
Safe End-to-end Learning-based Robot Autonomy
via Integrated Perception, Planning, and Control

by

Glen Chou

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

University of Michigan
2022

Doctoral Committee:

Associate Professor Dmitry Berenson, Co-chair
Associate Professor Necmiye Ozay, Co-chair
Professor Jessy Grizzle
Professor Russ Tedrake, Massachusetts Institute of Technology
Associate Professor Ram Vasudevan

Glen Chou

gchou@umich.edu

ORCID iD: 0000-0003-4444-3631

© Glen Chou 2022

All Rights Reserved

ACKNOWLEDGEMENTS

First and foremost, I want to thank my advisors Dmitry Berenson and Necmiye
Ozay. It’s difficult to express how fortunate I am to have benefited from the incredible
breadth of your combined perspectives — working with you two has been a transfor-
mative experience. I am so grateful for all of your help during the early stages of the
PhD, where you patiently taught me how to transform my messy ideas into concrete
research contributions. In more recent years, I’m just as grateful for your confidence
in me as a researcher, by giving me the independence to pursue the projects that I
was passionate about. Some individual comments: Necmiye, your enthusiasm, com-
mitment, and work ethic are inspiring, and you’ve truly led the lab by example –
I hope that I can be as dedicated and as dynamic of an advisor in the future. I’m
also thankful to have been able to probe the depth of your technical knowledge over
the years, and that you’ve given me the ability to apply tools traditionally from the
purview of formal methods and optimization to solve difficult problems in robotics.
Dmitry, thank you for always encouraging me to think about the big picture, and
for reminding me to always be trying to solve real problems - your insight into the
most important open challenges in robotics have been a timeless source of inspira-
tion. I’d also like to thank committee members Jessy Grizzle, Ram Vasudevan, and
Russ Tedrake for their insightful feedback on the work presented in this dissertation.
Special thanks go to Nima Fazeli for generous advice and insights on the academic
job search. And I’d also like to thank Claire Tomlin and Anca Dragan for introducing
me to research as an undergrad – I still take inspiration from many of the tools and
techniques that you introduced me to.

I’m so lucky to have been able to work with such a varied group of PhD students
and postdocs. Dale, Yu-Chi, Brad, Andrew, Tom, Peter, Johnson, Mark, it has
been rewarding to see everything that you’ve been able to accomplish on incredibly
challenging problems in manipulation, planning under uncertainty, active perception,
etc. – it inspires me to dream bigger in my own work. Yunus, Liren, Kwesi, Zhe,
Zexiang, Andrew, Daphna, Sunho, Ruya, Mohamad, Dan, and Xiong: your work
has opened my eyes to a wide variety of applications outside of robotics, and always
inspires me to learn more.

I’d like to thank my co-authors Yunus, Liren, Kwesi, Petter, Craig, and Hao for
helping to make each project the best it could be. I also want to thank my advisees
Craig, Adarsh, Hao, Yating, and Jiayi: thank you for giving me the opportunity to
work with you, and for enabling me to learn how to advise students. Special thanks
go to Craig for working with me on the trusted domain project – I’m looking forward
to continuing our collaboration in the future. I’m so proud of the work that all of

ii

you have done, and I’m excited to see where all of you go next.
To Connie, Victor, Michelle, Romulo, Dennis, Jenny, Kwesi, Yunus, Daphna,

Derek, Eric, Jess, Miles, Sam, and Andrew: thanks for supporting me and for creating
so many wonderful memories over the years – I’m so lucky to be able to call you
my friends. And last but not least, I must thank my parents for their unyielding
and unconditional support throughout the PhD. Thank you for imbuing in me the
importance of a hard work ethic, and for always telling me that I can accomplish
anything that I put my mind to.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . xi

LIST OF TABLES . xxiv

LIST OF APPENDICES . xxv

ABSTRACT . xxvi

CHAPTER

I. Introduction . 1

1.1 Thesis Overview . 2
1.1.1 Summary of Contributions 4
1.1.2 Additional Contributions 7

II. Related Work . 8

2.1 Learning from Demonstration 8
2.1.1 Inverse optimal control 8
2.1.2 Safe imitation learning 10
2.1.3 Constraint learning 10
2.1.4 Learning temporal logic formulas from data 11

2.2 Motion Planning . 11
2.2.1 Feedback motion planning 12
2.2.2 Planning under uncertainty 13
2.2.3 Learning-based planning 15

2.3 Perception-based control . 17

III. Learning Constraints from Globally-Optimal Demonstrations 20

3.1 Introduction . 20
3.2 Preliminaries and Problem Statement 21

3.2.1 Forward optimal control problem 22

iv

3.2.2 Inverse constraint learning problem 23
3.3 Method . 24

3.3.1 Trajectories satisfying known constraints 25
3.3.2 Sampling trajectories satisfying known constraints . 25
3.3.3 Improving learnability using cost function structure 28
3.3.4 Gridded integer program formulation 30
3.3.5 Parameter space integer program 32
3.3.6 Bounded suboptimality of demonstrations 37

3.4 Analysis . 37
3.4.1 Learnability . 38
3.4.2 Conservativeness . 38
3.4.3 Parametric learnability 40
3.4.4 Parametric conservativeness 41

3.5 Evaluations: Gridded formulation 43
3.5.1 Version space example 43
3.5.2 Comparison with inverse reinforcement learning . . 44
3.5.3 Dynamics and discretization 48
3.5.4 Suboptimal human demonstrations 50
3.5.5 Feature space constraint 50

3.6 Evaluations: Parametric . 51
3.6.1 Comparison to gridded formulation 51
3.6.2 Unknown parameterization 52
3.6.3 High-dimensional examples 54
3.6.4 Planar pushing example 57

3.7 Discussion . 58
3.8 Conclusion . 59

IV. Learning Constraints from Locally-Optimal Demonstrations 60

4.1 Introduction . 60
4.2 Preliminaries and Problem Setup 61
4.3 Method . 62

4.3.1 Constraint recovery via the KKT conditions 62
4.3.2 Unions of offset-parameterized constraints 64
4.3.3 Extraction of safe and unsafe states 66
4.3.4 KKT relaxation for unions of affine constraints . . . 66
4.3.5 Unknown constraint parameterization 68
4.3.6 Handling cost function uncertainty 68
4.3.7 Applications to safe planning 68

4.4 Theoretical Analysis . 69
4.4.1 Conservativeness . 69
4.4.2 Global vs local learnability 70

4.5 Results . 71
4.5.1 2D examples . 71
4.5.2 7-DOF arm . 73

v

4.5.3 Quadrotor . 76
4.6 Discussion and Conclusion . 77

V. Gaussian Process Constraint Learning for Chance-Constrained
Planning from Demonstrations 79

5.1 Introduction . 79
5.2 Related Work . 81
5.3 Preliminaries and Problem Statement 81

5.3.1 Demonstrator’s problem and KKT optimality condi-
tions . 81

5.3.2 Overview of Gaussian processes 83
5.3.3 Problem statement 83

5.4 Method . 83
5.4.1 Obtaining constraint value and gradient information 84
5.4.2 Embedding KKT-based information in a Gaussian

process . 88
5.4.3 Planning with the learned constraint 89

5.5 Results . 91
5.6 Discussion and Conclusion . 97

VI. Learning Temporal Logic Formulas from Suboptimal Demon-
strations . 99

6.1 Introduction . 99
6.2 Preliminaries and Problem Statement 101
6.3 Learning Atomic Proposition Parameters (θp) 103

6.3.1 Learning time-invariant constraints via KKT 104
6.3.2 Modifying KKT for multiple atomic propositions . . 105
6.3.3 Extraction of guaranteed learned AP 108

6.4 Learning Temporal Logic Structure (θp, θs) 109
6.4.1 Representing LTL structure 109
6.4.2 A detour on learnability 111
6.4.3 Counterexample-guided framework 114

6.5 Learning Cost Function Parameters (θp, θs, θc) 118
6.6 Method extensions, variants, and discussion 119

6.6.1 Encoding prior knowledge 119
6.6.2 Faster reformulations for the falsification loop . . . 119
6.6.3 Prioritized variants on the falsification loop 121
6.6.4 Demonstration suboptimality 121

6.7 Theoretical Analysis . 123
6.8 Simulation Experiments . 126

6.8.1 Baseline comparison 126
6.8.2 δ-estimation for suboptimal demonstrations 127
6.8.3 Learning shared task structure 127

vi

6.8.4 Multi-stage manipulation task 130
6.8.5 Multi-stage quadrotor surveillance 132

6.9 Physical experiments . 134
6.9.1 Environment and task description 136
6.9.2 LTL formula learning 137
6.9.3 Real-world planning and execution 141

6.10 Conclusion . 142

VII. Uncertainty-Aware Constraint Learning and Planning via Con-
straint Beliefs . 143

7.1 Introduction . 143
7.2 Preliminaries and Problem Setup 144
7.3 Obtaining a belief over constraints 147

7.3.1 Obtaining the set of demonstration-consistent con-
straints Fθ . 147

7.3.2 Obtaining the constraint belief b(θ) 149
7.4 Policies for adaptive constraint satisfaction 150

7.4.1 Planning open-loop trajectories with an infinite set
of possible constraints 150

7.4.2 Planning open-loop trajectories with a finite set of
sampled possible constraints 152

7.4.3 Updates to b(θ) in online execution 152
7.4.4 Closed-loop policies for adaptive constraint satisfaction153

7.5 Experiments . 154
7.6 Conclusion . 157

VIII. Safe Planning and Execution with Learned Dynamics via
Data-Driven Model Error Bounds 158

8.1 Introduction . 158
8.2 Preliminaries . 160
8.3 Method . 161

8.3.1 The trusted domain 161
8.3.2 Estimating the Lipschitz constant 163
8.3.3 Planning . 164
8.3.4 Algorithm . 169

8.4 Results . 169
8.4.1 2D Sinusoidal Model 171
8.4.2 6D Quadrotor Model 173
8.4.3 7DOF Kuka Arm in Mujoco 176

8.5 Discussion and Conclusion . 177

IX. Safe Planning and Execution with Learned Underactuated
Dynamics via Contraction Theory 178

vii

9.1 Introduction . 178
9.2 Preliminaries and Problem Statement 180

9.2.1 System models, notation, and differential geometry . 180
9.2.2 Control contraction metrics (CCMs) 180
9.2.3 Problem statement 182

9.3 Method . 183
9.3.1 CCM-based tracking tubes under Lipschitz model error183
9.3.2 Optimizing CCMs and controllers for the learned model186
9.3.3 Designing and probabilistically verifying the trusted

domain . 188
9.3.4 Planning with the learned model and metric 191

9.4 Results . 192
9.5 Limitations and Future Directions 199
9.6 Conclusion . 202

X. Safe Output Feedback Motion Planning from Images via Learned
Perception Modules and Contraction Theory 204

10.1 Introduction . 204
10.2 Preliminaries and Problem Statement 206

10.2.1 Problem statement 207
10.2.2 Control/observer contraction metrics (CCMs/OCMs) 208

10.3 Method . 209
10.3.1 Learning a perception module for contraction-based

estimation . 209
10.3.2 Bounding tracking error and state estimation error

for planning . 210
10.3.3 Optimizing CCMs and OCMs for output feedback . 215
10.3.4 Solving the OFMP 215

10.4 Results . 217
10.5 Discussion and Conclusion . 221

XI. Conclusion and Outlook . 223

11.1 Summary . 223
11.2 Future work . 224

11.2.1 Safe Planning from Pixels with Data-Driven Model
Error Bounds . 224

11.2.2 Learning Dynamics Models from Demonstrations . . 226
11.2.3 Safe Planning with Models Learned Online 226

APPENDICES . 227
A.1 Appendix: Chapter III: Analysis 228

A.1.1 Learnability . 229

viii

A.1.2 Conservativeness . 230
A.1.3 Learnability: Parametric 235
A.1.4 Conservativeness: Parametric 236

A.2 Appendix: Chapter III: Extra numerical examples 239
A.2.1 U-shape (random demonstrations) 239

A.3 Appendix: Chapter III: Experimental details 240
A.3.1 Unknown parameterizations 240
A.3.2 High-dimensional examples 241
A.3.3 Black-box system dynamics 244

B.1 Appendix: Chapter VII: Optimization problem glossary . . . 245
B.2 Appendix: Chapter VII: A geometric analysis of constrained

inverse optimal control . 248
B.2.1 Modifying Problem VII.2 to handle unknown cost

function parameters 248
B.2.2 Unknown cost function, known constraint 248
B.2.3 Unknown constraints 250

B.3 Appendix: Chapter VII: Obtaining a belief over constraints
(expanded) . 251
B.3.1 Other constraint parameterizations: extracting with

zonotopes . 251
B.3.2 Discussion on extracting with mixed cost function

and constraint uncertainty 252
B.3.3 Speeding up extraction with parallelization 253
B.3.4 Summary on problem complexity 253

B.4 Appendix: Chapter VII: Policies for adaptive constraint satis-
faction (expanded) . 253
B.4.1 Fast reformulations of Problem VII.8 253
B.4.2 Sampling-based planners 254
B.4.3 Priors p(θ) other than the uniform distribution . . . 255
B.4.4 Belief updates . 255

B.5 Appendix: Chapter VII: Theory 257
B.6 Appendix: Chapter VII: Further experimental details 259

B.6.1 Planning baselines 259
B.6.2 Nonlinear constraint 260
B.6.3 Mixed state-control constraint uncertainty on a quadro-

tor . 261
B.6.4 7-DOF arm with contact sensing uncertainty 264
B.6.5 Quadrotor maze . 266
B.6.6 Computation times 267

C.1 Appendix: Chapter X: Trusted domain visualizations 269
C.2 Appendix: Chapter X: Bounding estimation error (expanded) 269
C.3 Appendix: Chapter X: Proofs 272
C.4 Appendix: Chapter X: Optimizing CCMs and OCMs for out-

put feedback . 276
C.5 Appendix: Chapter X: System models 277

ix

BIBLIOGRAPHY . 279

x

LIST OF FIGURES

Figure

1.1 An overview of the methods and contributions of this thesis 3
3.1 Discretized constraint space with cells z1, . . . , z10. The trajectory’s

constraint values are assigned to the red cells. 23
3.2 Illustration of hit-and-run. Left: Blue lines denote sampled random

directions, black dots denote samples. Right: Each point in T ξ∗xu
A

corresponds to an unsafe trajectory in the constraint space C, and in
this case, C = X . 26

3.3 Given an interval parameterization of an unsafe set, there does not
exist any interval which can both explain the data and label and
constraint state left of κ1 or right of κ2 as unsafe. 33

3.4 Comparison of the true Gs (left, in green) and the extracted inner
approximation Ĝs (right, in green). 34

3.5 Leftmost: Demonstrations and unsafe set. Rest: Set of possible
constraints. Postulated unsafe cells are plotted in red, safe states in
blue. 44

3.6 IRL comparison (gridded). (a) Demonstration. (b) Path length com-
ponent of reward function rpath(x) (numbers indicate the reward ob-
tained upon reaching a state). (c) Goal component of reward func-
tion rgoal(x). (d) A consistent softened constraint reward function.
(e) Combined reward function. (f) Unsafe optimal trajectory from
a new initial condition under the combined reward function. (g)
Combined reward function for a different goal. (h) Unsafe optimal
trajectory when planning with a different goal. 45

3.7 IRL comparison (parametric). Left: We are given two demonstra-
tions avoiding a red obstacle. Right: Paths planned with the cost
penalty may be unsafe, whereas trajectories planned with the learned
constraint remain safe. 47

xi

3.8 Results for various dynamical systems and time discretization. Rows
(top-to-bottom): Single integrator; double integrator; Dubins’ car
(CT). Columns (left-to-right): Demonstrations are plotted to-
gether with the outline of the true unsafe set A, and the learned
guaranteed unsafe set Gz¬s is overlaid (the red cells); mean squared
error between the output of Problem III.4 or Problem III.5 and the
ground truth; Problem III.5 solution, using all demonstrations; Prob-
lem III.4 solution, using all demonstrations. 48

3.9 Suboptimal demonstrations: left: setup, center: demonstrations,
A, Gz¬s, center-right: MSE, right: solution to Problem III.5. . . . 50

3.10 Feature space constraint recovery. Unsafe set in the constraint space
A is plotted in orange. The single demonstration is overlaid (red:
start, green: goal). Terrain isocontours L(x) = const are overlaid. . 51

3.11 Replicating row 1 of Figure 3.8 using a three-box parameterization.
Left: G¬s is shaded in red and Gs is shaded in green. Demonstra-
tions are overlaid and color-coded to match with row 1 of Figure 3.8.
Right: Recovered constraint using a variant of Problem III.7. . . . 52

3.12 Unknown parameterization. Col. 1: Red: G¬s; Green: Gs. Demonstra-

tions are overlaid. Col. 2: Coverage of A and S with a grid representa-

tion. In this (and all later examples), the demonstrations are color-coded

with x-axis. Col. 3: Coverage of A and S with our method. Col. 4:

Classification accuracy (dotted: average NN accuracy, shaded: range of

NN accuracies over 10 random seeds). Col. 5: Recovered constraint with

multi-polytope variant of Problem III.7. 53
3.13 Rows 1:2: 7-DOF arm, optimal demonstrations Col. 1: Experimental

setup. Gray boxes are projections of A. Projections of demonstrations in

position/angle space are overlaid. Col. 2: Top: Comparing safe/unsafe

set coverage as a function of demonstrations. Bottom: Prediction accu-

racy. Cols. 3-4: projections of Ĝ¬s using all demonstrations. For the

optimal case, the red boxes over-approximate the blue boxes, as the com-

plement of Ĝ¬s (not Ĝ¬s itself) is plotted. Col. 5: projections of Gs
using all demonstrations. Rows 3:4: Same for 7-DOF arm, suboptimal

demonstrations. 55
3.14 Left: Known unsafe set in (x, y, z) (red); (x, y, z) components of demon-

strations are overlaid. Right: Unknown unsafe set in (α̇, β̇, γ̇) (gray);

(α̇, β̇, γ̇) components of demonstrations are overlaid. 56
3.15 Constraint recovery for a 12D quadrotor. Col. 1: Coverage of A and S.

Col. 2: Classification error between Gs/S and G¬s/A. Cols. 3-4: Ĝ¬s
using all demonstrations. Col. 5: Gs using all demonstrations. 57

3.16 Constraint recovery without closed-form dynamics. Cols. 1-2: Setup

(unsafe set in red) and demonstrations (unsafe set in gray). Cols. 3-4:

Coverage of A and S; classification accuracy. Col. 5: G¬s / Gs using all

demonstrations. 57

xii

4.1 Left: local learns less than global. Center: local learns the same as
global. Right: global recovers non-conservative solution. Red: sam-
pled unsafe trajectories. Pink: true constraint. Green/cyan: demon-
strations. 72

4.2 Nonlinear constraint. Blue: true constraint boundary. Red/green
states: learned in G¬s/Gs. Purple/orange: two demonstrations. . . . 72

4.3 Left: demonstrations for bartender example. Right: novel trajecto-
ries planned with learned constraint. 73

4.4 Arm bartender statistics; x-axis color-coded with demos in Fig. 4.3. 73

4.5 Left: arm demos for ellipse example. Right: novel trajectories planned
using learned constraint. 74

4.6 Left: quadrotor demonstrations. Right: novel planned trajectories. . 74

4.7 Quadrotor statistics: coverage and accuracy for Gs, G¬s. Demonstra-
tion axis is color coded with the demonstrations shown on the left in
Fig. 4.6. 75

5.1 Demonstrations (black) avoiding a tree-like obstacle on a 12D quadro-
tor. (A) True constraint (blue); plans using the GP constraint (gold).
(B) Posterior mean of the GP constraint (blue). (C) Errors of GP
posterior mean w.r.t. the true constraint. (D) Constraint learned
via Chou et al. (2020b) using 6 boxes. 80

5.2 Method flow. Given a set of locally-optimal demonstrations, we first
find consistent constraint values and gradients (Sec. 5.4.1), then use
this data to train a consistent GP constraint representation (Sec.
5.4.2), and then finally plan probabilistically-safe trajectories using
the learned GP constraint (Sec. 5.4.3). 84

5.3 Consider a demonstrator minimizing path length on a kinematic sys-
tem; φsep(xt) = xt ∈ R2. In this simplified setting, we can interpret
(5.2f) as balancing between vectors ∇c and λ∇g¬k; if they cancel
to 0, stationarity holds. We visualize this for Prob. V.2-V.4. (A)
Prob. V.2: ‖statxt‖ can only go to zero if λt

¬k > 0; thus, we detect
g∗¬k(xt) = 0. (B) Prob. V.4: only a scaling of the magenta constraint
normal can make ‖statxt‖ = 0; all gradients in gold are are not anti-
parallel to ∇c and cannot cancel it. (C): sometimes if g∗¬k(xt) = 0,
it is still possible for ‖statxt‖ = 0 with λt

¬k = 0. 86

xiii

5.4 Prob. V.6 and V.7 intuition. (A): Prob. V.6 searches for a new gra-
dient orthogonal to the original gradient by maximizing the distance
from the origin as measured in the coordinates of ∇xt

g̃⊥¬k. If p∗4 = 0
(i.e., the gradient remains in the gap between the blue areas as the
gap → 0), the new gradient must remain in the span of the original
gradient. (B): Prob. V.7 searches for a new gradient with minimal
dot product w.r.t. the original gradient; if the result remains in the
blue semicircle (i.e., p∗5 > 0) and p∗4 = 0, the gradient from Prob. V.4
is unique up to a scaling. 88

5.5 Illustration of GP-CCRRT. A candidate length 2 trajectory from the
root of the RRT induces a bivariate Gaussian; its safety probability
can then be calculated by calculating the CDF of the induced Gaussian. 90

5.6 2D hollow cup constraint. (A) Demonstrations and true constraint.
(B) Learned GP posterior mean, with true constraint overlaid. . . . 92

5.7 5D car example. (A) Hilly terrain map. (B) Demonstrations; identi-
fied tight points (red); robustly-identified timesteps (green); robustly-
identified gradients (blue). 92

5.8 5D car example, learned. (A) Learned GP constraint, mean function.
(B) Mean function misclassifications. (C) Constraint learned using
baseline Chou et al. (2020b). (D) Learned GP constraint, buffered
by GP uncertainty. (E) Buffered misclassifications. (F) Plans com-
puted using learned GP constraint. 93

5.9 12D quadrotor box example. (A) Two box obstacles; demonstra-
tions. (B) Learned GP constraint (mean). (C) GP misclassifications
(mean). 96

5.10 3-link planar arm example, learned. (A) True C-space constraint;
plans found using GP constraint (gold). (B) Learned GP constraint,
mean function. (C) Mean function misclassifications. (D-E) Plans
computed using learned GP constraint (workspace). (F) Constraint
learned with baseline Chou et al. (2020b). 96

6.1 Multi-stage delivery task: place the soup in an open-top box and
deliver it, then deliver the Cheez-Its to a second delivery location.
To avoid spills, a pose constraint is enforced while the soup is being
delivered in the open-top box. 100

xiv

6.2 A directed acyclic graph (DAG) model of the LTL formula ϕ =
(♦[0,Tj−1]p1)∧(♦[0,Tj−1]p2) (eventually satisfy p1 and eventually satisfy
p2). The DAG representation can be interpreted as a parse tree for
ϕ (cf. Sec. 6.4.1). The Tj boolean values for each node represent the
truth value of the formula associated with the DAG subtree when
evaluated on ξdemj , starting at times t = 1, . . . , Tj, respectively. Each

ξdemj |= ϕ iff the first entry at the root node, (
∨Tj

i=1 Z
j
1,i)
∧
(
∨Tj

i=1 Z
j
2,i),

is true. 106

6.3 Left: Two demonstrations which satisfy the LTL formula ϕ = (¬p2 U[0,Tj−1] p1)∧
♦[0,Tj−1]p2 (first satisfy p1, then satisfy p2). The demonstrations sat-
isfy kinematic constraints and are minimizing path length while sat-
isfying input constraints and start/goal constraints. The blue and
yellow demonstrations begin at the corresponding x1 states and end
at x5 and x9, respectively. Right: Some example formulas that are
consistent with ϕ, for various levels of discrete optimality (ϕf : dis-
crete feasibility, ϕs: spec-optimality, ϕg: discrete global optimality). 110

6.4 Consider the two-AP setting first shown in Fig. 6.3. We visualize
here sets of LTL formulas which can be distinguished based on cost.
Formulas within group (·) have an optimal cost c∗· . The formulas
listed in each group (A), (B), (C), and (D) are just a small subset of
a much larger set of cost-indistinguishable formulas. For instance, if
a demonstration has a δ-adjusted cost c(ξdemj)/(1 + δ) falling in the
green range, Alg. VI.1 will return some LTL formula structure in
group (D), each of which would have an optimal cost of c∗D. 123

6.5 Toy example for baseline comparison Jha et al. (2019). The baseline is
unable to disambiguate between possible APs as it does not consider
the demonstrator’s objective. 126

6.6 Left: We are given 25 suboptimal demonstrations of the same task,
with each demonstration starting at [−1, 1], ending at [3, 4], and sat-
isfying ♦[0,8]p1. The globally-optimal cost is 3.25, while the best cost
observed within the 25 demonstrations is 3.274. Right: We fit a
Weibull distribution (orange) to the demonstration costs (right). The
fitted location parameter, adjusted by its 95% confidence interval, is
3.248 < 3.25, which leads to a valid overestimate of δ. 127

6.7 We learn a common LTL formula from demonstrations in different
environments (different θp) with shared task (same θs). 129

6.8 Trajectory planned with the learned LTL formula on the environment-
transfer example. 129

6.9 Multi-stage simulated manipulation task: first fill the cup, then grasp
it, and then deliver it. To avoid spills, a pose constraint is enforced
after the cup is grasped. 129

xv

6.10 Demonstrations and counterexamples for the simulated manipulation
task. 130

6.11 Trajectories planned using the learned LTL formula, for the simulated
7-DOF arm. 131

6.12 Quadrotor surveillance demonstrations (top) and learning curves (bot-
tom). 132

6.13 Trajectories planned using the learned LTL formula, for the quadro-
tor system. 134

6.14 We build a Unity virtual reality environment to collect demonstra-
tions for the real-world object delivery manipulation task. 135

6.15 One demonstration is recorded in the Unity virtual reality environ-
ment for the object delivery task, seen here from a first-person per-
spective. (a) Initial state. (b) First, grasp the soup. (c) Next, place
the soup in the blue box, avoiding the mustard bottle which is in the
way. (d) Place the box with the soup in the blue delivery region while
satisfying a pose constraint. (e) Move to grasp the Cheez-It box. (f)
Place the Cheez-It box in the green delivery box. 135

6.16 Counterexample visualization on the object delivery task. The red,
green blue, and cyan trajectories correspond to ϕ2, ϕ3, ϕ8, and ϕ13,
respectively, as described in Sec. 6.9.2. 137

6.17 Setup of the object delivery task in the real world. The small brown
box corresponds to the small blue box in the VR environment, while
the large brown box corresponds to the green box in the VR environ-
ment. 139

6.18 Object segmentation. (a) RGBD data provided by the Kinect sensor.
(b) Segmented image. (c) Segmented point cloud, which is used to
infer object poses. 139

6.20 Executed trajectory on the real robot. The robot first grasps the
tomato soup (a), moves to place it inside the movable box (b), drops
the soup into the box and grasps the loaded box (c), and moves the
loaded the box to the blue delivery region (d). The robot then moves
to grasp the Cheez-It box (e), and finally places it in the box located
at the green delivery region. 140

6.19 Planning environment used. Object poses are recovered from the
segmented depth cloud by running ICP. 140

xvi

7.1 Overall method flow for adaptive planning from demonstrations. We
refer to both the ideal (red), but intractable, subproblems, as well as
the tractable (blue) variants of those subproblems. 146

7.2 Fθ for a one-box parameterization of A(θ), induced by a demo. and
two safe states, projected onto X . With the data, the upper x /
y bounds x̄(θ) / ȳ(θ) remain uncertain. Also: some possible A(θ)
(dotted). 147

7.3 Extracting Fθ via Alg. VII.1: requires 3 iterations. Overlaid: Bεmin

i

(black dotted) and BR
i (orange dotted), i = 1, ..., 3, optimized by

solving Probs. VII.8-εmin and VII.8-R (plans in Fig. 7.4). 148

7.4 Generated plans for Bi in Fig. 7.3. projX (Bi) are overlaid (with
matched color). 151

7.5 Policy tree: initial plan and contingencies, rooted at possibly unsafe
states. Green / red / yellow states in Gs / G¬s / projC(Fθ). 153

7.6 Mixed quadrotor uncertainty example. A-B. Initial control and state

constraint uncertainty. C. Initial plan for a new task. D-F. Contingencies

are pre-computed, and the system switches if the initial plan is unsafe. . 155

7.7 Arm with contact sensing uncertainty. A: Demonstrations. B. Initial
constraint uncertainty (red) and plan (blue). C. The initial plan vio-
lates an unmodeled constraint, triggering a belief update. D. Replan
online. 156

7.8 Quadrotor maze. A. Demos., initial constraint uncertainty. B-D.
Three views of the initial plan (pink) and contingencies for different
sensing possibilities, obtained by gridding the possible sensor mea-
surements. 157

8.1 An example with f(x) = x′, dim(X) = 1, and dim(U) = 0. True
dynamics: yellow; learned linear dynamics: orange; S: green crosses;
Ψ: light blue crosses; domain D: interval [−1, 2], bordered in black.
Here, bT = 0.3633 (purple) and eT = 0.1161 (blue). The Lipschitz
constant of the error is Lf−g = 0.1919, yielding ǫ = 0.1859. We can
use this bound to ensure the difference between the learned and true
dynamics is no more than ǫ in D (shaded orange area). Note Lf−g

can be larger outside of D. 162

8.2 Visualizing D (boundary in black), Dǫ (yellow), and D
c (complement

of D). Each point in Dǫ is at least ǫ distance away from Dc. If the
system is controlled to a point in Dǫ from anywhere in D under the
learned dynamics, then it remains in D under the true dynamics. . . 165

xvii

8.3 Illustrating the advantage of Lf−g < 1 and r selected according to
(8.10). An ǫ-ball about a query point is shown in black; r-balls about
training data are shown in blue. Left: Lf−g > 1, therefore requir-
ing many training points to cover an ǫ-ball about the query point.
Right: Lf−g < 1 and r is selected according to (8.10). Under these
conditions, only one training point within a r− ǫ distance ensures an
ǫ-ball about the (x, u) is entirely in D, ensuring that the query point
is in Dǫ. 166

