
ZHU et al.: CHALLENGES AND OUTLOOKS IN DEFORMABLE OBJECT MANIPULATION 1

Challenges and Outlook in Robotic Manipulation

of Deformable Objects
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son, Fanny Ficuciello, Kensuke Harada, Jens Kober, Xiang Li, Jia Pan, Wenzhen Yuan and Michael Gienger

Abstract—Deformable object manipulation (DOM) is an
emerging research problem in robotics. The ability to manipulate
deformable objects endows robots with higher autonomy and
promises new applications in the industrial, services, and health-
care sectors. However, compared to rigid object manipulation,
the manipulation of deformable objects is considerably more
complex, and is still an open research problem. Addressing
DOM challenges demand breakthroughs in almost all aspects
of robotics, namely, hardware design, sensing, (deformation)
modeling, planning, and control. In this article, we review recent
advances and highlight the main challenges when considering
deformation in each sub-field. A particular focus of our paper
lies in the discussions of these challenges and proposing future
directions of research.

I. INTRODUCTION

UNTIL now, object rigidity is one of the common as-

sumptions in robotic grasping and manipulation. Strictly

speaking, all objects deform upon force interaction. Rigidity is

a valid assumption when object deformation can be neglected

in the task. Nevertheless, many objects that need to be ma-

nipulated by robots present non-negligible deformation: from

micro-surgical operation to challenging industrial assemblies.

Robots need to be capable of manipulating deformable

objects to operate in human environments. This capability

would benefit many application fields while posing funda-

mental research challenges. In this article, we consider a

generalized concept of manipulation where grasping is also
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Fig. 1. Applications involving manipulation of deformable objects. Clockwise
from top left: dressing assistance [1], cable harnessing [2], fruit harvesting [3],
suturing [4]

part of the task. We will refer to the problem as deformable

object manipulation (DOM).

The tasks involved in DOM cover a broad spectrum (see Fig.

1). These include: dressing assistance in elderly care, cable

harnessing in industrial automation, harvesting and processing

fruit and vegetables in agriculture, surgical operations in

medical services, to name a few.

On the technical side, addressing deformation introduces the

following technical challenges:

• the complication of sensing deformation,

• the high number of degrees of freedom of soft bodies,

• the complexity of non-linearity in modeling deformation.

We believe that overcoming these challenges is not only

beneficial to DOM, but can further push towards developing

autonomous robots which can operate in unstructured environ-

ments.

In recent years, there have been a few surveys on robotic

manipulation of deformable objects. Some surveys focus on

specific areas of DOM. The survey from Jimenez [6] focuses

on model-based manipulation planning. More recently, Her-

guedas et al. [7] review works using multi-robot systems for

DOM while the work of [8] considers multi-modal sensing.

The authors of [9] present the state-of-the-art on deformable

object modeling for manipulation. There are also two com-

prehensive surveys in the area. The survey in [10] reviews

and classifies the state-of-the-art according to the object’s

physical properties. Lately, [11] reports most recent advances

in modeling, learning, perception, and control in DOM.
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Fig. 2. A typical robotic framework for handling deformable objects. In this particular example, the framework addresses wire harness [5].

In contrast with the mentioned surveys, which either focus

on reporting the progress of the field or a specific area, this

article aims at identifying scientific challenges introduced by

object deformations and at projecting crucial future research

directions. As DOM is an emerging field of research where

there is still much to be done, in this paper, previous works

and open problems are given equal weights. In addition,

we dedicate one section to discussing practical challenges in

various applications of DOM. We believe the paper is a first

of its kind, in the field of DOM.

A robotic framework designed to handle deformable objects

usually consists of five key components: gripper and robot

design, sensing, modeling, planning and control (Fig. 2). To

position the current research and identify future trends, we

conducted a survey on the future perspective of deformable

object manipulation. We shared the survey with people work-

ing in related fields, at various career stages. They were asked

to rate the importance and research maturity of each of the

five identified key components, from 1 to 4, with 1 being

not important/low maturity and 4 being very important/high

maturity. We received 31 answers that are summarized on Fig.

3.

We consider the promising direction of research as the ones

that have the highest significance and the lowest research

maturity. Based on the survey, sensing is the most promising

one among all subareas. This is probably due to the current

booming trend in Deep Learning, which has offered many new

methods for processing sensory data. In addition, sensing is the

prerequisite for subsequent steps such as modeling, planning,

and control.

