
Model Error Propagation via Learned Contraction Metrics for
Safe Feedback Motion Planning of Unknown Systems

Glen Chou, Necmiye Ozay, and Dmitry Berenson1

Abstract— We present a method for contraction-based feed-
back motion planning of locally incrementally exponentially
stabilizable systems with unknown dynamics that provides
probabilistic safety and reachability guarantees. Given a dy-
namics dataset, our method learns a deep control-affine ap-
proximation of the dynamics. To find a trusted domain where
this model can be used for planning, we obtain an estimate
of the Lipschitz constant of the model error, which is valid
with a given probability, in a region around the training data,
providing a local, spatially-varying model error bound. We
derive a trajectory tracking error bound for a contraction-
based controller that is subjected to this model error, and then
learn a controller that optimizes this tracking bound. With a
given probability, we verify the correctness of the controller
and tracking error bound in the trusted domain. We then use
the trajectory error bound together with the trusted domain to
guide a sampling-based planner to return trajectories that can
be robustly tracked in execution. We show results on a 4D car, a
6D quadrotor, and a 22D deformable object manipulation task,
showing our method plans safely with learned models of high-
dimensional underactuated systems, while baselines that plan
without considering the tracking error bound or the trusted
domain can fail to stabilize the system and become unsafe.

I. INTRODUCTION
Provably safe motion planning algorithms for unknown

systems are critical for deploying robots in the real world.
Planners are reliable when the system dynamics are known
exactly, but this is rarely the case. To address this, data-driven
methods (e.g. model-based reinforcement learning) plan with
dynamics models learned from data. However, such methods
can be unsafe, since the planner can and will exploit errors
in the learned model to return plans that cannot be tracked
on the real system, leading to unreliable, unsafe behavior in
execution. Thus, to guarantee safety, it is of major interest to
bound the error that the true system may see when tracking
a trajectory planned with the learned dynamics, and to use
it to guide the planning of robustly-trackable trajectories.

One key property of learned dynamics models is their
nonuniform error: they are accurate near the training data,
and that accuracy degrades when moving away from it. Thus,
the model error seen in execution depends on the domain
visited, which also depends on the tracking controller, e.g. a
poor controller will lead to the system visiting a larger set of
possible states, and thus experiencing a larger possible model
error. To analyze this, we need a bound on the trajectory
tracking error for a given disturbance bound (i.e. a tracking
tube). In this paper, we consider tracking controllers based
on contraction theory. Introduced in [1] and extended to the
control-affine case in [2], control contraction theory studies

1Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI, {gchou, necmiye, dmitryb}@umich.edu

incremental stabilizability, making it uniquely suited for
obtaining tracking tubes under disturbance. While tracking
tubes have been derived for contraction-based controllers
under simple disturbance bounds [3] (e.g. a UAV subject to
wind with a known uniform upper bound), these assumptions
are ill-suited for learned dynamics: a uniform bound can be
highly conservative, as the large errors far from the data
would lead to enormous tracking tubes, rendering planning
infeasible. It is also difficult to bound the model error, as its
values are only known on the training data.

To this end, we develop a method for safe contraction-
based motion planning compatible with learned high-
dimensional neural network (NN) dynamics models, which
probabilistically guarantees safety and goal reachability for
the true system. Our core insights are 1) that we can derive a
tracking error bound for a contraction-based controller under
a spatially-varying model error bound, and 2) that this error
bound can be used to bias planning towards regions where
plans can be more robustly tracked. Our contributions are:
• A trajectory tracking error bound for contraction-based

controllers subjected to a spatially-varying, Lipschitz
constant-based model error bound that accurately re-
flects the error in the learned dynamics model.

• A deep learning framework for joint learning of dynam-
ics, control contraction metrics (CCMs), and contracting
controllers that are approximately optimized for plan-
ning performance under this model error description.

• A sampling-based planner that returns plans which can
be safely tracked under the learned dynamics/controller.

• Evaluation of our method on learned dynamics up to
22D, and demonstrating that it outperforms baselines.

II. RELATED WORK

Our work is related to contraction-based control of un-
certain systems: [3] applies contraction to feedback motion
planning for systems with a known disturbance bound, while
[4], [5] apply contraction to adaptive control under known
model uncertainty structure, i.e. the uncertainty lies in the
range of known basis functions. In this paper, the uncertainty
arises from the error between the true dynamics and a learned
NN approximation, which lacks such structure. It is also
only known at certain points (the training data), making the
disturbance bound a priori unknown and nontrivial to obtain.
These methods use sum-of-squares (SoS) optimization to find
CCMs for moderate-dimensional polynomial systems [3],
and cannot be used for NN models. Thus, [6], [7] model
the CCM as an NN and learn it from data, assuming known
dynamics with disturbance of known uniform upper bound.

Our method differs by learning the dynamics and CCM
together to optimize planning performance under model
error. Also related is [8], which learns a model jointly with a
CCM but does not consider how model error affects tracking.

Our work is also related to safe learning-based control.
Many methods learn stability certificates for a single equilbir-
ium point [9], [10], but this is insufficient for point-to-point
motion planning. Other methods use Gaussian processes
to bound the reachable tube of a trajectory [11] or safely
explore a set [12], [13], but these methods assume a feedback
controller is provided; we do not, as we learn a CCM-based
controller. [14] learns tracking tubes around trajectories, but
it is unclear how close plans must stay to the training data for
the guarantees to hold. Perhaps most relevant is [15], which
plans safely with learned models by enforcing that tubes
around plans remain in a “trusted domain”. A key assumption
of [15] is that the unknown system has as many controls
as states; we remove this assumption, requiring fundamental
advancements from [15], e.g. in deriving a new tracking
bound, controller, trusted domain, and planner.

III. PRELIMINARIES AND PROBLEM STATEMENT

We consider deterministic unknown continuous-time non-
linear systems ẋ = h(x, u), where h : X × U → X ,
X ⊆ Rnx , and U ⊆ Rnu . We define g : X × U → X to
be a control-affine approximation of the true dynamics:

g(x, u) = f(x) +B(x)u. (1)
While we do not assume that the true dynamics are

control-affine, we do assume that they are locally incremen-
tally exponentially stabilizable (IES), that is, there exists a β,
λ > 0, and feedback controller such that ‖x∗(t) − x(t)‖ ≤
βe−λt‖x∗(0) − x(0)‖ for all solutions x(t) in a domain.
Many underactuated systems satisfy this, and it is much
weaker than requiring nx = nu, as in [15]. Also, this only
needs to hold in a task-relevant domain D, defined later.

For a function η, a Lipschitz constant over a domain Z is
any L such that for all z1, z2 ∈ Z , ‖η(z1)−η(z2)‖ ≤ L‖z1−
z2‖. Norms ‖ · ‖ are always the 2-norm. We define Lh−g
as the smallest Lipschitz constant of the error h − g. The
argument of h− g is a state-control pair (x, u) and its value
is a state. We define a ball Br(x) as {y | ‖y−x‖ < r}, also
referred to as a r-ball about x. We suppose the state space
X is partitioned into safe Xsafe and unsafe Xunsafe sets (e.g.,
collision states). We denote Q̂ .

