

done by adding
∑NAP

j=1 ‖θ
p
i − θpi,nom‖1 as an objective or

θpi,nom ∈ Θi,nom as a constraint to Prob. 4 instead of

simply solving Prob. 4 as a feasibility problem.

7.2 Faster reformulations for the falsification loop

A shortcoming of Alg. 1 is that it can be computation-

ally intensive. This is primarily due to Prob. 8, which

is a mixed-integer program that contains many binary

decision variables, including the DAG structure vari-

ables (X,L,R) and variables Q and Z which are needed

to learn the continuous parameters θp. While Prob. 8

can still be solved for examples of moderate size (see

the results in Sec. 9), we observe that its computation

time can become unrealistic for examples with very long

LTL formulas (i.e. a large search space for (X,L,R)).

Intuitively, increasing the dimensionality of (X,L,R)

combinatorially increases the number of possible assign-

ments, which can cause the optimizer to struggle to find

a feasible solution in a reasonable timeframe.

To address these computational challenges, we pro-

pose a reformulation for Prob. 8 which is better suited

for large-scale problems. Instead of fixing the number

of nodes NDAG in the DAG D and searching over gram-

mar element types Xuv for which to populate the nodes,

we can fix X to contain a number of instances of each

grammar element, and relax the constraint that there is

only one root node, and enforce the constraints of Prob.

8 on the LTL formula defined by the subgraph of a par-

ticular root node; that is, we enforce the constraints on

one tree in the forest of an expanded DAG where AP

nodes with common labels are not merged. Addition-

ally, instead of incrementing the total DAG size NDAG

in the outer loop of Alg. 1, we should increment the

number of instances of each grammar element by one.

As a concrete example, instead of searching for a DAG

with 5 nodes, where each node can be labeled with any

element in the grammar {p1, p2,∧,♦,�}, one possibility

under this reformulation would be to fix X to contain

11 nodes, with one instance each of p1 and p2 and three

instances each of ∧, ♦, and �. The optimizer would

then choose a subset of these nodes to include in the

candidate LTL formula by choosing a root node and

(L,R) accordingly.

More concretely, this reformulated problem can be

written as a modification of Prob. 8, where X is dropped

as a decision variable and an additional binary vector

r ∈ {0, 1}NDAG is added. The purpose of r is to encode

that at least one node in the DAG is a root node, and

that conditions (14), (15), and (16) hold for each root

node; concretely, if ri = 1, node i is a root node, and if

ri = 0, then node i is not a root node. This adjustment

can be performed by taking constraints (14), (15), and

(16) and relaxing them depending on the value of r,

using a big-M formulation. As a concrete example, (14)
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would be modified to

1− Sdem
j,(ri,1)

≤M(1− ri), i = 1, . . . , NDAG,

j = 1, . . . , Ns.
(17)

By holding X constant instead of considering it as

a decision variable, we dramatically reduce the com-

putational cost of solving Prob. 8, by combinatorially

reducing the search space size compared to searching

over the entirety of (X,L,R). Furthermore, this does

not overly restrict the LTL formula search, since we can

still represent different formulas by searching over L

and R, and by allowing for multiple root nodes, we can

still find different formulas involving a different num-

ber of nodes (i.e. the method can return formula de-

fined by a subtree containing only a subset of the nodes

in X). For instance, consider representing the formula

ϕ = ♦p1∧♦p2 using either formulation. Using the orig-

inal formulation, one can represent ϕ by searching for a

DAG with 5 nodes, resulting in the structure in Fig. 2.

Using the reformulation, we can represent ϕ even when

selecting one instance each of p1 and p2 and three in-

stances each of ∧, ♦, and �, as long as some subgraph

in the resulting DAG replicates the structure in Fig. 2,

and the root of that subgraph (say node i) is marked

as a root node (ri = 1). However, these computational

gains can come at the cost of easily finding the short-

est LTL formula consistent with the demonstrations, as

we discuss in Cor. 1 (see Rem. 5 for more discussion).

Thus, this formulation should be used for large-scale

learning problems with many APs and LTL grammar

elements, while it should be avoided when the primary

priority is to return the simplest possible LTL formula.

7.3 Prioritized variants on the falsification loop

Depending on the desired application, it may be useful

to impose an ordering in which candidate structures θs

are returned in line 4 of Alg. 1. For example, the user

may want to return the most restrictive formulas first

(i.e. formulas with the smallest language), since more

restrictive formulas are less likely to admit counterex-

amples (and hence the falsification should terminate in

fewer iterations). On the other hand, the user may want

to return the least restrictive formulas first, generating

many invalid formulas in order to explicitly know what

formulas do not satisfy the demonstrator’s wishes.

However, imposing an entailment-based ordering on

the returned formulas is computationally challenging,

as in general this will involve pairwise LTL entailment

checks over a large set of possible LTL formulas, and

each check is in PSPACE [21]. Despite this, we can

heuristically approximate this by assigning weights to

each node type in the DAG based on their logical “strength”,

such that each DAG with the same set of nodes has an

overall weight w =
∑NDAG

u=1

∑Ng

v=1 wu,vXu,v. For exam-

ple, ∨ should be assigned a lower weight than ∧, since ∨s

can never restrict language size, while ∧ can never grow

it. Then, stronger/weaker formulas can be returned first

by adding constraint w ≥ wthresh/w ≤ wthresh, where

wthresh is reduced/increased until a consistent formula

is found.

Note that multiple consistent formula structures can

be also generated by adding a constraint for Prob. 8 to

not return the same formula structure and continuing

the falsification loop after the first consistent formula

is found.

7.4 Demonstration suboptimality

We conclude this section by describing a method for es-

timating the suboptimality slack parameter δ, which is

crucial for maintaining the correctness of Alg. 1, and by

discussing how demonstrator suboptimality can affect

the performance of our algorithm.