8.4 The one-step feedback law: plan with the learned dynamics (dashed
black); rollout with the true dynamics (blue); prediction with the
learned dynamics using the feedback law (red). At each point, we use
(8.12) to find a feedback control ũk so xk+1 = g(x̃k, ũk). We arrive
within ǫ of the next state under the true dynamics. This repeats until
we reach the goal. 167

8.5 2D sinusoidal dynamics. The LMTD-RRT plan (magenta) stays in
D and ensures a valid feedback law exists at each step. The plan
can be tracked within ǫ under closed loop control (cyan). If feedback
is not applied, the system drifts to the edge of the trusted domain,
exits, and diverges (green). The näıve RRT plan (brown) does not
consider D, and does not reach the goal under closed loop (grey) or
open loop (red) control. 172

8.6 Quadrotor tracking example. The trajectory planned with LMTD-
RRT (magenta) is tracked in closed loop (blue) and reaches the goal.
The open loop (green) also converges near the goal, but not as close
as the closed loop. The näıve RRT produces a plan (brown) that
leaves the trusted domain. Thus, both the open (red) and closed
(light blue) loop rapidly diverge. 172

8.7 Left: Quadrotor obstacle (red) avoidance. Example plans (green,
blue, black), tracking error bound ǫ overlaid (light blue). Closed-
loop trajectories remain in the tubes, converging to the goal without
colliding. Right: Näıve RRT plan (pink) fails to be tracked (cyan)
and collides (red dots). 174

8.8 Planning to move a 7DOF arm from below to above a table. Trajectory-
tracking time-lapse (time increases from left to right). Red (nominal),
green (closed loop), blue (open loop). Top: LMTD-RRT (red, green,
blue overlap due to tight tracking). Bottom: Näıve RRT (poor
tracking causes collision). 175

xviii

9.1 Method flowchart. Left: First, we learn a model of the dynamics
using dataset S and obtain a contracting controller for this learned
model (Prob. IX.1). Center: Next, within a trusted domain D,
we verify (with a given probability) the correctness of the controller,
bound the model error, and bound the trajectory tracking error under
this model error (Prob. IX.2). Right: Finally, we use the error
bounds to plan trajectories within D that can be safely tracked in
execution (Prob. IX.3). 181

9.2 Left: an example of the trusted domain D, with the dataset S being
shown as black dots. Note that a careful choice of r is needed; for a
slightly smaller r than that shown in the figure, the upper and lower
portions of D will become disconnected, leading to plan infeasibility.
Right: An example of LMTCD-RRT in action. Regions inD that are
shaded darker blue have smaller model error ‖d‖; lighter shades have
higher error ‖d‖. Note that D is also a union of balls here; we have
suppressed the boundaries of each individual ball to reduce clutter.
The orange extension to the pink branch of the RRT is rejected,
since the tube around that extension (dark magenta) exits D and
intersects with the obstacle; the larger size of this tube results from
the pink branch traveling through higher error regions. In contrast,
the cyan branch (lower) accepts the yellow candidate extension, as
its corresponding tube (dark cyan) remains inside D and collision-
free; the smaller tube sizes reflect that the blue branch has traveled
through lower-error regions. This type of behavior biases the planner
to ultimately return a path that travels through lower-error regions. 189

9.3 4D car; planned (solid lines) and executed trajectories (dotted lines).
The filled red circles are obstacles. Tracking tubes for all methods
are drawn in the same color as the planned trajectory. To aid in
visualizing D, the small black dots are a subsampling of S. We plot
state space projections of the trajectories: Left: projection onto the
x, y coordinates; Right: projection onto the θ, v coordinates. For
this example, LMTCD-RRT, B1, and B2 remain in D in execution,
while B3 and B4 exit D, and also exit their respective tracking tubes,
leading to crashes. 193

xix

9.4 4D underactuated double pendulum; planned (blue lines) and exe-
cuted trajectories from various perturbed initial conditions (red lines).
Tracking tubes are shown in grey. The small black dots are a subsam-
pling of S. We plot state space projections of the trajectories onto
the θ1, θ2 coordinates, as well as the θ̇1, θ̇2 coordinates. Top left: the
tracking tube computed by LMTCD-RRT, wrapped around a trajec-
tory planned with the learned dynamics (blue), and overlaid by a
subsampling of the training data. Top right: when using the CCM-
based tracking controller, LMTCD-RRT remains within its tracking
tube, and robustly converges to the upright equilibrium. Bottom
right: executing the plan computed with LMTCD-RRT open-loop
diverges, due to the chaotic nature of the system. Bottom left: a
plan which exits D results in divergence at runtime, leading to failure
to converge to the upright equilibrium. 194

9.5 4D underactuated double pendulum; time-lapse of planned trajec-
tories and executed rollouts. Fainter (darker) lines correspond to
configurations close to the beginning (end) of the rollout. 195

9.6 6D planar (xz plane) quadrotor; planned (solid lines) and executed
trajectories (dotted lines). The filled red circles are obstacles. Track-
ing tubes for all methods are drawn in the same color as the planned
trajectory. The small black dots are a subsampling of S. We plot
state space projections of the trajectories onto the px, pz coordinates.
Left: for this example, LMTCD-RRT remains within its tracking
tube, and all baselines violate their respective bounds near the end
of execution (see inset). Right: for this example, LMTCD-RRT
remains within its tracking tube, and B3 and B4 exit D and crash. . 197

9.7 22D planar rope dragging task. Snapshots of the planned trajectory
are in black, snapshots of the executed trajectory are in magenta, and
the tracking error tubes are in green. For further concreteness, for
each snapshot, we mark the head of the rope with an asterisk, and we
mark the tail of the rope with a solid dot. Additionally, the trajectory
of the tail in the plan is plotted in orange, while the trajectory of the
tail in execution is plotted in blue. Only LMTCD-RRT reaches the
goal, while all baselines become unstable when attempting to track
their respective plans. We also show the original Mujoco simulation
environment in the bottom left. 200

10.1 For a 4D car, a 6D quadrotor, and a 14D arm, we compute plans that
can be safely stabilized to reach goals at runtime using rich sensor
observations in the form of RGB(-D) images. 205

xx

10.2 Our method. Offline: After learning a perception system ĥ−1 (Sec.
10.3.1), we bound its error to derive tracking tubes under imperfect
perception (Sec. 10.3.2). We use these tubes to find safely-trackable
plans (Sec. 10.3.4). Online: We design a CCM/OCM-based con-
troller/observer (Sec. 10.3.3) to track the plan/perform state estima-
tion at runtime, using ĥ−1 to process rich observations y. 209

10.3 uclosest can be much closer to u(x̂, x∗, u∗) than u(x, x∗, u∗): we show
this for two different state estimates x̂1 and x̂2. 212

10.4 Our perception error bounds. (A) ǭ1 is simple but conservative. B)
ǭ2(x

∗) is tighter, as it only seeks to be valid over the tube Ωc. How-
ever, it scales linearly with the size of Ωc. C) ǭ3(x

∗) can be tighter for
larger Ωc by adding a Lipschitz-based buffer to the largest training
error in Ωc. 213

10.5 Visualization of Alg. X.1. 216
10.6 4D car. Planned, executed, and estimated trajectories, overlaid with

corresponding tracking and estimation tubes Ωc(t) and Ωe(t). For
eight timesteps corresponding to the black dots on the Ωe plot, we also
show RGB component of the observations seen at runtime (bottom).
A) and B): two examples of CORRT, which safely reach the goal. C)
and D): B1 and B2: both crash. 218

10.7 6D quadrotor. Planned, executed, and estimated trajectories, over-
laid with Ωc(t) and Ωe(t). Snapshots of the runtime observations are
shown (bottom). A) and B): two examples of CORRT, which safely
reach the goal. C) and D): B1 and B2: both crash. 219

10.8 7DOF arm. State estimate error, overlaid with Ωe(t) (in gray). Run-
time observations are shown (bottom). A): when using CORRT, the
state estimate error remains in Ωe(t) and achieves |φ̂i(T)− φi(T)| ≤
0.1. B3 fails to meet this requirement. B) B1 also fails the 0.1 re-
quirement. 220

A.1 Illustration of the outermost ∆x shell (shown in red) of the unsafe
set A. The hatched area cannot be learned guaranteed safe. 230

A.2 Illustration of the γ-padded set A(γ), which is the union of the red
and white regions. The γ-offset padding is displayed in red. The
original set A is shown in white. 231

A.3 Illustration of Assumption 1 - all grid cells are either fully contained
by A or Ac. 232

A.4 Illustration of Assumption 2: each cell z that the trajectory passes
through must have a time discretization point (shown as a dot). . . 233

A.5 Counterexample used in the proof of the first statement in Theorem A.24. 238

xxi

A.6 U-shape performance with random demonstrations. Left: Coverage of

A and S. Center: Classification accuracy. Right: A recovered feasible

A(θ), overlaid with demonstrations, and the true unsafe set A is outlined

in blue. 239
A.7 VR setup. Top: VR environment as viewed from the Vive headset. The

green box represents the position constraints on the end effector. The

end effector is commanded to move by dragging it with the HTC Vive

controllers (bottom). 242
B.1 Trajectories generated for different priors. We are provided one

demonstration (left), which reveals the left, right, and bottom ex-
tents of a box obstacle constraint, but not the upper extent. Dashed
lines correspond to the uniform prior p(θ) ∝ 1, while dotted lines

correspond to the prior p(θ) ∝∏|κ|
i=1(κ̄i(θ)− κi(θ)). 256

B.2 Grid used in the proof of Theorem B.6. 258

B.3 Example demonstrating MCR on planning with a nonlinear con-
straint. A: Demonstration, overlaid with the true constraint (red).
B: Initial constraint uncertainty, visualized as a normalized probabil-
ity heatmap.C. The initial plan (blue) generated by MCR, overlaid
by a subsampling of 20 of the sampled constraint parameters θ pro-
vided to MCR. A possible collision occurs at the cyan “x”. D. The
updated constraint uncertainty probability heatmap were the cyan
state to be in collision. E. The new plan for the updated constraint
uncertainty reaches the goal without violating any possible sampled
constraints. 261

B.4 Example run 1 (mixed quadrotor example). 262

B.5 Example run 2 (mixed quadrotor example). 262

B.6 Constraint violation histogram for the mixed quadrotor uncertainty
example. 263

B.7 BTP with CHS. Voxels are colored red if they are possibly unsafe
according to the CHS. Red edges are attempted edges which are
discovered to be blocked in execution. The attempted edges which
were unblocked are colored blue. 264

B.8 Trajectory executed by the optimistic policy. 265

B.9 Suboptimal human demonstrations. Top row: time-lapse of the first
demonstration. Bottom row: time-lapse of the second demonstration. 265

xxii

B.10 Policy when initialized with suboptimal demonstrations. Left: plans
an initial trajectory that bumps into the unmodeled obstacle. Cen-
ter: constraint parameterization is updated to two boxes. Right: re-
planned trajectory successfully avoids all collisions, steering the arm
to the goal. 265

B.11 Example run, our policy (quadrotor maze). Initial plan (green), con-
tingency plan (blue), actually executed plan (yellow). The sphere
around the quadrotor indicates the sensing radius. 266

B.12 Example run, guaranteed-safe policy (quadrotor maze). Initial/actually
executed plan (yellow). 266

B.13 Example run, optimistic policy (quadrotor maze). Initial plan (green),
contingency plan 1 (blue), contingency plan 2 (cyan), actually exe-
cuted plan (yellow). 267

C.1 An example of how Dr ⊆ X is constructed. 269

C.2 (A) Visualization of the dispersion; together with the Lipschitz con-
stant, it can bound the error within the blue set. (B) A visualization
of our set construction in ǭ3(x

∗, θ). 271

C.3 An example of anticipatory smoothing: the red curve is a continuous
upper bound to the potentially discontinuous ǭ3(x

∗, θ). 274

xxiii

LIST OF TABLES

Table

3.1 Sampling methods for different classes of dynamics models, cost func-
tions, and feasible control sets. 25

3.2 Parameters used for each experiment. 42
3.3 Approximate runtimes for each experiment. 43
3.4 Number of consistent unsafe sets, varying the number of demonstra-

tions, using/not using unsafe trajectories (cf. the example in Section
3.5.1). 44

5.1 GP classification errors (False Safe (FS); False Unsafe (FU)). 91
7.1 Which open-loop planner to use? 154
8.1 Sinusoid errors in closed loop (CL) and open loop (OL). Mean ±

standard deviation (worst case). 172
8.2 Quadrotor errors (no obstacles) in closed loop (CL) and open loop

(OL). Mean ± standard deviation (worst case). 174
8.3 7DOF arm errors (no obstacles) in closed loop (CL) and open loop

(OL). Mean ± standard deviation (worst case). 176
9.1 Statistics for the car, quadrotor, and rope. Mean ± standard devia-

tion (worst case) [if nonzero, number of failed trials]. 193
9.2 Statistics for the acrobot example. Mean± standard deviation (worst

case). 195
10.1 Statistics on the tracking/estimation error reduction across all exper-

imental results. “Trk. err.” = ‖x∗(T)− x(T)‖/‖x∗(0)− x(0)‖. “Est.
err.” = ‖x̂(T) − x(T)‖/‖x̂(0) − x(0)‖. In each cell: average error ±
standard deviation over all trials. 217

xxiv

LIST OF APPENDICES

Appendix

A. Appendix for Chapter 3: Learning Constraints from Globally-Optimal
Demonstrations . 228

B. Appendix for Chapter 7: Uncertainty-Aware Constraint Learning and
Planning via Constraint Beliefs . 245

C. Appendix for Chapter 10: Safe Output Feedback Motion Planning from
Images via Learned Perception Modules and Contraction Theory . . . 269

xxv

ABSTRACT

Trustworthy robots must be able to complete tasks reliably while obeying safety
constraints. While traditional methods for constrained motion planning and op-
timal control can achieve this if the environment is accurately modeled and the
task is unambiguous, future robots will be deployed in unstructured settings with
poorly-understood or inaccurate dynamics, observation models, and task specifica-
tions. Thus, to plan and perform control, robots will invariably need data to learn
and refine their understanding of their environments and tasks. Though machine
learning provides a means to obtain perception and dynamics models from data,
blindly trusting these potentially-unreliable models when planning can cause unsafe
and unpredictable behavior at runtime. To this end, this dissertation is motivated
by the following questions: (1) To refine their understanding of the desired task, how
can robots learn components of a constrained motion planner (e.g., constraints, task
specifications) in a data-efficient manner? and (2) How can robots quantify and re-
main robust to the inevitable uncertainty and error in learned components within the
broader perception-planning-control autonomy loop in order to provide system-level
guarantees on safety and task completion at runtime?

To address the first question, we propose methods that use successful human
demonstrations to learn unknown constraints and task specifications. The crux of
this problem relies on learning what not to do (i.e., behavior violating the unknown
constraints or specifications) from only successful examples. We make the insight that
the demonstrations’ approximate optimality implicitly defines what the robot should
not do, and that this information can be extracted by simulating lower-cost trajec-
tories and by using the Karush-Kuhn-Tucker (KKT) optimality conditions. These
strong optimality priors make our method highly data-efficient. We use these meth-
ods to learn a broad class of constraints, including nonconvex obstacle constraints,
and linear temporal logic formulas, which can describe complex temporally-extended
robotic tasks. We demonstrate that our constraint-learning methods scale to high-
dimensional systems, e.g., learning to complete novel constrained navigation tasks for
a simulated 12D quadrotor and multi-stage manipulation tasks on a 7DOF arm (both
simulated and in the real world).

To address the second question, we develop methods addressing uncertainty in
A) constraints learned from demonstrations and B) dynamics models and perception
modules learned from data. To quantify constraint uncertainty, we extract the set of
constraints that are consistent with the demonstrations’ KKT conditions (i.e., a belief
over constraints), which is done by solving a sequence of robust mixed integer pro-
grams. We show that the robot can plan probabilistically-safe trajectories using this
constraint belief, which can be updated using constraint data gathered in execution.
To address uncertainty when planning with learned dynamics models of underac-

xxvi

tuated systems controlled with high-dimensional (image) observations, we estimate
bounds on the error of the learned models inside a domain around their training data.
Using tools from contraction theory, we propagate this model error bound into a tra-
jectory tracking error bound. This tracking bound is used to constrain the planner
to only return plans that can be safely tracked, with high probability, in spite of the
errors in the perception and dynamics. We demonstrate that these theoretical guar-
antees translate to success in simulation, enabling safe task completion at runtime
on a variety of challenging high-dimensional, underactuated systems using rich sensor
observations (e.g., RGB-D images) in the feedback control loop.

xxvii

CHAPTER I

Introduction

The development of autonomous robots has the potential to revolutionize society,
with applications as diverse as assistive home robots, self-driving cars, manufactur-
ing, construction, disaster response, last-mile drone delivery, and agriculture. Like
with any technology, such robots should be able to reliably and safely perform their
intended tasks. Many applications for robot autonomy, including several settings
mentioned above, are safety-critical – often because the cost of failure in such scenar-
ios can be high, and because humans are in the loop. In such environments, it is of
paramount importance for robots to be able to provide some (probabilistic) guaran-
tee on safety and capability when performing their tasks. However, deploying robots
outside of a controlled lab setting brings about a variety of roadblocks in achieving
this goal of safe and reliable autonomy. To better understand these challenges, we
will first discuss a common operating loop for autonomous robots: the perception,
planning, and control pipeline.

The goal of perception is to take in raw information about the world from sensors
(e.g., in the form of range measurements from a LiDAR, vision from an onboard cam-
era, force measurements from tactile sensors, etc.) and process this data in order to
obtain a concise representation of the world which is useful for planning (e.g., a state
estimate). In recent years, deep learning-based approaches have enabled major ad-
vances in perception, especially through computer vision, where large improvements
in object classification and detection have given robots an improved understanding
of their surroundings (e.g., Levine et al. (2016)). However, the reliability of deep
learning-based models is notoriously difficult to verify because of their complexity
(Liu et al., 2021). Moreover, the quality of these models’ predictions is sensitive to
the training data; in particular, if the robot senses images which are far from the train-
ing data (i.e., out-of-distribution), the output of the machine learning-based model
is not guaranteed to generalize and can be entirely inaccurate (Shen et al., 2021).
Adding to these challenges is the quality of the sensor measurements that robots can
obtain when deployed in real environments: measurements are often inaccurate and
incomplete, e.g., due to noise and occlusions; thus, the robot’s surroundings may be
inaccurately estimated. These combined issues can make it quite difficult to guar-
antee the correctness of the perception module. In this thesis, we develop a method
for using perception error to guide reliable downstream planning and control from

1

images (Chapter X).
Next, the aim of the planner is to determine what actions the robot should take in

order to complete its task. Specifically, it takes as input 1) the estimated state of the
robot and the environment from the perception module, 2) a dynamics model which
predicts how the robot and environment will evolve over time, and 3) a specification
of the task. It then outputs a trajectory which satisfies the task specifications (while
possibly also optimizing some task-dependent preferences) while being consistent with
the dynamics and the perception information. Assuming that the state estimate is
correct, the dynamics are entirely accurate, and the task specification is unambiguous,
there are many tools for synthesizing a plan that can be safely executed with formal
guarantees (e.g., constrained motion planning (Berenson, 2011), constrained model
predictive control (Mayne et al., 2000), and linear temporal logic planning (Kress-
Gazit et al., 2009)). However, these assumptions almost never hold, and designing
algorithms that can retain safety and task completion guarantees in the presence of
these imperfect assumptions is the main focus of the work presented in this thesis.
One primary issue is that the robot’s task is often ambiguous – one popular way
for humans to specify tasks to a robot is with demonstrations (Argall et al., 2009);
however, these demonstrations can be imperfect and may not translate to a unique
planning problem (e.g., if we assume that the planner solves an optimization problem
to find a plan, there can be many possible cost functions and constraints which are
consistent with the demonstrations (Ng and Russell , 2000)). As these true task
constraints, which encode the conditions for safe and reliable task execution, are not
known unambiguously, it can be difficult to find a plan that safely completes the true
task. We develop methods that tackle these issues in Chapters III - VII. Moreover, the
dynamics model used to make predictions is rarely correct – modeling assumptions
inevitably break down in the face of factors like friction, slip, and bending, etc. Even
dynamics models which are learned directly from data (e.g., via deep learning) can
often be inaccurate, and can only be expected to be reliable near their training data.
We propose a method for planning safely with learned dynamics in Chapters VIII-IX.

Finally, the planned trajectory is passed to a controller, which aims to track the
planned trajectory. However, in the presence of model uncertainty, the planned tra-
jectory may not be safely trackable for the true dynamics. As a result, we argue that
for safe execution of a plan, it is crucial to generate plans which consider the capabil-
ities of the downstream tracking controller – this is the approach taken by Chapters
VIII-X. Further challenges arise when the system to be controlled is underactuated –
in this case, it is crucial to think about how this underactuation can exacerbate and
propagate tracking error when generating a plan (Chapter X).

1.1 Thesis Overview

In the light of these open problems, we will design methods which make strides
towards solving the following challenges in this thesis. After discussing some related
work in Chapter II, we move to the contributions of this thesis:

• Learning safety constraints and temporally-extended task requirements from

2

Perception Planning Control

LEARNING TASK SPECIFICATIONS FROM DEMONSTRATIONS

Global optimality:

Chapter 3

Local optimality:
Chapter 4

Linear temporal logic

formulas:

Chapter 6

Gaussian process

constraint learning:

Chapter 5 Constraint
beliefs:

Chapter 7

Demonstrator

assumptions:

Handling

uncertainty:

Constraint structure:

Underactuated systems:

Chapter 9

Systems with as many states as controls:
Chapter 8

SAFE FEEDBACK MOTION PLANNING WITH LEARNED DYNAMICS AND PERCEPTION MODULES

Safe planning and control from images

via learned perception modules:

Chapter 10

Figure 1.1: An overview of the methods and contributions of this thesis

demonstrations (Chapter III, IV, V, VI)

• Planning to complete tasks despite uncertainty in their specification (Chapter
IV, V, VII)

• Quantifying task uncertainty and how to update that uncertainty based on data
seen online (Chapter V, VII)

• Long-horizon motion planning with learned dynamics models with safety guar-
antees (Chapter VIII, IX)

• Having well-calibrated measures of model error, which is crucial for obtaining
practical safety guarantees (Chapter VIII, IX, X)

• Probabilistically verifying safety and task completion through the integration
of perception, planning, and feedback control (Chapter VIII, IX, X)

• Safety analysis that scales to high-dimensional nonlinear dynamical systems
(Chapter VIII, IX)

• Safety analysis that scales to high-dimensional nonlinear observations, with
challenges caused by partial observation (Chapter X)

We describe these contributions in more detail in the following, and categorize
them visually in Figure 1.1.

3

1.1.1 Summary of Contributions

Part 1: Learning task specifications for safe planning: In the first part of this
thesis, we will discuss how we can learn unknown task specifications from demon-
strations. These specifications come in the form of constraints, both time-invariant
and time-varying (linear temporal logic formulas). We will also touch on how we can
quantify the uncertainty in the learned task and update it with execution data.

In Chapter III, we discuss how approximately globally-optimal demonstrations can
be used to learn the unknown constraints. The main idea is to exploit knowledge of
the dynamics and approximate knowledge of the demonstrator’s cost function in order
to sample dynamically-feasible trajectories which have lower cost than the demon-
strations, and are thus constraint-violating. We show that the demonstrations and
these synthetically-generated unsafe trajectories can be used to learn both grid-based
and parametric representations of the unknown constraint by solving an associated
mixed integer program. Both representations have their own strengths and draw-
backs – a grid-based parameterization requires minimal a priori information about
the structure of the unknown constraint, but suffers from poor scalability in high
dimensions, whereas a parametric constraint representation requires more knowledge
on the constraint structure but scales more gracefully.

In Chapter IV, we relax the global optimality assumption on the demonstrations
to one of local optimality; that is, that there exists no local perturbation to the
demonstration which enables a decrease in cost without the violation of some con-
straint. This is formalized using the Karush-Kuhn-Tucker (KKT) conditions from
constrained optimization, which are necessary conditions for a candidate solution to
an optimization problem to be locally-optimal. In this chapter, we assume a known
parametric representation of the constraint and also assume that the cost function
may be uncertain, and search for constraint and cost function parameters that jointly
make the demonstrations satisfy their repspective KKT conditions. Put another way,
we use the KKT conditions to restrict the set of possible parameters that can explain
the demonstrations. Relative to the work discussed in Chapter III, the KKT condi-
tions provide a more efficient, one-shot means of enforcing a notion of demonstrator
optimality, compared to exhaustive trajectory sampling. We demonstrate that this
approach can learn constraints for a 7DOF arm and a quadrotor in simulation.

In Chapter V, we address a major drawback of the method presented in Chapter IV
– the requirement of a known constraint parameterization. In this chapter, we show
how the KKT conditions of the demonstrations can be used in a parametrization-
agnostic fashion – more specifically, we show that the KKT conditions can provide
information about which points on the demonstrations must be tight against the un-
known constraint boundary, as well as the gradient of the constraint evaluated at
those points. Compared to the work in Chapter IV, which uses the KKT conditions
to restrict the set of consistent parameters, for a fixed and known constraint repre-
sentation, the work in this chapter uses the KKT conditions to directly restrict the
set of consistent locations and gradients of the unknown constraint without assuming
any representation. We use this constraint value and gradient information to train a
Gaussian process (GP)-based constraint representation, and we develop a novel plan-

4

ner which exploits the jointly Gaussian structure of the GP representation to plan
trajectories which exactly satisfy the learned constraint with a desired probability.
Our approach enables a natural means of imposing priors over the constraint (e.g.,
smoothness, via the GP kernel) and a means to incorporate constraint gradient in-
formation, while the grid-based representation in Chapter III cannot. Our approach
enables constraint learning on simulated quadrotor and arm examples with minimal
a priori assumptions on the constraint structure.

In Chapters III - V, we restrict ourselves to learning time-invariant constraints. In
Chapter VI, we move towards learning multi-stage constrained tasks by showing how
similar notions of optimality can be used to learn linear temporal logic (LTL) for-
mulas from suboptimal demonstrations. Temporal logic provides a means to specify
complex temporally-extended tasks with time-varying, history-dependent constraints.
Specifically, we use the KKT conditions together with a counterexample-guided fal-
sification approach to learn the atomic propositions (defining low-level state space
constraint regions) and logical structure of the unknown LTL formula (determining
the high-level flow of the task), respectively. Compared to the constraints learned in
previous chapters, we can model and learn complex, multi-stage tasks, like a sequen-
tial multi-object retrieval and delivery task on a real 7DOF arm.

Finally, in Chapter VII, we tackle the ill-posedness of the constraint learning prob-
lem – specifically, the fact that there may be (infinitely) many constraints which are
consistent with the optimality conditions of the demonstrations. To address this,
we consider the case of a parametric constraint representation and construct a “be-
lief” over constraint parameters by obtaining the set of all constraint parameters
which can make the demonstrations optimal. Then, we demonstrate how we can plan
probabilistically-safe trajectories under this belief, and how we can perform belief up-
dates in execution to refine the constraint uncertainty if additional information about
the constraint is observed online. We evaluate the approach on uncertain constraint
learning problems demonstrated on a quadrotor and 7DOF arm in simulation.
Part 2: Safe planning and feedback control with learned dynamics and
perception modules: In the second part of this thesis, we will discuss how we can
plan with complex learned models of high-dimensional systems while guaranteeing
safety and goal reachability in execution, when controlling from high-dimensional
observations (e.g., images) generated by the system at runtime. The method is first
developed for the state-feedback case for systems with the same number of control
inputs as states (Chapter VIII), and is then extended to a class of underactuated
systems (Chapter IX). Finally, the method is extended to the output-feedback setting
for planning and control from images in Chapter X.

In Chapter VIII, we develop an algorithm for feedback motion planning of systems
with unknown dynamics which provides probabilistic guarantees on safety, reacha-
bility, and goal stability. Using a given dataset of transitions from the unknown
dynamics, we learn a neural-network represented control-affine approximation of the
dynamics and estimate a bound on the model error within a domain around the train-
ing data. This bound is obtained by estimating, with high probability of validity, the
Lipschitz constant of the error within this domain. Moreover, for systems with the
same number of control inputs as states, we develop a one-step feedback law which

5

can stabilize the true system in execution around a planned trajectory. We embed
conditions on the feedback law’s existence as a constraint in a sampling-based plan-
ner, which we call LMTD-RRT, that biases the planner towards returning plans that
will experience low model error in execution, and which can be safely tracked with a
desired probability. We evaluate our approach on models of simulated fully-actuated
quadrotor and arm dynamics and show it enables safe plan execution, whereas base-
lines return plans that cannot be safely tracked.

Then, in Chapter IX, we extend the work in Chapter VIII to provide similar
guarantees for a broad class of underactuated systems by leveraging the rich theory
of control contraction metrics (CCMs). Specifically, we learn a CCM together with
a contracting controller and a control-affine dynamics approximation; all three of
these models are represented with neural networks. Our method certifies that the
learned controller contracts with respect to the learned CCM (with high probability)
everywhere within a domain around the training data and also estimates a model
error bound within that domain, which is a valid upper bound with high probability.
We derive novel bounds on the tracking error that the system can experience in
execution while tracking a plan, which can be obtained given a CCM and model error
bound. We show that these tracking tubes can be integrated into a similar planning
framework as LMTD-RRT, which we call LMTCD-RRT, which can also bias planning
towards regions of the space which have low model error and where the system can
be tracked safely, with high probability, despite its underactuation. In particular, the
flexibility of our framework enables safe planning on high-dimensional underactuated
systems such as a 22-dimensional rope manipulation task in simulation.

Finally, in Chapter X, we extend the work in Chapter IX to safely steer un-
certain, potentially underactuated, nonlinear systems to a desired goal region (with
high probability), when controlling the system using feedback from high-dimensional
RGB(-D) observations and a learned perception module. To achieve this, we lever-
age contraction-based state estimators in interconnection with the contraction-based
controllers described in the previous paragraph, and derive trajectory tracking error
bounds for the interconnected estimator and controller when the interconnection is
subjected to errors arising from learning errors in the perception module and un-
certainties in the dynamics model. We use this tracking error bound to inform the
motion planner, constraining it to stay in regions where both the perception module
and the dynamics are accurate; we call this modified planner CORRT. Trajectories
generated by CORRT are guaranteed to safely reach the goal region with high prob-
ability when using the contraction-based estimator to estimate the state from the
image observations generated online, and then using that estimated state to perform
contraction-based feedback control to stabilize around the planned nominal trajec-
tory. We demonstrate that this approach in simulation, safely steering a nonholonomic
ground vehicle and an underactuated planar quadrotor to a desired goal region. We
also demonstrate that our approach can be used for active perception (i.e., it can
plan trajectories that reduce estimation error below a desired threshold), by using
the generated estimation error bounds to guide planning towards regions where the
perception module is more accurate, and demonstrate this on a pose estimation prob-
lem on a 7DOF arm grasping problem.