= Q+Q> as a symmetrization
operation on matrix Q, and λ̄(Q̂) and λ(Q̂) as its maxi-
mum and minimum eigenvalues, respectively. We overload
notation when Q(x) is a matrix-valued function, denoting
λ̄Q(Q)

.
= supx∈Q λ̄(Q(x)) and λQ(Q)

.
= infx∈Q λ(Q(x)).

Let In be the identity matrix of size n× n. Let S>0
n denote

the set of symmetric, positive definite n × n matrices. Let
the Lie derivative of a matrix-valued function Q(x) ∈ Rn×n
along a vector y ∈ Rn be denoted as ∂yQ(x)

.
=
∑n
i=1 y

i ∂Q
∂xi .

Let xi denote the ith element of vector x. Let the notation
Q⊥(x) refer to a basis for the null-space of matrix Q(x).

Finally, we introduce the needed terminology from dif-
ferential geometry. For a smooth manifold X , a Riemannian
metric tensor M : X → S>0

nx
equips the tangent space TxX at

{(x̃i, x
∗
i , u

∗
i)}Ni=1{(xi, ui, h(xi, ui))}Ni=1

{xi}Ni=1

M(x)
(Sec. IV.B.1)

M(x), u(x̃, x∗, u∗)
(Sec. IV.B.2)

Designing D
(Sec. IV.C)

f(x), B(x)

(Sec. IV.B)

Learn the model,

CCM, & controller

Analyze the learned

components




Lh−g

λ̄D(M)
λD(M)

δ̄u

λ
(·)




Estimate constants
(Sec. IV.C)

Tracking bound .

(Sec. IV.A)
✏̄(t)

Planning

LMTCD-RRT
(Sec. IV.D)

Fig. 1. Method. L: We learn a model/contracting controller (Prob. 1). C:
We verify the controller and bound model/tracking error in D (Prob. 2). R:
We use the tracking bound to find safely-trackable plans (Prob. 3).

each element x with an inner product δ>xM(x)δx, providing
a local length measure. Then, the length l(c) of a curve
c : [0, 1] → X between points c(0), c(1) can be computed
by integrating the local lengths along the curve: l(c) .

=∫ 1

0

√
V (c(s), cs(s))ds, where for brevity V (c(s), cs(s))

.
=

cs(s)
>M(c(s))cs(s), and cs(s)

.
= ∂c(s)/∂s. Then, we can

define the Riemannian distance between two points p, q ∈ X
as dist(p, q) .

= infc∈C(p,q) l(c), where C(p, q) is the set of
all smooth curves connecting p and q. Finally, we define the
Riemannian energy between p and q as E(p, q)

.
= dist2(p, q).

A. Control contraction metrics (CCMs)
Contraction theory studies incremental stability by mea-

suring the distances between system trajectories via a con-
traction metric M(x) : X → S>0

nx
, quantifying if the differ-

ential distances between trajectories V (x, δx) = δ>xM(x)δx
shrink with time. Control contraction metrics (CCMs) adapt
this analysis to control-affine systems (1). For dynamics of
the form (1), the differential dynamics can be written as
δ̇x = (∂f∂x +

∑nu

i=1 u
i ∂Bi

∂x)δx + B(x)δu [3], where Bi(x)
is the ith column of B(x). Then, we call M(x) : X → S>0

nx

a CCM if there exists a differential controller δu such that
the closed-loop system satisfies V̇ (x, δx) < 0, for all x, δx.

How do we find a CCM M(x) ensuring the existence of
δu? First, define the dual metric W (x)

.
= M−1(x). Then,

two sufficient conditions for contraction are (2)-(3) [3], [6]:

B⊥(x)>
(
− ∂fW (x) + ∂f(x)

∂x
W (x)

∧

+ 2λW (x)
)
B⊥(x) � 0 (2a)

B⊥(x)>
(
∂BjW (x)− ∂Bj(x)

∂x
W (x)

∧)
B⊥(x) = 0, j = 1...nu (2b)

Ṁ(x) + M(x)(A(x) +B(x)K(x̃, x∗, u∗))
∧

+ 2λM(x) ≺ 0 (3)

where A .
= ∂f

∂x +
∑nu

i=1 u
i ∂Bi

∂x and K = ∂u(x̃,x∗,u∗)
∂x , where

u : X × X × U → U is a feedback controller which takes
as input the tracking deviation x̃(t)

.
= x(t) − x∗(t) from a

nominal state x∗(t), as well as a state/control x∗(t), u∗(t)
on the nominal state/control trajectory that is being tracked
x∗ : [0, T] → X , u∗ : [0, T] → U . We refer to the LHSs
of (2a) and (3) as Cs(x) and Cw(x̃, x∗, u∗), respectively.
Intuitively, (2a) is a contraction condition simplified by the
orthogonality condition (2b), which together imply that all
directions where the differential dynamics lack controllabil-
ity must be naturally contracting at rate λ. The conditions (2)
are stronger than (3), which does not assume orthogonality.

How do we recover a tracking feedback controller
u(x̃, x∗, u∗) for (1) from (2) and (3)? For (2), the controller
is implicit in the dual metric W (x), and can be computed
by solving a nonlinear optimization problem at runtime [3],
[16]. In (3), u(x̃, x∗, u∗) is directly involved as the function
defining K; as a consequence, M(x) and u(x̃, x∗, u∗) both
need to be found. The benefit of using (2) is that there are

fewer parameters to learn. However, as some systems may
not satisfy the properties needed to apply (2), we resort to
using (3) in these cases (see Sec. IV-B.2). Finally, for a given
CCM M(x) and controller u(x̃, x∗, u∗) satisfying (2) or (3),
the tracking error of any nominal trajectory x∗(t) satisfies
‖x(t)−x∗(t)‖ ≤ β‖x(0)−x∗(0)‖e−λt for overshoot constant
β. If the system is subjected to bounded perturbations, it is
instead guaranteed to remain in a tube around x∗(t).