We first describe how δ can be estimated. Assume

that the cost function parameters θc are fixed. Suppose

that the demonstrator repeats task j R times, generat-

ing suboptimal demonstrations {ξdemj,r }Rr=1 with corre-

sponding costs {c(ξdemj,r )}Rr=1, where c(ξj,r)
dem ≥ c(ξ∗j ),

for all r, where c(ξ∗j ) is the cost of a globally-optimal so-

lution for task j, which we assume is finite. Using these

repeated demonstrations, we would like to estimate the

suboptimality bound δ. Assuming the demonstration

costs are independent and identically distributed real-

izations of a random variable, we can estimate c(ξ∗j )

using the location parameter of a Weibull distribution

that is fit to the observed costs [20, 30, 51]. This follows

from the Fisher-Tippett-Gnedenko Theorem from ex-

treme value theory [20], which states that if the limiting

distribution of the minimum of a set of realizations of

a random variable converges to a finite value, the limit

distribution is Weibull. Then, the location parameter

of the Weibull distribution can be used to estimate the

minimum c(ξ∗j ); let this estimate be denoted ĉ∗j . One

can also compute a confidence interval around ĉ∗j [30],

which can be used to determine if the demonstration

needs to be further repeated (i.e. if the confidence in-

terval is large). Finally, we can recover an estimate of

δ by taking the lowest-cost trajectory (which will be

selected as the demonstration used in learning2) with

2 Provided that the remaining higher-cost demonstrations
are feasible, they can still be used in the learning process; we
can enforce that these demonstrations should still be feasible
for any candidate LTL formula.
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cost c(ξdemj )
.
= min1≤r≤R c(ξ

dem
j,r ) and setting

δ =
c(ξdemj )− ĉ∗j

ĉ∗j
. (18)

We demonstrate this procedure on a simulated example

in Sec. 9.2.

This δ estimation procedure can also be altered to

work for the case of unknown θc. Since Alg. 2 fixes

a single consistent θc in an outer loop and then runs

the falsification loop of Alg. 1 for that fixed θc, we can

estimate δ for each θc which comes up in the outer loop

directly using the procedure described previously for a

fixed θc. Thus, δ changes based on the current candidate

θc.

We now discuss the overall effect of suboptimality

on our method. Recall that our approach relies on a

continuous notion of optimality to learn θp and θc (the

KKT conditions) and discrete notions of optimality in

a falsification loop to learn the LTL structure θs. We

first discuss the effect of suboptimality on learning θp

and θc; in these cases, any demonstrator suboptimality

is reflected by the KKT conditions failing to hold ex-

actly on the demonstrations (i.e. with an error in the

stationarity or complementary slackness terms). This

can be dealt with by solving Prob. 3, which relaxes

the KKT conditions to a penalty, so the optimization

problem remains feasible despite the suboptimality. In

essence, Prob. 3 finds the cost function/AP parame-

ters which make the demonstrations as close to satis-

fying the KKT conditions as possible. Unfortunately,

these parameters may not reflect the true parameters

if the demonstrations are extremely suboptimal; as a

result, the accuracy of the recovered parameters can be

sensitive to suboptimality. Quantifying uncertainty in

the learned parameters as a function of the demonstra-

tor’s suboptimality may help mitigate any performance

degradation, and is an interesting direction for future

work.

Learning the LTL structure θs is in general less sen-

sitive to suboptimality. To understand this, let us re-

turn to the two-AP setting of Fig. 3. In this setting,

we first sort the possible LTL structures on a number

line by the optimal trajectory cost that they admit (see

Fig. 4 for a depiction of this idea). There are finitely

many possible LTL structures θs, and many different

θs may be semantically identical (for example, many

θs have corresponding formulas which are just permu-

tations of each other), thus admitting optimal trajec-

tories of the same cost. Thus, while there may be ex-

ponentially many possible θs, there tends to only be a

small number of groups of cost-distinguishable formu-

las (i.e. each such group contains formulas with equal

optimal cost). Recall that in running Alg. 1 using the

b b b b
c(ξ∗)

c∗
A c∗

B c∗
C

c∗
D

�¬p1

�¬p2

♦p1

♦p1 ∧ �¬p2

♦p1 ∧ ♦p2

♦p1 ∧ ♦p2 ∧ ¬�¬p1

(¬p2 U p1) ∧ ♦p2

(¬p2 U p1) ∧ ♦p2 ∧ ⊤

c(ξdem
j )

1+δ

(A) (B) (C) (D)

etc. etc. etc. etc.

Fig. 4 Consider the two-AP setting first shown in Fig. 3.
We visualize here sets of LTL formulas which can be distin-
guished based on cost. Formulas within group (·) have an
optimal cost c∗· . The formulas listed in each group (A), (B),
(C), and (D) are just a small subset of a much larger set of
cost-indistinguishable formulas. For instance, if a demonstra-
tion has a δ-adjusted cost c(ξdemj )/(1+ δ) falling in the green
range, Alg. 1 will return some LTL formula structure in group
(D), each of which would have an optimal cost of c∗D.

given demonstrations to learn θs, the falsification loop

terminates when the optimal cost of a trajectory satis-

fying the current candidate LTL formula and the known

constraints exceeds the δ-adjusted demonstration cost

c(ξdemj )/(1 + δ). As an example, consider a subopti-

mal demonstration of ϕ = (¬p2 U p1) ∧ ♦p2 which

belongs to group (D) in Fig. 4 and has a δ-adjusted

cost c(ξdemj )/(1 + δ). As long as this adjusted cost lies

anywhere within the green interval in Fig. 4, some for-

mula from group (D) is returned, which will be a for-

mula consistent with the bounded suboptimality of the

demonstration. Note that the estimate of δ must be

an overestimate of the true δ in order for the adjusted

cost to lie in the green region in Fig. 4; this can be

encouraged by setting the confidence interval described

earlier in this section to be large, and selecting δ as

the fit Weibull location parameter padded by the confi-

dence interval. In Sec. 9.2, we show that we can obtain

an overestimate of the true δ using this approach.

8 Theoretical Analysis

In this section, we prove some theoretical guarantees

of our method: that it is complete under some assump-

tions, without (Thm. 2) or with (Cor. 2) spec-optimality,

that it returns the shortest LTL formula consistent with

the demonstrations (Cor. 1), and that we can compute

guaranteed conservative estimates of Si/Ai (Thm. 3).