Accordingly, the following sections of this paper each

present one of these five research directions. In each section,

we review recent works in the field and then comment on the

outlook and challenges ahead. Then, Sect. VII tries to provide

a link from research to practical applications in the context of

DOM. Finally, we summarize key messages in Sect. VIII.

II. GRIPPER AND ROBOT DESIGN

A. Current capability

Does manipulation of deformable objects demand specific

grippers as compared to manipulation of rigid objects? Gen-

(a) Highest qualifications of the respondents.

(b) Means and variances of Importance and research maturity ratings of each
key component.

Fig. 3. Summary of the outcomes of the survey on DOM. We received
in total 31 answers. The respondents cover different level of qualifications
ranging from master students to full professors.

erally, yes (see Fig. 4). Unlike rigid objects (which are mostly

handled by standard grippers), deformable objects are handled

with custom (and often designed ad-hoc) grippers, e.g. a 3D

printed gripper that enables cable sliding [5], a flat clip for

holding towels [12], a cylindrical tool for pushing and tapping

plastic materials [13], or a soft hand for manipulating organs

[14]. Such diversity in grippers is a result of the large variety

of deformable objects, which require different actions during

manipulation. To avoid designing task-specific grippers for

DOM, human-like dexterity and compliance is desired. Recent

works in this directions consider compliant design [15], [16]

and show good potential for DOM tasks.

As for the robot itself, it is rigid in most works. In some

cases, as in the surgical application showcased in [17] (Fig.

4, bottom right), both the robot and object are deformable to
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ensure the safety of manipulation.

Fig. 4. Various robot grippers for DOM. Clockwise from top left: a tool for
pushing and tapping on plastic materials [13], flat clips for holding a towel
[12], a gripper allowing a cable to slide [5], a soft continuum manipulator
interacting with a deformable material [17] and a soft hand for manipulating
organs [14].

B. Challenges and outlook

Improving dexterity is core to robot manipulation. The

improvement can come from different research domains, such

as accurate in-hand sensing or robust control, two aspects

which we will detail in Sections III and VI, respectively. In

this section, our focus is on gripper/robot hardware aspects.

One way of achieving such dexterity is to reproduce by

design the most dexterous gripper – the human hand. An open

question is whether the anthropomorphic design is in itself the

optimal solution in all cases, especially in the context of DOM.

While having one dexterous gripper which can handle a

variety of DOM tasks is appealing, it should be noted that

additional constraints need to be considered in the design

process, for hygiene/safety in tasks such as food handling

or surgery. For instance, for surgical applications we are

limited by the biocompatibility of the materials and actuators

and by the reduced available space in minimally invasive

surgery. In these cases, designing task-specific grippers is more

appropriate. Non-anthropomorphic soft grippers are another

emerging area of research [18]. These grippers are promising,

to overcome the challenges associated with traditional fingered

grippers in grasping rigid objects; yet, to date, their application

to DOM receives little attention.

Otherwise, one may use a standard gripper, and provide the

robot with suitable tools to be grasped and used according

to the type of task at stake. This demands breakthroughs on

the algorithmic side, to make the robot capable of reasoning

about proper tools for different tasks. Training the robot to

have task-specific tool reasoning will enhance autonomy and

make robots realize more complex tasks.

Another area worth investigating is that of soft

robots/grippers, since these have great potential for

manipulating fragile materials, such as organs or food, or for

collecting biological samples or fruits (see Fig. 5). While

traditional rigid robots need to exhibit compliant behavior

when interacting with these objects, the inherent compliance

of soft robots makes the task safe. This unconventional

paradigm of using soft robots to manipulate soft objects

will bring new challenges in modeling and control as both

the robot and the object are under-actuated and difficult to

model. One pioneering work in this direction is [21], which

adapts the finite element modeling (FEM) based inverse soft

robot model with contact handling (proposed in [22]) for

deformable objects manipulation using soft robots.

An interesting research question to consider is whether

methods can be transferred from one field to the other. To

be more specific, can methods for controlling/modeling soft

robots be applied to manipulating deformable objects and vice

versa? If so, as a community, it may be valuable to obtain

a unified approach for working with both soft robots and

deformable objects.

III. SENSING

A. Current capability

In this section, we consider visual, tactile and force sensing

for DOM. Existing research relies on these three modes to

estimate the state of deformable objects. In most cases, vision

provides global information about shapes on a large scale,

while force and tactile provide local information on both shape

and contact. At the end of this section, we also discuss the

research in contrast to this common practice, where global

deformation properties are recovered using tactile sensing. It

should also be noted that force information is particularly

important in industrial settings, e.g., for assembly [23], [24].