B. Problem statement
Our method has three major components. First, we learn

a model (1) and a CCM M(x) and/or controller u(x̃, x∗, u∗)
for (1). Next, we analyze the learned (1), M(x), and/or
u(x̃, x∗, u∗) to determine a trusted domain D ⊆ X×U where
trajectories can be robustly tracked. Finally, we design a
planner that connects states in D, such that under the tracking
controller u(x̃, x∗, u∗), the system remains safe in execution
and reaches the goal. In this paper, we represent the approx-
imate dynamics g(x, u) with an NN, though our method is
agnostic to its structure. Let S = {(xi, ui, h(xi, ui))}Ni=1 be
the training data for g obtained by any means (e.g. sampling,
demonstrations, etc.), and let Ψ = {(xj , uj , h(xj , uj))}Mj=1

be a set of independent, identically distributed (i.i.d.) samples
collected near S. Then, our method solves the following:
Problem 1 (Learning). Given S, learn a control-affine model
g, a contraction metric M(x), and find a contraction-based
controller u(x̃, x∗, u∗) that satisfies (2) or (3) over S.
Problem 2 (Analysis). Given Ψ, g, M(x), and u(x̃, x∗, u∗),
design a trusted domain D. In D, find a model error bound
‖h(x, u)− g(x, u)‖ ≤ e(x, u), for all (x, u) ∈ D, and verify
if for all x ∈ D, M and u are valid, i.e. satisfying (2)/ (3).
Problem 3 (Planning). Given g, M(x), u(x̃, x∗, u∗), start
xI , goal xG, goal tolerance µ, maximum tracking error
tolerance µ̂, trusted domain D, and Xsafe, plan a nominal
trajectory x∗ : [0, T] → X , u∗ : [0, T] → U under the
learned dynamics g such that x(0) = xI , ẋ = g(x, u),
‖x(T) − xG‖ ≤ µ, and x(t), u(t) remains in D ∩ Xsafe for
all t ∈ [0, T]. Also, guarantee that in tracking (x∗(t), u∗(t))
under the true dynamics h with u(x̃, x∗, u∗), the system
remains in D ∩ Xsafe and reaches Bµ̂+µ(xG).

IV. METHOD

We first derive a tracking error bound for a CCM-based
controller under a Lipschitz constant-based model error
bound (Sec. IV-A). We show how to learn a dynamics model,
CCM, and controller to optimize the tracking error bound
(Sec. IV-B). Then we show how to design a trusted domain
D and verify the validity of the controller and model/tracking
error bounds inside D (Sec. IV-C). Finally, we show how the
tracking bound can bias a planner to return safely-trackable
plans (Sec. IV-D). We summarize our method in Fig. 1.
Omitted proofs can be found in the extended version [17].

A. CCM-based tracking tubes under Lipschitz model error

We first establish a spatially-varying bound on model error
within a trusted domain D which can be estimated from the
model error evaluated at training points. For a single training
point (x̄, ū) and a novel point (x, u), we can bound the error

between the true and learned dynamics at (x, u) using the
triangle inequality and Lipschitz constant of the error Lh−g:

‖h(x, u)− g(x, u)‖
≤ Lh−g‖(x, u)− (x̄, ū)‖+ ‖h(x̄, ū)− g(x̄, ū)‖. (4)

As this holds between the novel point and all training
points, the following (possibly) tighter bound can be applied:

‖h(x, u)− g(x, u)‖ ≤ min
1≤i≤N

{
Lh−g‖(x, u)− (xi, ui)‖

+ ‖h(xi, ui)− g(xi, ui)‖
}
.

(5)

To exploit higher model accuracy near the training data,
we define D as the union of r-balls around S, where r <∞:

D =
⋃N
i=1 Br(xi, ui). (6)

For these bounds to hold, Lh−g must be a valid Lipschitz
constant over D. In Sec. IV-C, we discuss how to obtain a
probabilistically-valid estimate of Lh−g and how to choose r.
We now derive an upper bound ε̄(t) on the Euclidean tracking
error ε(t) around a nominal trajectory (x∗(t), u∗(t)) ⊆ D for
a given metric M(x) and feedback controller u(x̃, x∗, u∗),
such that the executed and nominal trajectories x(t) and
x∗(t) satisfy ‖x(t)− x∗(t)‖ ≤ ε̄(t), for all t ∈ [0, T], when
subjected to the model error description (5). In Sec. IV-B,
we discuss how M and u can be learned from data.

In [3], it is shown that by using a controller which is
contracting with rate λ according to metric M(x) for the
nominal dynamics (1), the Riemannian energy E(t) of a per-
turbed control-affine system ẋ(t) = f(x(t))+B(x(t))u(t)+
d(t) is bounded by the following differential inequality:

D+E(t) ≤ −2λE(t) + 2
√
E(t)λ̄D(M)‖d(t)‖, (7)

where λ̄D(M) = supx∈D λ̄(M(x)) and D+(·) is the upper
Dini derivative of (·). Here, the energy E(t) = E(x∗(t), x(t))
is the squared trajectory tracking error according to the
metric M(x) at a given time t, and d(t) is an external
disturbance. Suppose that the only disturbance to the system
comes from the discrepancy between the learned and true
dynamics, i.e. d(t) = h(x(t), u(t)) − g(x(t), u(t))1. For
short, let ei

.
= ‖h(xi, ui) − g(xi, ui)‖ be the training error

of the ith data-point. In this case, we can use (5) to write:

‖d(t)‖ ≤ min
1≤i≤N

{
Lh−g

∥∥∥∥∥
[
x(t)
u(t)

]
−
[
xi
ui

] ∥∥∥∥∥+ ei

}
. (8)

As (8) is spatially-varying, it suggests that in solving Prob.
3, plans should stay near low-error regions to encourage low
error in execution. However, (8) is only implicit in the plan,
depending on the state visited and feedback control applied
in execution: x(t) = x∗(t)+x̃(t) and u(x̃(t), x∗(t), u∗(t)) =
u∗(t) + ufb(t). To derive a tracking bound that can directly
inform planning, we first introduce the following lemma:
Lemma 1. The Riemannian energy E(t) of the perturbed
system ẋ(t) = f(x(t)) + B(x(t))u(t) + d(t), where ‖d(t)‖
satisfies (8), satisfies the differential inequality (11), where
λD(M) = infx∈D λ(M(x)), ūfb(t) is a time-varying upper
bound on the feedback control ‖u(t) − u∗(t)‖, and i∗(t)
achieves the minimum in (8).

1In addition to model error, we can also handle runtime external distur-
bances with a known upper bound; we assume the training data is noiseless.

Proof sketch. We use the triangle inequality to simplify (8):

‖d(t)‖ ≤ min
1≤i≤N

{
Lh−g

(∥∥∥∥∥
[
x∗(t)
u∗(t)

]
−
[
xi
ui

] ∥∥∥∥∥+

∥∥∥∥∥
[
x̃(t)
ufb(t)

] ∥∥∥∥∥
)

+ ei

}

≤ Lh−g

∥∥∥∥∥
[
x̃(t)
ufb(t)

] ∥∥∥∥∥+ min
1≤i≤N

{
Lh−g

∥∥∥∥∥
[
x∗(t)
u∗(t)

]
−
[
xi
ui

] ∥∥∥∥∥+ ei

}
.

Note that as ‖d(t)‖ depends on x̃(t), the disturbance bound
itself depends on ε(t). To make this explicit, we use ‖x̃(t)‖ =
ε(t) and ‖ufb(t)‖ ≤ ūfb(t) to obtain
‖d(t)‖ ≤ Lh−g

(
ε(t) + ūfb(t)

)
+

min
1≤i≤N

{
Lh−g

∥∥∥∥∥
[
x∗(t)
u∗(t)

]
−
[
xi
ui

] ∥∥∥∥∥+ ei

}
.