Assumption 1 Prob. 7 is solved with a complete plan-

ner.

Assumption 2 Each demonstration is locally-optimal

(i.e. satisfies the KKT conditions) for fixed boolean vari-

ables.

Assumption 3 The true parameters θp, θs, and θc are

in the hypothesis space of Prob. 8: θp ∈ Θp, θs ∈ Θs,
θc ∈ Θc.
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We will use these assumptions to show that when

the cost function parameters θp are known, our falsifica-

tion loop in Alg. 1 is guaranteed to return a consistent

formula; that is, it makes the demonstrations globally-

optimal.

Theorem 2 (Completeness and consistency, un-

known θs, θp) Under Assumptions 1-3, Alg. 1 is guar-

anteed to return a formula ϕ(θs, θp) such that 1) ξdemj |=
ϕ(θs, θp) and 2) ξdemj is globally-optimal under ϕ(θs, θp),

for all j, 3) if such a formula exists and is representable

by the provided grammar.

Proof To see the first point - that Alg. 1 returns ϕ(θ̂s, θ̂p)

such that ξdemj |= ϕ(θ̂s, θ̂p) for all j, note that in Prob.

8, the constraints (13)-(15) on the satisfaction matrices

Sdem
j encode that each demonstration is feasible for the

choice of θp and θs; hence, the output of Prob. 8 will

return a feasible ϕ(θ̂s, θ̂p). As Alg. 1 will eventually re-

turn some ϕ(θ̂s, θ̂p) which is an output of Prob. 8, the

ϕ(θ̂s, θ̂p) that is ultimately returned is feasible.

Next, to see the second point - that the ultimately

returned ϕ(θ̂s, θ̂p) makes each ξdemj globally-optimal.

Note that at some iteration of the inner loop, if Prob.

7 is feasible and its solution algorithm is complete (As-

sumption 1), it will return a trajectory which is lower-

cost than the demonstration and satisfies ϕ(θ̂s, θ̂p). Note

that disregarding the lower-cost constraint, Prob. 7 will

always be feasible, since Prob. 8 returns θp, θs for which

the demonstration is feasible, and the feasible set of

Prob. 7 contains the demonstration. The falsification

loop will continue until Prob. 7 cannot produce a tra-

jectory of strictly lower cost for each demonstration;

this is equivalent to ensuring that each demonstration

is globally optimal for the ϕ(θ̂s, θ̂p).

To see the last point, we note that if there exists

a formula ϕ(θ̂s, θ̂p) which satisfies the demonstrations,

it is among the feasible set of possible outputs of Alg.

1; that is, the representation of LTL formulas, D, is

complete (cf. Lemma 1 in [37]). ut
We will further show that the formula returned by

Alg. 1 is the shortest formula which is consistent with

the demonstrations; this is due to NDAG only being

incremented upon infeasibility of a smaller NDAG to

explain the demonstrations.

Corollary 1 (Shortest formula) Let N∗ be the size

of a minimal DAG for which there exists (θp, θs) such

that ξdemj |= ϕ(θs, θp) for all j. Under Assumptions 1-3,

Alg. 1 is guaranteed to return a DAG of size N∗.

Proof The result follows since Algorithm 1 increases

NDAG incrementally (in the outer loop) until some ϕ(θ̂s, θ̂p)

is returned which makes all of the demonstrations fea-

sible and globally-optimal, and each inner iteration of

Algorithm 1 is guaranteed to find a consistent ϕ(θ̂s, θ̂p)

if one exists (cf. Theorem 2). ut
Remark 5 A similar shortest formula guarantee can

be obtained for the reformulation of Alg. 1 described in

Sec. 7.2 only if it is tractable to perform an exhaustive

search over the number of nodes allocated to each gram-

mar element, in order to find the shortest-length combi-

nation. This can be computationally intensive, and is in

contrast to the simple “line-search” over a single com-

plexity variable, NDAG, that the original Alg. 1 enjoys.

Using Lem. 1, we can show that modifying Alg. 1

to additionally impose the spec-optimality conditions

in Prob. 8 still enjoys the completeness properties dis-

cussed in Theorem 2, while also in general reducing the

number of falsification iterations needed as a result of

the reduced search space.

Corollary 2 (Alg. 1 with spec-optimality) By mod-

ifying Alg. 1 so that Prob. 8 uses constraints (16), Alg.

1 still returns a consistent solution ϕ(θ̂s, θ̂p) if one ex-

ists, i.e. each ξdemj is feasible and globally optimal for

each ϕ(θ̂s, θ̂p).

Proof The result follows from completeness of Alg. 1

(cf. Theorem 2) and Lemma 1: adding (16a)-(16c) en-

forces that ξdemj are spec-optimal, and via Lemma 1,

ξdemj , which is a globally-optimal demonstration, must

also be spec-optimal. Hence, imposing constraints (16a)-

(16c) is consistent with the demonstration. ut
Next, we show how the consistency properties ex-

tend to the case of unknown cost function, if Alg. 2

returns a solution, which it is not guaranteed to do in

finite time.

Corollary 3 (Consistency, unknown θc) Under As-

sumptions 1-3, if Alg. 2 terminates in finite time, it re-

turns a formula ϕ(θs, θp) such that 1) ξdemj |= ϕ(θs, θp)

and 2) ξdemj is globally-optimal with respect to θc un-

der the constraints of ϕ(θs, θp), for all j, 3) if such

a formula exists and is representable by the provided

grammar.

Proof Note that Alg. 2 is simply Alg. 1 with an outer

loop where potential cost parameters θc are chosen.

From Theorem 2, we know that under Assumptions 1-

2, for the true cost parameter θc, Alg. 1 is guaranteed

to return θp and θs which make the demonstrations

globally-optimal under θc. From Assumption 3 and the

fact that the true parameters θp, θs, and θc will make

the demonstrations globally-optimal, we know there ex-

ists at least one consistent set of parameters (the true

parameters). Then, Alg. 2 will eventually find a con-

sistent solution (possibly the true parameters), as it

iteratively runs Alg. 1 for all consistent θc. ut
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Finally, we show that for fixed LTL structure and

cost function, querying and volume extraction (Prob-

lems 5 and 6) are guaranteed to return conservative

estimates of the true Si or Ai.
Theorem 3 (Conservativeness for unknown θp)

Suppose that θs and θc are known, and θp is unknown.