6

1.1.2 Additional Contributions

Some work done throughout my PhD will not be covered in this thesis:

• an efficient algorithm for online time series segmentation Chou et al. (2018b)

• generation of challenging test cases for autonomous driving controllers via con-
trolled invariant sets Chou et al. (2018c)

• learning constraints from visibility-constrained demonstratorsKnuth et al. (2021b)

• guaranteeing safety in decentralized multi-agent systems via notions of responsibility-
sensitive safety and controlled invariant sets Rutledge et al. (2021)

7

CHAPTER II

Related Work

We organize the research areas related to this thesis in three main categories:
1) learning from demonstration (Sec. 2.1), which is relevant to our contributions
in learning constrained task specifications from demonstrations (Chapters III-VII),
2) motion planning (Sec. 2.2), which is relevant to our contributions in planning
safely with learned dynamics models (Chapters VIII-IX), and 3) perception-based
control (Sec. 2.3), which is relevant to our contributions in ensuring safety and goal
reachability for planning and control from images (Chapter X).

2.1 Learning from Demonstration

The focus of Chapters III - VII is on leveraging demonstrations to learn con-
strained task specifications for downstream planning tasks. Our work draws upon
and contributes to a large body of work in the area of learning from demonstration
(LfD) (see Argall et al. (2009)), also known as imitation learning (IL) (see Osa et al.
(2018)). At a high level LfD/IL algorithms fall into two categories: behavior cloning
algorithms, which directly aim to learn a policy that imitates the demonstrations,
and inverse optimal control (IOC) / inverse reinforcement learning (IRL) algorithms,
which aim to learn a cost/reward function that recovers the demonstrations when
optimized. Our work is closer in spirit to IOC and other approaches that aim to
learn more parsimonious representations of the demonstrated behavior, which we will
overview in this section.

2.1.1 Inverse optimal control

Inverse optimal control (IOC) and inverse reinforcement learning (IRL) encom-
passes a broad set of techniques that seeks to learn a reward function that can ex-
plain observed demonstrations. In general, IOC (first introduced by Kalman (1964)
and studied extensively in the subsequent decades (Johnson et al., 2013; Keshavarz
et al., 2011; Ratliff et al., 2006)) assumes that the demonstrations are the solution
to an unconstrained (typically deterministic) optimization problem (referred to as
the “demonstrator’s problem”), where the cost function being optimized is unknown,
and its recovery is the goal of the learning problem. The motivation for this problem

8

setup is that in some settings, the cost function is a generalizable representation of
the desired behavior; thus, by recovering the cost function from the demonstrations,
the robot may be able to synthesize similar behaviors that imitate the demonstrations
under similar conditions. As will be argued in Chapters III - VII, assuming that the
demonstrator is solving an unconstrained problem is insufficient to accurately model
behaviors that arise from hard constraints (e.g., safety constraints like avoiding ob-
stacles or keeping a cup upright to avoid spills), or more general task constraints
(like first retrieving a mug before going to the coffee machine). Moreover, these hard
constraints are generally unknown and also need to be recovered from the data – this
is the core problem studied in Chapters III - VII. While there exists prior work that
models the demonstrator’s problem as a constrained optimization problem, e.g., En-
glert et al. (2017); Menner et al. (2019), thereby acknowledging the presence of hard
constraints in the demonstration, these methods do not infer the constraints, instead
opting to learn a cost function which is consistent with the optimality conditions of
the constrained problem, assuming that the constraints themselves are known. Other
similar lines of work aim to address the fact that the demonstrator may be trading
off multiple objectives (e.g., Amin et al. (2017); Babes et al. (2011); Choi and Kim
(2012); Nguyen et al. (2015)); however, these approaches essentially soften the un-
known constraints to a reward/cost penalty, and thus are not designed to guarantee
constraint satisfaction.

IRL takes a similar approach as IOC, but is instead formalized in a probabilistic
framework, assuming that demonstrations are observations from an optimal policy in
a Markov Decision Process (MDP). Then, the goal is to recover the unknown reward
function which induces that optimal policy. First proposed in Ng and Russell (2000),
IRL has attracted a substantial amount of attention over the years Abbeel and Ng
(2004); Abbeel et al. (2010); Ramachandran and Amir (2007); Sadigh et al. (2017);
Ziebart et al. (2008). The work in this thesis is built off the deterministic setting of
IOC rather than IRL, though recent work has begun to investigate similar constraint
learning problems in the IRL setting Scobee and Sastry (2020).

A core challenge of IOC/IRL is the underspecification of the cost/reward function
learning problem – in general, there may be (infinitely) many cost/reward functions
which make the demonstrations optimal. For instance, a cost/reward function which
is zero everywhere (e.g., making the demonstrator’s problem a feasibility problem)
makes any demonstration optimal. To address this challenge, IOC/IRL methods
often regularize the problem via additional priors, e.g., via the principle of maximum
entropy Ziebart et al. (2008). Other methods attempt to learn a distribution over
possible reward functions Ramachandran and Amir (2007). In Chapter VII, we will
provide our own solution to addressing the underspecification problem for constraint
learning, which we do by constructing a belief over possible constraints.

In recent years, IOC/IRL techniques have begun to take advantage of new ad-
vances in machine learning which have reduced the need for feature engineering – a
commonplace requirement for previous IOC/IRL algorithms, most of which assume
that the unknown cost/reward function can be described by a linear combination
of known feature functions. In contrast, recent approaches that leverage deep neu-
ral network and Gaussian process cost/reward function representations have been

9

able to break free of this assumption, e.g., Finn et al. (2016); Levine et al. (2011);
Wulfmeier et al. (2016). In Chapter V, we will also leverage Gaussian processes to
learn constraints without an a priori known constraint representation.

2.1.2 Safe imitation learning

In recent years, there have been several algorithms for safe or uncertainty-aware
imitation learning, which build upon traditional imitation learning algorithms like
DAGGER Ross et al. (2011) by estimating the uncertainty in the learned policy Brown
et al. (2020); Choi et al. (2018); Cui et al. (2019); Menda et al. (2019); Thakur et al.
(2019); Zhang and Cho (2016). However, these approaches only use the uncertainty
as a sign to switch to a safe backup policy Choi et al. (2018); Cui et al. (2019); Menda
et al. (2019), to evaluate the quality of a given policy Brown et al. (2020); Thakur
et al. (2019), or to query the demonstrator for more data Zhang and Cho (2016). In
our setting, we do not assume access to an interactive demonstrator or an a priori
known safe policy; instead, we must directly quantify and use the uncertainty in the
demonstrations to determine how to behave. This will be discussed further in Chapter
VII.

2.1.3 Constraint learning

While our constraint learning work is among the first set of methods that explicitly
ties constraint learning to inverse optimal control (i.e., using optimality assumptions
on the data to regularize the constraint learning problem), there is still relevant prior
work in the area of constraint learning from demonstrations.

There exists prior work in learning geometric constraints in the workspace. In
Armesto et al. (2017), a method is proposed for learning Pfaffian constraints, re-
covering a linear constraint parametrization. In Pérez-D’Arpino and Shah (2017),
a method is proposed to learn geometric constraints which can be described by the
classes of considered constraint templates. Other methods aim to learn task space
equality constraints (Lin et al., 2015, 2017). In contrast, our work formulates and
can learn constraints in arbitrary constraint spaces (as long as that space is known),
and is not limited to geometric constraints in the task space (e.g., we can learn state
space constraints, control constraints).

Learning local trajectory-based constraints has also been explored in the literature.
The method in Li and Berenson (2016) samples feasible poses around waypoints of
a single demonstration; areas where few feasible poses can be sampled are assumed
to be constrained. Similarly, Mehr et al. (2016) performs online constraint inference
in the feature space from a single trajectory, and then learns a mapping to the task
space. The methods in Calinon and Billard (2007, 2008); Pais et al. (2013); Ye and
Alterovitz (2011) also learn constraints in a single task. These methods are inherently
local since only one trajectory or task is provided, unlike our constraint learning work,
which aims to learn a global safety constraint or task specification that is shared across
different trajectories.

10

2.1.4 Learning temporal logic formulas from data

One advantage of representing the demonstrated task using constraints is that
it is easier to unambiguously specify a complex multi-stage task with a set of hard
constraints instead of as penalties in a reward function; generally, IRL-based methods
can struggle to represent multi-stage, long-horizon tasks Krishnan et al. (2019). In
our work, we will use the formalism of linear temporal logic (LTL) to model our
constraints; see Chapter VI. We now overview some previous approaches that attempt
to use IRL/IOC to model multi-stage tasks. In Krishnan et al. (2019); Ranchod et al.
(2015), the proposed mehtods learn sequences of reward functions, but in contrast to
temporal logic, these methods are restricted to learning tasks which can be described
by a single fixed sequence. Temporal logic Baier and Katoen (2008); Kress-Gazit et al.
(2009) generalizes this, being able to represent tasks that involve more choices and can
be completed with multiple different sequences. Some work Papusha et al. (2018);
Zhou and Li (2018) aims to learn a reward function given that the demonstrator
satisfies a known temporal logic formula; in our work, we will learn both jointly, as
generally the task (which is encoded in the LTL formula) is unknown.

There is extensive literature on inferring temporal logic formulas from data via de-
cision trees Bombara et al. (2016), genetic algorithms Bufo et al. (2014), and Bayesian
inference Shah et al. (2018); Vazquez-Chanlatte et al. (2018). However, most of these
methods require positive and negative examples as input Camacho and McIlraith
(2019); Kong et al. (2014, 2017); Neider and Gavran (2018). This requirement for
positive and negative examples is ill-suited for robotics applications, as this implies we
would need to collect negative (i.e., unsafe demonstrations, or demonstrations that fail
the task) in order to learn the desired formula. In contrast, our work (Chapter VI is
designed to only use positive examples. Other methods require a space-discretization
Araki et al. (2019); Vaidyanathan et al. (2017); Vazquez-Chanlatte et al. (2018), while
our approach in Chapter VI learns LTL formulas in the original continuous space.
Some methods learn AP parameters, but do not learn logical structure or perform an
incomplete search, relying on formula templates Bakhirkin et al. (2018); Leung et al.
(2019); Xu et al. (2019), while other methods learn structure but not AP parame-
ters Shah et al. (2018). Perhaps the method most similar to our proposed approach
in Chapter VI is Jha et al. (2019), which learns parametric signal temporal logic
(pSTL) formulas from positive examples by fitting formulas that the data tightly sat-
isfies. However, the search over logical structure in Jha et al. (2019) is incomplete,
and tightness may not be the most informative metric given goal-directed demonstra-
tions. More broadly, to our knowledge, the method presented in Chapter VI is the
first method in the literature for learning LTL formula structure and parameters in
continuous spaces on high-dimensional systems from only positive examples.

2.2 Motion Planning

Motion planning has been widely studied in the past few decades, with algorithms
ranging from discretization-based methods like A* Hart et al. (1968), sampling-
based approaches like probabilistic roadmaps Kavraki et al. (1996) (PRMs) and

11

rapidly-exploring random trees LaValle and James J. Kuffner (2001) (RRTs), and
gradient/sampling-based trajectory optimization algorithms like CHOMP Zucker et al.
(2013), TrajOpt Schulman et al. (2014), and MPPI Williams et al. (2016). However,
despite the heavy attention that motion planning has received, several major chal-
lenges remain. Arguably one of the most serious difficulties lies in how to handle the
uncertainty and inaccuracy present in the models, environments, and task specifica-
tions that are given as input to these motion planning algorithms. This section is
most related to our work in Chapters VIII-X, which are proposed motion planners
that estimate and consider the errors in learned dynamics and perception modules
to constrain a motion planner to generate trajectories that can safely reach the goal
when tracked at runtime. In the following, we will overview several areas of research
in this area.

2.2.1 Feedback motion planning

Feedback motion planning (LaValle, 2006, Chapter 8) consists of a broad class of
methods that aim to address dynamics uncertainty in motion planning by designing
tracking controllers around nominal trajectories generated by a motion planner. The
general idea is that if the tracking controller can keep the system within some bound
r of the nominal trajectory, if the planned trajectory remains at least r distance away
from any obstacles, the system can remain collision-free in execution.

Prominent methods in this vein include LQR-trees Tedrake (2009) and funnel
librariesMajumdar and Tedrake (2017). These approaches design feedback controllers
(either based on LQR or on polynomial controllers synthesized via sum-of-squares
programming) around a set of nominal trajectories, and then compute Lyapunov
functions to analyze the region of attraction of the closed-loop system. Then, for a
known disturbance description, these methods can determine if the system, starting
from some initial condition in the region of attraction, can be guaranteeably steered to
a desired location. While these methods are powerful, they assume a valid disturbance
description has been provided, which can often be difficult to obtain, especially when
planning with a learned model of the dynamics (see Chapters VIII, IX).

Another set of methods for feedback motion planning are based on exact reachabil-
ity analysis performed by solving Hamilton-Jacobi (HJ) partial differential equations
via level-set approaches Mitchell et al. (2005). At a high level, HJ analysis formu-
lates the robust control problem as a minimax game between the controller and an
adversary (e.g., some disturbance arising from the environment). This analysis en-
ables the computation of controlled invariant sets Bertsekas (1972), which describe
the set of states that a system can remain within given the disturbance description
and feedback controller. These tools have been applied to robust tracking control in
Herbert et al. (2017), which wraps trajectories planned with a low-fidelity model with
a corresponding controlled invariant set, where the adversary here comes from the
model mismatch between the low-fidelity planning model and the true high-fidelity
dynamics. Unfortunately, HJ-based methods generally have trouble scaling to high-
dimensional systems due to the grid-based discretization required to solve the HJ
PDE. Moreover, an accurate disturbance bound is also required in this setting.

12

There are also other methods which use approximate reachability analysis to ob-
tain better scaling, e.g., Kousik et al. (2017), which computes overapproximations
of forward reachable sets for a high-fidelity dynamics model tracking trajectories
planned using a low-fidelity model (similar to Herbert et al. (2017)), and Singh et al.
(2018), which utilizes sum-of-squares programming to obtain better scaling than Her-
bert et al. (2017). Similarly, in all of these methods, a known bound on the model
error is required.

Tube model predictive control (tube MPC) is another set of similar approaches
that wrap a nominal trajectory with a tracking controller, keeping the system within
a “tube” of states around the nominal trajectory. Tube MPC has been widely studied
for linear systems (e.g., Mayne et al. (2005); Rakovic et al. (2012)) and more recently
also for nonlinear systems Köhler et al. (2021). However, as with the methods previ-
ously discussed, these approaches still require an accurate bound on the uncertainty,
which can be difficult to obtain.

Finally, a growing body of work leverages contraction theory Lohmiller and Slo-
tine (1998) to obtain tracking tubes around nominal trajectories. The theory of
(control) contraction metrics studies the incremental (stabilizability) stability of a
system Manchester and Slotine (2017), that is, it analyzes how the distance between
trajectories of the system change with time. At a high level, the idea is that if two tra-
jectories of the system always converge to each other, then the system is determined
to be contracting. This is a particularly useful notion of stability for the purpose of
trajectory tracking – we precisely want to determine if the system can be made to
track (i.e., converge) to the planned trajectory, within some bound, when subjected
to disturbance. Recent work in this area has applied contraction theory for the pur-
pose of feedback motion planning Singh et al. (2019); however, these methods require
polynomial dynamics and again require an accurate bound on the model uncertainty.
Other methods Lakshmanan et al. (2020); Lopez et al. (2021) apply contraction to
adaptive control under known model uncertainty structure, i.e., the uncertainty lies
in the range of known basis functions; similarly, this uncertainty structure is generally
unknown a priori in our setting.

Overall, in Chapters VIII and IX, we take steps towards designing feedback mo-
tion planning algorithms that can provide probabilistic guarantees on safety and goal
reachability when planning with learned dynamics. This is done by estimating a
bound between the learned dynamics and true system with statistical techniques,
and using it to bound the impact of the error on the downstream planning and feed-
back control modules. We demonstrate the approach on several nonlinear systems,
including a 4D nonholonomic car, a 6D planar quadrotor, and a 22D rope dragging
problem.

2.2.2 Planning under uncertainty

Instead of utilizing a deterministic bound on the disturbance, a family of alter-
native approaches imposes a stochastic description of the uncertainty in planning.
These methods perform planning via chance-constrained optimization, approximate
planning in belief space, and most generally, by solving partially observable Markov

13

Decision Processes (POMDPs).
In chance-constrained optimization, the decision-maker seeks to find a solution

that satisfies a set of constraints with a desired probability. In the context of chance-
constrained motion planning, the uncertainty may arise from sensing Burns and Brock
(2007), state estimation Bry and Roy (2011), motion Aoude et al. (2013), and the
environment. These methods typically return an open-loop plan which satisfies the
constraints with a desired probability, and often assume linear dynamics and Gaussian
uncertainty for tractability (since Gaussian uncertainty propagated through linear
dynamics remains Gaussian). While some recent approaches have begun to relax these
assumptions on the dynamics Lew et al. (2020) and on the uncertainty Wang et al.
(2020), feedback control is generally required to keep the uncertainty from growing
too quickly in order for long-horizon planning to be tractable; this combination of
planning and control under uncertainty is examined in Chapters VIII-IX.

A related body of work seeks to plan under environment or obstacle uncertainty.
Blackmore et al. (2006) plans in an uncertain obstacle field by solving a chance-
constrained optimization, which is made tractable by assuming polytopic obstacles
and linear Gaussian dynamics. Simiarly, Luders et al. (2010) and Luders et al. (2013)
incorporate chance constraints into an RRT LaValle and James J. Kuffner (2001) and
RRT* Karaman and Frazzoli (2010) planner, respectively, returning probabilistically-
safe plans under similar structural assumptions as Blackmore et al. (2006). Other
methods directly assume a Gaussian distribution on each halfspace constraint in a
polytopic obstacle Axelrod et al. (2017) or assume constraint convexity Vitus et al.
(2016). Alternatively, methods based on the “scenario approach” sample possible
constraints/obstacles and enforce them all, but this can often leads to infeasibility
and poor computation time in planning Grammatico et al. (2016). Other approaches
attempt to perform high-quality short-range planning in unknown environments, e.g.,
Janson et al. (2018); Richter et al. (2015) and assume minimal knowledge of the global
map. These methods are related to our work on handling uncertainty in the learned
constraint during planning (Chapters V and VII). Relative to the state-of-the-art, our
contributions in Chapter VII are to show how demonstrations can reduce environment
uncertainty, yielding better global plans, and to provide a method to plan chance-
constrained trajectories for a class of uncertainty distributions with complex support.
In Chapter V, we present a method for chance-constrained planning with Gaussian
process (GP)-represented constraints, and it does not require structural assumptions
on the constraints and dynamics.

A different set of approaches directly reason about the probability distribution
over states which the system may be currently at; this distribution is referred to
as the “information state” or “belief”. Planning over these distributions is known
as belief space planning Bonet and Geffner (2000); Kaelbling et al. (1998), and can
be formulated as a partially observable Markov Decision Process (POMDP). While
belief space planning enables a principled treatment of uncertainty and partial ob-
servability in planning, POMDPs are known to be intractable to solve exactly. While
there has been progress in recent years towards more scalable approximate POMDP
solvers by restricting attention to the set of reachable beliefs Kurniawati et al. (2008)
or by sampling Somani et al. (2013), POMDPs remain challenging to solve in general

14

settings. Thus, several belief space planning algorithms make additional simplfying
assumptions, such as linear dynamics and Gaussian uncertainty Agha-mohammadi
et al. (2014), Prentice and Roy (2009), van den Berg et al. (2011), or by making sim-
plifying assumptions on future uncertainty (i.e., by assuming that future uncertainty
takes its maximum likelihood value Jr. et al. (2010)). While our work in Chapters
VIII and IX assume that the system is fully observable, we are able to make stronger
correctness guarantees while making less stringent assumptions on the dynamics and
motion uncertainty. Moreover, to address this limitation, we will discuss our work on
safe planning from observations with learned perception modules in Chapter XI.

Finally, there is some limited work in the context of planning with uncertain linear
temporal logic formulas. In particular, Shah et al. (2020) plans given a belief over
possible LTL formulas and proposes different criteria which can guide the planning
(e.g., satisfying the most likely formula, or satisfying as many formulas as possible,
etc). Also related to this problem is the minimum violation LTL planning problem
Tumova et al. (2013), where it may be infeasible to find a trajectory which satisfies
a given formula, so instead the planner must return a trajectory which violates the
formula as minimally as possible.

2.2.3 Learning-based planning

Recent years have seen an explosion of interest in learning-based approaches for
motion planning and control. Of specific interest in our setting is model-based rein-
forcement learning (MBRL); see Moerland et al. (2020) for a detailed survey. There
are several flavors of MBRL. Some approaches assume that the dynamics are known,
and aim to learn a value function or a policy for completing some task from data.
Other approaches do not assume that the dynamics are known, and attempt to learn
a value function or a policy jointly with a dynamics model. Also related to MBRL
is the problem of planning with learned dynamics without construction of a globally-
valid value function or policy. In the following, we will overview methods that plan
with learned models, as well as safety-focused variants of policy learning algorithms.

There is a large body of work that plans with learned dynamics models. For
instance, Hafner et al. (2019); Ichter and Pavone (2019); Watter et al. (2015) learn
latent spaces (either from observations or from a higher-dimensional state) along
with dynamics models in these spaces, and then use these models to plan in the
latent space. A primary challenge in planning with learned dynamics models arises
from their inaccuracy – thus, it is vital to have some measure of uncertainty or model
accuracy estimate in order for the planner to be reliable. In this spirit, Guzzi et al.
(2020) estimates the confidence that a controller can move between states to guide
planning. McConachie et al. (2020); Mitrano et al. (2021) works in a similar setting,
learning when a reduced-order dynamics model can be used reliably. Chua et al.
(2018) uses ensembles of dynamics models to estimate the uncertainty in the dynamics
for planning, while Deisenroth and Rasmussen (2011) uses Gaussian processes to
quantify this uncertainty. While these methods can work well, they can be heuristic
and lack guarantees on safety or reachability – designing a planning algorithm with
learned models that offers such (probabilistic) guarantees is the focus of Chapters

15

VIII-IX.
Another class of methods use Gaussian Processes (GPs) to estimate the mean and

covariance of the dynamics, providing probabilistic bounds on safety and reachability
when learning the dynamics or a policy. For example, Koller et al. (2018) probabilis-
tically bounds the reachable set of a fixed horizon trajectory. Similarly Akametalu
et al. (2014) explores the environment while ensuring (with some probability) safety
via HJ reachability analysis. In many contexts, GPs are used to derive confidence
bounds that can provide probabilistic safety guarantees Berkenkamp et al. (2016,
2017); Schreiter et al. (2015); Turchetta et al. (2016). While these approaches pro-
vide stronger guarantees than the approaches discussed previously, they still suffer
from some drawbacks. For instance, the GP-based methods struggle with long-horizon
planning due to the unbounded growth of the covariance ellipse unless a known feed-
back controller exists Koller et al. (2018). Another primary challenge arises from the
fact that the uncertainty bounds used by these methods are only valid if the true
underyling function conforms with the assumptions made by the Gaussian process –
e.g., it is compatible with the kernel used. Oftentimes, this is not the case (e.g., if the
dynamics are not smooth, or if the learned GP hyperparameters overfit to the data
and do not extrapolate well elsewhere). The goal of the methods presented in Chap-
ters VIII-IX is to instead provide model error bounds which are estimated directly
from the data, instead of imposing a GP-based prior on the errors we may see. Our
methods also design the controller, and do not require that it is known. However, a
key limitation of our approach is that does not currently handle stochastic dynamics,
due to limitations in the representation of our model error bound, while GP-based
approaches handle this naturally.

A different set of safe reinforcement learning algorithms is based on constrained
Markov decision processes Altman (1999). These methods Chow et al. (2018, 2019)
attempt to find policies that optimize a primary reward function while ensuring that
some auxiliary objectives do not fall below a known threshold, in expectation. How-
ever, these approaches require an initial safe policy (which is unlikely to be known in
the settings that we consider); moreover, while the algorithms ensure safety during
training in theory, constraint violation still occurs in practice when deploying the pol-
icy, due to errors induced by function approximation Chow et al. (2019). Our work
in Chapters VIII-IX consider a related, but distinct, setting, where we are provided a
large dataset collected offline to train a dynamics model for model-based planning, in-
stead of the known initial safe policy. In doing so, we are able to provide probabilistic
guarantees on safety without requiring an a priori known safe policy.

Our work is also related to methods that learn stability certificates from data.
By stability certificates, we refer to the different means by which a controller can be
certified to be stabilizing, e.g., a Lyapunov function which ensures the closed-loop
system is stable, a barrier function which can override some performance controller
within a domain that is certified to be invariant, or a contraction metric which ensures
that system trajectories converge to each other within some domain. Many methods
learn stability certificates for a single equilbirium point Boffi et al. (2020); Manek and
Kolter (2019); Richards et al. (2018), but this is insufficient for point-to-point motion
planning, which is the focus of Chapters VIII and IX – this would necessitate learning

16

a large number of Lyapunov functions for each trajectory that needs to be tracked; in
contrast, in our work, we will rely on controllers based on contraction theory, which
are more directly suited for trajectory tracking. A different approach Fan et al. (2020)
directly learns tracking tubes around trajectories using deep quantile regression, but
it is unclear how close plans must stay to the training data for the guarantees to hold.
Other approaches marry deep learning-based representations with contraction theory
Sun et al. (2020), Tsukamoto and Chung (2021), modeling the contraction metric as
an neural network and learning it from data, assuming that the dynamics are known
but possibly subjected to a disturbance of known uniform upper bound. Our method
differs by learning the dynamics and CCM together to optimize planning performance
under model error. Also related to these contraction-based techniques is Singh et al.
(2020), which learns a dynamics model jointly with a control contraction metric in
order to promote stabilizability of the learned model, but does not consider how model
error affects tracking. In Chapters VIII-IX, we will learn a feedback controller which
is contracting with respect to the standard Euclidean metric (or a learned Riemannian
metric – a control contraction metric), while also estimating what disturbance will
be applied to the learned system as a result of model error.

Finally, a key tool that we will use in Chapters VIII - IX is the concept of using an
estimated Lipschitz constant together with data density within a domain to bound
the model error within that domain. Prior work has used data coverage and Lipschitz
constant regularization to ensure properties of a learned function. Dean et al. (2020a)
shows that a linearization of a nonlinear state estimator generalizes with bounded
error by estimating the maximum slope (related to the Lipschitz constant) of the
error. Robey et al. (2020) learns a control barrier function (CBF) from data, ensuring
its validity through Lipschitz constant regularity and by checking the CBF conditions
at a finite set of points. In contrast, we apply and extend these ideas to plan with
learned dynamics, using the Lipschitz constant of the error dynamics to provide safety,
reachability, and stability-like guarantees (Chapters VIII-IX).

2.3 Perception-based control

Perception-based control, or the problem of solving control tasks from observations
(such as images), is a final body of work relevant to the contributions of this thesis.
In particular, our work in Chapter X aims to safely integrate motion planning with
knowledge of the capabilities of the upstream learned perception module, as well as
the downstream trajectory tracking controller, in order to design plans which are
guaranteed to remain safe and robustly reach the goal despite errors arising from
imperfections in the dynamics model and perception system.

Perception-based control has a long history in both the control and estimation
theory communities as output-feedback control Åström and Murray (2004), recent
years have given rise to interest in perception-based control from the robotics and
machine learning communities. Recent techniques, for the most part, revolve around
applying a wide variety of learning-based techniques for solving perception-based
control problems. In the following, we will overview the literature in this area, as well

17

as our contributions relative to this existing work.
Output-feedback control has its beginnings in the 1960s with estimation for state

space systems from observations (outputs), starting with notions of observability
Kalman (1960) and the development of the first state observers (e.g., the Luenberger
observer) Luenberger (1971). Around the same time, it was determined that for lin-
ear systems, a “separation principle” Joseph and Tou (1961); Potter (1964) exists
for output-feedback control, namely, that synthesizing an optimal output-feedback
controller is equivalent to synthesizing an optimal observer, and feeding the output
of this observer into a separately synthesized optimal state feedback controller. This
strong separation principle can simplify the synthesis of output-feedback controllers;
however, it does not hold in general for nonlinear systems, which limits its utility for
the nonlinear robotic systems of interest in this thesis. There is more recent work on
output-feedback control for nonlinear systems, for instance see the survey in Findeisen
et al. (2003). The most relevant body of work in output-feedback control is the subset
of work based on ideas from contraction theory. Akin to the guarantees for state-
feedback control discussed previously, contraction theory can also be used to provide
convergence guarantees for state estimation without control input, e.g., Bonnabel and
Slotine (2015); Dani et al. (2015); Tsukamoto and Chung (2021). These contraction-
based estimators can be used in interconnection with contraction-based controllers to
be used in the output-feedback setting. However, these existing approaches generally
assume that the system dynamics and observation map are known, and that the ob-
servations are low-dimensional; these are all assumptions that are difficult to justify
in unstructured robotics applications. In Chapter X, we build upon ideas from the
output-feedback contraction-based control method in Manchester and Slotine (2014),
and develop an algorithm for probabilistically-safe output-feedback motion planning
from high-dimensional image observations. To achieve this, our work seeks to re-
construct the full state from the observations; however, full reconstruction may not
be necessary in general to stabilize the system Sadraddini and Tedrake (2020); van
Willigenburg and Koning (1999). Building upon reduced order estimators for control
may be a fruitful future direction for improving robustness when the observations
may, for instance, be subjected to occlusions that can be challenging for controllers
requiring full state reconstruction.