(9)

To obtain ūfb(t), if we use CCM conditions (2), we can
use the optimization-based controller in [3] (cf. Sec. III-A),
which admits the upper bound [3, p.28]:

‖ufb(t)‖ ≤ ε(t) sup
x∈D

λ̄(L(x)−>F (x)L(x)−1)

2σ>0(B>(x)L(x)−1)

.
= ε(t)δ̄u, (10)

where W (x) = L(x)>L(x), F (x) = −∂fW (x) +
∂f(x)
∂x W (x)

∧

+ 2λW (x), and σ>0(·) is the smallest positive
singular value. If we instead use condition (3), we must
estimate ūfb(t) for the learned controller (cf. Sec. IV-C).

To obtain the result, we plug (9) into (7) after relating
ε(t) with E(t). Since E(x∗(t), x(t)) = dist2(x∗(t), x(t)) ≥
λD(M)‖x∗(t)−x(t)‖2, we have that ε(t) ≤

√
E(t)/λD(M).

Finally, we can plug all of these components into (7) to
obtain (11), where i∗(t) denotes a minimizer of (8).

For intuition, let us interpret (9). First, it depends on ε(t),
which in turn relies on the disturbance magnitude: intuitively,
with tighter tracking, the system visits a smaller set of states,
thus experiencing lower worst-case model error. Second,
it depends on ufb(t): if a large feedback is applied, the
combined control u(t) = u∗(t) + ufb(t) can be far from the
controls that the learned model is trained on, possibly leading
to high error. Finally, it is driven by the model error and
closeness to the training data (minimization term of (9)). We
can also compare our tracking bound (11) with the tracking
bound for a uniform disturbance bound (7). Notice that the
“effective” contraction rate λ− Lh−g

√
λ̄D(M)
λD(M) shrinks with

Lh−g , as the tracking error grows with model error. If the
optimization-based controller [3] is used, the ε(t) dependence
of (10) reduces this rate to λ− Lh−g

√
λ̄D(M)
λD(M) (1 + δ̄u). We

note that a large model error can make this rate negative and
cause rapid tube growth, restricting our planner to operate
over a short-horizon. Now, we can derive the tracking bound:
Theorem 1 (Tracking bound under (8)). Let ERHS denote
the RHS of (11). Assuming that the perturbed system ẋ(t) =
f(x(t))+B(x(t))u(t)+d(t) satisfies E(t1) ≤ Et1 and ‖d(t)‖
satisfies (8). Then, ε̄(t) is described at some t2 > t1 as:

ε̄(t2) =
√(∫ t2

τ=t1
ERHS(t)dτ

)
/λD(M), E(t1) = Et1 . (12)

Note that Thm. 1 provides a Euclidean tracking error tube
under the model error bound (8) for any nominal trajectory.
Moreover, as (12) can be integrated incrementally in time,
it is well-suited to guide planning in an RRT (Rapidly-
exploring Random Tree [18]); see Sec. IV-D for more details.

B. Optimizing CCMs and controllers for the learned model
Having derived the tracking error bound, we discuss our

solution to Prob. 1, i.e. how we learn the dynamics (1),
a contraction metric M(x), and (possibly) a stabilizing
controller u in a way that minimizes (12). In this paper,
we model f(x), B(x), M(x), and u(x̃, x∗, u∗) with NNs.

Ideally, we would learn the dynamics jointly with the
contraction metric to minimize the size of the tracking tubes
(12). In practice, this leads to poor learning (e.g. a valid CCM
for inaccurate dynamics). Instead, we use a simple two step
procedure: we first learn g, and then fix g and learn M(x) and
u(x̃, x∗, u∗) for that model. While this is sufficient for our
examples, in general alternating the learning may be helpful.
Dynamics learning. Inspecting (11), we note that the model-
error related terms are the Lipschitz constant Lh−g and
training error ei, i = 1, . . . , N . Thus, we train the dynamics
using a loss on the mean squared error and a batch-wise
estimate of the Lipschitz constant (which is finite provided
each (x, u) in the batch is unique and the error is finite):

Ldyn =
1

Nb

Nb∑
i=1

e2
i+α1 max

1≤i 6=j≤Nb

{
‖ei − ej‖

‖(xi, ui)− (xj , uj)‖

}
, (13)

where ei = ‖g(xi, ui)−h(xi, ui)‖, Nb ≤ N is the batch size,
and α1 trades off the objectives. Note that (13) promotes ei
to be small while remaining smooth over the training data,
in order to encourage similar properties to hold over D.
CCM learning. We describe two variants of our learning
approach, depending on if the stronger CCM conditions (2a)
and (2b) or the weaker condition (3) is used.

1) Using (2a) and (2b): We parameterize the dual metric
as W (x) = Wθw(x)>Wθw(x) + wIn×n, where Wθw(x) ∈
Rnx×nx , θw are the NN weights, and w is a minimum eigen-
value hyperparameter. This structure ensures that W (x) � 0
for all x. To enforce (2a), we follow [6], relaxing the matrix
inequality to an penalty LsNSD over the training data, where:

L
(·)
NSD = max1≤i≤Nb

λ̄
(
C(·)(xi)

)
. (14)

As we ultimately wish (2a) to hold everywhere in D, we
can use the continuity in x of the maximum eigenvalue
λ̄(λs(x)) to verify if (2a) holds over D (cf. Sec. IV-C).
However, the equality constraints (2b) are problematic; by
using unconstrained optimization, it is difficult to even satisfy
(2b) on the training data, let alone on D. To address this,
we follow [8] by restricting the dynamics learning to sparse-
structured B(x) of the form, where θB are NN parameters:

B(x) = [0>nx−nu×nu
, BθB (x)>]>. (15)

Restricting B(x) to this form implies that to satisfy (2b),
W (x) must be a function of only the first nx−nu states [8],
which can be satisfied by construction. When this structural
assumption does not hold, we use the method in Sec. IV-B.2

In addition to the CCM feasibility conditions, we introduce
novel losses to optimize the tracking tube size (12). As (12)
depends on the nominal trajectory, it is hard to optimize a
tight upper bound on the tracking error independent of the
plan. Instead, we maximize the effective contraction rate,

Lsopt = α2 max
1≤i≤Nb

(
λ− Lh−g

√
λ̄(M(xi))

λ(M(xi))
(1 + δ̄u(x̃i))

)
, (16)

D+E(t) ≤ −2

(
λ− Lh−g

√
λ̄D(M)

λD(M)

)
E(t) + 2

√
E(t)λ̄D(M)

(
Lh−g

(∥∥∥∥∥
[
x∗(t)
u∗(t)

]
−
[
xi∗(t)

ui∗(t)

] ∥∥∥∥∥+ ūfb(t)

)
+ ei∗(t)

)
(11)

where δ̄u(x̃i) refers to the argument in the supremum in (10)
and α2 is a tuned parameter. Optimizing (16) while enforcing
(2a) over the data is difficult for unconstrained NN optimiz-
ers. To ameliorate this, we use a linear penalty on constraint
violation and switch to a logarithmic barrier [19] to maintain
feasibility upon achieving it; let the combination of the linear
and logarithmic penalties be denoted logb(·). Then, the full
loss function can be written as logb(−LsNSD) + Lsopt.