Vision is used in tasks such as rope manipulation [25],

[26] or cloth unfolding [27], [28], where the object exhibits

large global deformation. In these works, configurations of

deformable objects were obtained from raw image readings.

Although vision offers a global perspective of the object

configuration, visual data can be noisy in unstructured en-

vironments. It is then important to manage occlusions [12],

[29]. Most of the above-mentioned works are based on 2D

vision, 3D perception of deformable objects is more challeng-

ing. Existing works employ FEM [30] or a combination of

Growing Neural Gas and Particle Graph Networks [31] for

better tracking the deformation. In a more recent study [32],

it has been shown that a deep convolutional neural network

for processing vision data can be used with small variations

to process tactile data for deformable objects recognition.

Objects made of soft materials, such as human tissues and

fruits, have a special force-displacement correlation upon

contact. As a result, tactile sensing can be used to estimate

(a) Picking tomatoes [19]. (b) A custom 3D printed soft
robotic gripper, grasping mush-
room coral [20]

Fig. 5. Two examples of interaction with fragile objects, which could benefit
from the use of soft robots.
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the stiffness. In [33], the GelSight [34], a vision-based high-

resolution tactile sensor, measures the 3D geometry of the

contact surface, and the normal/shear forces.

Note that the division of vision for global deformation

and tactile sensing for local deformation is not absolute. The

authors of [35] use vision to estimate the local deformation

of objects during grasping, and classify objects accordingly.

In [36], high-resolution tactile sensing is used to estimate the

physical properties of clothing materials through squeezing,

assuming the robot can learn from the data about global

properties of clothing according to a local sampling point.

In [37] an example of servoing along a cable based on high-

resolution tactile sensing is presented. Although vision is

not used, the precise measurement of the local cable shape

provides enough information to guide the robot motion on a

small scale.

B. Challenges and outlook

The main challenges for sensing are: selecting appropriate

sensors for the DOM task and using the measurements to

obtain meaningful object representations.

Considering the high number of degrees of freedom (DoF)

of the deformable bodies, a fusion of different sensing modal-

ities (vision, force and tactile) may be a promising direction

to pursue in future research. Another research question to be

answered is: what yields a good representation of the object

configuration? We (acknowledgedly) do not have a complete

answer to this; rather, we will elaborate on considerations

when designing the representation.

The representation needs to be robust to noise and useful

for reconstructing the objects’ configuration – even when

data are partially unavailable. In vision, the most common

noise is occlusion. How to generate a meaningful represen-

tation of these objects under self-occlusion is still an open

problem in research. For rigid objects, one can carefully

design the environment to avoid it. For deformable objects

that exhibit large global deformation such as clothes, bed

sheets, etc, self-occlusion is inevitable during manipulation.

A promising direction to deal with occlusion and noise is

using active/interactive perception [38], [39]. With vision data

from different perspectives, we might be able to reconstruct

the object’s configuration accurately even under occlusion and

noise.

Apart from the above mentioned challenges, choosing a

good representation also involves leveraging two aspects:

1) the dimensionality of the representation,

2) the accuracy of the representation.

Usually, the trade-off depends on the task, relies on human

intuition and involves a trial and error process.

In end-to-end reinforcement learning settings, sensory data

can be mapped directly to robot actions without explicit feature

representations [40]. Human demonstrations can be used for

making end-to-end learning more efficient. One example is

reported in [41]. The authors use an improved version of

Deep Deterministic Policy Gradients, trained with 20 demon-

strations, to make robots manipulate cloth. However, since

such settings often require a manually designed cost/reward

function for learning, human demonstrations in this context

can also be used for recovering the reward with inverse

reinforcement learning.

IV. MODELING

A. Current capability

For robots to perform deformation tasks using sensory data,

we need a model that captures the relationship between sensor

information and robot motion. A linear model characterized

by Young’s modulus can be employed for describing elastic

deformation. The two other classes of deformation are plastic,

and elasto-plastic deformations. This classification serves well.

However, since the model should be used for control, in this

section, we prefer to distinguish between local and global

models – a taxonomy that has clearer implications for control.

We introduce the corresponding research and – at the end of

the section – we discuss the limitations of these models and

present works that address them.