Then, extracting Gis and Gi¬s, as defined in (11)-(12),

from the feasible set of Prob. 4 projected onto Θpi (de-

noted Fi), returns Gis ⊆ Si and Gi¬s ⊆ Ai, for all

i ∈ {1, . . . , NAP}.
Proof We first prove that Gi¬s ⊆ Ai. Suppose that there

exists κ ∈ Gi¬s such that κ /∈ Ai. Then by definition, for

all θpi ∈ Fi, Gi(κ, θpi ) ≥ 0. However, we know that all

locally-optimal demonstrations satisfy the KKT condi-

tions with respect to the true parameter θp,∗i ; hence,

θp,∗i ∈ F . Then, x ∈ A(θp,∗i ). Contradiction. Similar

logic holds for proving that Gis ⊆ Si. Suppose that there

exists x ∈ Gis such that x /∈ Si. Then by definition, for

all θpi ∈ Fi, Gi(κ, θpi ) ≤ 0. However, we know that all

locally-optimal demonstrations satisfy the KKT condi-

tions with respect to the true parameter θp,∗i ; hence,

θp,∗i ∈ Fi. Then, κ ∈ Si(θp,∗i ). Contradiction. ut

9 Simulation Experiments

We show that our algorithm outperforms a competing

method (Sec. 9.1), can be robust to suboptimality in the

demonstrations (Sec. 9.2), can learn shared task struc-

ture from demonstrations across environments (Sec. 9.3),

and can learn LTL formulas θp, θs and uncertain cost

functions θc on high-dimensional problems. Specifically,

we demonstrate Alg. 1 on a simulated manipulation ex-

ample (Sec. 9.4) and the one-shot learning described

in Rem. 4 on a quadrotor surveillance task (Sec. 9.5).

Please refer to the supplementary video for visualiza-

tions of the results.
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Fig. 5 Toy example for baseline comparison [27]. The base-
line is unable to disambiguate between possible APs as it does
not consider the demonstrator’s objective.

9.1 Baseline comparison

Likely the closest method to ours is [27], which learns

a pSTL formula that is tightly satisfied by the demon-

strations via solving a nonconvex problem to local op-

timality: arg maxθp minj τ(θp, ξdemj ), where τ(θp, ξdemj )

measures how tightly ξdemj fits the learned formula. We

run the authors’ code [26] on a toy problem (see Fig. 5),

where the demonstrator has kinematic constraints, min-

imizes path length, and satisfies start/goal constraints

and ϕ = ♦[0,8]p1, where x |= p1 ⇔ [I2×2,−I2×2]>x ≤
[3, 2,−1, 2]> = [3, θp1 ]

>
. We assume the structure θs

is known, and we aim to learn θp to explain why the

demonstrator deviated from an optimal straight-line

path to the goal. Solving Prob. 6 returns G1s = S1 (Fig.

5, right). On the other hand, we run TeLEx multiple

times, converging to different local optima, each corre-

sponding to a “tight” θp (Fig. 5, center): TeLEx cannot

distinguish between multiple different “tight” θp, which

makes sense, as the method tries to find any “tight”

solution. This example suggests that if the demonstra-

tions are goal-directed, a method that leverages their

optimality is likely to better explain them.

9.2 δ-estimation for suboptimal demonstrations

In this example, we demonstrate the suboptimality es-

timation method described in Sec. 7.4. In this example,

we consider the same problem setting as in Sec. 9.1,

but instead use suboptimal versions of the blue demon-

stration in Fig. 5. We are given 25 such demonstrations

(Fig. 6, left), and we are interested in estimating the

suboptimality slack parameter δ. To do so, we follow

the method in Sec. 7.4, fitting a Weibull distribution

(Fig. 6, right, orange) to the demonstration costs (Fig.

6, right, blue histogram). The fitted Weibull distribu-

tion has a location parameter of 3.248 after being ad-

justed by its 95% confidence interval, which is smaller

than the optimal cost of 3.25. Using the suboptimal

demonstration with the lowest cost (in this case, 3.274),

we can estimate δ = 0.008 using (18), which overesti-

mates the true δ = 0.007. Per the discussion in Sec.

7.4, it is important to be able to obtain an estimate of

δ which is a tight overestimate of the true δ, which this

example achieves. Overall, this example suggests that

our δ-estimation technique can effectively estimate the

suboptimality bound, which is important for learning

consistent LTL formulas in spite of suboptimality in

the demonstrations.

9.3 Learning shared task structure

In this example, we show that our method can extract

logical structure shared between demonstrations that

complete the same high-level task, but in different en-

vironments (Fig. 7). A point robot must first go to the
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Fig. 6 Left: We are given 25 suboptimal demonstrations of
the same task, with each demonstration starting at [−1, 1],
ending at [3, 4], and satisfying ♦[0,8]p1. The globally-optimal
cost is 3.25, while the best cost observed within the 25 demon-
strations is 3.274. Right: We fit a Weibull distribution (or-
ange) to the demonstration costs (right). The fitted loca-
tion parameter, adjusted by its 95% confidence interval, is
3.248 < 3.25, which leads to a valid overestimate of δ.

mug (p1), then go to the coffee machine (p2), and then

go to goal (p3) while avoiding obstacles (p4, p5). As the

floor maps differ, θp also differ, and are assumed known.

We add two relevant primitives to the grammar, se-

quence:

ϕ1 Q ϕ2
.
= ¬ϕ2 U[0,Tj−1] ϕ1,

enforcing that ϕ2 cannot occur until after ϕ1 has oc-

curred for the first time, and avoid: Vϕ .
= �[0,Tj−1]¬ϕ,

enforcing ϕ never holds over [1, Tj ]. Then, the true for-

mula is:

ϕ∗ = Vp4 ∧ Vp5 ∧ (p1 Q p2) ∧ (p2 Q p3) ∧ ♦[0,Tj−1]p3.