2) Using (3): For systems that do not satisfy (15), we
must use the weaker contraction conditions (3). In this case,
we cannot use the optimization-based controllers proposed
in [3], and we instead learn u(x̃, x∗, u∗) in tandem with
M(x). As in (14), we enforce (3) by relaxing it to LwNSD.
We represent u(x̃, x∗, u∗) with the following structure:

u(x̃, x∗, u∗) = |θu1 | tanh
(
uθu2 (x̃, x∗)x̃

)
+ u∗, (17)

where θui are NN weights. Estimating ūfb for (17) is simple,
as ‖u(x̃, x∗, u∗)−u∗‖ < |θu1 | for all x, x∗, u∗. We define Lwopt
as in (16), without the δ̄u term. Then, our full loss function
is logb(−LwNSD) + Lwopt + α3|θu1 |. While local IES ensures
that a CCM exists [1], [8], we still may not find a valid
CCM due to local minima/poor hyperparameters. We found
training reliability was improved by using the log-barrier and
by increasing αi, i = 1, ..., 3, with the training epoch, and
that results are insensitive to w̄. If we find a valid CCM on
S, we can check if it is also valid on D, as we discuss now.

C. Designing and verifying the trusted domain

Algorithm 1: Estimating the maximum of η(z) over Z
Input: Ns, Nb, ρ

1 for j = 1, . . . , Ns do
2 generate i.i.d. samples {zi,j}Nb

i=1 over Z
3 compute sj = max1≤i≤Nb

η(zi,j)
4 fit Weibull to {sj} to obtain γ̂ and standard error ξ
5 validate fit using KS test with significance level 0.05
6 if validated return η̂max = γ̂ + Φ−1(ρ)ξ else return failure

The validity of the bound (12) requires overestimates of
Lh−g , λ̄D(M), and δ̄u, an underestimate of λD(M), and for
(2a)/(3) to hold in D. We describe how we solve Prob. 2,
showing how to design D and estimate these constants in D.

For a given D, we can over/under-estimate the constants
with a user-defined probability ρ via a stochastic approach
from extreme value theory. We describe the general algorithm
(Alg. 1) and refer to [15, p.3], [20] for more details.
Alg. 1 estimates the maximum of a function η(z) over a
domain Z by taking Ns batches of samples over Z and
computing the empirical maximum of η(z) over each batch,
sj . If maxz∈Z η(z) is finite and the distribution over sj
converges with increasing Ns, the Fisher-Tippett-Gnedenko
(FTG) theorem [21] dictates that it must converge to a
Weibull distribution. This can be empirically verified by
fitting a Weibull distribution to the sj , and validating the
fit with a Kolmogorov-Smirnov (KS) goodness-of-fit test
[22]. If the test passes, the location parameter γ̂ of the fit
distribution, adjusted with a confidence interval Φ−1(ρ)ξ that

xI

xG

X

D

xn(tn)

✏̄n(tn
)

xc(t)
✏̄c(t)

X

(xi, ui) ∈ SD

Fig. 2. L: example of D.
R: LMTCD-RRT. Darker
areas have smaller model
error. The magenta exten-
sion is rejected (tube exits
D/intersects unsafe set);
the cyan extension is ac-
cepted: an example of bias
towards low-error areas.

scales with larger ρ, is an over-estimate of the maximum with
probability ρ. Here, Φ−1(·) is the standard normal cumulative
distribution function and ξ is the standard error of the fit γ̂.

To estimate Lh−g , we follow [15] by running Alg. 1,
setting Z = D × D and η(·) as the slope between a pair
of points drawn i.i.d. from D. Alg. 1 can also be used to
estimate λ̄D(M), −λD(M), and δ̄u: here, Z = projx(D),
where projx(D)

.
=
⋃
x̄∈S Br(x̄) ⊃ {x | ∃u, (x, u) ∈ D}, and

η(x) = λ̄D(M(x)), −λD(M(x)), and δ̄u(x) respectively.
Since the eigenvalues of a continuously parameterized matrix
function are continuous in the parameter [23] (here, the
parameter is x) and D is bounded, these constants are finite,
so by FTG, we can expect the samples sj to be Weibull.
Finally, FTG can also verify that (2a) and (3) are satisfied
over D, since the verification is equivalent to ensuring
supx∈projx(D) λ̄(C(·)(x)) ≤ λ(·)

CCM for some λ(·)
CCM < 0. λsCCM

can be estimated by setting Z = projx(D) and η(x) =
λ̄(Cs(x)). To estimate λwCCM, we set Z = Bεmax(0)×D and
η(x̃, x∗, u∗) = λ̄(Cw(x̃, x∗, u∗)), and sample (x∗, u∗) ∈ D
and x̃ ∈ Bεmax(0). Here, εmax ≤ µ̂ will upper-bound the
allowable tracking tube size during planning (cf. Alg. 2, line
8); thus, to ensure that planning is minimally constrained,
εmax should be chosen to be as large as possible while
ensuring λwCCM < 0. As all samples are i.i.d., the probability
of (12) holding, and thus the overall safety probability of
our method, is the product of the user-selected ρ for each
constants. Note that other than for Lh−g , this estimation does
not affect data-efficiency, as it queries the learned dynamics
and requires no new data of the form (x, u, h(x, u)).

Finally, we discuss how to select r, which determines
D (Fig. 2, left). An ideal r is maximally permissive for
planning, where we must ensure that the tube around the
plan remains within D (cf. Sec. IV-D). However, finding
such an r is non-trivial and requires trading off many factors.
Increasing r expands D; however, model error and Lh−g also
increase with increased r, which may make ε̄(t) and ūfb(t)
grow, which in turn expands the tubes, making them harder to
fit in D. Also, (2a)/(3) may not be satisfied over D for large
r. For small r, the model error and Lh−g remain smaller due
to the closeness to S, leading to smaller tubes, but planning
can be difficult, as D may be too small to contain even these
smaller tubes. In particular, planning between two states in
D can become infeasible if D becomes disconnected.

To trade off these factors, we propose the following
solution for selecting r. We first find a minimum r, rconnect,
such that D is fully-connected. Depending on how S is

collected, one may wish to first filter out outliers far from the
bulk of the data. We calculate the connected component by
considering the dataset as a graph, where an edge between
(xi, ui), (xj , uj) ∈ S exists if ‖(xi, ui)− (xj , uj)‖ ≤ r. We
then check if the contraction condition (2a)/(3) is satisfied
for r = rconnect, using the FTG-based procedure. If it is not
satisfied, we decrement r until (2a)/(3) holds, and select r
as the largest value for which (2a)/(3) are satisfied. Since
r < rconnect here, planning can only be feasible between
starts/goals in each connected component; to rectify this,
more data should be collected to train the CCM/controller. If
the contraction condition is satisfied at r = rconnect, we incre-
mentally increase r, starting from rconnect. In each iteration,
we first determine if the contraction condition (2a)/(3) is still
satisfied for the current r, using the FTG-based procedure.
If the contraction condition is satisfied, we evaluate an ap-
proximate measure of planning permissiveness under “worst-
case” conditions2: r− ε̄(t)− ūfb(t), evaluated at a fixed time
t = Tquery, where ε̄(t) and ūfb(t) are computed assuming that
for all t ∈ [0, Tquery], ‖(x∗(t), u∗(t)) − (xi∗(t), ui∗(t)))‖ =
max1≤i≤N min1≤j≤N ‖(xi, ui) − (xj , uj)‖, i.e. the disper-
sion of the training data, and experiences the worst training
error (i.e. ei∗(t) = max1≤i≤N ei, for all t). If (2a)/(3) is not
satisfied, we terminate the search and select the r with the
highest permissiveness, as measured by the above procedure.