Our work also more generally relates to planning under uncertainty from visual
input. Funnel-based methods have also been shown to scale to visual control, by
buffering motion primitives with tracking tubes under vision-based Veer and Majum-
dar (2020) feedback control. In contrast, we do not rely on precomputed primitives,
and can plan novel trajectories. Other methods Agha-mohammadi et al. (2014);
Bahreinian et al. (2021); van den Berg et al. (2011) consider measurement error in
planning but are either restricted to linear systems or simple sensor models. These
methods are instances of the generally intractable belief-space planning problem. The
belief-space planning problem can be posed as a POMDP, and solving this problem
requires simplifying assumptions Kurniawati et al. (2008); Sunberg and Kochenderfer
(2018), or the involvement of black-box learning components Deglurkar et al. (2021);
Igl et al. (2018); Karkus et al. (2017) that may compromise safety and robustness
when the policies are deployed online. We do not solve the full belief-space planning

18

problem; instead of tracking belief distributions, our set-based approach in Chapter
X bounds the reachable states and state estimates under the worst-case error.

Our work is also related to recent advances in perception-based control from the
machine learning community. Differentiable filtering Haarnoja et al. (2016); Jon-
schkowski et al. (2018); Karkus et al. (2018); Kloss et al. (2021) learns state estimators
from images in an end-to-end fashion. Latent space planning Banijamali et al. (2018);
Hafner et al. (2019); Watter et al. (2015); Yan et al. (2020); Zhang et al. (2019) seek
to learn mappings (encoders) from the observation space to a lower-dimensional latent
space in which motion planning and control are performed. Both of these bodies of
work, which while empirically successful, do not provide guarantees on safety or goal
reachability; our contribution in Chapter X seeks to make progress towards closing
this gap.

There is also recent work on safe control from high-dimensional observations com-
ing from the control community. For instance, Dean et al. (2020a) safely controls
linear systems using learned observation maps; other methods use Control Bar-
rier/Lyapunov Functions (CBF/CLFs) to guarantee safety for nonlinear systems by
robustifying the CBF condition to measurement errors Cosner et al. (2021); Dean
et al. (2020b); however, these methods use simple sensor models or require that the
entire state is invertible from one observation, precluding their use on states that
must be estimated over time, e.g., velocities. In contrast, our method in Chapter X
only seeks to invert a subset of the state, which is then used in a dynamic observer to
estimate the unobserved states. Other work Dawson et al. (2022) combines CLFs and
CBFs to safely reach goals from observations, but focuses on simpler LiDAR sensor
models.

Finally, certified perception is a recent relevant body of work. Representative
work in this area, e.g., Yang and Carlone (2022); Yang et al. (2021), aims to certify
when a solution to a geometric estimation problem is optimal; other work seeks to
improve the robustness Li et al. (2020), generalization Ren et al. (2020), and out-
of-distribution detection Sharma et al. (2021) of learning-based perception modules.
However, such techniques have yet to be integrated with downstream planners and
controllers. In Chapter X, we do not employ these certified algorithms within our
perception module for simplicity, but an interesting direction for future work lies in
determining how these certifiable algorithms for perception can be used to improve
robustness and certification for end-to-end perception-based controllers.

19

CHAPTER III

Learning Constraints from Globally-Optimal

Demonstrations

In this chapter, we extend the learning from demonstration paradigm by providing
a method for learning unknown constraints shared across tasks, using demonstrations
of the tasks, their cost functions, and knowledge of the system dynamics and control
constraints. Given safe demonstrations, our method uses hit-and-run sampling to
obtain lower cost, and thus unsafe, trajectories. Both safe and unsafe trajectories
are used to obtain a consistent representation of the unsafe set via solving an integer
program. Our method generalizes across system dynamics and learns a guaranteed
subset of the constraint. Additionally, by leveraging a known parameterization of the
constraint, we modify our method to learn parametric constraints in high dimensions.
We also provide theoretical analysis on what subset of the constraint and safe set can
be learnable from safe demonstrations. We demonstrate our method on linear and
nonlinear system dynamics, show that it can be modified to work with suboptimal
demonstrations, and that it can also be used to learn constraints in a feature space.
This chapter is based off the papers Chou et al. (2018a, 2019, 2021a).

3.1 Introduction

Inverse optimal control and inverse reinforcement learning (IOC/IRL) (Abbeel
and Ng (2004); Argall et al. (2009); Ng and Russell (2000); Ratliff et al. (2006)) have
proven to be powerful tools in enabling robots to perform complex goal-directed tasks.
These methods learn a cost function that replicates the behavior of an expert demon-
strator when optimized. However, planning for many robotics and automation tasks
also requires knowing constraints, which define what states or trajectories are safe.
For example, the task of safely and efficiently navigating an autonomous vehicle can
naturally be described by a cost function trading off user comfort and efficiency and
by the constraints of collision avoidance and executing only legal driving behaviors.
In some situations, constraints can provide a more interpretable representation of a
behavior than cost functions. For example, in safety critical environments, recovering
a hard constraint or an explicit representation of an unsafe set in the environment is
more useful than learning a “softened” cost function representation of the constraint

20

as a penalty term in the Lagrangian. Consider the autonomous vehicle, which ab-
solutely must avoid collision, not simply give collisions a cost penalty. Furthermore,
learning global constraints shared across many tasks can be useful for generalization.
Again consider the autonomous vehicle, which must avoid the scene of a car accident:
this is a shared constraint that holds regardless of the task it is trying to complete.

While constraints are important, it can be impractical for a user to exhaustively
program into a robot all the possible constraints that it should obey when perform-
ing its repertoire of tasks. To avoid this, we consider in this chapter the problem of
recovering the latent constraints within expert demonstrations that are shared across
tasks in the environment. Our method is based on the key insight that each safe, op-
timal demonstration induces a set of lower-cost trajectories that must be unsafe due
to violation of an unknown constraint. Our method samples these unsafe trajecto-
ries, ensuring they are also consistent with the known constraints (system dynamics,
control constraints, and start/goal constraints), and uses these unsafe trajectories
together with the safe demonstrations as constraints in an “inverse” integer program
which recovers a consistent unsafe set. Our contributions are fivefold:

• We pose the novel problem of learning a shared constraint across tasks.

• We propose an algorithm that, given known constraints and boundedly subop-
timal demonstrations of state-control sequences, extracts unknown constraints
defined in a wide range of constraint spaces (not limited to the trajectory or
state spaces) shared across demonstrations of different tasks.

• We propose a variant of the aforementioned algorithm which can scale more
gracefully to constraints in high dimensions by assuming and leveraging para-
metric structure in the constraint.

• We provide theoretical analysis on the limits of what subsets of a constraint
can be learned, depending on the demonstrations, the system dynamics, and the
trajectory discretization. We also prove that our method can recover guaranteed
inner approximations of both the unsafe set and the safe set.

• We provide experiments that justify our theory and show that our algorithm
can recover an unsafe set with few demonstrations, across different types of
linear and nonlinear dynamics, and can be adapted to work with boundedly
suboptimal demonstrations. We also demonstrate that our method can learn
constraints in high-dimensional state spaces and parameter spaces.

3.2 Preliminaries and Problem Statement

The goal of this work is to recover unknown constraints shared across a collection
of optimization problems, given boundedly suboptimal solutions, the cost functions,
and knowledge of the dynamics, control constraints, and start/goal constraints. We
discuss the forward problem, which generates the demonstrations, and the inverse
problem: the core of this work, which recovers the constraints.

21

3.2.1 Forward optimal control problem

Consider an agent described by a state in some state space x ∈ X . It can take
control actions u ∈ U to change its state. The agent performs tasks Π drawn from a set
of tasks P , where each task Π can be written as a constrained optimization problem
over state trajectories ξx in state trajectory space T x and control trajectories ξu in
control trajectory space T u:

Problem III.1 (Forward problem / “task” Π).

minimize
ξx,ξu

cΠ(ξx, ξu)

s.t. φ(ξx, ξu) ∈ S ⊆ C
φ̄(ξx, ξu) ∈ S̄ ⊆ C̄
φΠ(ξx, ξu) ∈ SΠ ⊆ CΠ

(3.1)

where cΠ(·) : T x×T u → R is a cost function for task Π and φ(·, ·) : T x×T u → C is a
known feature function mapping state-control trajectories to some constraint space C,
elements of which are referred to as “constraint states”. Mappings φ̄(·, ·) : T x×T u →
C̄ and φΠ(·, ·) : T x ×T u → CΠ are known and map to potentially different constraint
spaces C̄ and CΠ, containing a known shared safe set S̄ and a known task-dependent
safe set SΠ, respectively. S is an unknown safe set, and the inverse problem aims
to recover its complement, A .

= Sc1, the “unsafe” set. In this chapter, we focus on
constraints separable in time: φ(ξx, ξu) ∈ A ⇔ ∃t ∈ {1, . . . , T} φ(ξx(t), ξu(t)) ∈ A,
where we overload φ so it applies to the instantaneous values of the state and the
input. An analogous definition holds for the continuous time case. Our method
can also learn constraints which are partially or completely inseparable in time (i.e.,
φ(ξx, ξu) ∈ A ⇔ ∃{ti, . . . , tj} ∈ {1, . . . , T} φ(ξx(t), ξu(t)) ∈ A, ∀t ∈ {ti, . . . , tj})2.

A demonstration, ξxu
.
= (ξx, ξu) ∈ T xu, is a state-control trajectory which is a

boundedly suboptimal solution to Problem 3.1, i.e., the demonstration satisfies all
constraints and its cost is at most a factor of δ above the cost of the optimal solution
ξ∗xu, i.e., c(ξ

∗
x, ξ

∗
u) ≤ c(ξx, ξu) ≤ (1 + δ)c(ξ∗x, ξ

∗
u). Furthermore, let T be a finite time

horizon which is allowed to vary. If ξxu is a discrete-time trajectory (ξx = {x1, . . . , xT},
ξu = {u1, . . . , uT}), Problem III.1 is a finite-dimensional optimization problem, while
Problem III.1 becomes a functional optimization problem if ξxu is a continuous-time
trajectory (ξx : [0, T] → X , ξu : [0, T] → U). We emphasize that this setup does not
restrict the unknown constraint to be defined on the trajectory space; it allows for
constraints to be defined on any space described by the range of some known feature
function φ.

We assume the trajectories are generated by a dynamical system ẋ = f(x, u, t) or
xt+1 = f(xt, ut, t) with control constraints ut ∈ U , for all t, and that the dynamics,
control constraints, and start/goal constraints are known. We further denote the set of
state-control trajectories satisfying the unknown shared constraint, the known shared

1To be exact, the safe set is assumed to be compact for the forward problem (Problem III.1) to
be well-defined, and we aim to learn the closure of the unsafe set A .

= cl(Sc).
2This can be done by writing the constraints of Problem III.2 as sums over partially separa-

ble/inseparable feature components instead of completely separable components.

22

zs

zg

z1 z2

z3

z4

z5

z6

z7

z8

z9

z10

Figure 3.1: Discretized constraint space with cells z1, . . . , z10. The trajectory’s con-
straint values are assigned to the red cells.

constraint, and the known task-dependent constraint as TS , TS̄ , and TSΠ
, respectively.

Lastly, we also denote the set of trajectories satisfying all known constraints but
violating the unknown constraint as TA.

3.2.2 Inverse constraint learning problem

The goal of the inverse constraint learning problem is to recover an unsafe set,
A ⊆ C, using Ns provided safe demonstrations ξ∗sj , j = 1, . . . , Ns, known constraints,
and N¬s inferred unsafe trajectories, ξ¬sk , k = 1, . . . , N¬s, generated by our method,
which can come from multiple tasks. The safe and unsafe trajectories can together
be thought of as a set of constraints on the possible assignments of unsafe constraint
states in C.

Depending on the amount of structure that we assume we know about the con-
straint, there are two approaches. If no structure about the constraint is known at all,
the constraint space can be gridded and unsafeness can be learned on a grid-by-grid
basis (Section 3.2.2.1). Otherwise, if the constraint is known to be described by some
parameterization, the parameters can be learned, which leads to better scalability
(Section 3.2.2.2).

Inferring unsafe trajectories, i.e., obtaining ξ¬sk , k = 1, . . . , N¬s, is the most diffi-
cult part of this problem, since finding lower-cost trajectories consistent with known
constraints that complete a task is essentially a planning problem. Much of Section
3.3 shows how to efficiently obtain ξ¬sk .

3.2.2.1 Recovering a gridded constraint

To recover a gridded approximation of the unsafe set A that is consistent with
these trajectories, we first discretize C into a finite set of G discrete cells Z .

=

23

{z1, . . . , zG} and define an occupancy function, O(·), which maps each cell to its
safeness: O(·) : Z → {0, 1}, where O(zi) = 1 if zi ∈ A, and 0 otherwise3. Con-
tinuous space trajectories are gridded by concatenating the set of grid cells zi that
φ(x1), . . . , φ(xT) lie in. With slight abuse of notation, we will use zi ∈ φ(ξsi) to denote
zi ∈ {φ(ξsi(1)), . . . , φ(ξsi(Ti)). The grid discretization is graphically shown in Figure
3.1 with a non-uniform grid. Then, the problem can be written down as an integer
feasibility problem:

Problem III.2 (Inverse feasibility problem).

find O(z1), . . . ,O(zG) ∈ {0, 1}G
s.t.

∑

zi∈φ(ξ∗sj)

O(zi) = 0, ∀j = 1, . . . , Ns

∑

zi∈φ(ξ¬sk
)

O(zi) ≥ 1, ∀k = 1, . . . , N¬s

(3.2)

Further details on Problem III.2, including conservativeness guarantees, incorpo-
rating a prior on the constraint, and a continuous relaxation is presented in Section
3.3.4.

3.2.2.2 Recovering a parametric constraint

Suppose that the unsafe set can be described by some parameterization A(θ) .
=

{κ ∈ C | g(κ, θ) ≤ 0}, where g(·, ·) is known and θ are parameters to be learned. Then,
a feasibility problem analogous to Problem III.2 can be written to find a feasible θ
consistent with the data:

Problem III.3 (Parametric constraint recovery problem).

find θ
s.t. g(κ, θ) > 0, ∀κ ∈ φ(ξ∗si), ∀i = 1, . . . , Ns(

∃κ ∈ φ(ξ¬sj), g(κ, θ) ≤ 0
)
, ∀j = 1, . . . , N¬s

Further details on Problem III.3, including conservativeness guarantees and spe-
cific mixed-integer programming formulations for common constraint parameteriza-
tions are presented in Section 3.3.5.

3.3 Method

The key to our method lies in finding lower-cost trajectories that do not violate the
known constraints, given a demonstration with boundedly-suboptimal cost satisfying
all constraints. Such trajectories must then violate the unknown constraint, and we
extend existing sampling algorithms to be more efficient for trajectory-space sampling

3To avoid complications when states lie on the boundary shared between two grid cells, grid cells
are defined to be disjoint open sets.

24

Dynamics Cost function Control constraints Sampling method
Linear Quadratic Convex Ellipsoid hit-and-run (Section 3.3.2.1)
Linear Convex Convex Convex hit-and-run (Section 3.3.2.2)

Else Non-convex hit-and-run (Section 3.3.2.3)

Table 3.1: Sampling methods for different classes of dynamics models, cost functions,
and feasible control sets.

under various assumptions on the dynamics. Our goal is to determine an unsafe set
in the constraint space from these trajectories using either Problem III.2 or Problem
III.3. In the following, Section 3.3.1 describes lower-cost trajectories consistent with
the known constraints; Section 3.3.2 describes how to sample such trajectories; Section
3.3.3 describes how to get more information from unsafe trajectories; Section 3.3.4
describes details and extensions to Problem 3.2; Section 3.3.5 describes details for
parametric constraint learning and extensions to Problem III.3; Section 3.3.6 discusses
how to extend our method to suboptimal demonstrations. The complete flow of our
method is described in Algorithm III.2.

3.3.1 Trajectories satisfying known constraints

Consider the forward problem (Problem 3.1). We define the set of unsafe state-

control trajectories induced by an optimal, safe demonstration ξ∗xu, T ξ∗xu
A , as the set

of state-control trajectories of lower cost that obey the known constraints:

T ξ∗xu
A

.
= {ξxu ∈ TS̄ ∩ TSΠ

| c(ξx, ξu) < c(ξ∗x, ξ
∗
u)}. (3.3)

In this chapter, we deal with the known constraints from the system dynamics,
the control limits, and task-dependent start and goal state constraints. Hence, TS̄ =
Dξxu ∩ U ξxu , where Dξxu denotes the set of dynamically feasible trajectories and U ξxu

denotes the set of trajectories using controls in U at each time-step. TSΠ
denotes

trajectories satisfying start and goal constraints. We develop the method for discrete
time trajectories, but analogous definitions hold in continuous time. For discrete
time, length T trajectories, U ξxu , Dξxu , and TSΠ

are the following subsets of T xu:

U ξxu .
= {ξxu | ut ∈ U , ∀t ∈ {1, . . . , T − 1} },

Dξxu .
= {ξxu | xt+1 = f(xt, ut), ∀t ∈ {1, . . . , T − 1} },

TSΠ

.
= {ξxu | x1 = xs, xT = xg}.

(3.4)

3.3.2 Sampling trajectories satisfying known constraints

We sample from T ξ∗xu
A to obtain lower-cost trajectories obeying the known con-

straints using hit-and-run sampling (Kiatsupaibul et al. (2011)), a method guaran-

teeing convergence to a uniform distribution of samples over T ξ∗xu
A in the limit; the

method is detailed in Algorithm III.1 and an illustration is shown in Figure 3.2. Hit-
and-run starts from an initial point within the set, chooses a direction uniformly at

25

ξ0

ξ1

ξ2

ξ3 ξ4

ξ5 ξ6
ξ7

AT
ξ∗
xu

A

Figure 3.2: Illustration of hit-and-run. Left: Blue lines denote sampled random
directions, black dots denote samples. Right: Each point in T ξ∗xu

A corresponds to an
unsafe trajectory in the constraint space C, and in this case, C = X .

random, moves a random amount in that direction such that the new point remains
within the set, and repeats.

Depending on the convexity of the cost function and the control constraints and
on the form of the dynamics, different sampling techniques can be used, organized in
Table 3.1. The following sections describe each sampling method.

Algorithm III.1: Hit-and-run

Output: out
.
= {ξ1, . . . , ξN¬s

}
Input : T ξ∗xu

A , ξ∗xu, N¬s

1 ξxu ← ξ∗xu; out← {};
2 for i = 1:N¬s do
3 r ← sampleRandDirection();

4 L ← T ξ∗xu
A ∩ {ξ′xu ∈ T | ξ′xu = ξxu + βr};

5 L−, L+ ← endpoints(L);
6 ξxu ∼ Uniform(L−, L+);
7 out← out ∪ ξxu;

3.3.2.1 Ellipsoid hit-and-run

When we have a linear system with quadratic cost and convex control constraints,
a very common setup in the optimal control literature, the set of lower-cost trajectories
satisfying the known constraints

T ξ∗xu
A

.
= {ξxu | c(ξxu) < c(ξ∗xu)} ∩ Dξxu ≡ {ξxu | ξ⊤xuV ξxu < ξ∗

⊤

xuV ξ
∗
xu} ∩ Dξxu

26

is an ellipsoid in the trajectory space, which can be efficiently sampled via a specially-
tailored hit-and-run method. Here, the quadratic cost is written as c(ξxu)

.
= ξ⊤xuV ξxu,

where V is a matrix of cost parameters, and we omit the control and task constraints
for now. Consider the intersection of the random line chosen from hit-and-run (r

in Algorithm III.1) with the lower-cost trajectory set T ξ∗xu
A ; denote this line segment

as L and its endpoints as L− and L+ (cf. Algorithm III.1). Furthermore, denote β
as a step-size in direction r; hence, L− and L+ put bounds on the allowable step-
sizes β. Without dynamics, L−, L+ can be found by solving a quadratic equation
L⊤
−V L+ = (ξxu + β1r)

⊤V (ξxu + β2r) = ξ∗
⊤

xuV ξ
∗
xu. We show that this can still be

done with linear dynamics by writing T ξ∗xu
A in a special way. Dξxu can be written as

an eigenspace of a singular “dynamics consistency” matrix, D1, which converts any
arbitrary state-control trajectory to one that satisfies the dynamics, one time-step at
a time. Precisely, if the dynamics can be written as xt+1 = Axt + But, we can write
a matrix D1:

x1
u1
x2
u2
x̃3
...

uT−1

x̃T

︸ ︷︷ ︸
ξ̂xu

=

I 0 0 0 0 · · · · · · 0
0 I 0 0 0 · · · · · · 0
A B 0 0 0 · · · · · · 0
0 0 0 I 0 · · · · · · 0
0 0 A B 0 · · · · · · 0
...

...
...

...
...

.
...

0 0 0 · · · · · · 0 I 0
0 0 0 · · · · · · A B 0

︸ ︷︷ ︸
D1

x1
u1
x̃2
u2
x̃3
...

uT−1

x̃T

︸ ︷︷ ︸
ξxu

(3.5)

that fixes the controls and the initial state and performs a one-step rollout, replacing
the second state with the dynamically correct state. In (3.5), we denote by x̃t+1 a state
that cannot be reached by applying control ut to state xt. Multiplying the one-step
corrected trajectory ξ̂xu by D1 again changes x̃3 to the dynamically reachable state
x3. Applying D1 to the original T -time-step infeasible trajectory T − 1 times results
in a dynamically feasible trajectory, ξfeasxu = DT−1

1 ξxu. Further, note that the set of
dynamically feasible trajectories is Dξxu .

= {ξxu | D1ξxu = ξxu}, which is the span
of the eigenvectors of D1 associated with eigenvalue 1. Thus, obtaining a feasible
trajectory via repeated multiplication is akin to finding the eigenspace via power
iteration (Golub and Van Loan (1996)). One can also interpret this as propagating

through the dynamics with a fixed control sequence. Now, we can write T ξ∗xu
A as

another ellipsoid:

T ξ∗xu
A

.
= {ξxu | ξ⊤xuDT−1⊤

1 V DT−1
1 ξxu ≤ ξ∗

⊤

xuV ξ
∗
xu}. (3.6)

Like for the kinematic case, this ellipsoid can be efficiently sampled after finding
L−, L+ by solving a quadratic equation (ξxu + β1r)

⊤DT−1⊤

1 V DT−1
1 (ξxu + β2r) =

ξ∗
⊤

xuV ξ
∗
xu.

We deal with control constraints separately, as the intersection of U ξxu and (3.6)

27

is in general not an ellipsoid. To ensure control constraint satisfaction, we reject
samples with controls outside of U ξxu ; this works if U ξxu is not measure zero. For
task constraints, we ensure all sampled rollouts obey the goal constraints by adding a
large penalty term to the cost function: c̃(·) .= c(·)+αc‖xg−xT‖22, where αc is a large
scalar, which can be incorporated into (3.6) by modifying V and including xg in ξxu; all
trajectories sampled in this modified set satisfy the goal constraints to an arbitrarily
small tolerance ε, depending on the value of αc. The start constraint is satisfied
trivially: all rollouts start at xs. Note the demonstration cost remains the same,
since the demonstration satisfies the start and goal constraints; this modification is
made purely to ensure these constraints hold for sampled trajectories.

3.3.2.2 Convex hit-and-run

For general convex cost functions, the same sampling method holds, but L+, L−

cannot be found by solving a quadratic function. Instead, we solve c(ξxu+βr) = c(ξ∗xu)
via a root finding algorithm or line search.

3.3.2.3 Non-convex hit-and-run

If T ξ∗xu
A is non-convex, L can now in general be a union of disjoint line segments. In

this scenario, we perform a “backtracking” line search by setting β to lie in some initial
range: β ∈ [β, β]; sampling βs within this range and then evaluating the cost function
to see whether or not ξxu + βsr lies within the intersection. If it does, the sample is
kept and hit-and-run proceeds normally; if not, then the range of possible β values
is restricted to [βs, β] if βs is negative, and [β, βs] otherwise. Then, new βs are re-
sampled until either the interval length shrinks below a threshold or a feasible sample
is found. This altered hit-and-run technique still converges to a uniform distribution
on the set in the limit, but has a slower mixing time than for the convex case, where
mixing time describes the number of samples needed until the total variation distance
to the steady state distribution is less than a small threshold (Abbasi-Yadkori et al.
(2017)). Further, we accelerate sampling spread by relaxing the goal constraint to a
larger tolerance ε̂ > ε but keeping only the trajectories reaching within ε of the goal.

3.3.3 Improving learnability using cost function structure

Näıvely, the sampled unsafe trajectories may provide little information. Consider
an unsafe, length-T discrete-time trajectory ξ, with start and end states in the safe set.
This only says there exists at least one intermediate unsafe state in the trajectory, but
says nothing directly about which state was unsafe. The weakness of this information
can be made concrete using the notion of a version space. In machine learning, the
version space is the set of consistent hypotheses given a set of examples (Russell and
Norvig (2003)). In our setting, hypotheses are possible unsafe sets, and examples
are the safe and unsafe trajectories. Knowing ξ is unsafe only disallows unsafe sets
that mark every constraint state in the constraint space that ξ traverses as safe:
(O(z2) = 0) ∧ . . . ∧ (O(zT−1) = 0). If C is gridded into G cells, this information

28

Algorithm III.2: Overall method

Output: O .
= O(z1), . . . ,O(zG) (Problems III.2, III.4, III.5)

θ (Problems III.3, III.7)
Input : ξs = {ξ∗1 , . . . , ξ∗Ns

}, cΠ(·), known constraints}
1 ξu ← {};
2 for i = 1:Ns do

/* Sample unsafe ξ */

3 if lin., quad., conv. then
4 ξu ← ξu ∩ ellipsoidHNR(ξ∗i);
5 else if lin., conv., conv. then
6 ξu ← ξu ∩ convexHNR(ξ∗i);
7 else
8 ξu ← ξu ∩ nonconvexHNR(ξ∗i);

/* Constraint recovery */

9 if gridded then
10 O ← Problem X(ξs, ξu);

/* X = Problem III.5 if prior, continuous */

/* X = Problem III.4 if prior, binary */

/* X = Problem III.2 if no prior */

11 else if parameterization then
12 θ ← Problem Y(ξs, ξu);

/* Y = Problem III.7 if polytope param. */

/* Y = Problem III.3 if general param. */

29

invalidates at most 2G−T+2 out of 2G possible unsafe sets. We could do exponentially
better if we reduced the number of cells that ξ implies could be unsafe.

We can achieve this by sampling sub-segments (or sub-trajectories) of the larger
demonstrations, holding other portions of the demonstration fixed. For example, say
we fix all but one of the points on ξ when sampling unsafe lower-cost trajectories.
Since only one state can be different from the known safe demonstration, the unsafe-
ness of the trajectory can be uniquely localized to whatever new point was sampled:
then, this trajectory will reduce the version space by at most a factor of 2, invali-
dating at most 2G − 2G−1 = 2G−1 unsafe sets. One can sample these sub-trajectories
in the full-length trajectory space by fixing appropriate waypoints during sampling:
this ensures the full trajectory has lower cost and only perturbs desired waypoints.
However, to speed up sampling, sub-trajectories can be sampled directly in the lower
dimensional sub-trajectory space if the cost function c(·) that is being optimized is
strictly monotone (Morin (1982)): for any costs c1, c2 ∈ R, control u ∈ U , and state
x ∈ X , c1 < c2 ⇒ h(c1, x, u) < h(c2, x, u), for all x, u, where h(c, x, u) represents the
cost of starting with initial cost c at state x and taking control u. Strictly monotone
cost functions include separable cost functions with additive or multiplicative stage
costs, which are common in motion planning and optimal control. If the cost func-
tion is strictly monotone, we can sample lower-cost trajectories from sub-segments of
the optimal path; otherwise it is possible that even if a new sub-segment with lower
cost than the original sub-segment were sampled, the full trajectory containing the
sub-segment could have a higher cost than the demonstration.

3.3.4 Gridded integer program formulation

As mentioned in Sections 3.2.2.1 and 3.2.2.2, we can solve various optimization
problems after sampling to find an unsafe set consistent with the safe and unsafe
trajectories. We now discuss the details of this process, starting with the gridded
formulation (Problem III.2).

3.3.4.1 Conservative estimate

One can obtain a conservative estimate of the unsafe set A from Problem III.2
by intersecting all possible solutions: if the unsafeness of a cell is shared across all
feasible solutions, that cell must be occupied. In practice, it may be difficult to
directly find all solutions to the feasibility problem, as in the worst case, finding the
set of all feasible solutions is equivalent to exhaustive search in the full gridded space
(Papadimitriou and Steiglitz (1982)). A more efficient method is to loop over all G
grid cells z1, . . . , zG and set each one to be safe, and see if the optimizer can still find a
feasible solution. Cells where there exists no feasible solution are guaranteed unsafe.
This amounts to solving G binary integer feasibility problems, which can be trivially
parallelized. Furthermore, any cells that are known safe (from demonstrations) do
not need to be checked. We use this method to compute the “learned guaranteed

30

unsafe cells”, Gz¬s, in Section 3.5, which we define as:

Gz¬s = {z ∈ {z1, . . . , zG} | O(z) = 1, ∀O ∈ F z} (3.7)

where F z is the feasible set of Problem III.2.

3.3.4.2 A prior on the constraint

As will be further discussed in Section 3.4.1, it may be fundamentally impossible
to recover a unique unsafe set. If we have some prior on the nature of the unsafe
set, such as it being simply connected, or that certain regions of the constraint space
are unlikely to be unsafe, we can make the constraint learning problem more well-
posed. Assume that this prior knowledge can be encoded in some “energy” function
E(·, . . . , ·) : {0, 1}G → R mapping the set of binary occupancies to a scalar value,
which indicates the desirability of a particular unsafe set configuration. Using E as
the objective function in Problem III.2 results in a binary integer program, which
finds an unsafe set consistent with the safe and unsafe trajectories, and minimizes
the energy:

Problem III.4 (Inverse binary minimization constraint recovery).

minimize
O(z1),...,O(zG)

∈{0,1}G

E(O(z1), . . . ,O(zG))

s.t.
∑

zi∈φ(ξ∗sj)

O(zi) = 0, ∀j = 1, . . . , Ns

∑

zi∈φ(ξ¬sk
)

O(zi) ≥ 1, ∀k = 1, . . . , N¬s

(3.8)

3.3.4.3 Probabilistic setting and continuous relaxation

A similar problem can be posed in a probabilistic setting, where grid cell occu-
pancies represent beliefs over unsafeness: instead of the occupancy of a cell being
an indicator variable, it is instead a random variable Zi, where Zi takes value 1
with probability Õ(Zi) and value 0 with probability 1− Õ(Zi). Here, the occupancy
probability function maps cells to occupancy probabilities Õ(·) : Z → [0, 1].