Suppose first that we are given the blue demonstra-

tion in Environment 2. Running Alg. 1 with 1-SO con-

straints (16) terminates in one iteration at NDAG = 14

with

ϕ0 = Vp4 ∧ Vp5 ∧ ♦[0,Tj−1]p2 ∧ ♦[0,Tj−1]p3 ∧ (p1 Q p2).

That is, always avoid obstacles 1 and 2, eventually reach

coffee and goal, and visit mug before coffee. This for-

mula is insufficient to complete the true task (the order-

ing constraint between coffee and goal is not learned).

This is because the optimal trajectories satisfying ϕ0

and ϕ∗ are the same cost, i.e. both ϕ0 and ϕ∗ are con-

sistent with the demonstration and could have been re-

turned, and ϕ0, ϕ
∗ ∈ ϕg (cf. Sec. 8). Now, we also use

the blue demonstration from Environment 1 (two exam-

ples total). Running Alg. 1 terminates in two iterations

at NDAG = 14 with the formulas

ϕ1 = Vp4 ∧ Vp5 ∧ ♦[0,Tj−1]p1 ∧ ♦[0,Tj−1]p2 ∧ ♦[0,Tj−1]p3

(which enforces that the mug, coffee, and goal must

be eventually visited, but in any order, while avoiding

obstacles) and ϕ2 = ϕ∗. Since the demonstration in

Environment 1 doubles back to the coffee before going

to goal, increasing its cost over first going to goal and

then to coffee, the ordering constraint between the two

is learnable. We also plot the generated counterexample

(Fig. 7, yellow), which achieves a lower cost, as ϕ1 in-

volves no ordering constraints. We can use the learned

formula to plan a path completing the task in a new

environment (with different AP parameters θp) in Fig.

8.

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

-2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

Fig. 7 We learn a common LTL formula from demonstra-
tions in different environments (different θp) with shared task
(same θs).
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Fig. 8 Trajectory planned with the learned LTL formula on
the environment-transfer example.

Overall, this example suggests we can use demon-

strations from different environments to learn common

task structure and disambiguate between potential ex-

planations.

Fig. 9 Multi-stage simulated manipulation task: first fill the
cup, then grasp it, and then deliver it. To avoid spills, a pose
constraint is enforced after the cup is grasped.
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Fig. 10 Demonstrations and counterexamples for the simu-
lated manipulation task.

9.4 Multi-stage manipulation task

We consider the setup in Figs. 9, 10 of teaching a 7-

DOF Kuka iiwa robot arm to prepare a drink: first move

the end effector to the button on the faucet (p1), then

grasp the cup (p2), then move the cup to the customer

(p3), all while avoiding obstacles. After grasping the

cup, an end-effector pose constraint (α, β, γ) ∈ S4(θp4)

(p4) must be obeyed. We add two “distractor” APs: a

different cup (p5) and a region (p6) where the robot

can hand off the cup. We also modify the grammar to

include the sequence operator Q, (defined as before),

and add an “after” operator

ϕ1 T ϕ2
.
= �[0,Tj−1](ϕ2 → �[0,Tj−1]ϕ1),

that is, ϕ1 must hold after and including the first timestep

where ϕ2 holds. The true formula is:

ϕ∗ = (p1 Q p2) ∧ (p2 Q p3) ∧ ♦[0,Tj−1]p3 ∧ (p4 T p2).

We use a kinematic arm model: jit+1 = jit + uit, i =

1, . . . , 7, where ‖ut‖22 ≤ 1 for all t. Two suboptimal

human demonstrations (δ = 0.7) optimizing c(ξxu) =∑T−1
t=1 ‖jt+1 − jt‖22 are recorded in a Unity virtual re-

ality (VR) environment. We assume we have nominal

estimates of the AP regions Si(θpi,nom) (e.g. from a vi-

sion system), and we want to learn the θs and θp of ϕ∗.

We use IPOPT [50] to solve the nonlinear optimization

problems needed to compute counterexamples.

We run Alg. 1 with the 1-SO constraints (16), and

encode the nominal θpi by enforcing that Θpi = {θpi |
‖θpi − θpi,nom‖1 ≤ 0.05}. At NDAG = 11, the inner loop

runs for 3 iterations (each taking 30 minutes on an i7-

7700K processor), returning candidates

ϕ1 = (p1Qp3) ∧ (p2Qp3) ∧ (♦[0,Tj−1]p3) ∧ (p4T p3),

ϕ2 = (p1Qp3) ∧ (p2Qp3) ∧ (♦[0,Tj−1]p3) ∧ (p4T p2),

and ϕ3 = ϕ∗. ϕ1 says that before going to the cus-

tomer, the robot has to visit the button and cup in any

Fig. 11 Trajectories planned using the learned LTL formula,
for the simulated 7-DOF arm.

order, and then must satisfy the pose constraint after

visiting the cup. ϕ2 has the meaning of ϕ∗, except the

robot can go to the button or cup in any order. Note

that ϕ3 is a stronger formula than ϕ2, and ϕ2 than ϕ1;

this is a natural result of the falsification loop, which

returns incomparable or stronger formulas with more

iterations, as the counterexamples rule out weaker or

equivalent formulas. Also note that the distractor APs

don’t feature in the learned formulas, even though both

demonstrations pass through p6. This happens for two

reasons: we increase NDAG incrementally and there was

no room to include distractor objects in the formula

(since spec-optimality may enforce that p1-p3 appear

in the formula), and even if NDAG were not minimal,

p6 would not be guaranteed to show up, since visiting

p6 does not increase the trajectory cost.