D. Planning with the learned model and metric

Algorithm 2: LMTCD-RRT
Input: xI , xG, S, {ei}Ni=1, estimated constants, µ, E0

1 T ← {(xI ,
√
E0/λD(M), 0)};P ← {(∅, ∅)} // (state, energy, time)

2 while True do
3 (xn, ε̄n, tn)← SampleNode(T)
4 (uc, tc)← SampleCandidateControl ()
5 (x∗c (t), u∗c (t))← IntegrateLearnedDyn (xn, uc, tc)
6 ε̄c(t)← TrkErrBndEq12 (ε̄n, x∗c (t), u∗c (t), S, {ei}Ni=1)
7 D1

chk ← (x∗(t), u∗(t)) ∈ Dε̄c(t)−ūfb(t), ∀t ∈ [tn, tn + tc)
8 if controller learned then D2

chk ← ε̄c(t) ≤ εmax,∀t ∈ [tn, tn + tc)
9 else D2

chk ← True
10 C ← InCollision (x∗(t), u∗(t), ε̄c(t))
11 if D1

chk ∧D
2
chk ∧ ¬C then

T ← T ∪ {(x∗(tn + tc), ε̄c(tn + tc), tc)}; P ← P ∪ {(uc, tc)}
12 else continue
13 if ∃t, x∗c(t) ∈ Bµ(xG) then break; return plan

Finally, we discuss our solution to safely planning with
the learned dynamics (Prob. 3). We develop an incremental
sampling-based planner akin to a kinodynamic RRT [18],
growing a search tree T by forward-propagating sampled
controls held for sampled dwell-times, until the goal is
reached. To ensure the system remains within D in execution
(where the contraction condition and (12) are valid), we
impose additional constraints on where T is allowed to grow.

Denote Dq = D	Bq(0) as the state/controls which are at
least distance q from the complement of D, where 	 refers to
the Minkowski difference. Since (12) defines tracking error
tubes for any given nominal trajectory, we can efficiently
compute tracking tubes along any candidate edge of an RRT.
Specifically, suppose that we wish to extend the RRT from

2Roughly, this compares the size of D to the tracking error tube size and
feedback control bound, cf. Sec. IV-D and Thm. 2 for further justification.

a state on the planning tree x∗cand(t1) with initial energy
satisfying Ecand(t1) ≤ Et1 to a candidate state x∗cand(t2) by
applying control u over [t1, t2). This information is supplied
to (12), and we can obtain the tracking error ε̄cand(t), for
all t ∈ [t1, t2). Then, if we enforce that (x∗(t), u∗(t)) ∈
Dε̄cand(t)+ūfb(t) for all t ∈ [t1, t2), we can ensure that the true
system remains within D when tracked with a controller
that satisfies ufb(t) ≤ ūfb(t) in execution. Otherwise, the
extension is rejected and the sampling continues. When using
a learned u(x̃, x∗, u∗) with (3), an extra check that ε̄cand(t) ≤
εmax is needed to remain in Bεmax(0) × D (cf. Sec. IV-C).
Since D is a union of balls, exactly checking (x∗(t), u∗(t)) ∈
Dε̄(t)+ūfb(t) can be unwieldy. However, a conservative check
can be efficiently performed by evaluating (18):
Theorem 2. If (18) holds for some index 1 ≤ i ≤ N in S,
‖(x∗(t), u∗(t))− (xi, ui)‖ ≤ r − ε̄(t)− ūfb(t), (18)

then (x∗(t), u∗(t)) ∈ Dε̄(t)+ūfb(t).
We collision-check the tracking tubes and obstacles, which

we assume are expanded for the robot geometry; this is
simplified by the fact that (12) defines a sphere. We vi-
sualize our planner (Fig. 2, right), which we call Learned
Models in Trusted Contracting Domains (LMTCD-RRT),
and summarize it in Alg. 2. We note that the key idea of
our planner (i.e. ensuring that the tracking tubes remain in
D ∩ Xsafe) can be applied to other sampling-based planners
or trajectory optimizers, e.g. [24], [25]. However, enforcing
the highly non-convex constraint of remaining in D ∩ Xsafe
in a trajectory optimizer can be difficult, and is a direction
for future work. We conclude with this correctness result:
Theorem 3 (LMTCD-RRT correctness). Assume that the
estimated Lh−g , λ̄D(M), ūfb(t), and λ

(·)
CCM overapproxi-

mate their true values and the estimated λD(M) under-
approximates its true value. Then, when using a controller
u(x̃, x∗, u∗) derived from (2), Alg. 2 returns a trajectory
(x∗(t), u∗(t)) that remains within D in execution on the
true system. Moreover, when using a controller u(x̃, x∗, u∗)
derived from (3), Alg. 2 returns a trajectory (x∗(t), u∗(t))
such that (x̃∗(t), x∗(t), u∗(t)) remains in Bεmax(0) × D in
execution on the true system.

V. RESULTS

We evaluate LMTCD-RRT on a 4D nonholonomic car, a
6D underactuated quadrotor, and a 22D rope manipulation
task. We compare with four baselines to show the need for
both using the bound (12) and remaining in D, where (12)
is valid: B1) planning in D and assuming model error is
uniformly bounded by the average training error ‖d(t)‖ ≤∑N
i=1 ei/N to compute ε̄(t), B2) planning in D and using the

maximum training error ‖d(t)‖ ≤ max1≤i≤N ei as a uniform
bound, B3) not remaining in D in planning and using the
uniform maximum error bound ‖d(t)‖ ≤ max1≤i≤N ei, and
B4) not remaining in D and using our error bound (12).
We note that B3-type assumptions are common in prior
CCM work [3], [6]. In baselines that leave D, the space is
unconstrained: X = Rnx , U = Rnu . We set ρ = 0.975 when
estimating constants via FTG. See Table I for statistics and
https://youtu.be/DYEyD5y-2po for results visualizations.