Trajectories can now be unsafe with some probability. We obtain analogous con-
straints from the integer program in Section 3.3.4 in the probabilistic setting. Known
safe trajectories traverse cells that are unsafe with probability 0; we enforce this with
the constraint

∑
Zi∈φ(ξ∗sj)

Õ(Zi) = 0: if the unsafeness probabilities are all zero along

a trajectory, then the trajectory must be safe. Trajectories that are unsafe with prob-
ability pk satisfy

∑
Zi∈φ(ξ¬sk

) Õ(Zi) = E[
∑

Zi∈φ(ξ¬sk
) Zi] = (1 − pk) · 0 + pk · Sk ≥ pk

where we denote the number of unsafe grid cells φ(ξ¬sk) traverses when the trajec-
tory is unsafe as Sk, where Sk ≥ 1. The following problem directly optimizes over
occupancy probabilities:

31

Problem III.5 (Inverse continuous minimization constraint recovery).

minimize
O(Z1),...,O(ZG)

∈[0,1]G

E(O(Z1), . . . ,O(ZG))

s.t.
∑

zi∈φ(ξ∗sj)

Õ(Zi) = 0, ∀j = 1, . . . , Ns

∑

zi∈φ(ξ¬sk
)

Õ(Zi) ≥ pk, ∀k = 1, . . . , N¬s

(3.9)

When pk = 1, for all k (i.e., all unsafe trajectories are unsafe for sure), this
probabilistic formulation coincides with the continuous relaxation of Problem III.4.
This justifies interpreting the solution of the continuous relaxation as occupancy
probabilities for each cell. Note that Problem III.4 and III.5 have no conservativeness
guarantees and use prior assumptions to make the problem more well-posed. However,
we observe that they improve constraint recovery in our experiments.

3.3.5 Parameter space integer program

Having discussed extensions to the gridded constraint recovery problem, we now
turn to analogous results for the parametric case.

3.3.5.1 Conservative estimate

Denote by F the feasible set of Problem III.3. Denote by G¬s and Gs the set of
constraint states which are learned guaranteed unsafe and safe, respectively; that is,
a constraint state κ ∈ G¬s or κ ∈ Gs if κ is classified unsafe or safe for all θ ∈ F :

G¬s .
=
⋂

θ∈F

{κ | g(κ, θ) ≤ 0} (3.10)

Gs .
=
⋂

θ∈F

{κ | g(κ, θ) > 0} (3.11)

In contrast to Gz¬s, which is the set of guaranteed learned unsafe grid cells (the ana-
logue of G¬s for grid cells), Gs and G¬s are defined directly over the constraint space
C.

Note that unlike Problem III.2, for Problem III.3, it is possible to learn that a
constraint state not lying on a demonstration is guaranteed safe. This is due to the
parameterization: given a particular set of safe and unsafe trajectories, there may not
be any feasible parameter θ ∈ F where κ is classified unsafe. For example, consider the
case in Figure 3.3: given the interval parameterization g(κ, θ = [κ̄, κ]) = (κ̄−κ)(κ−κ),
it is not possible for any constraint state left of κ1 or right of κ2 to be classified unsafe
and be consistent with the data. On the other hand, due to the independence of the
grids in Problem III.2, learning that a given grid cell is safe or unsafe cannot ever
imply that another grid cell is guaranteed safe.

32

k1 ∈ φ(ξs) k2 ∈ φ(ξs)

k3, k4 ∈ φ(ξ¬s)

C
Figure 3.3: Given an interval parameterization of an unsafe set, there does not exist
any interval which can both explain the data and label and constraint state left of κ1
or right of κ2 as unsafe.

Similarly to Problem III.2, one can check if a constraint state κ ∈ Gs or κ ∈ G¬s
by adding a constraint g(κ, θ) ≤ 0 or g(κ, θ) > 0 to Problem III.3 and checking
feasibility of the resulting program; if the program is infeasible, κ ∈ Gs or κ ∈ G¬s.
In other words, solving this modified integer program can be seen as querying an
oracle about the safety of a constraint state κ. The oracle can then return that κ is
guaranteed safe (program infeasible after forcing κ to be unsafe), guaranteed unsafe
(program infeasible after forcing κ to be safe), or unsure (program remains feasible
despite forcing κ to be safe or unsafe).

Since Problem III.3 works in the continuous constraint space, it is not possible
to exhaustively check if each constraint state is guaranteed learned safe or unsafe,
unlike the discrete gridded case in Problem III.2. For general parameterizations,
only individual states can be checked for membership in Gs or G¬s. However, for
some particularly common parameterizations, there are more efficient methods for
recovering subsets of Gs and G¬s:

• Axis-aligned hyper-rectangle parameterization: C ⊆ Rn, θ = [κ1, κ̄1, . . . , κn, κ̄n],
g(κ, θ) ≤ 0 ⇔ H(θ) ≤ h(θ), where H(θ)k = [In×n,−In×n]

⊤ and h(θ) =
[k̄1, . . . , k̄n, k1, . . . , kn]

⊤. Here, κi and κ̄i are the lower and upper bounds of
the hyper-rectangle for coordinate i.

As the set of axis-aligned hyper-rectangles is closed under intersection, G¬s is
also an axis-aligned hyper-rectangle, the axis-aligned bounding box of any two
constraint states κ1, κ2 ∈ G¬s is also contained in G¬s. This also implies that
G¬s can be fully described by finding the top and bottom corners [κ1, . . . , κn]

⊤

and [κ̄1, . . . , κ̄n]
⊤. Suppose we start with a known κ ∈ G¬s. Then, finding

[κ1, . . . , κn]
⊤ amounts to performing a binary search for each of the n dimen-

sions, and the same holds for finding [κ̄1, . . . , κ̄n]
⊤.

Recovering Gs is not as straightforward, as the complement of axis-aligned boxes
is not closed under intersection. However, an inner approximation of Gs can
be efficiently obtained as follows: starting at a constraint state κ ∈ G¬s, 2n
line searches can be performed to find the two points of transition to G¬s in
each constraint coordinate. Denote as Ĝs the complement of the axis-aligned
bounding box of these 2n points; Ĝs is an inner approximation of Gs, as Gs =
(
⋂

θ∈F{x | g(x, θ) ≤ 0})c ⊇ AABB(
⋂

θ∈F{x | g(x, θ) ≤ 0})c, where AABB(·)

33

Figure 3.4: Comparison of the true Gs (left, in green) and the extracted inner approx-
imation Ĝs (right, in green).

denotes the axis-aligned bounding box of a set of points and the complement
acts on the axis-aligned bounding box.

For example, consider the scenario in Figure 3.4 where there are only two feasible
parameters, θ1 and θ2. Here, Gs is (A(θ1)∪A(θ2))c and Ĝs under-approximates
the safe set (Gs is in general not representable as the complement of an axis-
aligned box).

• Convex parameterization: for fixed θ, {κ | g(κ, θ) ≤ 0} is convex.
While in this case, it is not easy to recover G¬s exactly, a subset of G¬s can be
extracted efficiently by taking the convex hull of any κ1, κ2, . . . ∈ G¬s, since the
convex hull is the minimal convex set containing κ1, κ2,

An alternative solution seeks to check if a set of states in the neighborhood of
some constraint state κquery is contained within G¬s; this can be done by solving the
following problem:

Problem III.6 (Volume extraction).

min
θ,ε

ε

s.t. g(κi, θ) > 0, ∀κi ∈ φ(ξ∗sj), ∀j = 1, . . . , Ns

∃κi ∈ φ(ξ¬sk), g(κi, θ) ≤ 0, ∀k = 1, . . . , N¬s

∃κnear ∈ {κnear | ‖κnear − κquery‖∞ ≤ ε}, g(κnear, θ) > 0

In words, Problem III.6 finds the smallest ε-hypercube centered at κquery con-
taining a κ /∈ G¬s; thus, any hypercube of size ε̂ < ε is contained within G¬s:
{κ | ‖κ − κquery‖∞ ≤ ǫ̂} ⊆ G¬s. We can write a similar problem to check the neigh-
borhood of κquery for membership in Gs. Volumes of safe/unsafe space can thus be

34

produced by repeatedly solving Problem III.6 for different κquery, and these volumes
can be passed to a planner to generate new trajectories that are guaranteed safe.

The same approaches apply for recovering Gs when it is instead the safe set which
is an axis-aligned hyper-rectangle or a convex set.

3.3.5.2 Choice of parameterization

In this section, we identify classes of parameterizations for which Problem III.3
can be efficiently solved:

• g(κ, θ) is defined by a Boolean conjunction of linear inequalities, i.e., A(θ) can
be defined as the union and intersection of half-spaces:

For this case, mixed-integer programming can be employed. As an example
for the particular case where g(κ, θ) ≤ 0 is a single polytope, i.e., g(κ, θ) ⇔
H(θ)k ≤ h(θ), where H(θ) and h(θ) are affine in θ, the following mixed integer
feasibility problem can be solved to find a feasible θ:

Problem III.7 (Polytopic constraint recovery problem).

find θ, {bis}Ns

i=1, {bi¬s}N¬s

i=1

s.t. H(θ)κi > h(θ)−M(1− bis), bisj ∈ {0, 1}Nh ,

Nh∑

i=1

bisj ≥ 1, ∀κi ∈ φ(ξsj), i = 1, . . . , Tj, j = 1, . . . , Ns (3.12a)

H(θ)κi ≤ h(θ) +M(1− bi¬sk)1Nh
, bi¬sk ∈ {0, 1},

Tj∑

i=1

bi¬sk ≥ 1, ∀κi ∈ φ(ξ¬sk), ∀k = 1, . . . , N¬s (3.12b)

whereM is a large positive number and 1Nh
is a column vector of ones of length

Nh. Constraints (3.12a) and (3.12b) use the big-M formulation to enforce that
each safe constraint state lies outside A(θ) and that at least one constraint state
on each unsafe trajectory lies inside A(θ).
Similar problems can be written down when the safe or unsafe set can be de-
scribed by unions of polytopes.

As an alternative to mixed integer programming, satisfiability modulo theories
(SMT) solvers can also be employed to solve Problem III.3 if g(κ, θ) is defined
by a Boolean conjunction of linear inequalities.

• g(κ, θ) is defined by a Boolean conjunction of convex inequalities, i.e., A(θ) can
be described as the union and intersection of convex sets:

For this case, satisfiability modulo convex optimization (SMC) (Shoukry et al.
(2018)) can be employed to find a feasible θ.

35

3.3.5.3 Unknown parameterizations

For many realistic applications, we do not have access to a known parameterization
which can represent the unsafe set. Despite this, complex unsafe/safe sets can often
be approximated as the union of many simple unsafe/safe sets. Along this line of
thought, we present a method for incrementally growing a parameterization based on
the complexity of the demonstrations and unsafe trajectories.

Suppose that the true parameterization g(κ, θ) of the unsafe set A(θ) = {κ |
g(κ, θ) ≤ 0} is unknown but can be exactly or approximately expressed as the union
of N∗ simple sets A(θ) ≅ ⋃N∗

i=1{κ | gs(κ, θi) ≤ 0} .= ⋃N∗

i=1A(θi), where each simple set
A(θi) has a known parameterization gs(·, ·) and N∗, the minimum number of simple
sets needed to reconstruct A, is unknown.

A lower bound on N∗, N , can be estimated by incrementally adding simple sets
until Problem III.3 becomes feasible. However, for N < N∗, the extracted Gs and G¬s
are not guaranteed to be conservative estimates of S and A (Theorem III.24), and
Gs and G¬s are only guaranteed to be conservative if N̂ ≥ N∗, where N̂ is the chosen
number of simple sets (see Theorem III.23). Unfortunately, inferring a guaranteed
overestimation of N∗ only from data is not possible, as there can always be subsets
of the constraint which are not activated by the given demonstrations. Two facts
mitigate this:

• If an upper bound on the number of simple sets needed to describeA(θ), N̄loose ≥
N∗, is known (where this bound can be trivially loose), Gs ⊆ S and G¬s ⊆ A
by using N̄loose simple sets in solving Problem III.3. Hence, by using N̄loose, Gs
and G¬s can be made guaranteed conservative (see Theorem III.23), at the cost
of the resulting Gs and G¬s being potentially small.

• As the demonstrations begin to cover the space, N → N∗. Hence, by using N
simple sets, Gs and G¬s are asymptotically conservative.

In our experiments, we choose our simple sets as axis-aligned hyper-rectangles in C,
which is motivated by: 1) any open set in C can be approximated as a countable/finite
union of open axis-aligned hyper-rectangles Tao (2016); 2) unions of hyper-rectangles
are easily representable in Problem III.7.

3.3.5.4 Remarks on parameter space problem

We close this subsection with some remarks on implementation and extensions to
Problem III.3.

• For suboptimal demonstrations or imperfect lower-cost trajectory sampling,
Problem III.7 can become infeasible. To address this, slack variables can be
introduced: replace constraint

∑Tj

i=1 b
i
¬s ≥ sk, sk ∈ {0, 1} and change the feasi-

bility problem to minimization of
∑N¬s

k=1(1− sk).

• In addition to recovering sets of guaranteed learned unsafe and safe constraint
states, a probability distribution over possibly unsafe constraint states can be
estimated by sampling unsafe sets from the feasible set of Problem III.3.

36

3.3.6 Bounded suboptimality of demonstrations

If we are given a δ-suboptimal demonstration ξ̂, where c(ξ∗) ≤ c(ξ̂) ≤ (1+δ)c(ξ∗),
where ξ∗ is an optimal demonstration, we can still apply the sampling techniques
discussed in earlier sections, but we must ensure that sampled unsafe trajectories are
truly unsafe: a sampled trajectory ξ′ of cost c(ξ′) ≥ c(ξ∗) can be potentially safe.

Two options follow: one is to only keep trajectories with cost less than c(ξ̂)
1+δ

, but this
can cause little to be learned if δ is large. Instead, if we assume a distribution on
suboptimality, i.e., given a trajectory of cost c(ξ̂), we know that a trajectory of cost

c(ξ′) ∈ [c(ξ̂)
1+δ

, c(ξ̂)] is unsafe with probability pk, we can then use these values of pk to
solve Problem III.5.

3.4 Analysis

In this section, we provide theoretical analysis on our constraint learning algo-
rithm. In particular, we analyze the limits of what constraint states can be learned
guaranteed unsafe for both the gridded and parametric cases (Sections 3.4.1 and
3.4.3) as well as the conditions under which our algorithm is guaranteed to learn an
inner approximation of the safe and unsafe sets (Sections 3.4.2 and 3.4.4). For ease of
reading, the proofs and some remarks are omitted and can be found in the appendix.

We begin with an overview of the theoretical results:

• Theorem III.9 shows that all states that can be guaranteed unsafe must lie
within some distance to the boundary of the unsafe set. Corollary III.10 shows
that the set of guaranteed unsafe states shrinks to a subset of the boundary
of the unsafe set when using a continuous demonstration directly to learn the
constraint.

• Corollary III.15 shows that under assumptions on the alignment of the grid
and unsafe set for the discrete time case, the guaranteed learned unsafe set is a
guaranteed inner approximation of the true unsafe set.

• For continuous trajectories that are then discretized, Theorem III.16 shows us
that the guaranteed unsafe set can be made to contain states on the interior of
the unsafe set, but at the cost of potentially labeling states within some distance
outside of the unsafe set as unsafe as well.

• Theorem III.19 shows that for the parametric case, all states that can be guar-
anteed unsafe must be implied unsafe by the states within some distance to the
boundary of the unsafe set and the parameterization.

• Theorem III.21 shows that for the discrete time case, the guaranteed safe and
guaranteed unsafe sets are inner approximations of the true safe and unsafe
sets, respectively. For the continuous time case, the recovered sets are inner
approximations of a padded version of the true sets.

37

• Theorems III.23 and III.24 present conservativeness results when the constraint
parameterization is not exactly known.

3.4.1 Learnability

We provide analysis on the learnability of unsafe sets, given the known constraints
and cost function. Most analysis assumes unsafe sets defined over the state space:
A ⊆ X , but we extend it to the feature space in Corollary III.17. We provide some
definitions and state a result bounding Gz¬s∗, the set of all states that can be learned
guaranteed unsafe. We first define the signed distance:

Definition III.8 (Signed distance). Signed distance from point p ∈ Rm to set S ⊆
Rm, sd(p,S) = − infy∈∂S ‖p− y‖ if p ∈ S; infy∈∂S ‖p− y‖ if p ∈ Sc.

Theorem III.9 (Learnability (discrete time)). For trajectories generated by a dis-
crete time dynamical system satisfying ‖xt+1−xt‖ ≤ ∆x for all t, the set of learnable
guaranteed unsafe states is a subset of the outermost ∆x shell of the unsafe set:
Gz¬s∗ ⊆ {x ∈ A | − ∆x ≤ sd(x,A) ≤ 0} (see Section A.1.1, Figure A.1 for an
illustration).

Corollary III.10 (Learnability (continuous time)). For continuous trajectories ξ(·) :
[0, T] → X , the set of learnable guaranteed unsafe states shrinks to the boundary of
the unsafe set: Gz¬s∗ ⊆ {x ∈ A | sd(x,A) = 0}.

Depending on the cost function, Gz¬s∗ can become arbitrarily small: some cost
functions are not very informative for recovering a constraint. For example, the
path length cost function used in many of the experiments (which was chosen due
to its common use in the motion planning community), prevents any lower-cost sub-
trajectories from being sampled from straight sub-trajectories. The overall control
authority that we have on the system also impacts learnability: the more controllable
the system, the more of the ∆x shell is reachable. In particular, a necessary condition
for any unsafe states to be learnable from a demonstration of length T + 1 starting
from x0 and ending at xT is for there to be more than one trajectory which steers
from x0 to xT in T + 1 steps while satisfying the dynamics and control constraints.

3.4.2 Conservativeness

We discuss conditions on A and discretization which ensure our method provides
a conservative estimate of A. For analysis, we assume A has a Lipschitz boundary
(Dacorogna (2015)). We begin with notation (an explanatory illustration is in Section
A.1.2, Figure A.2):

Definition III.11 (Normal vectors). Denote the outward-pointing normal vector at
a point p ∈ ∂A as n̂(p). Furthermore, at non-differentiable points on ∂A, n̂(p) is
replaced by the set of normal vectors for the sub-gradient of the Lipschitz function
describing ∂A at that point (Allaire et al. (2016)).

38

Definition III.12 (γ-offset padding). Define the γ-offset padding ∂Aγ as: ∂Aγ =
{x ∈ X | x = y + dn̂(y), d ∈ [0, γ], y ∈ ∂A}.

Definition III.13 (γ-padded set). We define the γ-padded set of the unsafe set A,
A(γ), as the union of the γ-offset padding and A: A(γ) .= ∂Aγ ∪ A.

Definition III.14 (Maximum grid size). Let R(zi) be the radius of the smallest ball
which contains grid cell zi: R(zi) = minr minxi

r, subject to zi ⊆ Br(xi), for some
optimal center xi.

Furthermore, let R∗ be the radius of the smallest ball which contains each grid
cell zi, i = 1, . . . , G: R∗ = max(R(z1), . . . , R(zG)).

We also introduce the following assumption, which is illustrated in Figure A.3 for
clarity:
Assumption 1: The unsafe set A is aligned with the grid (i.e., there does not exist
a grid cell z containing both safe and unsafe states in its interior).

Theorem III.15 (Discrete time conservative recovery of unsafe set). For a discrete-
time system, if Assumption 1 holds, Gz¬s ⊆ A. If Assumption 1 does not hold, then
Gz¬s ⊆ A(R∗).

If we use continuous trajectories directly, the guaranteed learnable set Gz¬s∗ shrinks
to a subset of the boundary of the unsafe set, ∂A (cf. Corollary III.10). However,
if we discretize these trajectories, we show that we can learn unsafe states lying in
the interior, at the cost of conservativeness holding only for a padded unsafe set. We
then show that a similar result holds when discretizing a continuous trajectory in a
feature space. For the following results, we make an additional assumption, which is
illustrated in Figure A.4 for clarity:
Assumption 2: The time discretization of the unsafe trajectory ξ : [0, T] → X ,
{t1, . . . , tN}, ti ∈ [0, T], for all i, is chosen such that there exists at least one dis-
cretization point in the interior of each cell that the continuous trajectory passes
through (i.e., if ∃t ∈ [0, T] such that ξ(t) ∈ z, then ∃ti ∈ {t1, . . . , tN} such that
ξ(ti) ∈ z.

Theorem III.16 (Continuous-to-discrete time conservativeness). The following re-
sults hold for continuous time systems:

1. Suppose that both Assumptions 1 and 2 hold. Then, the learned guaranteed
unsafe set Gz¬s, defined in Section 3.3.4.1, is contained within the true unsafe
set A.

2. Suppose that only Assumption 2 holds. Then, the learned guaranteed unsafe set
Gz¬s is contained within the R∗-padded unsafe set, A(R∗).

3. Suppose that neither Assumption 1 nor Assumption 2 holds. Furthermore, sup-
pose that Problems III.2, III.4, and III.5 are using M sub-trajectories sam-
pled with Algorithm III.1 as unsafe trajectories, and that each sub-trajectory
is defined over the time interval [ai, bi], i = 1, . . . ,M . Denote Dξ([a, b])

.
=

39

supt1∈[a,b],t2∈[t1,b] ‖ξ(t1)−ξ(t2)‖2, for some trajectory ξ. Denote D∗ .
= maxi∈{1,...,M}D

∗
ξi
([ai, bi]).

Then, the learned guaranteed unsafe set Gz¬s is contained within the D∗ + R∗-
padded unsafe set, A(D∗ +R∗).

Corollary III.17 (Continuous-to-discrete feature space conservativeness). Let the
feature mapping φ(x) from the state space to the constraint space be Lipschitz contin-
uous with Lipschitz constant L. Then, the following results hold:

1. Suppose both Assumptions 1 and 2 (used in Theorem III.16) hold. Then, our
method ensures Gz¬s ⊆ A.

2. Suppose only Assumption 2 holds. Then, our method recovers a guaranteed
subset of the LR∗-padded unsafe set, A(LR∗), in the feature space.

3. Suppose neither Assumption 1 nor Assumption 2 holds. Then, our method
recovers a guaranteed subset of the L(D∗ + R∗)-padded unsafe set, A(L(D∗ +
R∗)), where D∗ is as defined in Theorem III.16.

3.4.3 Parametric learnability

In this section, we develop results for learnability of the unsafe set in the para-
metric case. For clarity, we prove the results for C = X . We begin with the following
notation:

Definition III.18 (Implied unsafe set). For some set B ⊆ Θ, denote

I(B) .=
⋂

θ∈B

{x | g(x, θ) ≤ 0} (3.13)

as the set of states that are implied unsafe by restricting the parameter set to B. In
words, I(B) is the set of states for which all θ ∈ B mark as unsafe.

The following result states that in discrete time, the learnable set of unsafe states
G∗¬s is contained by the set of states which must be implied unsafe by learning that
all states in the outer ∆x shell of the unsafe set, A∆x, are unsafe. Furthermore, in
continuous time, the same holds, except the ∆x shell is replaced by the boundary of
the unsafe set, ∂A.
Theorem III.19 (Discrete time learnability for parametric constraints). For trajec-
tories generated by discrete time systems, G¬s ⊆ G∗¬s ⊆ I(F∆x), where

F∆x = {θ | ∀i ∈ {1, . . . , Ns}, ∀x ∈ ξ∗i , g(x, θ) > 0,

∀x ∈ A∆x, g(x, θ) ≤ 0}

Corollary III.20 (Continuous-time learnability for parametric constraints). For tra-
jectories generated by continuous time systems, G¬s ⊆ G∗¬s ⊆ I(F∂A), where

F∂A = {θ | ∀x ∈ ξ∗i , ∀i ∈ {1, . . . , Ns}, g(x, θ) > 0,

∀x ∈ ∂A, g(x, θ) ≤ 0}

40

3.4.4 Parametric conservativeness

We write conditions for conservative recovery of the unsafe set and safe set when
solving Problems III.3 and III.7 for discrete time and continuous time systems. In
the following two results, we assume that the constraint parameterization is known.

Theorem III.21 (Conservative recovery for discrete time systems with paramet-
ric constraints). For a discrete-time system, if M in Problem III.7 is chosen to be
greater than max(M1,M2), where M1 = maxxi∈ξs maxθ maxj(H(θ)xi − h(θ))j and
M2 = maxxi∈ξ¬s

maxθ maxj(H(θ)xi − h(θ))j, G¬s ⊆ A and Gs ⊆ S.

Corollary III.22 (Conservative recovery for continuous time systems with para-
metric constraints). For a continuous-time system, where demonstrations are time-
discretized as previously discussed, if M is chosen as in Theorem III.21, Gs ⊆ S and
G¬s ⊆ A(D∗), where D∗ is as defined in Theorem III.16.

Now, let’s consider the case where the true parameterization is not known and we
use the incremental method described in Section 3.3.5.3, where gs(x, θ) is the simple
parameterization. We consider the over-parameterized case (Theorem III.23) and the
under-parameterized case (Theorem III.24). We analyze the case where the true,
under-, and over-parameterization are defined respectively as:

g(x, θ) ≤ 0⇔
N∗∨

i=1

(
gs(x, θi) ≤ 0

)
(3.14)

g(x, θ) ≤ 0⇔
N∨

i=1

(
gs(x, θi) ≤ 0

)
, N < N∗ (3.15)

g(x, θ) ≤ 0⇔
N̄∨

i=1

(
gs(x, θi) ≤ 0

)
, N̄ > N∗. (3.16)

Theorem III.23 (Conservativeness: Over-parameterization). Suppose the true pa-
rameterization and over-parameterization are defined as in (3.14) and (3.16). Then,
G¬s ⊆ A and Gs ⊆ S.

Theorem III.24 (Conservativeness: Under-parameterization). Suppose the true pa-
rameterization and under-parameterization are defined as in (3.14) and (3.15). Fur-
thermore, assume that we incrementally grow the parameterization as described in
Section 3.3.5.3. Then, the following are true:

1. G¬s and Gs are not guaranteed to be contained in A (unsafe set) and S (safe set),
respectively.

2. Each recovered simple unsafe set A(θi), i = 1, . . . , N , for any θ1, . . . , θN ∈ F ,
touches the true unsafe set (there are no spurious simple unsafe sets): for i =
1, . . . , N , for θ1, . . . , θN ∈ F , A(θi) ∩ A 6= ∅ (N is as defined in Section 3.3.5.3).

41

F
ig
.
3.
8,

R
ow

1
F
ig
.
3.
8,

R
ow

2
F
ig
.
3.
8,

R
ow

3
F
ig
.
3.
9

F
ig
.
3.
10

F
ig
.
3
.1
1

F
ig
.
3
.1
3
R
1
-2

F
ig
.
3
.1
3
R
3
-4

F
ig
.
3
.1
5

D
is
cr
et
iz
at
io
n

0.
1

0.
25

0.
5

1
1

n
/
a

n
/
a

n
/
a

n
/
a

N
o.

tr
a
js
.
sa
m
p
le
d

30
00
00

15
00
00

10
00
0

10
00
0

10
00
0

1
0
0
0
0
0

2
5
0
0
0
0

2
5
0
0
0
0

1
0
0
0
0

N
o.

tr
a
js
.
u
se
d

30
00
00

15
00
00

10
00
0

10
00
0

10
00
0

1
2
5

1
5
0
0
0

1
5
0
0

5
0
0

ε
n
/a

n
/a

10
−
3

10
−
3

10
−
3

n
/
a

n
/
a

n
/
a

1
0
−
3

ε̂
n
/a

n
/a

10
−
2

10
−
2

10
−
2

n
/
a

n
/
a

n
/
a

1
0
−
2

α
c

10
1
0

10
4

1
1

1
1
0
1
0

1
0
1
0

1
0
1
0

1
M
in
.
L

le
n
gt
h

n
/a

n
/a

10
−
1
0

10
−
1
0

10
−
1
0

n
/
a

n
/
a

n
/
a

1
0−

1
0

D
∗

n
/a

n
/a

7.
85

10
.5

0.
04

n
/
a

n
/
a

n
/
a

n
/
a

R
∗

0.
07

0.
35

0.
35

0.
70

0.
00
5

n
/
a

n
/
a

n
/
a

n
/
a

Table 3.2: Parameters used for each experiment.

42

Experiment Time (sampling
trajectories)

Time (constraint
recovery)

Single integrator, U-shape, gridded;
Fig. 3.8, Row 1

11.5 min 3 min

Double integrator, gridded; Fig.
3.8, Row 2

4.5 min 4.5 min

Dubins’ car, gridded; Fig. 3.8, Row
3

2 hrs 4 min

Dubins’ car, suboptimal, gridded;
Fig. 3.9

1 hr 2 min

Dubins’ car, feature space, gridded;
Fig. 3.10

30 min 4 min

Single integrator, U-shape,
parametric; Fig. 3.11

1.5 min 27.3 seconds

7-DOF arm; Fig. 3.11 12.5 min 1.2 seconds
7-DOF arm, suboptimal; Fig. 3.11 9 min 1.2 seconds

Quadrotor; Fig 3.15 8.5 min 11.9 seconds

Table 3.3: Approximate runtimes for each experiment.

3.5 Evaluations: Gridded formulation

In this section and the next (Section 3.6), we evaluate the effectiveness of both
our gridded and parametric variants of the constraint recovery problem on a variety
of examples. Experiment parameters and approximate runtimes for all examples
can be found in Tables 3.2 and 3.3. All experiments were conducted on a 4-core
2017 Macbook Pro with a 3.1 GHz Core i7 processor. All code was implemented in
MATLAB.

We evaluate the gridded variant of our method on a variety of constraint recovery
problems in this section. In particular, we provide examples showing the effective-
ness of using unsafe trajectories to reduce the ill-posedness of the constraint-recovery
problem (Section 3.5.1), that our method has advantages over inverse reinforcement
learning (Section 3.5.2), that our method can be applied for discrete-time, continuous-
time, linear, and nonlinear system dynamics (Section 3.5.3), that our method can
be adapted to work with suboptimal demonstrations (Section 3.5.4), and that our
method can also learn constraints in arbitrary feature spaces (Section 3.5.5).