Most local models approximate the perception/action rela-

tionship via a Jacobian Matrix (called Interaction Matrix in

visual servoing). Such a model is linear and can be computed

in real-time with a small amount of data. However, since

it is a local model, it must be continuously updated during

task execution. Model updating methods include: Broyden rule

[17], receding horizon adaption [42], local gradient descent

[43], QP-based optimization [44], and Multi-armed Bandit-

based methods [45]. Another advantage of the Jacobian model

is that one can design a simple controller by inverting it.

However, since this controller is local, it operates via a series

of intermediate target shapes [42], [44].

On the other hand, global models can be approximated

with Finite Element Methods [46] and also (deep) neural

networks. In contrast to simple linear models, (D)NN-based

approaches benefit from stronger representation power, in

terms of accuracy and robustness [47]. Moreover, they can

incorporate physics models and reason about object interaction

[48]. These models can approximate highly nonlinear systems

and have a larger validity range, solving (to some extent)

the locality issue of the linear models. Nevertheless, these

complex nonlinear representations demand large amounts of

data (which might not be available in some cases).

Whether analytical or learned models are used, their pre-

dictive power will be limited. They are either specialized to

some class of tasks or learned from a set of training data.

Especially for the learned models, we can never hope to

collect enough data to produce an accurate model in the entire

state space (which is high dimensional). Thus [49] and [50]

have developed methods to reason about the validity of a

(learned) model for a given state and action, and have used

these methods to reason about model uncertainty in planning

and control. However, when the model is not precise, a re-

planning/recovery might be desirable. The authors of [51]

introduce two neural networks for learning and re-planning

the motion when the model is unreliable.

B. Challenges and outlook

The complexity of modeling is manifested in the lack of

simulators. While most existing robotic simulators are capable

of producing rigid body kinematics and dynamic behaviours,
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only a fraction of them can handle deformation. One recent

work, Softgym [52] was proposed for bench-marking DOM

based on Nvidia Flex. In the soft robotics community, SOFA

[53] and Chainqueen [54] are example simulators. In Sect.

II-B, we considered the interaction between soft robots and

deformable objects. Thus, a unified simulator that is able to

handle soft robots and objects, and model their interaction

might be desirable.

When choosing a model for control, one challenge of

data-driven deformation modeling is to balance the region

of validity with the amount of data required for training.

One possible direction is to combine a simple model with

a complex nonlinear model to form a hierarchical model. An

example of such structures is exploited in [55] for robust in-

hand manipulation. For DOM tasks, we can have a linear

model at the lower level, and a (D)NN learning the full model

at a higher level. The lower level model can be learned in few

iterations to enable instant interaction between the robot and

object. The higher level (D)NN can collect data and improve

the model to enhance global convergence.

V. PLANNING

A. Current capability

Planning aims at finding a sequence of valid (robot/object)

configurations and contributes to solving the problem of lim-

ited validity of local models, as discussed in Sect. IV.

Planners can operate in the objects’ configuration space, and

sometimes rely heavily on physics-based simulation. While the

obtained plan can be visually plausible, it may be unrealizable

for a specific object. Recently, McConachie et al. presented

a framework that combines global planning without physics

simulation, with local control [56]. For an elastic object,

considering its energy is another way to do planning; in this

direction, Ramirez-Alpizar et al. [57] proposed a dual-arm

manipulation planner optimizing the elastic energy, for elastic

ring-shaped objects manipulation. For DOM tasks involv-

ing multiple robots, planning is important for coordination.

Alonso-Mora et al. employed a distributed receding horizon

planner for transporting tasks that require multiple robots [58].

More recently, [59] learns a latent representation for semantic

soft object manipulation that enables (quasi) shape planning

with deformable objects.

With Learning from Demonstration (LfD), the robot can

be trained to manipulate deformable objects by an expert

(usually a human). LfD encodes the robot trajectory and inter-

action force from human demonstrations [60], thus avoiding

explicitly planning the motion. More recently, Wu et al. have

proposed a reinforcement learning scheme for DOM, which

does not require initial demonstrations [61].

B. Challenges and outlook

A rigid object configuration can be described in space with

6 DoF, whereas a deformable object configuration has a much

higher number of DoF. To address this from the sensing

algorithm side, one can find a compact representation from

sensory data, as discussed in Sect. III-B. An alternative, which

receives much less attention, is the use of environmental con-

tacts to constrain some DoF of deformable objects. Examples

include the use of contact points in cable harnesses or that

of flat surfaces when folding clothes. We argue that instead of

planning to avoid contacts as most planners do, for deformable

objects, we need to plan to make contact, since this constrains

the configuration, and therefore simplifies the task.