Avg. trk. error (Car) Goal error (Car) Avg. trk. error (Quadrotor) Goal error (Quadrotor) Avg. trk. error (Rope) Goal error (Rope)
LMTCD-RRT 0.008 ± 0.004 (0.024) 0.009 ± 0.004 (0.023) 0.0046 ± 0.0038 (0.0186) 0.0062 ± 0.0115 (0.0873) 0.0131 ± 0.0063 (0.0278) 0.0125 ± 0.0095 (0.0352)

B1: Mean, in D 0.019 ± 0.012 (0.054) 0.023 ± 0.016 (0.078) 0.0052 ± 0.0051 (0.0311) 0.0104 ± 0.0161 (0.0735) 18.681 ± 55.917 (167.79) 42.307 ± 126.81 (380.45)
B2: Max, in D 0.02 ± 0.01 (0.05) [19/50] 0.019 ± 0.012 (0.062) [19/50] — [65/65] — [65/65] 17.539 ± 52.380 (157.22) 21.595 ± 64.295 (193.05)
B3: Max, /∈ D 0.457 ± 0.699 (3.640) 1.190 ± 1.479 (7.434) 0.1368 ± 0.2792 (1.5408) 0.8432 ± 1.3927 (9.0958) 111.86 ± 39.830 (170.96) 236.34 ± 72.622 (331.83)
B4: Lip., /∈ D 0.704 ± 2.274 (13.313) 2.246 ± 8.254 (58.32) 0.4136 ± 0.4321 (1.9466) 1.8429 ± 1.5260 (6.9859) 17.301 ± 49.215 (148.43) 36.147 ± 52.092 (147.76)

TABLE I
STATISTICS FOR THE CAR, QUADROTOR, AND ROPE. MEAN ± STANDARD DEVIATION (WORST CASE) [IF NONZERO, NUMBER OF FAILED TRIALS].

0 1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

-2 -1.5 -1 -0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Start

Goal

Fig. 3. 4D car; planned (solid) and executed (dotted); obstacles (red);
tracking tubes (color-coded to the plan); black dots (subset of S). We plot
state space projections: L: x, y; R: θ, v. LMTCD-RRT, B1, and B2 remain
in D in execution; B3 and B4 exit D and their tubes, crashing.

Nonholonomic car (4D): We use the model [ṗx, ṗy, θ̇, v̇] =
[v cos(θ), v sin(θ), ω, a]>, where u = [ω, a]>. As this model
satisfies (15), we use the stronger CCM conditions (2). We
use 50000 data-points uniformly sampled in [0, 5]×[−5, 5]×
[−1, 1] × [0.3, 1] to train f , B, and M , where the states
in S are used to train M(x). We model f and B as NNs
with one hidden layer of size 1024 and 16, respectively. We
model M(x) as an NN with two hidden layers, each of size
128. In training, we set w = 0.01 and gradually increase α1

and α2 to 0.01 and 10, respectively. We select r = 0.6 by
incrementally growing r as described in Sec. IV-C, collecting
5000 new datapoints for Ψ, giving us λ = 0.09, Lh−g =
0.006. δ̄u = 1.01, λ̄D(M) = 0.258, and λD(M) = 0.01.

We plan for 50 different start/goal states in D, taking on
average 6 mins. We visualize one trial in Fig. 3. Over the
trials, LMTCD-RRT and B2 never exit their tubes, while
B1, B3, and B4 exit their tubes in 6, 48, and 43 of the
50 trials, respectively, which can lead to crashes (indeed,
B3 and B4 crash in Fig. 3). This occurs as the baselines
may underestimate the true model error seen in execution.
Planning is also infeasible in 19/50 of B2’s trials, since the
large resulting tubes can invalidate all trajectories to the
goal that remain in D, suggesting that a fine-grained bound
like (9) is quite useful when D is highly constrained. Note
that while B2 does not crash, using the maximum training
error can still be unsafe (as seen later), as the true error can
be higher in D \ S . Finally, we note the tracking accuracy
difference between LMTCD-RRT and B1/B2 reflects that our
bound (12) steers LMTCD-RRT towards lower error regions
in D. Overall, this example suggests that (12) is accurate,
and using coarser bounds or exiting D can be unsafe.
Underactuated planar quadrotor (6D): We use the model
in [3, p.20], where x = [px, pz, φ, vx, vz, φ̇] models position
and velocity, u = [u1, u2] models thrust, and we use the
constants m = 0.486, l = 0.25, and J = 0.125. This model
also satisfies (15), so we use (2). We sample 245000 data-
points in [−2, 2]× [−2, 2]× [−π/3, π/3]× [−1, 1]× [−1, 1]×
[−π/4, π/4] to train f , B, and M . We model f and B as
NNs with one hidden layer of size 1024 and 16. We model

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

3

4

-1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

Start

Goal Start

Goal

Fig. 4. 6D quadrotor; see Fig. 3 for color scheme. L: LMTCD-RRT
remains in its tracking tube; all baselines exit their tubes (see inset). R:
LMTCD-RRT remains within its tube; B3, B4 exit D and crash.

M(x) as an NN with two hidden layers of size 128. In
training, we set w = 0.01 and gradually increase α1 and α2

to 0.001 and 0.33. We obtain r = 1.0 via Sec. IV-C, yielding
|Ψ| = 10000. This gives us λ = 0.09, Lh−g = 0.007.
δ̄u = 1.9631, λ̄D(M) = 4.786, and λD(M) = 0.0909.

We plan for 65 start/goal pairs in D, taking 1 min on
average (see Fig. 4). B2 fails entirely, as the error bound is
too large to feasibly plan in D for all trials. Over these trials,
LMTCD-RRT never violates its bound in execution, while
B1, B3, and B4 violate their bounds 14/65, 32/65, and 65/65
times, respectively, since they underestimate the true model
error. From Table I, LMTCD-RRT obtains the lowest error
and is closely matched by B1. However, LMTCD-RRT never
violates its tubes, while B1 does (e.g. Fig. 4, left). B3-B4
perform poorly as the high model error causes crashes (Fig.
4, right). Overall, this example shows that LMTCD-RRT can
plan safely on learned highly-underactuated systems.
10-link rope (22D): To show our method scales to high-
dimensional, non-polynomial systems beyond the capabilities
of SoS-based methods, we consider a planar rope manip-
ulation task in Mujoco [26]. We model the rope with 10
elastic links (11 nodes), and the head of the rope (see Fig.
5(d)) is velocity-controlled. There are 22 states: 2 for the
xy head position and 20 for the xy positions of the other
nodes, relative to the head. There are two controls: the
commanded xy head velocities. We wish to steer the rope’s
tail to an xy goal region while ensuring the rope does not
collide in execution (cf. Fig. 5). This is difficult, as the tail
is highly underactuated. We obtain three demonstrations to
train the dynamics (see video): one steers the rope in a
counterclockwise loop; the other two start vertically (hori-
zontally) and move up (right). We also evaluate the dynamics
at nearby state/control perturbations, giving |S| = 41000.
As the rope dynamics do not satisfy (15), we learn both
M(x) and u(x̃, x∗, u∗). We model f and B as three-layer
NNs of size 512. M(x) has two hidden layers of size 128,
and u(x̃, x∗, u∗) has a single hidden layer of size 128. In
training, we set w = 1.0 and gradually increase α1 and
α3 to 0.005 and 0.56. To ensure the CCM/controller are

Fig. 5. 22D planar rope dragging task. Snapshots of planned/executed
trajectory: black/magenta; tracking tubes: green. For each snapshot: we mark
the rope head/tail with an asterisk/solid dot. Tail trajectory in the plan/in
execution: orange/blue. Only LMTCD-RRT reaches the goal; all baselines
destabilize. The original Mujoco environment is in the bottom left.

translation-invariant, we enforce M(x) and u(x̃, x∗, u∗) to
not be a function of the head position. To simplify further,
we hardcode the head dynamics as a single-integrator (as it is
velocity-controlled) and learn the dynamics for the other 20
states. We find εmax = 0.105 and r = 0.5 (using the method
in Sec. IV-C), resulting in |Ψ| = 10000, λ = 0.0625, Lh−g =
0.023, ūfb = 0.249, λ̄D(M) = 3.36, and λD(M) = 1.