We plot the counterexamples in Fig. 10: blue/purple

are from iteration 1; orange is from iteration 2. They

save cost by violating the ordering and pose constraints:

from the left start state, the robot can save cost if it

visits the cup before the button (blue, orange trajec-

tories), and loosening the pose constraint can reduce

joint space cost (orange, purple trajectories). The right

demonstration produces no counterexample in iteration

2, as it is optimal for this formula (changing the order

does not lower the optimal cost). For the learned θp,

θpi = θpi,nom except for p2, p3, where the box shrinks

slightly from the nominal; this is because by tightening

the box, a Lagrange multiplier can be increased to re-

duce the KKT residual. We use the learned θp and θs

to plan trajectories which complete the task from new

initial conditions in the environment (Fig. 11).

Overall, this example suggests that Alg. 1 can re-

cover θp and θs on a high-dimensional problem and

ignore distractor APs, despite demonstration subopti-

mality.
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Fig. 12 Quadrotor surveillance demonstrations (top) and
learning curves (bottom).

9.5 Multi-stage quadrotor surveillance

We demonstrate that we can jointly learn θp, θs, and θc

in one shot on a 12D nonlinear quadrotor system. The

system dynamics for the quadrotor [44] are:




χ̇
ẏ
ż
α̇

β̇
γ̇
χ̈
ÿ
z̈
α̈

β̈
γ̈




=




χ̇
ẏ
ż

β̇ sin(γ)

cos(β)
+ γ̇ cos(γ)

cos(β)

β cos(γ)− γ̇ sin(γ)

α̇+ β̇ sin(γ) tan(β) + γ̇ cos(γ) tan(β)
− 1
m

[sin(γ) sin(α) + cos(γ) cos(α) sin(β)]u1

− 1
m

[cos(α) sin(γ)− cos(γ) sin(α) sin(β)]u1

g − 1
m

[cos(γ) cos(β)]u1
Iy−Iz
Ix

β̇γ̇ + 1
Ix
u2

Iz−Ix
Iy

α̇γ̇ + 1
Iy
u3

Ix−Iy
Iz

α̇β̇ + 1
Iz
u4




, (19)

with control constraints ‖ut‖2 ≤ 10. We time-discretize

the dynamics by performing forward Euler integration

with discretization time δt = 1.2 seconds. The 12D

state is x = [χ, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇]>, and the rel-

evant constants are g = −9.81m/s2, m = 1kg, Ix =

0.5kg ·m2, Iy = 0.1kg ·m2, and Iz = 0.3kg ·m2.

We are given four demonstrations of a quadrotor

surveilling a building (Fig. 12): it needs to visit three re-

gions of interest (Fig. 12, green) while not colliding with

the building. All visitation constraints can be learned

directly with 1-SO (see Rem. 4) and collision-avoidance

can also be learned with 1-SO, with enough demonstra-

tions. The true formula is

ϕ∗ = ♦[0,Tj−1]p1∧♦[0,Tj−1]p2∧♦[0,Tj−1]p3∧�[0,Tj−1]¬p4,

where p1-p3 represent the regions of interest and p4 is

the building. We aim to learn θpi for the parameteriza-

tion Si(θpi ) = {[I3×3,−I3×3]>[x, y, z]> ≤ θpi }, assuming

θp4,6 = 0 (the building is not hovering). The demonstra-

tions minimize c(ξxu, θ
c) =

∑
r∈R

∑T−1
t=1 γr(rt+1− rt)2,

where R = {x, y, z, α̇, β̇, γ̇} and γr = 1, i.e. equal penal-

ties to path length and angular acceleration. We assume

γr ∈ [0.1, 1] and is unknown: we want to learn the cost

weights for each state.

Fig. 13 Trajectories planned using the learned LTL formula,
for the quadrotor system.

Solving Prob. 8 with 1-SO conditions (at NDAG =

12) takes 44 minutes and recovers θp, θs, and θc in one

shot. To evaluate the learned θp, we show in Fig. 12 that

the coverage of the Gis and Gi¬s for each pi (computed

by fixing the learned θs and running Prob. 6) monoton-

ically increases with more data. In terms of recovered

θs, with one demonstration, we return

ϕ1 = ♦[0,Tj−1]p2∧♦[0,Tj−1]p3∧♦[0,Tj−1]p4∧�[0,Tj−1]¬p1.

This highlights the fact that since we are not provided

labels, there is an inherent ambiguity of how to label

the regions of interest (i.e. pi, i = 1, . . . , 3 can be as-

sociated with any of the green boxes in Fig. 12 and

be consistent). Also, one of the regions of interest in ϕ

gets labeled as the obstacle (i.e. p1 and p4 are swapped),

since one demonstration is not enough to disambiguate

which of the four pi should touch the ground. Note that

this ambiguity can be eliminated if labels are provided

(see Sec. 7.1) or if more demonstrations are provided:

for two and more demonstrations, we learn ϕi = ϕ∗,

i = 2, . . . , 4. When using all four demonstrations, we

recover the cost parameters θc and structure θs exactly,

i.e. ϕ(θ̂s, θ̂p) = ϕ∗, and fixing the learned θs and run-

ning Prob. 6 returns Gis = Si and Gi¬s = Ai, for all i.

The learned θc, θs, and θp are used to plan trajectories

that efficiently complete the task for different initial and

goal states. Furthermore, assuming that the parameter-

ization is correct, these plans are guaranteed to satisfy
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Fig. 14 We build a Unity virtual reality environment to col-
lect demonstrations for the real-world object delivery manip-
ulation task.

the true LTL formula; these trajectories are presented

in Fig. 13.

Overall, this example suggests that our method can

jointly recover a consistent set of θp, θs, and θc for high-

dimensional systems.

10 Physical experiments

To demonstrate that our method can scale to handle the

challenges of real hardware, we use our method to learn

a real-world multi-stage manipulation task. A video of

our physical experiment can be found in the supple-

mentary material.

10.1 Environment and task description

Consider a tabletop manipulation task where the arm

needs to retrieve several objects, put them in boxes,

and deliver them in a particular order (see Fig. 14).

Specifically, the task of interest is to first place a can of

soup into a box (Fig. 15 (b)-(c)), to then deliver that

box to a blue delivery region (Fig. 15 (d)). Next, the

robot must move a Cheez-It box into a box located at

a green delivery region (Fig. 15 (e)-(f)). Finally, while

the box containing the soup is grasped by the robot,

the robot must keep its end effector upright so that the

soup does not fall out of the box. The robot should also

avoid colliding with the furniture as well as any other

objects in the scene. There are a total of 11 objects

in the scene, not including the delivery boxes or the

furniture, which are taken from the YCB dataset [13].