3.5.1 Version space example

Consider a simple 5× 5 8-connected grid world in which the tasks are to go from
a start to a goal, minimizing Euclidean path length while staying out of the unsafe
“U-shape”, the outline of which is drawn in black (Fig. 3.5). Four demonstrations
are provided, shown in Fig. 3.5 on the far left. Initially, the version space contains
225 possible unsafe sets. Each safe trajectory of length T reduces the version space
at most by a factor of 2T , invalidating at most 225 − 225−T possible unsafe sets.
Unsafe trajectories are computed by enumerating the set of trajectories going from
the start to the goal at lower cost than the demonstration. The numbers of unsafe sets
consistent with the safe and unsafe trajectories for varying numbers of safe trajectories

43

1 2 3 4

Safe 262144 4096 1024 256

Safe & unsafe 11648 48 12 3

Table 3.4: Number of consistent unsafe sets, varying the number of demonstrations,
using/not using unsafe trajectories (cf. the example in Section 3.5.1).

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Figure 3.5: Leftmost: Demonstrations and unsafe set. Rest: Set of possible con-
straints. Postulated unsafe cells are plotted in red, safe states in blue.

are given in Table 3.4.
Ultimately, it is impossible to distinguish between the three unsafe sets on the

right in Fig. 3.5. This is because there exists no task where a trajectory with cost
lower than the demonstration can be sampled which only goes through one of the
two uncertain states. Further, though the uncertain states are in the ∆x shell of the
constraint, due to the limitations of the cost function, we can only learn a subset of
that shell (cf. Theorem III.9).

There are two main takeaways from this experiment. First, by generating unsafe
trajectories, we can reduce the uncertainty arising from the ill-posedness of constraint
learning: after 4 demonstrations, using unsafe demonstrations enables us to reduce
the number of possible constraints by nearly a factor of 100, from 256 to 3. Second,
due to limitations in the cost function, it may be impossible to recover a unique
unsafe set, but the version space can be reduced substantially by sampling unsafe
trajectories.

3.5.2 Comparison with inverse reinforcement learning

In this section, we illustrate some advantages of explicitly learning a hard con-
straint from demonstrations over learning a softened penalty through two examples.

3.5.2.1 Gridded example

Consider the grid world in Figure 3.6(a), where the available actions at each state
are to move up, down, left, right (except when doing so goes out of bounds), and an
“exit” action, which takes the agent to a terminal state. In this setting, the objective
of the demonstrator is to minimize the path length to the goal (green square) while
avoiding the unsafe set (red squares), and we are given one demonstration doing so

44

-1 -1 -1 -1 -1 -1

-4-6-8-10-8-6-4-1

-1-1-1-1-1-1-1-1

111 -1

↑

↑

× ←←←

←←←←↑

↑

→ → → → ×

-1 -1 -1 -1 -1 -1 -1 -1

-1-1-1-1-1-1-1-1

-1-1-1-1-1-1-1-1

00000000

0 0 0 0 0 0 0 0

0 0 0 0 12 0 0 0

00000000

0 -3

0 0 0 0 0 0 00

-3-5 -5-7 -7-9

-1 -1 -1 -1 11 -1 -1 -1

-4-6-8-10-8-6-4-1

-1-1-1-1-1-1-1-1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

↑

↑

×

(h)

Figure 3.6: IRL comparison (gridded). (a) Demonstration. (b) Path length compo-
nent of reward function rpath(x) (numbers indicate the reward obtained upon reaching
a state). (c) Goal component of reward function rgoal(x). (d) A consistent softened
constraint reward function. (e) Combined reward function. (f) Unsafe optimal trajec-
tory from a new initial condition under the combined reward function. (g) Combined
reward function for a different goal. (h) Unsafe optimal trajectory when planning
with a different goal.

45

(see Figure 3.6(a)).
Suppose that as the learner, we know the objective is path length (see Figure

3.6(b)) and we also know the goal (see Figure 3.6(c)), and we would like to learn the
unknown red constraint by representing it as an unknown penalty component in the
reward function and learning it via inverse reinforcement learning (Ng and Russell
(2000)). We can write this problem in the framework of IRL by representing the grid
world as a deterministic, finite horizon Markov decision process 〈S,A, P,R, T 〉, where
the state space S, action space A, and transition probabilities P are as described
in the previous paragraph, and T is the time horizon (T = 11 for this problem).
The reward function R(s, a) is assumed to have a known component Rgoal(s, a) +
Rpath(s, a) and unknown component Runsafe(s, a), which is to be learned from the
demonstrations. Specifically, the path length aspect of the cost function is modeled
by a small negative reward upon reaching each state (see Figure 3.6(b)), Rgoal(s, a)
is zero except for a large positive reward obtained by taking the exit action at the
goal state (see Figure 3.6(c)), and we take the reward function to be of the form
R(s, a) = Rgoal(s, a) + Rpath(s, a) + Runsafe(s, a). One penalty function Runsafe(s, a)
which is consistent with the demonstration and the known reward function component
is shown in Figure 3.6(d) (here, the numerical labels on each state correspond to the
reward obtained when taking an action that reaches that state). This is because by
using this penalty, there exists no trajectory that achieves a larger cumulative reward
than the demonstration, under the combined reward function (Figure 3.6(e)).

However, using this learned penalty when starting from the bottom right state
leads to an optimal path which is unsafe (Figure 3.6(f)), as the learned penalty is
only consistent with the observed demonstrations but does not necessarily adequately
enforce the constraint starting from novel initial states. On the other hand, using our
method, by sampling lower-cost trajectories, we can learn that each state on the
middle row except for the leftmost state is guaranteed unsafe. Using this learned
constraint and planning a path starting from the bottom right state leads to a path
which avoids the unsafe set. Similarly, the learned penalty will not necessarily be
valid when changing the known component of the reward function (i.e., the goal
state) because the learned penalty values will depend on the values of the known
component, while the learned constraint is agnostic to the known component and will
transfer across different known reward functions, and unsafe paths can be planned
using the learned penalty (Figure 3.6(f)-(g)).

Overall, the key takeaways of this example are to show that representing a con-
straint as a reward penalty may lead to unsafe behavior when planning trajectories
from new start states or to new goal states, while explicitly learning the constraint
transfers more reliably across tasks.

3.5.2.2 Parametric example

Consider the problem illustrated in Figure 3.7, where the demonstrator’s objec-
tive is to minimize path length while avoiding the red obstacle and satisfying input
constraints: that is, the demonstrator solves Problem III.1, where the obstacle avoid-
ance constraint is encoded in the unsafe set A = {x | [I2×2,−I2×2]

⊤x ≤ θ}, where θ =

46

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 3.7: IRL comparison (parametric). Left: We are given two demonstrations
avoiding a red obstacle. Right: Paths planned with the cost penalty may be unsafe,
whereas trajectories planned with the learned constraint remain safe.

[2, 2, 2, 2]⊤ and the path length objective is encoded in cΠ(ξx, ξu) =
∑T−1

t=1 ‖xt+1−xt‖22.
We consider two variants of the inverse optimization problem: in the first variation,
we solve Problem III.7 to directly recover the parameters θ defining the unknown
constraint. In the second variation, we modify Problem III.1 to soften the obstacle
avoidance constraint to a cost penalty, posing the problem as:

minimize
ξx,ξu

T−1∑

t=1

‖xt+1 − xt‖22 + λ
T∑

t=1

1xt /∈S

s.t. φ̄(ξx, ξu) ∈ S̄ ⊆ C̄
φΠ(ξx, ξu) ∈ SΠ ⊆ CΠ

(3.17)

where the constraints encode the input and start/goal constraints, 1(·) denotes the
indicator function for the event (·), and λ is a nonnegative penalty coefficient. In this
variation of the learning problem, we assume that S is known, and we only aim to learn
a suitable penalty coefficient λ which makes the demonstrations globally-optimal. At
this point, we should also note that it can be challenging to determine a suitable cost
penalty parameterization; for example, while λ

∑T
t=1 ‖xt‖∞ may appear to be a good

penalty parameterization, we could not find a value of λ for this parameterization
that replicated the demonstrated behavior presented in Figure 3.7.

By solving Problem III.7 using the two provided demonstrations and sampled
lower-cost trajectories, θ can be learned exactly, and the guaranteed safe/unsafe sets
match with the true safe/unsafe sets (G¬s = A and Gs = S). On the other hand,
choosing λ = 0.15 in (3.17) is a sufficiently large penalty to make the solution of (3.17)
match with the demonstrations. However, like the example in Figure 3.6, planning
new trajectories from different start or goal states can lead to unsafe trajectories

47

-2 -1 0 1 2
-2

-1

0

1

2

1 2 3 4 5 6 7 8 9 10 11

0

0.002

0.004

0.006

0.008

0.01

0.012

-2 0 2
-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2
-2

-1

0

1

2

0 2 4 6

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

0

0.005

0.01

0.015

0.02

0 2 4 6
0

1

2

3

0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

1

2

3

0 2 4 6 8
0

2

4

6

8

1 2 3 4 5 6 7 8 9 101112131415
0

0.01

0.02

0.03

0.04

0 2 4 6 8
0

2

4

6

8

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8
0

2

4

6

8

Figure 3.8: Results for various dynamical systems and time discretization. Rows
(top-to-bottom): Single integrator; double integrator; Dubins’ car (CT). Columns
(left-to-right): Demonstrations are plotted together with the outline of the true
unsafe set A, and the learned guaranteed unsafe set Gz¬s is overlaid (the red cells);
mean squared error between the output of Problem III.4 or Problem III.5 and the
ground truth; Problem III.5 solution, using all demonstrations; Problem III.4 solution,
using all demonstrations.

under the learned cost function (see Figure 3.7, right). Furthermore, the notion of
guaranteed unsafeness of a state is not meaningful for the softened case, as states that
are avoided (“unsafe”) for one pair of start/goal states may be visited (“safe”) for a
different pair, provided it is less costly to receive a penalty for violating the constraint
compared to planning a higher-cost trajectory that satisfies the constraint.

3.5.3 Dynamics and discretization

Experiments in Fig. 3.8 show that our method can be applied to several types
of system dynamics, can learn non-convex/multiple unsafe sets, and can use con-
tinuous trajectories. All unsafe sets A are open sets. We solve Problems III.4
and III.5, with an energy function promoting smoothness by penalizing squared de-
viations of the occupancy of a grid cell zi from its 4-connected neighbors N(zi):∑G

i=1

∑
zj∈N(zi)

‖O(zi)−O(zj)‖22. In all experiments, the mean squared error (MSE)

is computed as 1
G

√∑G
i=1 ‖O(zi)∗ −O(zi)‖22, where O(zi)∗ is the ground truth occu-

pancy. The demonstrations are color-matched with their corresponding number on

48

the x-axis of the MSE plots. For experiments with more demonstrations, only those
causing a notable change in the MSE were color-coded. The learned guaranteed
unsafe states Gz¬s are colored red on the left column.

First, we recover a non-convex “U-shaped” unsafe set in the state space using
trivial 2D single-integrator dynamics: x = [χ, y]⊤, xt+1 = xt + ut, with control
constraints ‖ut‖ ≤ 0.5, for all t. The demonstrator minimizes c(ξx, ξu) =

∑T−1
t=1 ‖ut‖22.

The results are shown in row 1 of Fig. 3.8. The solutions to both Problems III.5 and
III.4 return reasonable results, and the solution of Problem III.4 achieves zero error.

The second row shows learning two polyhedral unsafe sets in the state space with
4D double integrator linear dynamics: x = [χ, χ̇, y, ẏ]⊤, where xt+1 = Axt + But,

where A = exp

(
diag

([
0 1
0 0

]
,

[
0 1
0 0

]))
, B =

1∫

0

exp(Aτ)dτ
[
0 1 0 1

]⊤
, with

control constraints |ut| ≤ [20, 10]⊤, for all t. The demonstrator minimizes c(ξx, ξu) =∑T−1
t=1 ‖xt+1 − xt‖22. The learning procedure yields similar results. We note the linear

interpolation of some demonstrations in row 1 and 2 enter A; this is because both
sets of dynamics are in discrete time and only the discrete waypoints must stay out
of A.

The third row shows learning a polyhedral unsafe set in the state space, with
time-discretized continuous, nonlinear Dubins’ car dynamics, which has a 3D state

x
.
=
[
χ y θ

]⊤
and dynamics ẋ = [cos(θ), sin(θ), u]⊤ with control constraints |u| ≤ 1.

The demonstrator minimizes c(ξx, ξu) =
∑

u τui
, where τui

is the total time duration
of applied control input (i.e., the time it took to go from start to goal). These dynam-
ics are more constrained than the previous cases, so sampling lower cost trajectories
becomes more difficult, but despite this we can still achieve near zero error solving
Problem III.4. Some over-approximation results from some sampled unsafe trajecto-
ries entering regions not covered by the safe trajectories, i.e., there are red guaranteed
learned unsafe cells outside the true unsafe set. For example, in the right column,
the two red blocks to the top left of A are generated by lower-cost trajectories that
trade off the increased cost of entering these grid cells by entering A. This phe-
nomenon is consistent with Theorem III.16; we recover a set that is contained within
a D∗ + R∗-padding of A (here, D∗ + R∗ = 8.2). Learning curve spikes occur when
over-approximation occurs.

Overall, we note that for the gridded case, Gz¬s tends to be a significant underap-
proximation of A due to the chosen cost function and limited demonstrations. For
example, in row 1 of Fig. 3.8, Gz¬s cannot contain the portion of A near long straight
edges, since there exists no shorter path going from any start to any goal with only
one state within that region. For row 3 of Fig. 3.8, we learn less of the bottom part
of A due to most demonstrations’ start and goal locations making it harder to sample
feasible control trajectories going through that region; with more demonstrations, this
issue becomes less pronounced. In Section 3.6.1, we discuss how using a constraint
parameterization can reduce the gap between Gz¬s and A.

49

0 5 10

62

64

66

68

1 2 3 4 5 6 7 8 9 10
0.015

0.02

0.025

0.03

0.035

0.04

0 5 10

62

64

66

68

70

0

0.2

0.4

0.6

0.8

1

Figure 3.9: Suboptimal demonstrations: left: setup, center: demonstrations, A,
Gz¬s, center-right: MSE, right: solution to Problem III.5.

3.5.4 Suboptimal human demonstrations

We demonstrate our method on suboptimal demonstrations collected via a driving
simulator, using a car model with CT Dubins’ car dynamics identical to those de-
scribed in Section 3.5.3. Human steering commands were recorded as demonstrations,
where the task was to navigate around the orange box and drive between the trees
(Fig. 3.9). For a demonstration of cost c, trajectories with cost less than 0.9c were
believed unsafe with probability 1. Trajectories with cost c′ in the interval [0.9c, c]
were believed unsafe with probability 1− ((c′− 0.9c)/0.1c). MSE for Problem III.5 is
shown in Fig. 3.9 (Problem III.4 is not solved since the probabilistic interpretation is
needed). For this problem, D∗ is 10 seconds and the unsafe set is grid-aligned; hence,
despite suboptimality, the learned guaranteed unsafe set is a subset of A(D∗). While
the MSE is highest here of all experiments, this is expected, as trajectories may be
incorrectly labeled safe/unsafe with some probability.

3.5.5 Feature space constraint

We demonstrate that our framework is not limited to the state space by learn-
ing a constraint in a feature space. Consider the scenario of planning a safe path
for a mobile robot with identical continuous Dubins’ car dynamics through hilly
terrain, where the magnitude of the terrain’s slope is given as a feature map (i.e.,
φ(x) = ‖∂L(x̂)/∂x̂‖2, where x̂ = [χ y]⊤ and L(x̂) is the elevation map). The robot
will slip if the magnitude of the terrain slope is too large, so we generate a demon-
stration which obeys the ground truth constraint φ(x) < 0.05; hence, the ground
truth unsafe set is A .

= {x | φ(x) ≥ 0.05}. From one safe trajectory (Fig. 3.10)
generated by RRT* (Karaman and Frazzoli (2010)) and gridding the feature space
as {0, 0.005, . . . , 0.145, 0.15}, we recover the constraint φ(x) < 0.05 exactly.

This example shows how using using a feature parameterization can benefit the
sample complexity of our method; in the next section, we show that by using a
parameterization, the constraint space gridding used so far can be eliminated to
improve our method’s scalability.

50

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

0
.0
5

0.05

0.05

0.05

0
.0
5

0.
05

0
.0
5

0
.0
5

0
.1

0.1

0
.1

0
.1

0
.1

0
.1

0
.1

0
.1

0
.1
5

0.15

0
.1
5

0
.1
5

0
.1
5

0
.1
5

0
.1
5

0
.1
5

0
.2

0.2

0
.2

0
.2

0.
2

0.
2

0
.2

0.250
.2
5

0
.2
5

0
.2
5

0
.2
5

0
.3

0
.3

0.
3

0.3

Figure 3.10: Feature space constraint recovery. Unsafe set in the constraint space A
is plotted in orange. The single demonstration is overlaid (red: start, green: goal).
Terrain isocontours L(x) = const are overlaid.

3.6 Evaluations: Parametric

We evaluate the parametric variant of our method on a variety of constraint recov-
ery problems in this section. In particular, we provide examples showing the effect of
using a constraint parameterization on sample complexity and guaranteed learnabil-
ity (Section 3.6.1), the performance of an unknown constraint representation (Section
3.6.2), that our method can be applied to learn a high-dimensional pose constraint
(Section 3.6.3), a constraint demonstrated on high-dimensional quadrotor dynamics
(Section 3.6.3), and a constraint demonstrated on black-box dynamics (Section 3.6.4).

3.6.1 Comparison to gridded formulation

To demonstrate the advantages provided by assuming a parameterization, we repli-
cate the experiment in the first row of Figure 3.8, assuming that A can be represented
as the union of three axis-aligned boxes. The results are displayed in Figure 3.11.
Here, the same grid points are queried for guaranteed safeness or unsafeness as de-
scribed in Section 3.3.5.

51

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3.11: Replicating row 1 of Figure 3.8 using a three-box parameterization.
Left: G¬s is shaded in red and Gs is shaded in green. Demonstrations are overlaid
and color-coded to match with row 1 of Figure 3.8. Right: Recovered constraint
using a variant of Problem III.7.

Compared to the gridded approach, the true unsafe set can be exactly recovered
with just six of the original eleven demonstrations (demonstrations 1-5 and 8 in row 1
of Figure 3.8). This improved sample complexity arises from the fact that our method
can extrapolate that some unseen states are safe or unsafe using the parameterization.
On the contrary, in the gridded formulation, each grid cell is independent and learning
that some cell is unsafe can never imply that another cell is unsafe; only learning that
a cell is safe can imply that another cell is unsafe.

Note that compared to Figure 3.8, a non-trivial Gs containing states not explicitly
covered by demonstrations can now be recovered. Furthermore, G¬s covers a larger
fraction of the true unsafe set than compared to the gridded approach. As just dis-
cussed, this arises from the fact that given the parameterization and some guaranteed
unsafe states, other states can be implied unsafe. As a result, G¬s expands to include
the set of states which must be unsafe to be compatible with the safe and unsafe
trajectories and the parameterization as well.

3.6.2 Unknown parameterization

U-shape: We first present a kinematic 2D example where a U-shape A is to
be learned, but the number of simple unsafe sets needed to represent A (three) is
unknown. In Row 1, Column 1 of Fig. 3.12, we outline A in black and overlay G¬s,
Gs, and the six provided demonstrations, synthetically generated via trajectory op-
timization. We note that due to the chosen control constraints and U-shape, there
are parts of A (a subset of the white region in Fig. 3.12, Row 1, Column 1) which
cannot be implied unsafe by sampled unsafe trajectories and the parameterization
(see Theorem III.19). As a result, G¬s may not fully cover A, even with more demon-

52

-2 -1 0 1 2

-2

-1

0

1

2

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

0.7

0.75

0.8

0.85

0.9

0.95

1

-2 -1 0 1 2

-2

-1

0

1

2

-4 -2 0 2

-3

-2

-1

0

1

2

3

1 2 3 4

0

0.2

0.4

0.6

0.8

1

1 2 3 4

0

0.2

0.4

0.6

0.8

1

1 2 3 4

0.7

0.75

0.8

0.85

0.9

0.95

1

-4 -2 0 2

-3

-2

-1

0

1

2

3

Figure 3.12: Unknown parameterization. Col. 1: Red: G¬s; Green: Gs. Demonstrations
are overlaid. Col. 2: Coverage of A and S with a grid representation. In this (and all
later examples), the demonstrations are color-coded with x-axis. Col. 3: Coverage of A
and S with our method. Col. 4: Classification accuracy (dotted: average NN accuracy,
shaded: range of NN accuracies over 10 random seeds). Col. 5: Recovered constraint with
multi-polytope variant of Problem III.7.

strations (Fig. 3.12, Row 1, Column 3). Note that the decrease in coverage4 at the
third demonstration is due to a increase from a two-box parameterization to a three-
box parameterization. Likewise, the accuracy5 decreases at the second demonstration
due to over-approximation of A with two boxes (Fig. 3.12, Row 1, Column 4), but
this over-approximation vanishes when switching to the three-box parameterization
(which is exact; hence Gs and G¬s are guaranteed conservative, cf. Theorem III.21).
The grid-based method always has perfect accuracy, since it does not extrapolate
beyond the observed trajectories. However, as a result of that, it also yields low
coverage (Fig. 3.12, Row 1, Column 2). The NN baseline achieves lower accuracy for
the unsafe set as it misclassifies some corners of the U. Recovering a feasible θ using a
multi-box variant of Problem III.7 recovers A exactly (Fig. 3.12, Row 1, Column 5).
Finally, we note that in this (and future) examples, demonstrations were specifically
chosen to be informative about the constraint. We present a version of this example
in Appendix A.2 with random demonstrations and show that the constraint is still
learned (albeit needing more demonstrations).

Infinite boxes: To show that our method can still learn a constraint that cannot
be easily expressed using a chosen parameterization, we limit our parameterization
to an unknown number of axis-aligned boxes and attempt to learn a diagonal “I”
unsafe set (see Fig. 3.12, Row 2). This is a particularly difficult example, since an

4Coverage is measured as the intersection over union (IoU) of the relevant sets (see legends for
exact formula).

5In all experiments, computed accuracies are: IP (safe) = Vol(Gs ∩ S)/Vol(Gs), IP (unsafe)
= Vol(G¬s ∩ A)/Vol(G¬s), NN (safe) = (

∑q

i=1 I(xi∈S)∧(NN classified xi as safe))/
∑q

i=1 Ixi∈S , NN (un-
safe) = (

∑q

i=1 I(xi∈A)∧(NN classified xi as unsafe)/
∑q

i=1 Ixi∈A, where x1, . . . , xq are query states sam-
pled from G¬s ∪ Gs and I(·) is the indicator function. Note that NN accuracy is computed only on
(Gs ∪ G¬s) ⊆ C.

53

infinite number of axis-aligned boxes will be needed to recover A exactly. However,
for finite data, only a finite number of boxes will be needed; in particular, for 1,
2, 3, and 4 demonstrations (which are synthetically generated assuming kinematic
system constraints), 3, 5, 6, and 6 boxes are required to generate a parameterization
consistent with the data (see Fig. 3.12, Row 2, Column 1). Also overlaid in Fig. 3.12,
Row 2, Column 1 are G¬s and Gs, which are approximated by solving Problem III.6
for randomly sampled κcenter. Compared to the gridded formulation (see Fig. 3.12,
Row 2, Column 3), Gs and G¬s cover S and A far better due to the parameterization
enabling the IP to extrapolate more from the demonstrations. Furthermore, we note
that while the gridded case has perfect accuracy for the safe set, it does not for
the unsafe set, due to grid alignment. Overall, the multi-box variant of Problem
III.7 recovers A well (Fig. 3.12, Row 2, Column 5), and the remaining gap can be
improved with more data. Last, we note that the NN baseline reaches comparable
accuracies here (Fig. 3.12, Row 2, Column 4), since our method suffers from a few
disadvantages for this particular example. First, attempting to represent the “I”
with a finite number of boxes introduces a modeling bias that the NN does not have.
Second, since the system is kinematic and the constraint is low-dimensional, many
unsafe trajectories can be sampled, providing good coverage of the unsafe set. We
show later that for higher dimensional constraints/systems with highly constrained
dynamics, it becomes difficult to gather enough data for the NN to perform well.

3.6.3 High-dimensional examples

6D pose constraint for a 7-DOF robot arm: In this example, we learn a
6D hyper-rectangular pose constraint for the end effector of a 7-DOF Kuka iiwa arm.
One such setting is when the robot is to bring a cup to a human while ensuring
its contents do not spill (angle constraint) and proxemics constraints (i.e., the end
effector never gets too close to the human) are satisfied (position constraint). We
examine this problem for the cases of optimal and suboptimal demonstrations.

Demonstration setup: The end effector orientation (parametrized in Euler angles)
and position are constrained to satisfy (α, β, γ) ∈ [α, ᾱ]× [β, β̄]× [γ, γ̄] and (x, y, z) ∈
[x, x̄]× [y, ȳ]× [z, z̄] (see Fig. 3.13, Column 1). For the optimal case, we synthetically
generate seven demonstrations minimizing joint-space trajectory length. For the sub-
optimal case, five suboptimal continuous-time demonstrations approximately optimiz-
ing joint-space trajectory length are recorded in a virtual reality environment, where
a human demonstrator moves the arm from desired start to goal end effector config-
urations using an HTC Vive (see Fig. A.7). The demonstrations are time-discretized
for lower-cost trajectory sampling. In both cases, the constraint is recovered with
Problem III.7, where H(θ) = [I,−I]⊤ and h(θ) = θ = [x̄, ȳ, z̄, ᾱ, β̄, γ̄, x, y, z, α, β, γ]⊤.
For the suboptimal case, slack variables are added to ensure feasibility of Problem
III.7, and for a suboptimal demonstration of cost ĉ, we only use trajectories of cost
less than 0.9ĉ as unsafe trajectories.

Results : The coverage plots (Fig. 3.13, Rows 1 and 3, Col. 2) show that as
the number of demonstrations increases, Gs/G¬s approach the true safe/unsafe sets

54

-0.02

0

20.02

0.02

00
-0.02 -2

1 2 3 4 5 6 7

0

0.5

1

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

-2 0 2

-0.04

-0.02

0

0.02

0.04

-0.02 0 0.02

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.5

1 0.5

0

0.5

0.5

0
0

-0.5

-0.03

-0.02

-0.01

0

0.01

0.02

0.02
0 2

0-0.02 -2

-0.1

0

0.1

0.1
20 0-0.1 -2

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

-2 0 2

-0.15

-0.1

-0.05

0

0.05

0.1

-0.1 0 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

-0.5

0.5

0

1
0

0.5

0.5

0 -0.5

-0.15

-0.1

-0.05

0

0.05

2

0.1

0.1
00

-2-0.1

Figure 3.13: Rows 1:2: 7-DOF arm, optimal demonstrations Col. 1: Experimental
setup. Gray boxes are projections of A. Projections of demonstrations in position/angle
space are overlaid. Col. 2: Top: Comparing safe/unsafe set coverage as a function of
demonstrations. Bottom: Prediction accuracy. Cols. 3-4: projections of Ĝ¬s using all
demonstrations. For the optimal case, the red boxes over-approximate the blue boxes, as
the complement of Ĝ¬s (not Ĝ¬s itself) is plotted. Col. 5: projections of Gs using all
demonstrations. Rows 3:4: Same for 7-DOF arm, suboptimal demonstrations.

55

5
-0.01

-0.005

0

0.005

0.01

5

10
-3

0

10
-3

0 -5 -5

Figure 3.14: Left: Known unsafe set in (x, y, z) (red); (x, y, z) components of demonstra-
tions are overlaid. Right: Unknown unsafe set in (α̇, β̇, γ̇) (gray); (α̇, β̇, γ̇) components of
demonstrations are overlaid.

S/A 6. For the suboptimal case, the low IoU values for lower numbers of demonstra-
tions is due to overapproximation of the unsafe set in the α component (arising from
continuous-time discretization and imperfect knowledge of the suboptimality bound);
the fifth demonstration, where α takes values near −π, π greatly reduces this over-
approximation. The accuracy plots (Fig. 3.13, Rows 2 and 4, Col. 2) present results
consistent with the theory: for the optimal case, all constraint states in Gs and G¬s
are truly safe and unsafe (Theorem III.21), and the small over-approximation for the
suboptimal case is consistent with the continuous-time conservativeness (Theorem
III.22). Note that the NN accuracy is lower and can oscillate with demonstrations,
since it finds just a single constraint which is approximately consistent with the data,
while our method classifies safety by consulting all possible constraints which are ex-
actly consistent with the data, thus performing more consistently. The NN performs
better on the suboptimal case than it does on the optimal case, as more unsafe tra-
jectories are sampled due to the suboptimality, improving coverage of the unsafe set.
The projections of Ĝc¬s (Fig. 3.13, Cols. 3-4, in red), where Ĝ¬s ⊆ G¬s is obtained us-
ing the method in Section 3.3.5.1, are compared to the safe set (blue outline), showing
that the two match nearly exactly (though the gap for the suboptimal case is larger),
and the gap can be likely reduced with more demonstrations. The projections of Gs
(Fig. 3.13, Col. 5) match exactly with A for the optimal case (true safe set is outlined
in blue) and match closely for the suboptimal case. Note that Gs ⊆ S, as is the case
for all axis-aligned box parameterizations.

3D constraint for 12D quadrotor model: We learn a 3D box angular velocity
constraint for a quadrotor with discrete-time 12D dynamics (see Appendix A.3 for
details). In this scenario, the quadrotor must avoid an a priori known unsafe set
in position space while also ensuring that angular velocities are below a threshold:

6For the unsafe sets, the IoUs are computed between Gc¬s and Ac, as in high dimensions, the IoU
changes more smoothly for the complements than the IoU between G¬s and A, so we plot the the
former for visual clarity.

56

1 2

0

0.2

0.4

0.6

0.8

1

1 2

0

0.2

0.4

0.6

0.8

1

-5 0 5

10
-3

-5

0

5

10
-3

-5 0 5

10
-3

-5

0

5

10
-3

-5

5

0

10
-3

5

5

10
-3

0

10
-3

0 -5-5

Figure 3.15: Constraint recovery for a 12D quadrotor. Col. 1: Coverage of A and S. Col.
2: Classification error between Gs/S and G¬s/A. Cols. 3-4: Ĝ¬s using all demonstrations.
Col. 5: Gs using all demonstrations.

1.25 1.3 1.35 1.4

0.75

0.8

0.85

0.9

1 2

0

0.2

0.4

0.6

0.8

1

1 2

0

0.5

1

1 2
0

0.5

1

1.1 1.2 1.3 1.4 1.5

0.7

0.8

0.9

1

Figure 3.16: Constraint recovery without closed-form dynamics. Cols. 1-2: Setup (unsafe
set in red) and demonstrations (unsafe set in gray). Cols. 3-4: Coverage of A and S;
classification accuracy. Col. 5: G¬s / Gs using all demonstrations.