We plan for 10 start/goal pairs in D, taking 9 min on
average. Since we use (17), we change B1 and B2 to remain
in Bεmax(0) × D, while B3 and B4 are unconstrained. We
show one task in Fig. 5: the rope starts horizontally, with the
head at [0, 0], and needs to steer the tail to [3, 0], within a
0.15 tolerance. LMTCD-RRT stays very close to the training
data, reaching the goal with small tracking tubes. B1 and B2
also stay near the data, as they plan in D, but their bounds
underestimate the true model error in D. In execution, the
rope leaves D and destabilizes as the learned controller
applies large inputs in an effort to return to the plan. B3
exploits model error to return an unrealistic plan; the rope
immediately destabilizes in execution. This occurs as the
maximum error severely underestimates model error outside
D, and thus the tracking error. To move through the narrow
passage, B4 is forced to remain near the training data at first.
This is since the Lipschitz bound, while an underestimate
outside of D, still grows quickly with distance from S;
attempting to plan a trajectory similar to B3 fails, since the
tracking tube grows so large that it blocks off any paths to
the goal. After getting through the narrow passage, B4 drifts
from D and fails to be tracked beyond this point. Over 10
trials, LMTCD-RRT never violates its tracking bound, and
B1, B2, B3, and B4 violate their bounds in 10, 6, 10, and 9
trials out of 10, respectively. Overall, this result suggests that
contraction-based control can scale to very high-dimensional
systems if one stays where the model/controller are good.

VI. CONCLUSION

We present a method for safe feedback motion planning
with unknown dynamics. To achieve this, we jointly learn
a dynamics model, a contraction metric, and contracting
controller, and analyze the learned model error and trajec-
tory tracking bounds under that model error description, all

within a trusted domain. We then use these tracking bounds
together with the trusted domain to guide the planning
of probabilistically-safe trajectories; our results demonstrate
that ignoring either component can lead to plan infeasibility
or unsafe behavior. Future work involves extending our
method to consider noisy training data and to plan safely with
latent dynamics models learned from image observations.
Acknowledgements: We thank Craig Knuth for insightful feedback. This
work is supported in part by NSF grants IIS-1750489, ECCS-1553873, ONR
grants N00014-21-1-2118, N00014-18-1-2501, and an NDSEG fellowship.

REFERENCES

[1] W. Lohmiller and J. E. Slotine, “On contraction analysis for non-linear
systems,” Autom., vol. 34, no. 6, pp. 683–696, 1998.

[2] I. R. Manchester and J. E. Slotine, “Control contraction metrics:
Convex and intrinsic criteria for nonlinear feedback design,” IEEE
Trans. Autom. Control., vol. 62, no. 6, pp. 3046–3053, 2017.

[3] S. Singh, B. Landry, A. Majumdar, J. E. Slotine, and M. Pavone,
“Robust feedback motion planning via contraction theory,” 2019.

[4] A. Lakshmanan, A. Gahlawat, and N. Hovakimyan, “Safe feedback
motion planning: A contraction theory and l1-adaptive control based
approach,” CDC, 2020.

[5] B. T. Lopez, J. E. Slotine, and J. P. How, “Robust adaptive control
barrier functions: An adaptive & data-driven approach to safety,” IEEE
Control. Syst. Lett., vol. 5, no. 3, pp. 1031–1036, 2021.

[6] D. Sun, S. Jha, and C. Fan, “Learning certified control using contrac-
tion metric,” CoRL, 2020.

[7] H. Tsukamoto and S. Chung, “Neural contraction metrics for robust
estimation and control: A convex optimization approach,” IEEE Con-
trol. Syst. Lett., vol. 5, no. 1, pp. 211–216, 2021.

[8] S. Singh, S. M. Richards, V. Sindhwani, J. E. Slotine, and M. Pavone,
“Learning stabilizable nonlinear dynamics with contraction-based reg-
ularization,” IJRR, 2020.

[9] G. Manek and J. Z. Kolter, “Learning stable deep dynamics models,”
in NeurIPS, 2019, pp. 11 126–11 134.

[10] N. M. Boffi, S. Tu, N. Matni, J. E. Slotine, and V. Sindhwani,
“Learning stability certificates from data,” CoRL, 2020.

[11] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-
based model predictive control for safe exploration,” in CDC, 2018.

[12] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N.
Zeilinger, and C. J. Tomlin, “Reachability-based safe learning with
gaussian processes,” in CDC, 2014, pp. 1424–1431.

[13] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe
learning of regions of attraction for uncertain, nonlinear systems with
gaussian processes,” in CDC, 2016, pp. 4661–4666.

[14] D. D. Fan, A. Agha-mohammadi, and E. A. Theodorou, “Deep
learning tubes for tube MPC,” RSS, 2020.

[15] C. Knuth, G. Chou, N. Ozay, and D. Berenson, “Planning with
learned dynamics: Probabilistic guarantees on safety and reachability
via lipschitz constants,” IEEE RA-L, 2021.

[16] K. Leung and I. R. Manchester, “Nonlinear stabilization via con-
trol contraction metrics: A pseudospectral approach for computing
geodesics,” in ACC. IEEE, 2017, pp. 1284–1289.

[17] G. Chou, N. Ozay, and D. Berenson, “Model error propagation
via learned contraction metrics for safe feedback motion planning
of unknown systems,” CoRR, vol. abs/2104.08695, 2021. [Online].
Available: https://arxiv.org/abs/2104.08695

[18] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” IJRR, vol. 20, no. 5, pp. 378–400, 2001.

[19] S. Boyd and L. Vandenberghe, Convex Optimization, 2004.
[20] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh,

and L. Daniel, “Evaluating the robustness of neural networks: An
extreme value theory approach,” ICLR, 2018.

[21] L. De Haan and A. Ferreira, Extreme value theory: an introduction.
Springer Science & Business Media, 2007.

[22] M. DeGroot and M. Schervish, Probability & Statistics. Pearson, 2013.
[23] P. D. Lax, Linear Algebra and Its Applications, 2007.
[24] K. Hauser and Y. Zhou, “Asymptotically optimal planning by feasible

kinodynamic planning in a state-cost space,” T-RO, 2016.
[25] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “Gusto: Guaranteed

sequential trajectory optimization via sequential convex program-
ming,” in ICRA, 2019.

[26] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in IROS, 2012, pp. 5026–5033.