To describe the aforementioned task concisely in

LTL, we define another new grammar element:

ϕ1 M ϕ2
.
= �[0,Tj−1]((ϕ2 → ϕ1)) ∧ ♦[0,Tj−1]ϕ2,

i.e. if ϕ2 holds, then ϕ1 must also hold, and ϕ2 must

eventually hold. We define the following atomic propo-

sitions:

– pS : The soup is grasped

– pB : The movable box is grasped

– pG1: The end effector is inside the blue delivery re-

gion

– pC : The Cheez-It box is grasped

– pG2: The end effector is inside the green delivery

region

– pP : The end effector is pointed upwards

– pD1: End effector is within 0.05 distance of the gelatin

– pD2: End effector is within 0.05 distance of the bowl

– pD3: End effector is within 0.05 distance of the Mas-

ter Chef coffee can

– pD4: End effector is within 0.05 distance of the sugar

– pD5: End effector is within 0.05 distance of the mus-

tard bottle

– pD6: End effector is within 0.05 distance of the ba-

nana

– pD7: End effector is within 0.05 distance of the Pringles

– pD8: End effector is within 0.05 distance of the pitcher

– pD9: End effector is within 0.05 distance of the mug

We can then write an LTL formula which enforces the

task as

ϕ∗ = (pS M pB) ∧ (pB M pG1) ∧ (pC M pG2) ∧
(pG1 Q pC) ∧ (pP M pB).

The first through fourth clauses enforce that the soup,

moving box, blue goal region, Cheez-It, and green de-

livery region are visited in the correct order, while the

fifth clause enforces that the pose constraint is satis-

fied when the moving box is grasped. This is not overly

restrictive, since per the first clause, it is not possible

for the moving box to be grasped without the soup also

being grasped. Note that we assume the demonstrator

performs collision avoidance by avoiding contact with

any object which is not the current grasp target.

10.2 LTL formula learning

For this experiment, we seek to learn the LTL formula

structure θs while the AP parameters θp and cost func-

tion parameters γ are assumed known. This is reason-

able for this example, since the APs detailed in Sec. 10.1

can be readily measured and the suboptimality param-

eter δ can be used to handle an imprecisely-known cost

function. Specifically, we assume the cost function is

c(ξ, γ) =

T−1∑

t=1

‖jt+1 − jt‖22 + cgrasp
∑

o∈O

T∑

t=1

zograsp, t,
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(a) (b) (c)

(d) (e) (f)

Fig. 15 One demonstration is recorded in the Unity virtual reality environment for the object delivery task, seen here from
a first-person perspective. (a) Initial state. (b) First, grasp the soup. (c) Next, place the soup in the blue box, avoiding the
mustard bottle which is in the way. (d) Place the box with the soup in the blue delivery region while satisfying a pose constraint.
(e) Move to grasp the Cheez-It box. (f) Place the Cheez-It box in the green delivery box.

Fig. 16 Counterexample visualization on the object delivery
task. The red, green blue, and cyan trajectories correspond to
ϕ2, ϕ3, ϕ8, and ϕ13, respectively, as described in Sec. 10.2.

where jt denotes the arm joint values at time t, zograsp, t ∈
{0, 1} evaluates to 1 if object o is grasped at time t and

0 otherwise, O is the set of all manipulable objects, and

cgrasp = 0.01 is a small penalty which discourages the

unnecessary grasping of objects. Note that the learn-

ing is relatively robust to the specific value of cgrasp, as

long as cgrasp is kept small enough such that the grasp

cost term does not outweigh the path length term (in

our experiments, this holds if cgrasp ≤ 0.115). Mapping

back to the notation of Prob. 1, the state xt contains

the joint values jt and the grasp status of each object

zot , while the control input contains the joint velocities

and a binary variable for each object to model grasping

and releasing. The dynamics are constructed such that

the grasp input for a given object is nullified if the end

effector is far from that object.

We obtain one demonstration of this task which is

recorded in a Unity VR environment (see Fig. 14 and

15). The demonstration consists of the state-control tra-

jectory of the arm, as well as a binary trajectory for each

object, evaluating to 0 or 1 at a given timestep depend-

ing on if that object is currently grasped. Furthermore,

the initial configurations of all of the objects are given.

Note that this information is sufficient to reconstruct

the value of every atomic propositions. We also note
that the VR environment does not simulate the grasp

physics, and simply allows the demonstrator to attach

an object to the grippers when it is close by. To learn

θs, we run Alg. 1, where Prob. 8 uses the variant de-

scribed in Sec. 7.2. We elect to use this variant instead

of the original Prob. 8 as in the simulated manipulation

example (Sec. 9.4) since there are many more APs in

this example (15 compared to 6 in Sec. 9.4), causing

the original Prob. 8 to be slow. We allocate one node

for each AP, four “∧” nodes, four “M” nodes, one “Q”

node, and one “♦” node. We use a suboptimality pa-

rameter δ = 0.1. Running Alg. 1 generates 13 falsified

candidate LTL formulas, including the following:

– ϕ2 = (pC M pG2) ∧ (pS M pP ) ∧ (pB Q pG1) ∧
(pP M pB)∧(♦pD5). This formula does not capture

that the Cheez-Its should only be grasped after the

soup has been grasped.

– ϕ3 = (pB M pP ) ∧ (pP M pB) ∧ (pG1 Q pC) ∧
(pC M pG2) ∧ (pS M pG1). This formula does not
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Fig. 17 Setup of the object delivery task in the real world.
The small brown box corresponds to the small blue box in
the VR environment, while the large brown box corresponds
to the green box in the VR environment.

capture that the soup should be contained in the

box upon delivery.

– ϕ8 = (pC M pG2) ∧ (pS M pP ) ∧ (pB M pG1) ∧
(pP Q pC)∧ (♦ pD5). This formula does not capture

that the Cheez-Its should only be grasped after the

movable box has been grasped.