(α̇, β̇, γ̇) ∈ [α̇, ¯̇α] × [β̇, ¯̇β] × [γ̇, ¯̇γ]. The (α̇, β̇, γ̇) safe set is to be inferred from two
demonstrations (see Fig. 3.14). The constraint is recovered with Problem III.7,

where H(θ) = [I,−I]⊤ and h(θ) = θ = [¯̇α, ¯̇β, ¯̇γ, α̇, β̇, γ̇]⊤. Fig. 3.15 shows that with
more demonstrations, Gs approaches the true safe set S and G¬s approaches the true
unsafe set A, respectively. Consistent with Theorem III.21, our method has perfect
accuracy in G¬s and Gs. Here, the NN struggles more compared to the arm examples
since due to the more constrained dynamics, fewer unsafe trajectories can be sampled,
and a parameterization needs to be leveraged in order to say more about the unsafe
set. The remaining columns of Fig. 3.15 show that we recover G¬s and Gs exactly
(the true safe set is outlined in blue).

3.6.4 Planar pushing example

In this section, using the FetchPush-v1 environment in OpenAI Gym Plappert
et al. (2018), we aim to learn a 2D box unsafe set on the center-of-mass (CoM) of
a block pushed by the Fetch arm (see Fig. 3.16) using two demonstrations. Here,
the dynamics of the block CoM are not known in closed form, but rollouts can still
be sampled using the simulator. Since the block CoM is highly underactuated, it is
not possible to sample short sub-trajectories. Thus, without leveraging a parame-
terization, the constraint recovery problem is very ill-posed. Furthermore, while our
method can explicitly consider the unsafeness in longer unsafe trajectories (at least
one state is unsafe), the NN struggles with this example as it fails to accurately model
that fact. Overall, Fig. 3.16 presents that G¬s/Gs match up well with A/S, and our
classification accuracy for safeness/unsafeness is perfect across demonstrations.

57

3.7 Discussion

In this section, we summarize the main takeaways from the theoretical analysis
and experiments:
Learnability of unsafe states: When gridding the constraint space, only grid cells
that lie within some distance to the boundary of the unsafe set can be learned guar-
anteed unsafe. For discrete time systems, this distance is the maximum distance the
system can travel in one time-step (see Theorem III.9); for continuous systems, with-
out time discretization, only the boundary of the unsafe set can be learned guaranteed
unsafe (see Theorem III.10). This is reflected in the first row of Figure 3.8, where
cells further from the boundary of the unsafe set are not learned guaranteed unsafe.
However, when leveraging a constraint parameterization, the set of constraint states
that can be learned guaranteed unsafe expands to states which can be implied unsafe
by states within some distance to the boundary and the parameterization (Theorem
III.19). This can be seen in all the high-dimensional examples (Section 3.6.3), where
states deep in the unsafe set can be learned guaranteed unsafe.
Learnability of safe states: When gridding the constraint space, due to the in-
dependence of grid cells (i.e., learning that some cell is guaranteed unsafe can never
imply that a different cell is guaranteed safe), the only cells that can be learned
guaranteed safe are those visited by demonstrations. However, when using a param-
eterization, learning that certain states are unsafe can imply that other states must
be safe, under the assumption that the true constraint can be represented with the
given parametrization (see Figure 3.3 and the examples in Section 3.6.3).
Conservativeness of guaranteed learned unsafe states: When gridding the
constraint space, under assumptions on alignment of the grid with the unsafe set and
discretization frequency, the set of guaranteed learned unsafe states is conservative
(see Theorems III.15 and III.16). This is demonstrated in the results (Figure 3.8,
rows 1 and 2). When these assumptions do not hold, the set of guaranteed learned
unsafe states is contained within a padded version of the true unsafe set (see Figure
3.8, row 3, and Figure 3.9 for examples where overapproximation occurs due to the
time-discretization chosen). When using a parameterization, the set of guaranteed
learned unsafe states is conservative for discrete time systems (see Theorem III.21)
and is conservative within a padded version of the true unsafe set for continuous
time systems (see Corollary III.22). Examples of this conservativeness are shown in
Figures 3.13, Rows 1-2 and 3.15, and an example where overapproximation occurs
due to continuous dynamics is shown in Figure 3.13, Rows 3-4.
Limitations: Some limitations of our method are as follows:

• Sampling lower-cost trajectories can be slow for systems where the set of lower-
cost trajectories satisfying the known constraints, T ξ∗xu

A , is “thin”. For these
cases, hit-and-run sampling can be forced to take very small steps at each
iteration, reducing the spread of samples inside T ξ∗xu

A . This tends to happen
when the dynamics are highly constrained. In future work, we will investigate
more efficient sampling techniques for when T ξ∗xu

A takes a specific form.

• While we want the set of guaranteed learned (un)safe states to be a conservative

58

estimate, the level of conservativeness may be high. Excessive conservativeness
can be mitigated for the parametric case by obtaining the set of constraint pa-
rameters which are consistent with the demonstrations and computing a prob-
abilistic measure of how (un)safe a given state is based on how many consistent
parameters mark it as (un)safe, as is proposed in Chapter VII.

• While our method is resilient to suboptimal demonstrations within a known
bound of the globally-optimal cost, it lacks guarantees for locally-optimal demon-
strations. An alternative approach using the Karush-Kahn-Tucker optimality
conditions is described in Chapter IV, which enables constraint learning from
locally-optimal demonstrations. Another method Knuth et al. (2021b) has been
developed to handle demonstrations with large suboptimality bound, where the
suboptimality arises from visual occlusions that limit the demonstrators’ knowl-
edge about the environment and thus their ability to plan optimally.

3.8 Conclusion

In this chapter we propose an algorithm that learns constraints from demonstra-
tions, which acts as a complementary method to IOC/IRL algorithms. We analyze
the properties of our algorithm as well as the theoretical limits of what subset of a
safe set and an unsafe set can be learned from only safe demonstrations. The method
works well on a variety of high-dimensional system dynamics and can be adapted to
work with suboptimal demonstrations. We develop two variants of our algorithm to
learn constraints with various amounts of structure: a gridded version which assumes
no constraint structure but scales exponentially with constraint dimension, and a
parametric version which assumes known parametric constraint structure and scales
gracefully to high dimensional constraint spaces. We further show that our method
can also learn constraints in a feature space.

59

CHAPTER IV

Learning Constraints from Locally-Optimal

Demonstrations

In this chapter, we present an algorithm for learning parametric constraints from
locally-optimal demonstrations, where the cost function being optimized is uncer-
tain to the learner. Our method uses the Karush-Kuhn-Tucker (KKT) optimality
conditions of the demonstrations within a mixed integer linear program (MILP) to
learn constraints which are consistent with the local optimality of the demonstrations,
by either using a known constraint parameterization or by incrementally growing a
parameterization that is consistent with the demonstrations. We provide theoreti-
cal guarantees on the conservativeness of the recovered safe/unsafe sets and analyze
the limits of constraint learnability when using locally-optimal demonstrations. We
evaluate our method on high-dimensional constraints and systems by learning con-
straints for 7-DOF arm and quadrotor examples, show that it outperforms competing
constraint-learning approaches, and can be effectively used to plan new constraint-
satisfying trajectories in the environment. This chapter is based off of the paper Chou
et al. (2020b).

4.1 Introduction

Initial work in Chapter III has taken steps towards identifying constraints from
approximately globally-optimal expert demonstrations, assuming that the demon-
strator’s cost function is known exactly. However, as humans are not always experts
at performing a task, requiring them to provide demonstrations which are nearly
globally-optimal can be unreasonable. Furthermore, it is rare for the cost function
being optimized to be known exactly by the learner. To address these shortcomings,
we consider the problem of learning parametric constraints shared across tasks from
approximately locally-optimal demonstrations under parametric cost function uncer-
tainty. Our method is based on the insight that locally-optimal, constraint-satisfying
demonstrations satisfy the Karush-Kuhn-Tucker (KKT) optimality conditions, which
are first-order necessary conditions for local optimality of a solution to a constrained
discrete-time optimal control problem. We solve a mixed integer linear program
(MILP) to recover constraint and cost function parameters which make the demon-
strations locally-optimal. We make the following specific contributions in this chapter:

60

• We develop a novel algorithm for learning parametric, potentially non-convex
constraints from approximately locally-optimal demonstrations, where the pa-
rameterization can either be provided or grown incrementally to be consistent
with the data. The method can extract volumes of safe/unsafe states (states
which satisfy/do not satisfy the constraints) for future guaranteed safe planning
and enable planners to query states for safety.

• Our method can learn constraints despite uncertainty in the cost function and
can also recover a cost function jointly with the constraint.

• Under mild assumptions, we prove that our method recovers guaranteed con-
servativeness estimates (that is, inner approximations) of the true safe/unsafe
sets, and analyze the learnability of a constraint from locally-optimal compared
to globally-optimal demonstrations.

• We evaluate our method on difficult constraint learning problems in high-
dimensional constraint spaces (23 dimensions) on systems with complex nonlin-
ear dynamics and demonstrate that our method outperforms previous methods
for parametric constraint inference (Chou et al. (2018a, 2019), Chapter III).

4.2 Preliminaries and Problem Setup

We consider discrete-time nonlinear systems xt+1 = f(xt, ut, t), x ∈ X and u ∈ U ,
performing tasks Π, which are represented as constrained optimization problems over
state/control trajectories ξxu

.
= (ξx, ξu):

Problem IV.1 (Forward problem / “task” Π).

minimize
ξxu

c(ξxu, γ)

subject to φ(ξxu) ∈ S(θ) ⊆ C
φ̄(ξxu) ∈ S̄ ⊆ C̄
φΠ(ξxu) ∈ SΠ ⊆ CΠ

(4.1)

where c(·, γ) is a potentially non-convex cost function, parameterized by γ ∈ Γ.
In Sec. 4.3.1 to 4.3.3, we assume that γ is known (through possibly inaccurate prior
knowledge) for clarity; we later relax this assumption and discuss how to learn γ from
the demonstrations. Further, φ(·) is a known mapping from state-control trajectories
to a constraint space C, elements of which are referred to as constraint states κ ∈ C.
Mappings φ̄(·) and φΠ(·) are known and map to constraint spaces C̄ and CΠ, containing
a known shared safe set S̄ and a known task-dependent safe set SΠ, respectively. In
this chapter, we encode the system dynamics in S̄ and start/goal constraints in SΠ.
Grouping the constraints of Problem IV.1 as equality/inequality (eq/ineq) constraints

61

and known/unknown (k/¬k) constraints, we can write:

hi,k(ξxu) = 0, i = 1, ..., N eq
k ⇔ hk(ξxu) = 0

gi,k(ξxu) ≤ 0, i = 1, ..., N ineq
k ⇔ gk(ξxu) ≤ 0

gi,¬k(ξxu, θ) ≤ 0, i = 1, ..., N ineq
¬k ⇔ g¬k(ξxu, θ) ≤ 0

(4.2)

where hk(ξxu) ∈ RNeq
k , gk(ξxu) ∈ RN ineq

k , and g¬k(ξxu, θ) ∈ RN ineq
¬k . Note that unknown

equality constraints h¬k(ξxu, θ) = 0 can be written equivalently as h¬k(ξxu, θ) ≤
0,−h¬k(ξxu, θ) ≤ 0. As shorthand, let g(κ, θ)

.
= maxi∈{1,...,N ineq

¬k
}

(
gi,¬k(κ, θ)

)
. We now

define

S(θ) .= {κ ∈ C | g(κ, θ) ≤ 0} (4.3)

A(θ) .= S(θ)c = {κ ∈ C | g(κ, θ) > 0)} (4.4)

as an unknown safe/unsafe set defined by unknown parameter θ ∈ Θ, for possibly
unknown parameterizations gi,¬k(·, ·). Last, we restrict Γ and Θ to be unions of
polytopes.

Intuitively, a trajectory ξxu is locally-optimal if all trajectories within a neighbor-
hood of ξxu have cost greater than or equal to c(ξxu). More precisely, for a trajectory
to be locally-optimal, it necessarily satisfies the KKT conditions Boyd and Vanden-
berghe (2004). We define a demonstration ξloc as a state-control trajectory which
we assume approximately solves Problem IV.1 to local optimality, i.e., it satisfies all
constraints and is in the neighborhood of a local optimum.

Our goal is to recover the safe set S(θ) and unsafe set A(θ), given Ns demonstra-
tions {ξlocj }Ns

j=1, known shared safe set S̄, and task-dependent constraints SΠ. As a
byproduct, our method can also recover unknown cost parameters γ.

4.3 Method

We detail our constraint-learning algorithm. First, we formulate the general KKT-
based constraint recovery problem (Sec. 4.3.1) and then develop specific optimiza-
tion problems for the cases where the constraint is defined as a union of offset-
parameterized (Sec. 4.3.2) or affinely-parameterized constraints (Sec. 4.3.4). We
show how to extract guaranteed safe/unsafe states (Sec. 4.3.3), handle unknown
constraint parameterizations (Sec. 4.3.5), and handle cost function uncertainty (Sec.
4.3.6). In closing, we show how our method can be used within a planner to guarantee
safety (Sec. 4.3.7).

4.3.1 Constraint recovery via the KKT conditions

Recall that the KKT conditions are necessary conditions for local optimality of a
solution of a constrained optimization problem Boyd and Vandenberghe (2004). For
constraints (4.2) and Lagrange multipliers λ and ν, the KKT conditions for the jth
locally-optimal demonstration ξlocj , denoted KKT(ξlocj), are:

62

Primal feasibility: hk(ξ
loc
j) = 0, (4.5a)

gk(ξ
loc
j) ≤ 0, (4.5b)

g¬k(ξ
loc
j , θ) ≤ 0, (4.5c)

Lagrange mult. λj
i,k ≥ 0, i = 1, ..., N ineq

k ⇔ λ
j
k ≥ 0 (4.5d)

nonnegativity: λj
i,¬k ≥ 0, i = 1, ..., N ineq

¬k ⇔ λ
j
¬k ≥ 0 (4.5e)

Complementary λ
j
k ⊙ gk(ξ

loc
j) = 0 (4.5f)

slackness: λ
j
¬k ⊙ g¬k(ξ

loc
j , θ) = 0 (4.5g)

Stationarity: ∇ξxucΠ(ξ
loc
j) + λ

j
k
⊤∇ξxugk(ξ

loc
j)

+ λ
j
¬k
⊤∇ξxug¬k(ξ

loc
j , θ) (4.5h)

+ ν
j
k
⊤∇ξxuhk(ξ

loc
j) = 0

where ∇ξxu(·) takes the gradient with respect to a flattened trajectory ξxu and ⊙
denotes elementwise multiplication. For compactness, we vectorize the multipliers

λ
j
k ∈ RN ineq

k , λj
¬k ∈ RN ineq

¬k , and ν
j
k ∈ RN ineq

k . We drop the γ dependency, as the cost is
assumed known for now, as well as (4.5a)-(4.5b), as they involve no decision variables.
Then, finding a constraint consistent with the local optimality conditions of the Ns

demonstrations amounts to finding a constraint parameter θ which satisfies the KKT
conditions for each demonstration. That is, we can solve the following feasibility
problem:

Problem IV.2 (KKT inverse, locally-optimal).

find θ,λj
k,λ

j
¬k,ν

j
k, j = 1, ..., Ns

s.t. {KKT(ξlocj)}Ns

j=1

(4.6)

Further, to address suboptimality (i.e., approximate local-optimality) in the demon-
strations, we can relax the stationarity (4.5h) and complementary slackness con-
straints (4.5f)-(4.5g) and place corresponding penalties into the objective function:

Problem IV.3 (KKT inverse, suboptimal).

minimize
θ,λj

k
,λj

¬k
,νj

k

Ns∑

j=1

(
‖stat(ξdemj)‖1 + ‖comp(ξdemj)‖1

)

subject to (4.5c)− (4.5e), ∀ξdemj , j = 1, . . . , Ns

(4.7)

where stat(ξdemj) denotes the LHS of Eq. (4.5h) and comp(ξdemj) denotes the concate-
nated LHSs of Eqs. (4.5f) and (4.5g).

Denote the projection of the feasible set of Problem IV.2 onto Θ as F . We define
the set of learned guaranteed safe/unsafe constraint states as Gs/G¬s, respectively. For
Problem IV.2, a constraint state κ is learned guaranteed safe/unsafe if κ is marked
safe/unsafe for all θ ∈ F . Formally, we have:

63

Gs .=
⋂

θ∈F

{κ | g(κ, θ) ≤ 0} (4.8)

G¬s .=
⋂

θ∈F

{κ | g(κ, θ) > 0} (4.9)

We now formulate variants of Problem IV.2 which are efficiently solvable for spe-
cific constraint parameterizations. For legibility, we describe the method assuming
C = X and φ(·) is the identity. Due to the bilinearity between decision variables in
Problems IV.2 and IV.3 for some parameterizations, we describe exact (Sec. 4.3.2)
and relaxed (Sec. 4.3.4) formulations for recovering the unknown parameters.

4.3.2 Unions of offset-parameterized constraints

Consider when Problem IV.1 involves avoiding an unsafe set A(θ) described by the
union and intersection of offset-parameterized half-spaces (i.e., θ does not multiply
κ):

A(θ) =
Nc⋃

m=1

Nm
c⋂

n=1

{κ | a⊤m,nκ < bm,n(θ)} (4.10)

This parameterization can represent any arbitrarily-shaped unsafe set if Nc is
sufficiently large (i.e., as a union of polytopes) Tao (2016), though in practice our
method may not be efficient for large Nc. We will often use the specific case of unions
of axis-aligned Nm

c -dimensional hyper-rectangles,

A(θ) =
Nc⋃

m=1

Nm
c⋂

n=1

{κ | κ < θ
m

n ,−κ < −θmn }, (4.11)

where θ
m

n /θ
m
n are the upper/lower extents of dimension n of box m. We now modify

the KKT conditions to handle the “or” constraints in (4.10). Primal feasibility (4.5c)
changes to

∀κ ∈ ξdemj , ∀m = 1, ..., Nc,

Nm
c∨

n=1

(
a⊤m,nκ ≥ bm,n(θ)

)
, (4.12)

which can be implemented using the big-M formulation Bertsimas and Tsitsiklis
(1997):

∀κ, ∀m,A⊤
mκ ≥ bm(θ)−M(1− zj,κm),

∑Nm
c

n=1 z
j,κ
m (n) ≥ 1, (4.13)

where M is a large positive number, Am ∈ RNm
c ×|κ| and bm ∈ RNm

c are the vertical
concatenation of am,n and bm,n for all n, zj,κm ∈ {0, 1}N

m
c are binary variables encoding

that at least one half-space constraint must hold, and zj,κm (n) is the nth entry of
zj,κm . For demonstration ξdemj to be locally-optimal, we know that for each κ ∈ ξdemj ,

the complementary slackness condition, λj,κ(m,n),¬k(a
⊤
m,nκ − bm,n(θ)) = 0, must hold

for at least one n and for all m in Eq. (4.12). Furthermore, in the stationarity
condition (4.5h), λj,κ(m,n),¬k∇κg(m,n),¬k(ξ

loc
j , θ) terms should only be included for (m,n)

pairs where the complementary slackness condition is enforced. Thus, we can enforce

64

that λj,κ(m,n),¬k(a
⊤
m,nκ− bm,n(θ)) = 0 holds for all κ ∈ ξdemj , for all m ∈ {1, ..., Nc}, and

for some n ∈ {1, ..., Nm
c } by writing:

∀κ,m,

[
λ
j,κ
m,¬k

A⊤
mκ− bm(θ)

]
≤M

[
zj,κm,1
zj,κm,2

]
, zj,κm,1 + zj,κm,2 ≤ 2− qj,κm ,

∑Nm

c

n=1 q
j,κ
m (n) ≥ 1, zj,κm,1, zj,κm,2, qj,κm ∈ {0, 1}N

m

c

(4.14)

together with (4.5d) and (4.5e), where we use a big-M formulation with binary vari-
ables z (encoding the complementary slackness condition) and q (encoding if the
complementary slackness condition is being enforced). We have denoted ηj,κ

m
.
=

[ηj,κ(m,1), . . . , η
j,κ
(m,Nm

c)]
⊤ for η ∈ {λ, z, q}. Next, we modify line 2 of constraint (4.5h)

to enforce:
Nc∑

m=1

[
(λj,κm,¬k ⊙ qj,κm)⊤∇κ(bn(θ)−A⊤

mκ)
] .
=

Nc∑

m=1

qj,κm
⊤
Lj,κm (4.15)

for all κ ∈ ξdemj , where the (i, n)-th entry of Lj,κ
m ∈ RNm

c ×|κ|, Lj,κ
m (i, n), refers to

λj,κ(m,n),¬k∇κ(i)(bm,n(θ) − a⊤m,nκ). Note that λ (continuous variables) and q (binary

variables) are bilinear (∇κ(bm,n(θ) − a⊤m,nκ) has no decision variables as θ does not

multiply κ). By assuming bounds M ≤ Lj,κ
m (i, n) ≤ M , this can be reformulated

exactly in a linear fashion (i.e., linearized) Liberti and Pantelides (2006) by replacing
each bilinear product qj,κ

m (n)Lj,κ
m (i, n) in (4.15) with slack variables Rj,κ

m (i, n) and
adding constraints (where q̃j,κ

m (n)
.
= (1− qj,κ

m (n) for short):

min(0,M) ≤ Rj,κ
m (i, n) ≤M

Mqj,κm (n) ≤ Rj,κ
m (i, n) ≤Mqj,κm (n)

Lj,κm (i, n)− q̃j,κm (n)M ≤ Rj,κ
m (i, n) ≤ Lj,κm (i, n)− q̃j,κm (n)M

Rj,κ
m (i, n) ≤ Lj,κm (i, n) + q̃j,κm (n)M

(4.16)

Finally, let Rj
m / Lj

m be the horizontal concatenation of Rj,κ
m / Lj,κ

m , for all κ ∈ ξdemj .
We can now pose the full problem:

Problem IV.4 (KKT inverse, unions).

find θ,λj,κ
k ,λj,κ

¬k ,ν
j
k,R

j
m,L

j
m,q

j,κ
m , zj,κm,1, z

j,κ
m,2,

∀κ ∈ ξdemj ,m = 1, ..., Nc, j = 1, ..., Ns

s.t. -------- Primal feasibility --------
Equation (4.13), j = 1, ..., Ns

--- Lagrange mult. nonnegativity ---

λ
j,κ
k ≥ 0, ∀κ ∈ ξdemj , j = 1, . . . , Ns

λ
j,κ
m,¬k ≥ 0, ∀κ ∈ ξdemj , m = 1, ..., Nc, j = 1, ..., Ns

------ Complementary slackness -----

Equation (4.14), j = 1, . . . , Ns

----------- Stationarity -----------

∇ξxucΠ(ξ
loc
j) + λ

j
¬k

⊤∇ξxugk(ξ
loc
j) +

∑Nc

m=1 1
⊤
Nm

c
Rj

m

+ν
j
¬k

⊤∇ξxuhk(ξ
loc
j) = 0, j = 1, ..., Ns

Equation (4.16), ∀κ ∈ ξdemj ,m = 1, ..., Nc,
n = 1, ..., Nm

c , j = 1, ..., Ns

(4.17)

65

4.3.3 Extraction of safe and unsafe states

Before moving onto affine parameterizations, we first detail how to check guar-
anteed safeness/unsafeness (as defined in (4.8)-(4.9)). One can check if a constraint
state κ ∈ Gs or κ ∈ G¬s by adding a constraint g(κ, θ) > 0 or g(κ, θ) ≤ 0 to Problem
IV.2 and checking feasibility of the resulting program:

Problem IV.5 (Query if κ is guaranteed safe OR unsafe).

find θ,λj
k,λ

j
¬k,ν

j
k, j = 1, ..., Ns

s.t. {KKT(ξlocj)}Ns

j=1, g(κ, θ) > 0 OR g(κ, θ) ≤ 0
(4.18)

If Problem IV.5 is infeasible, then κ ∈ Gs or κ ∈ G¬s. Solving this problem is
akin to querying an oracle about the safety of κ. The oracle can return that κ is
guaranteed safe (program infeasible after forcing κ to be unsafe), guaranteed unsafe
(program infeasible after forcing κ to be safe), or unsure (program is feasible despite
forcing κ to be safe or unsafe).

Since the constraint space is continuous, it is not possible to check via enumeration
if each κ ∈ G¬s or κ ∈ Gs. To address this, we can check the neighborhood of a
constraint state κquery for membership in G¬s by solving the following:

Problem IV.6 (Volume extraction).

minimize
ε,κnear,θ,λ

j
k
,λj

¬k
,νj

k

ε

subject to {KKT(ξlocj)}Ns

j=1

‖κnear − κquery‖∞ ≤ ε
g(κnear, θ) > 0

(4.19)

Intuitively, Problem IV.6 finds the largest box centered at κquery contained within
Gs. An analogous problem can also be posed to recover the largest hypercube cen-
tered at κquery contained within G¬s. For some common parameterizations (axis-
aligned hyper-rectangles, convex sets), subsets of Gs and G¬s can be even more ef-
ficiently recovered by performing line searches or taking convex hulls of guaranteed
safe/unsafe states, details of which are in Appendix B of Chou et al. (2019). Volumes
of safe/unsafe space can thus be produced by repeatedly solving Problem IV.6 for
different κquery.

4.3.4 KKT relaxation for unions of affine constraints

Now, consider when Problem IV.1 involves avoiding an unsafe set A(θ) described
by a union of affine constraints:

A(θ) =
Nc⋃

i=1

{κ | gi,¬k(κ, θ) > 0} (4.20)

where gi,¬k(κ, θ) is an affine function of θ for fixed κ. Unlike in Sec. 4.3.2, formu-
lating the recovery problem like Problem IV.4 yields trilinearity in the stationarity

66

condition between continuous variables θ and λ and binary variables q, since for the
affine case, ∇ξxugi,¬k(·, θ) remains a function of θ. As the product of two continuous
decision variables cannot be linearized exactly, one must solve a MINLP to recover θ
in this case, which can be inefficient. However, a relaxation which enables querying of
guaranteed safeness/unsafeness via Problem IV.5 can be formulated as a MILP. For
legibility, we present the Nc = 1 case, where there is only one affine constraint (and
hence the binary variables q seen in Problem IV.4 are all set to 1 and can thus be
dropped). Each bilinear term λj,κ1,¬k∇κg1,¬k(κ, θ) is replaced with lj,κ1 zj,κ1,1, where l

j,κ
1 is

a variable which represents the bilinear term and zj,κ1,1 is an indicator variable encod-

ing that if zj,κ1,1 is 0, then λj,κ1,¬k must be 0. Hence, by linearizing the bilinear term as
such, there is no relaxation gap when the Lagrange multipliers are zero; the only loss
is when the Lagrange multipliers are non-zero (i.e., when the demonstration touches
the constraint boundaries). In this case, coupling between λ and θ is lost by intro-
ducing the lj,κ1 variables. We further linearize lj,κ1 zj,κ1,1 (product of continuous, binary
variables) with the same procedure in Sec. 4.3.2 by again introducing slack variables
rj,κ1 and constraining them accordingly with (4.16), where the qj,κm,n are replaced with

zj,κ1,1. Putting things together, we can write the following relaxed constraint recovery
problem for Nc = 1:

Problem IV.7 (KKT relaxation, affine).

find θ,λj,κ
k ,λj,κ

¬k ,ν
j
k, r

j
1, ℓ

j
1, z

j,κ
1,1, z

j,κ
1,2, ∀κ ∈ ξdemj , j = 1, ..., Ns

s.t. -------- Primal feasibility --------

g1,¬k(κ, θ) ≤ 0, ∀κ ∈ ξdemj , j = 1, . . . , Ns

--- Lagrange mult. nonnegativity ---

λ
j,κ
k ≥ 0, ∀κ ∈ ξdemj , j = 1, . . . , Ns

λj,κ
1,¬k ≥ 0, ∀κ ∈ ξdemj , j = 1, . . . , Ns

------ Complementary slackness -----[
λj,κ
1,¬k

−g1,¬k(κ, θ)

]
≤M

[
zj,κ1,1

zj,κ1,2

]
, zj,κ1,1 + zj,κ1,2 ≤ 1,

∀κ ∈ ξdemj , j = 1, . . . , Ns

----------- Stationarity -----------

∇ξxucΠ(ξ
loc
j) + λ

j
k∇ξxugk(ξ

loc
j) + rj1

+ν
j
k∇ξxuhk(ξ

loc
j) = 0, j = 1, . . . , Ns

min(0,M)1 ≤ rj1 ≤M1, Mzj1,1 ≤ rj1 ≤Mzj1,1,

ℓ
j
1 − (1− zj1,1)M ≤ rj1 ≤ ℓ

j
1 − (1− zj1,1)M,

rj1 ≤ ℓ
j
1 + (1− zj1,1)M, j = 1, . . . , Ns

(4.21)

where rj1, z
j
1,1, ℓ

j
1 denote horizontal concatenation of rj,κ1 , zj,κ1,1, l

j,κ
1 for all κ ∈ ξdemj .

The case if the constraint is a union of affine constraints yields quadrilinearity and
can be handled similarly, requiring one extra step to linearize the products of binary
variables qj,κm and zj,κ1,1, which can be done exactly.

While Problem IV.7 cannot recover the constraint parameter θ directly, one can
still check if a constraint state is guaranteed safe/unsafe using Problem IV.5 (see
Theorem IV.12 for reasoning).

67

4.3.5 Unknown constraint parameterization

In many applications, we may not know a constraint parameterization a priori.
However, complex unsafe/safe sets can often be approximated as the union of many
simple unsafe/safe sets. Thus, we adapt the method in Chapter III for incrementally
growing a parameterization based on the complexity of the provided demonstrations.
More precisely, suppose the true parameterization g(κ, θ) of the unsafe set A(θ) =
{κ | g(κ, θ) > 0} is unknown but can be exactly/approximately written as the union
of N∗ simple sets A(θ) ≅

⋃N∗

i=1{κ | gs(κ, θi) > 0} .
=
⋃N∗

i=1A(θi). Each simple set
A(θi) has a known parameterization gs(·, ·) but N∗, the minimum number of simple
sets needed to reconstruct A, is unknown. We can estimate a lower bound on N∗,
N , by incrementally adding simple sets until Problem IV.2 is feasible (i.e., there
exists a sufficiently complex constraint which can satisfy the demonstrations’ KKT
conditions). Issues with conservativeness of the recovered constraint when N < N∗

are discussed in III and also hold here, which we omit for brevity.