Planning to grasp the correct point is often crucial in

DOM tasks. For instance, grasping at convex vertices of the

clothes guarantees stability and facilitates the task [62]. Re-

grasp planning is highly relevant when considering tasks that

require multiple robotic arms. Additional challenges come

from perception, since as soon as the robot releases one or

more grasp(s), the object is likely to change its configuration.

We rely on sensing to track configuration changes and then

plan accordingly.

Another important future work in planning is reasoning

about a deformable object at a semantic level. What does it

mean for a cloth to be folded? What does it mean for an object

to be wrapped in a paper? We cannot manually specify all the

configurations of the deformable object to use as goals in these

kinds of tasks. Instead, we need a way to learn the meaning

of semantic concepts, such as folded or wrapped, so that we

can determine if a given configuration of the object is a valid

goal.

VI. CONTROL

A. Current capability

Control aims at designing inputs for the robot to realize

the planned motion. The type of controller is decided usually

by the task. For instance, the authors employed a data-

driven model predictive control [63] for cutting considering

its predictive nature and the lower demand for manual tuning.

For safe interaction in minimally invasive surgery, the authors

of [64] used a fuzzy compensator with impedance control. For

controlling large deformation, Aranda et al. proposed a Shape-

from-Template algorithm concerning its low dimensional rep-

resentation (using the template) and robustness against occlu-

sion [65].

Several works focus on shape control. While global models

directly map sensor data to robot motion, local models must

be inverted to design the robot motion controller (see Sec. IV).

Several applications of the control scheme for robotic manipu-

lation of deformable objects can be found in 3C manufacturing

[66], [67], where vision-based controllers were proposed to

drive the robot to automatically grasp/contact the deformable

object, then carry out the task of active deformation or separa-

tion/sorting. Other works consider the concept of diminishing

rigidity to do deformation control [68], [69].

B. Challenges and outlook

Feedback control has been commonly used in most DOM

works, by referring to the state of the object, to achieve the

task. Note that such state is retrieved from the output of its

deformation model and measured with sensors, and that output

and state do not necessarily have the same representation and

dimension. Furthermore, we can distinguish between model-

based and model-free control. Due to the complexity of

modeling the deformation, when using the model to derive
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control policies, the controller has to take into account that

the model will be inaccurate or even wrong.

Model-free approaches do not require information about

the deformation parameters or the structure of the deforma-

tion model. Examples include LfD or (Deep) reinforcement

learning, where the challenges are: efficient use of data, and

policy generalization. To address these issues, we can combine

offline and online learning methods. In the offline phase, the

supervised network can be trained to estimate the model, by

collecting pairs of a series of predefined inputs (e.g., the

velocity of the robot end-effector) and the deformation of

the object. The estimated model in the offline phase can be

further updated online during the control task with adaption

techniques (e.g., the adaptive NNs), to compensate for the

errors due to insufficient training in the offline phase or the

changes of the deformation model. Hence, both complement

each other.

When multiple features on the deformable object are con-

trolled in parallel, the system becomes under-actuated, with

fewer control inputs than error outputs. Then, the robot

controller should be able to deal with the conflicts between

multiple features or decouple the control of multiple features

in a sequential manner, to guarantee controllability.

In addition, due to the deformation during control, the

contact between robot end-effectors and deformable objects

may not always be maintained. Most existing systems require

a certain level of human assistance to initiate the contact or

to re-establish it, if it is lost during the task. To improve

autonomy, the robot controller should automatically grasp or

touch the object first, whenever physical contact is lost, laying

the foundation of the subsequent manipulation task. Such a

capability would allow the robot to effectively deal with the

unforeseen changes due to deformation.

VII. PRACTICAL APPLICATIONS

In the previous sections, we centered our discussion from

a scientific point of view, here, we instead discuss challenges

in various applications of DOM.

Automatic laundry: A typical domestic application of

DOM is laundry folding. A Tokyo-based company unveiled

its prototype laundry-folding robot in 2015. However, the

company was announced bankrupt in 2019 due to lack of

funding for development and difficulties in improving the

robot to reach a satisfactory level [70]. Although cloth folding

has been tackled in a few previous research [71]–[74], it

remains largely a laboratory product (limited to structured

environments, certain types of clothes, etc). Commercializing

the technology seems to require substantial efforts.