– ϕ13 = (pP M pG1) ∧ (pC M pG2) ∧ (pB M pP ) ∧
(pS M pP ) ∧ (pG1 Q pC). This formula does not

enforce the pose constraint at the correct timesteps.

The candidate LTL formulas are falsified by the

counterexample generation, for which we employ Tra-

jOpt [46] as the nonlinear trajectory optimizer (see Sec.

5.3). We visualize the counterexamples for ϕ2, ϕ3, ϕ8,

and ϕ13 in Fig. 16. One can observe that the miss-

ing constraints in these candidate LTL formulas ac-

cept lower-cost trajectories (achieved for example by

not delivering the goods in the desired order, or by not

picking up particular objects) which contradict the op-

timality of the demonstration. We emphasize that our

method can ignore the large number of distractor ob-

jects. Limiting the expressibility of the DAG by limiting

the number of nodes encourages the learned formula to

be parsimonious, since the free nodes will be needed to

explain demonstrator optimality rather than involving

the distractor objects. In the 14th iteration, our method

terminates after a total of 5 minutes, returning the true

formula ϕ∗.

Fig. 19 Planning environment used. Object poses are recov-
ered from the segmented depth cloud by running ICP.

10.3 Real-world planning and execution

Now that an LTL formula describing the desired task

has been learned, we seek to use the learned formula

to plan in the real world. We work with the real-world

setup in Fig. 17. This setup has different furniture and

object configurations compared to the VR demonstra-

tion environment. However, recall that since the learned

LTL formula is parameterized by the APs, the learned

LTL formula is not hardcoded to specific configurations

and can handle changes in the object locations.

To reflect the realistic situation where the robot may

be tasked to find and deliver a set of objects scattered

across the workspace with a priori unknown locations,

we assume that the locations of the delivery regions

and the movable box are known, while the YCB objects

have unknown location. The movable blue box in the

VR environment corresponds to the small brown box

on the left in Fig. 17, while the green box in the VR

environment corresponds to the big brown box on the

right in Fig. 17.

(a) (b) (c)
Fig. 18 Object segmentation. (a) RGBD data provided by the Kinect sensor. (b) Segmented image. (c) Segmented point
cloud, which is used to infer object poses.
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(a) (b) (c)

(d) (e) (f)

Fig. 20 Executed trajectory on the real robot. The robot first grasps the tomato soup (a), moves to place it inside the movable
box (b), drops the soup into the box and grasps the loaded box (c), and moves the loaded the box to the blue delivery region
(d). The robot then moves to grasp the Cheez-It box (e), and finally places it in the box located at the green delivery region.

To apply our learned LTL formula, we first estimate

the poses of the YCB objects using RGBD (image and

point cloud) data provided by a Kinect sensor mounted

above the base of the arm. We do so by leveraging the

deep learning-based object segmentation framework in

[54] and train it on the YCB object dataset. The trained

network takes the Kinect RGBD data as input and re-

turns a segmented point cloud (Fig. 18). We use the

iterative closest point (ICP) algorithm [43] with 1000

random initializations to estimate the object poses from

the segmented point cloud by fitting them to the source

point clouds. We visualize the objects at their estimated

poses in an Openrave environment, which we also use

for trajectory planning (Fig. 19). We note that due to

occlusions and sensor noise present in the point cloud

data, the poses recovered for the objects further from

the Kinect can suffer from rotational inaccuracies (e.g.

the mustard bottle is upside down and the pitcher is

rotated around 90 degrees). While this degree of pose

accuracy is sufficient to complete our task, we also note

that more sophisticated methods can be employed (e.g.

[22], which provides good pose recovery on the YCB

dataset in the presence of occlusions and object sym-

metry).

Now that the object poses have been determined

(and thus so have the APs), we can employ the learned

LTL formula to plan in the real environment. To do so,

we solve Prob. 1 for ϕ(θs, θ̂p) using the approach de-

tailed in Sec. 5.3. Specifically, we construct a high-level

plan Z by solving a MILP, and then find a low-level joint

trajectory which is consistent with Z with the trajec-

tory optimization algorithm TrajOpt [46]. Like for the

counterexample generation, we choose TrajOpt instead

of IPOPT as it is better tuned for manipulation in clut-

tered environments. Snapshots of the executed plan are

presented in Fig. 20. Please see the supplementary video

for a full visualization.

Overall, this experiment suggests that our learned

LTL formulas can be used to transfer complex long-

horizon task specifications across environments, and that

the method is applicable to high-dimensional robotic

systems acting in the real world.

11 Conclusion

This paper presents a method that learns LTL formulas

with unknown atomic propositions and logical struc-

ture from only positive demonstrations, assuming the

demonstrator is optimizing an uncertain cost function.

We leverage both implicit and explicit optimality con-

ditions on the demonstrations, namely the KKT con-

ditions and algorithmically-generated lower-cost coun-

terexample trajectories, respectively, in order to reduce

the hypothesis space of LTL specifications consistent

with the demonstrations. The generated lower-cost coun-

terexample trajectories, together with the rejected can-

didate LTL formulas which admitted them, are concrete

examples of the alternative behaviors and task specifi-

cations rejected by our method, which can make our ap-

proach more explainable for an end user. We also derive

theoretical guarantees for our method and demonstrate

its applicability across a wide range of experiments in
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simulation and hardware. Specifically, we show that our

method outperforms baseline approaches (Sec. 9.1), can

learn abstract high-level task structure shared across

demonstrations, which can transfer to tasks in differ-

ent environments (Sec. 9.3 and Sec. 10), and scales to

high-dimensional systems in simulation (Sec. 9.4 and

Sec. 9.5) and in the real world (Sec. 10).

In future work, we aim to robustify our method to

mislabeled demonstrations, explicitly consider demon-

stration suboptimality arising from risk, and reduce our

method’s computation time. We are also interested in

integrating the methods presented in this paper with

our recent results on uncertainty-aware constraint learn-

ing [18] in order to plan with uncertain LTL formulas.
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