Assistive dressing: Robotic dressing assistance has the

potential to become an important technology due to the

pressing need for ageing society support. Research can roughly

be categorized into simulation-based learning [75], [76] and

imitation learning [77] approaches. Examples are dressing

support for shoes [78], shirts [79]–[81] and pants (An example

of shirt dressing is shown in Fig. 6a). However, several

technical and societal challenges have to be addressed before

robot-assisted dressing will become a broadly used DOM

technology: physical safety for the human, modeling and

prediction of the human-robot interaction, robustness for large

(a) (b)

(c) (d) (e)

Fig. 6. Various applications of DOM – (a): A mock-up for robotics dressing
assistance, (b): a robot picking a flexible bag of goods on the shelf, (courtesy
AIRLab TU Delft, photo by Guus Schoonewille), (c): autonomous surgical
manipulation by the dVRK system [83], (d): ROV Victor 6000 sampling
black smokers (IFREMER/GENAVIR) courtesy D. Desbruyères, (e): Ultra
soft underwater gripper for jellyfish [84].

variations of geometric and dynamic properties of textiles,

low-cost high-reliable robot hardware, and human acceptance

of such technologies.

Surgical robotics: Soft tissue manipulation is mainly per-

formed with teleoperation solely using visual feedback. Au-

tonomous manipulation, however, still has a long way to go

and demands developing various DOM hardware and software

(Fig. 6c). The biggest concern for an autonomous solution is

the safety of operation. A soft robot with intrinsic compliance

will probably enhance safety.

Food production & Retail: Handling deformable objects

is a major challenge in the whole chain from production to

sales. In an agricultural setting, automated harvesting of fruits

and vegetables requires interactions with deformable objects

that are at the same time easy to damage, which immediately

decreases their value and shelf live. Frequently, these products

also undergo an intermediate processing step (e.g., filleting and

packaging meat). More generally, deformable products (e.g.,

everything packaged in flexible bags, (Fig. 6b)) need to be

handled in warehouses, in order picking, and in restocking.

Solutions for specific applications and products have been

developed, but more complex objects and operations still are

frequently handled by human workers.

Marine robotics: Underwater grasping has been led by the

oil and gas industry for decades, resulting in heavy machines

with strong grippers for inspection and maintenance tasks

(Fig. 6d). Gradually the demands turned to more detailed

tasks in marine biology, sedimentology, and archaeology (Fig.

6e). Another DOM application can be found in tethered robot

umbilical modeling and control. Negative buoyancy cable can

be modeled in real-time as a simple catenary shape and tracked

to control a tethered ROV [82].

VIII. SUMMARY AND KEY MESSAGES

The revolution of robots from automating repetitive tasks

to humanizing robot behaviours is taking place with better

hardware, robust sensing capabilities, accurate modeling, in-

creasingly versatile planning, and advanced control. Manipu-

lation of deformable objects breaks fundamental assumptions
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in robotics such as rigidity, known dynamics models and low-

dimensional state space. It, therefore, requires breakthroughs

in all the areas mentioned above, and serves as a great test-

bench for novel ideas in both robotic hardware and software.

In terms of hardware, recently, the community has been

shifting more and more from rigid to soft robots. Robotic ma-

nipulation is also gradually shifting from rigid to deformable

objects. One open question is if some of the algorithms in one

field are transferable to the other? We believe the interaction

between a soft robot and a deformable object will bring more

challenges to the robotic community.

Sensing plays a vital part in the robotics manipulation of

deformable objects. Depending on the nature and complexity

of the task, one or multiple fused sensing modes may be

needed. Machine learning will facilitate the development of

robust algorithms to process data from different sensors, to

generate meaningful representations of deformation.

All models are wrong, some are useful. We do not believe

there exists the “best” model for deformation. While more and

more models tend to be data-driven, we would like to draw

the readers’ attention to the importance of physical models for

studying interactions.

For planning, current research lacks high-level semantic

reasoning of the DOM task. Furthermore, while often the

purpose of planning is to avoid contact and collision, we argue

that for DOM, it can be very useful to plan for contact.

Under-actuation is a key challenge of DOM, due to the

deformable bodies’ high DoF. Another practical issue intro-

duced with deformation is contact loss during manipulation;

future controllers should be able to detect contact loss and

react accordingly.
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