4.3.6 Handling cost function uncertainty

We now extend the KKT conditions presented in (4.5) and Problems IV.2 and
IV.3 to learn constraints with parametric uncertainty in the cost function (i.e., if
γ in Problem IV.1 is unknown). To address this, the first term in the stationarity
condition (4.5h) must be changed to ∇ξxucΠ(ξ

loc
j , γ). Then, if cΠ(·, γ) is affine in γ, γ

can be found using a MILP.
Querying/volume extraction holds just as before; the only difference is that γ is

now a decision variable in Problem IV.5/IV.6. Note we are extracting constraint
states that are guaranteed safe/unsafe for all possible cost parameters; that is, we are
extracting safe/unsafe sets that are robust to cost uncertainty.

We summarize what we can solve for when using various parameterizations. For
the exact cases, we can solve for θ/γ, but when relaxing, we can only solve for S/A via
queries. Note the constraint/cost can be nonlinear in κ without inducing relaxation,
though it precludes usage of Problem IV.6 (as κ is a decision variable in the latter,
but not the former):

Constraint param. Cost param. Recover θ, γ? Gs/G¬s
θ: form of (4.10); κ: affine γ: affine; κ: nonlin. Yes: Prob. IV.4 Prob. IV.5/IV.6
θ: form of (4.10); κ: nonlin. γ: affine; κ: nonlin. Yes: Prob. IV.4 Prob. IV.5
θ: form of (4.20); κ: nonlin. γ: affine; κ: nonlin. No Prob. IV.5

This only describes what we can solve for; the actual accuracy of the recovered θ/γ
and the size of the recovered Gs/G¬s depends on how informative the demonstrations
are, i.e., the demonstrations should interact with the constraint.

4.3.7 Applications to safe planning

As learned constraints can be reused for novel tasks with the same safety require-
ments, we end this section by describing how our method can be used within a planner
to guarantee the safety of trajectories planned for such tasks. Recall that Problems

68

IV.5 and IV.6 can be used to query if a constraint state κ or a region around κ is
guaranteed safe/unsafe. The planner can use this information by either:

• Extracting an explicit representation of the constraint by repeatedly solving
Problem IV.6 for different κquery to cover S and A. Denote these extracted

sets as Ŝ ⊆ S and Â ⊆ A (the conservativeness of our method is proved in
Sec. 4.4.1). Then, Ŝ can be passed to a planner and quickly used for con-
straint/collision checking via set-containment checks. A planned trajectory is
guaranteed safe if each state on it lies in Ŝ, since Ŝ is contained in true safe
set S. If Ŝ is small and the planner cannot find a feasible trajectory, we can at
least guarantee that a trajectory is not definitely unsafe it it does not intersect
with Â, as Â is contained in the true unsafe set A.

• Extracting an implicit representation of the constraint by solving Problem IV.5
as needed by the planner. This may be less computationally efficient than the
explicit case, but we demonstrate in Sec. 4.5.3 that we still achieve reasonable
planning times for a 7-DOF arm.

4.4 Theoretical Analysis

In this section, we prove that our method provides a conservative estimate of the
guaranteed learned safe/unsafe sets Gs,G¬s (Sec. 4.4.1) and prove learnability results
using locally-optimal demonstrations (Sec. 4.4.2).

4.4.1 Conservativeness

Definition IV.8 (Implied unsafe/safe set). For some set B ⊆ Θ, let I¬s(B) .
=⋂

θ∈B{x | g(x, θ) > 0} be the set of states implied unsafe by restricting the parameter
set to B, i.e., I¬s(B) is the set of states that all θ ∈ B mark as unsafe. Similarly,
let Is(B) .

=
⋂

θ∈B{x | g(x, θ) ≤ 0} be the set of states implied safe by restricting the
parameter set to B.

We further introduce the following lemma:

Lemma IV.9 (Lemma C.1 in Chou et al. (2019)). Suppose B ⊆ B̂, for some other
set B̂. Then, I¬s(B̂) ⊆ I¬s(B) and Is(B̂) ⊆ Is(B).

Theorem IV.10 (Conservativeness of Problem IV.2). Suppose the constraint pa-
rameterization g(x, θ) is known exactly. Then, extracting Gs and G¬s (as defined in
(4.8) and (4.9), respectively) from the feasible set of Problem IV.2 projected onto Θ
(denoted as F) returns G¬s ⊆ A and Gs ⊆ S.

Proof. We first prove that G¬s ⊆ A. Suppose that there exists x ∈ G¬s such that
x /∈ A. Then by definition, for all θ ∈ F , g(x, θ) > 0. However, we know that all
locally-optimal demonstrations satisfy the KKT conditions with respect to the true
parameter θ∗; hence, θ∗ ∈ F . Then, x ∈ A(θ∗). Contradiction. Similar logic holds
for proving that Gs ⊆ S. Suppose that there exists x ∈ Gs such that x /∈ S. Then

69

by definition, for all θ ∈ F , g(x, θ) ≤ 0. However, we know that all locally-optimal
demonstrations satisfy the KKT conditions with respect to the true parameter θ∗;
hence, θ∗ ∈ F . Then, x ∈ S(θ∗). Contradiction.
Remark IV.11. Unfortunately, it is difficult to guarantee conservativeness when
using suboptimal demonstrations (solving Problem IV.3), as the relationship between
cost suboptimality and KKT violation is generally unknown. However, we note in
practice that the Gs,G¬s recovered using suboptimal demonstrations still tend to be
conservative (see Sec. 4.5.2).

Theorem IV.12 (Conservativeness of Problem IV.7). Suppose the constraint param-
eterization g(x, θ) is known exactly. Then, extracting Gs and G¬s (as defined in (4.8)
and (4.9), respectively) from the feasible set of Problem IV.7 (denoted as F) returns
G¬s ⊆ A and Gs ⊆ S.
Proof. Denote the Θ-projected feasible set of the original unrelaxed problem (i.e.,
variables ri are not introduced and the bilinear terms between θ and λ remain) as
FMINLP and the Θ-projected feasible set of Problem IV.7 as F . Using the logic in
Theorem IV.10, extracting Gs and G¬s from FMINLP yields Gs ⊆ S and G¬s ⊆ A
(since FMINLP is the true feasible set, like assumed in Theorem IV.10). Furthermore,
FMINLP ⊆ F , since relaxing the bilinear terms to linear terms in Problem IV.7 expands
the feasible set compared to the unrelaxed problem. By definition, Gs = Is(FMINLP)
and G¬s = I¬s(FMINLP), and via Lemma IV.9, Is(F) ⊆ Is(FMINLP) and I¬s(F) ⊆
I¬s(FMINLP). Hence, Is(F) ⊆ S and I¬s(F) ⊆ A.
Remark IV.13. For brevity, we omit conditions on M,M,M for conservativeness;
it is well-known that this is achieved by choosing the big-M constants to be sufficiently
large Bertsimas and Tsitsiklis (1997).

4.4.2 Global vs local learnability

Definition IV.14 (Local learnability). A state x ∈ A is locally learnable if there
exists any set of Ns locally-optimal demonstrations, where Ns may be infinite, such
that x ∈ I¬s(F), where F is the Θ-projected feasible set of Problem IV.2. We also
define the locally learnable set of unsafe states G loc,∗¬s as the union of all locally learnable
states.

Definition IV.15 (Global learnability). A state x ∈ A is globally learnable if there
exists any set of Ns globally-optimal demonstrations and N¬s sampled strictly lower-
cost (and hence unsafe) trajectories, where Ns and N¬s may be infinite, such that
x ∈ I(Fglo), where Fglo is the feasible set of Problem 2 in Chou et al. (2019) (which
recovers a constraint consistent with the demonstrations and sampled unsafe trajec-
tories). Accordingly, we define the globally learnable set of unsafe states Gglo,∗¬s as the
union of all globally learnable states.

Note that a safe state xs ∈ S can always be learned guaranteed safe, as there
always exists a safe globally-optimal or locally-optimal demonstration passing through
xs. Armed with these definitions, we show the following:

70

Theorem IV.16 (Global vs local). Suppose the initial constraint parameter set Θ is
identical for both the local and global problems. Then, G loc,∗¬s ⊆ Gglo,∗¬s .

Proof. Any globally-optimal demonstration must also satisfy the KKT conditions, as
it is also locally-optimal. Further conditions (in the form of lower-cost trajectories
being infeasible) must be imposed on a constraint parameter for it to be globally-
optimal. Hence, Fglo ⊆ F . By Lemma IV.9, I(F) ⊆ I(Fglo), and thus G loc,∗¬s ⊆
Gglo,∗¬s .

Note that Theorem IV.16 holds in the limit of having sampled all unsafe trajec-
tories. In practice, the sampling is nowhere near complete, especially for nonlinear
dynamics. We see in these cases (Sec. 4.5.3) that our KKT-based method learns
more compared to sampling-based techniques. Finally, we note that cost function
uncertainty can only decrease learnability, as it enlarges the feasible set of Problem
IV.2.

4.5 Results

We show our method, first on 2D examples (Sec. 4.5.1) for intuition, and then
on high-dimensional 7-DOF arm (Sec. 4.5.2) and quadrotor (Sec. 4.5.3) constraint-
learning problems (see the accompanying video for experiment visualizations). All
computation times are recorded on a laptop with a 3.1 GHz Intel Core i7 processor
and 16 GB RAM.

4.5.1 2D examples

Global vs. local: Assuming global demonstration optimality can enlarge Gs/G¬s com-
pared to assuming local optimality (Theorem IV.16). In this example, we show some
common differences in the learned constraints when assuming global/local optimality.
Consider a 2D kinematic system χt+1 = χt + ut, χ = [x, y]⊤, ‖ut‖ ≤ 1 avoiding the
pink obstacle in Fig. 4.1. We use an axis-aligned box constraint parameterization.
In Fig. 4.1 (left), by assuming the demonstrations (cyan, green) are globally-optimal
and sampling lower-cost trajectories (the middle state on each trajectory is plotted in
red), the hatched area is implied guaranteed unsafe, as any axis-aligned box contain-
ing the sampled unsafe states (in red) must also contain the hatched area. In contrast,
assuming local optimality gives us zero volume learned guaranteed safe/unsafe, as a
measure-zero horizontal line obstacle (orange dashed) can make the demonstrations
locally-optimal: as the line supports the middle state on each demonstration, the
cost cannot be locally improved. In Fig. 4.1, center, we show a case where there
is no gap in learnability: without assuming a parameterization, the demonstrations
can be explained by two horizontal line obstacles, but together with the box param-
eterization, we recover Gs = S and G¬s = A. Fig. 4.1 (right) shows that assuming
global optimality may result in non-conservative constraint recovery (e.g., if the dot-
ted red line were a sampled unsafe trajectory), while a horizontal line obstacle (orange
dashed line) can explain local optimality of the demonstration, yielding conservative
constraint recovery.

71

-1 -0.5 0 0.5 1

-1

0

1

-1 -0.5 0 0.5 1

-1

0

1

-1 -0.5 0 0.5 1

-1

0

1

2

3

Figure 4.1: Left: local learns less than global. Center: local learns the same as global.
Right: global recovers non-conservative solution. Red: sampled unsafe trajectories.
Pink: true constraint. Green/cyan: demonstrations.

-3 -2 -1 0 1 2

-2

-1

0

1

2

Figure 4.2: Nonlinear constraint. Blue: true constraint boundary. Red/green states:
learned in G¬s/Gs. Purple/orange: two demonstrations.

Effects of cost uncertainty: We show that learnability under cost uncertainty is more
related to the possible behaviors that a cost uncertainty set can represent, rather
than the actual size of the cost parameter space. For the demonstrations/constraint
in the center plot of Fig. 4.1, consider the following cost uncertainty sets: A)
c(ξ) =

∑T−1
t=1 γ1(xt+1 − xt)

2 + γ2(yt+1 − yt)
2, where γi ∈ [−5, 5], i = 1, 2 and B)

c(ξ) =
∑10

k=1

∑T−1
t=1

(
γ1,k(xt+1 − xt)

2k + γ2,k(yt+1 − yt)
2k
)
, where γi,k ∈ [0.001, 5] for

all i, k. While Set A has a much smaller parameter space compared to Set B (2 vs
20 parameters), allowing γ1, γ2 to take negative values enables the case where the
demonstrator wants to maximize path length (i.e., set γ1 = γ2 = −1). For fixed
start/goal states and control constraints, the observed demonstrations are actually
locally-optimal with respect to a cost function which maximizes path length in an
environment with no box state space constraint. Hence, for Set A, our method re-
turns Gs = G¬s = ∅. In contrast, while Set B has a much larger parameter space,
the range of allowable behaviors is small (all cost terms must penalize path length).
Thus, despite the large cost parameter space, Gs = S and G¬s = A.
Nonlinear constraint: We emphasize that while our method requires an affine param-
eterization in the constraint parameters, constraints that are nonlinear in the state
can still be learned. Consider a parameterization g1,¬k(κ, θ) = 2(x4 + y4) − 5(x3 +
y3)+ 5(x− 1)3+5(y+1)3− θ, which yields a highly nonlinear state space constraint.
With two demonstrations for θ = 2 (see Fig. 4.2), Gs = S and G¬s = A.

72

Figure 4.3: Left: demonstrations for bartender example. Right: novel trajectories
planned with learned constraint.

4.5.2 7-DOF arm

0

0.5

1

0

0.5

1

1 2 3 4 5

0

0.5

1

1 2 3 4 5

0

0.5

1

Figure 4.4: Arm bartender statistics; x-axis color-coded with demos in Fig. 4.3.

Robot bartender: Consider a 7-DOF Kuka iiwa robot bartender which must deliver
a drink from the bar cabinet (Fig. 4.3, brown box) or from another bartender to a
customer at the counter (Fig. 4.3, gray box). To do this, the arm must satisfy an
end-effector pose constraint to avoid spilling the drink, and the swept volume of the
arm must not collide with the bar furniture while satisfying proxemics constraints
(Fig. 4.3, green box) with respect to the customer. We use a kinematic model of the
arm, jit+1 = jit + uit, i = 1, ..., 7, where ‖ut‖22 ≤ 0.8 for all t. Five suboptimal human

demonstrations, optimizing joint-space path length c(ξ) =
∑T−1

i=1 ‖jt+1−jt‖22, are cap-
tured in a virtual reality environment using an HTC Vive. The proxemics constraints
encoded in the demonstrations (Fig. 4.3, left) disallow the arm from getting too close
to the customer and from making large sweeping motions from the left, right, and
particularly the top, as the customer can perceive such motions as aggressive. We
aim to learn these 15 constraint parameters: [xctr, zctr, zctr] (unknown extents of the
bar top), [xcab, zcab] (unknown extents of the bar cabinet), [α, α, β, β, γ, γ] (unknown
pose constraint), and [xprox, yprox, yprox, zprox] (box proxemics constraint).

73

Figure 4.5: Left: arm demos for ellipse example. Right: novel trajectories planned
using learned constraint.

Figure 4.6: Left: quadrotor demonstrations. Right: novel planned trajectories.

74

0

0.5

1

0

0.5

1

1 2 3 4 5 6

0

0.5

1

1 2 3 4 5 6

0

0.5

1

0

0.5

1

0

0.5

1

6 1 2 3 4 5 6

0

0.5

1

1 2 3 4 5 6

0

0.5

1

Figure 4.7: Quadrotor statistics: coverage and accuracy for Gs, G¬s. Demonstration
axis is color coded with the demonstrations shown on the left in Fig. 4.6.

75

The constraint parameters are recovered using the suboptimal analogue of Prob-
lem IV.4 (i.e., using the objective function of Problem IV.3), taking 17.2 seconds
to solve when using all demonstrations. For tractability, we approximate the swept
volume constraint by sampling 18 points on the volume of the arm, mapping them
through the arm’s forward kinematics, and ensuring that the resulting points are
consistent with the obstacle avoidance/proxemics constraint parameters. We solve
Problems IV.5/IV.6 to extract the learned guaranteed safe/unsafe sets Gs/G¬s, where
each query takes 16.4/12.1 seconds on average over 10 queries. Fig. 4.4 shows the
coverage of Gs/G¬s compared to the true safe/unsafe sets S/A, as well as the accu-
racy of the claimed safe/unsafe sets (Fig. 4.4). We use the sampling-based approach
described in Chapter III with Problem 3 of Chou et al. (2019) as a baseline. We
note that Chou et al. (2019) will have difficulty with this example, since the swept
volume constraint scales the number of decision variables in Problem 3 of Chou et al.
(2019) by a factor of 18; this limits the number of trajectory samples which can be
tractably used in the constraint-recovery problem. Despite this, the pose constraint
is learned fairly well by both the baseline and our method, though the baseline expe-
riences accuracy dips due to suboptimality causing some safe lower-cost trajectories.
However, the baseline performs poorly on the position constraints, as it does not learn
that the bar top or the bar cabinet are unsafe and does not fully learn the safe set,
due to insufficient trajectory samples. In contrast, our KKT-based approach recovers
Gs = S and G¬s = A. Finally, we extract volumes of guaranteed safe space using the
procedure in Sec. 4.3.3 and provide the extracted constraint to the CBiRRT plan-
ner Berenson et al. (2011), generating the novel safe trajectories in Fig. 4.3 (right).
This experiment suggests that when Problem IV.1 has many constraints (in this case,
due to the swept volume), sampling trajectories leads to worse scalability and worse
constraint-recovery performance compared to our KKT-based approach.
Elliptical end-effector constraint: This example is meant to demonstrate the efficacy
of using Problem IV.5 in the planning loop. Suppose the arm is manipulating a
heavy object near some glassware. For safety, the end effector’s center of mass is
constrained to lie outside an elliptical cylinder containing the glassware: χ⊤

t A(θ)χt−
2b(θ)⊤χt + c(θ) > 0, where χt = [xt, yt]

⊤, A(θ) = diag([0.5, 2]), b(θ) = [0, 1.1]⊤, and
c(θ) = 0.505. We modify Problem IV.5 to use the affine-relaxed KKT conditions, and
solving this problem using two demonstrations (Fig. 4.5, left) is enough to recover
Gs = S, G¬s = A via queries. To plan novel constraint-satisfying trajectories, we
use STOMP Kalakrishnan et al. (2011), where the usual collision/constraint checker
is replaced with Problem IV.5. We show two planned trajectories (Fig. 4.5, right),
where the planning times were 2 and 6 minutes. Averaged over 10 different queries,
solving Problem IV.5 takes 0.073 seconds. We note that this can be sped up by warm-
starting Problem IV.5 with the results of previous queries (since like many trajectory
optimizers, STOMP samples points near previous iterates).

4.5.3 Quadrotor

We consider the scenario of a quadrotor carrying a delicate payload in an urban
environment (see Fig. 4.6). Accordingly, the quadrotor is constrained to not collide

76

with surrounding buildings (i.e., (x, y, z) /∈ ([x1, x1] × [y
1
, y1] × [0, z1]) ∨ ([x2, x2] ×

[y
2
, y2]×[0, z2])), satisfy control constraints ‖ut‖ ≤ U , pose constraints α ∈ [α, α], β ∈

[β, β], γ ∈ [γ, γ], and angular velocity constraints α̇ ∈ [α̇, α̇], β̇ ∈ [β̇, β̇], γ̇ ∈ [γ̇, γ̇]. In
this problem, we aim to recover all of these constraints (23 unknown constraint pa-
rameters total) using the six demonstrations in Fig. 4.6 (left) by solving Problem
IV.4, which takes 19.4 seconds when using all demonstrations. We start from a single
box parameterization for each constraint and detect from infeasibility that another
box should be added to the position constraint parameterization (see Sec. 4.3.5). The
demonstrations are synthetically generated by solving trajectory optimization prob-
lems for the cost function c(ξ) =

∑
r∈R

∑T−1
t=1 γr(rt+1−rt)2, where R = {x, y, z, α̇, β̇, γ̇}

and γr = 1. Our algorithm assumes parametric cost uncertainty of γr ∈ [0.01, 3], and
we assume the cost function is known exactly for the baseline Chou et al. (2019).
This problem is especially challenging for the baseline, since having many unknown
constraint parameters can lead to non-identifiability of the constraint from the sam-
pled trajectories. Furthermore, the nonlinearity of the quadrotor dynamics (we use
the dynamics in Chou et al. (2019)) makes sampling difficult. We compute Gs/G¬s via
Problems IV.5/IV.6, taking 26.6/43.0 seconds on average over 10 different queries.
Fig. 4.7 compares the coverage and accuracy of Gs and G¬s between our approach and
the baseline Chou et al. (2019) for each of the constraint spaces (position, pose, veloc-
ity, and control). The baseline and our approach perform comparably for some of the
“simpler” convex constraints (e.g., the angular velocity/control safe sets). However,
the baseline struggles to learn the unsafe sets (due to the simultaneous identification
of so many constraints from poor trajectory samples) and position constraints (as
the quadrotor has second order dynamics, it is difficult to sample combinations of
trajectories which uniquely imply a single state is unsafe). We also note that the
baseline accuracies fluctuate greatly due to imperfect trajectory sampling and the
difficulty of distinguishing between multiple constraints: different data may cause the
optimization to switch unsafeness assignments from one constraint to another active
constraint). By extracting volumes of Gs using the method in Sec. 4.3.3, we pass Gs
to a trajectory optimizer Andersson et al. (2018) to generate novel safe trajectories
(Fig. 4.6, right). This experiment suggests that by avoiding trajectory sampling, our
KKT-based approach performs better on high-dimensional nonlinear systems.

4.6 Discussion and Conclusion

We present an algorithm which uses the KKT optimality conditions to determine
constraints that make observed demonstrations appear locally-optimal with respect
to an uncertain cost function. As the KKT conditions are an implicit condition on
the set of constraints that can possibly explain the demonstrations, we sidestep the
shortcomings of previous methods (Chou et al. (2018a, 2019), Chapter III) which
rely on sampling lower-cost trajectories as explicit certificates of unsafeness. In fu-
ture work, we aim to address two shortcomings of our method: first, we require the
dynamics to be known in closed form, while the methods in Chapter III just need
a simulator; second, the number of decision variables in our method scales linearly

77

with the number of demonstrations, making it important that the demonstrations are
informative with respect to the unknown constraint. To address these issues, we plan
to extend our method to handle uncertain dynamics and develop an active learning
method to obtain informative demonstrations.

78

CHAPTER V

Gaussian Process Constraint Learning for

Chance-Constrained Planning from

Demonstrations

In this chapter, we propose a method for learning constraints represented as Gaus-
sian processes (GPs) from locally-optimal demonstrations. Our approach uses the
Karush-Kuhn-Tucker (KKT) optimality conditions to determine where on the demon-
strations the constraint is tight, and the gradient of the constraint at those states. We
then train a GP representation of the constraint which is consistent with and which
generalizes this information. We further show that the GP uncertainty can be used
within a kinodynamic RRT to plan probabilistically-safe trajectories, and that we
can exploit the GP structure within the planner to exactly achieve a specified safety
probability. We demonstrate our method can learn complex, nonlinear constraints
demonstrated on a 5D nonholonomic car, a 12D quadrotor, and a 3-link planar arm,
all while requiring minimal prior information on the constraint. Our results suggest
the learned GP constraint is accurate, outperforming previous constraint learning
methods that require more a priori knowledge. This chapter is based on the paper
Chou et al. (2022b).

5.1 Introduction

To address safety in LfD, recent work has represented tasks as constrained op-
timization problems, and learns the unknown cost function and constraints from
demonstrations Chou et al. (2018a, 2019, 2020b); Englert et al. (2017); Menner et al.
(2019) via the Karush-Kuhn-Tucker (KKT) optimality conditions, enabling constraint
learning for complex manipulation and mobile robotics tasks. However, these meth-
ods require that the unknown constraints can be described by an a priori known
representation or parameterization (e.g., as a union of axis-aligned boxes Chou et al.
(2020a,b)), restricting these methods to the learning of highly-structured constraints.
Moreover, such representations can be highly inefficient (e.g., many boxes may be re-
quired to approximate complex constraints), leading to a computational burden that
makes it challenging to scale these methods up to learn realistic constraints. Consider
a demonstrator steering a quadrotor to avoid collisions with a tree (Fig. 5.1). On the

79

one hand, we are unlikely to obtain an efficient constraint representation for learning
trees a priori unless we can learn one (e.g., via deep learning) using an enormous
number of demonstrations, and on the other hand, a prohibitive number of boxes is
needed to represent the tree.

(A) (B) (C) (D)

Figure 5.1: Demonstrations (black) avoiding a tree-like obstacle on a 12D quadrotor.
(A) True constraint (blue); plans using the GP constraint (gold). (B) Posterior
mean of the GP constraint (blue). (C) Errors of GP posterior mean w.r.t. the true
constraint. (D) Constraint learned via Chou et al. (2020b) using 6 boxes.

We address these issues via the insight that the demonstrations’ Karush-Kuhn-
Tucker (KKT) optimality conditions provide information on 1) where the unknown
constraint is tight on the demonstrations, and 2) the gradient of the constraint (i.e.,
the surface normal on the constraint boundary) at those points. Crucially, we show
that this information can be extracted in a way that is agnostic to the chosen con-
straint representation. This is in sharp contrast to prior work Chou et al. (2020b),
which uses the KKT conditions to directly determine a set of constraint parameters,
for a fixed constraint parameterization, which make the demonstrations satisfy their
KKT conditions. This representation-agnostic constraint information can be incor-
porated into a flexible non-parametric Gaussian process (GP) function approximator,
which enables constraint learning while requiring minimal a priori knowledge on the
underlying constraint structure. Our contributions are:

• We show how to use the demonstrations’ KKT conditions to extract information
on the values and gradients of the unknown constraint, how to ensure it is robust
to the ill-posedness of the constraint learning problem, and how it can be jointly
incorporated into a GP.

• We show how the uncertainty of the learned GP constraint can be used to plan
chance-constrained trajectories which satisfy the unknown constraint with a
specified probability, and how the Gaussian structure of the uncertainty can be
exploited in the planner to exactly compute trajectory safety probabilities.

• We evaluate our method on complex nonlinear constraint learning problems

80

demonstrated on a 5D nonholonomic car, a 12D quadrotor and a three-link
planar arm, showing that our method outperforms baselines.

5.2 Related Work

Our method is related to prior work in IOC Englert et al. (2017); Johnson et al.
(2013);Keshavarz et al. (2011) that uses the KKT conditions to learn an unknown cost
function, assuming the constraints are known. Other IOC methods Finn et al. (2016);
Levine et al. (2011); Wulfmeier et al. (2017) use flexible function approximators to
learn unknown cost functions without using known features, again assuming known
constraints. Our approach is complementary to these methods, as it seeks to learn
the constraints.

Our work also builds upon constraint learning methods Chou et al. (2018a, 2019,
2020b); Pérez-D’Arpino and Shah (2017), which often assume a known constraint
parameterization to simplify the inverse problem which recovers the unknown con-
straint Chou et al. (2020a,b). When this assumption is removed Chou et al. (2019),
the unsafe set defined by the unknown constraint is assumed to be well-approximated
by a finite union of simple unsafe sets, e.g., axis-aligned boxes Chou et al. (2019).
However, the inverse problem scales exponentially with the number of simple sets,
as each set adds binary decision variables to the optimization. This renders complex
constraints infeasible to learn unless the true constraint representation is known, re-
stricting previous methods (e.g., Chou et al. (2020a,b)) to learn simple constraints,
e.g., unions of a few boxes Chou et al. (2020a,b), or to know the parameterization
(Chou et al., 2018a, Fig. 6) (Chou et al., 2020b, Fig. 2). Our work is also related to
methods that plan using the uncertainty in the learned constraint, e.g., Chou et al.
(2020a). However Chou et al. (2020a) scales exponentially in the number of simple
unsafe sets; in contrast, we use the uncertainty of the GP constraint to scale more
gracefully.

Finally, our work relates to planning under uncertainty, where the uncertainty
may arise from sensing Burns and Brock (2007), state estimation Bry and Roy (2011),
motion Aoude et al. (2013), and the environment/obstacles; our work relates most
closely to this final case. Blackmore et al. (2006) plans with uncertain obstacles via
chance-constrained optimization and requires polytopic obstacles and linear Gaussian
dynamics. Under similar assumptions, Luders et al. (2010) embeds chance constraints
in a Rapidly-Exploring Random Tree (RRT) LaValle and James J. Kuffner (2001).
In contrast, we assume deterministic dynamics but can handle GP-representable con-
straints and nonlinear dynamics.

5.3 Preliminaries and Problem Statement

5.3.1 Demonstrator’s problem and KKT optimality conditions

We represent a length T demonstration of a task Π performed on a determin-
istic discrete-time nonlinear system xt+1 = f(xt, ut, t), x ∈ X ⊆ Rnx , u ∈ U ⊆

81

Rnu as a constrained optimization over state/control trajectories ξxu
.
= (ξx, ξu)

.
=

[x1, . . . , xT , u1, . . . , uT−1]:

Problem V.1 (Forward (demonstrator’s) problem / task Π).

minimize
ξxu

cΠ(ξxu)

subject to φ(ξxu) ∈ S ⊆ C ⇔ g∗
¬k(φ(ξxu)) ≤ 0

φ̄(ξxu) ∈ S̄ ⊆ C̄, φΠ(ξxu) ∈ SΠ ⊆ CΠ
⇔ hk(ξxu) = 0, gk(ξxu) ≤ 0

where cΠ(·) is a known, possibly task-dependent cost function, and φ(·) maps state/control
trajectories to constraint states κ in constraint space C (i.e., κ ∈ C), where the con-
straint is evaluated. For example, for an obstacle constraint, φ(·) would select the
position components of the states. The safe set S ⊆ C ⊆ Rnc is defined by the
unknown inequality constraint g∗

¬k(φ(ξxu)) ≤ 0 and is unknown to the learner. φ̄(·)
and φΠ(·) map to spaces C̄ and CΠ, containing a known task-shared safe set S̄ and
task-dependent safe set SΠ, defined by known equality and inequality constraints
hk(ξxu) = 0, gk(ξxu) ≤ 0. We embed the dynamics in S̄ and the start/goal constraints
in SΠ. We focus on unknown scalar, state-dependent, time-separable inequality con-
straints

g∗
¬k(φ(ξxu)) ≤ 0 ⇔ g∗¬k(φsep(xt)) ≤ 0, ∀t = 1, ..., T, (5.1)

where φsep : X 7→ C is the time-separable counterpart of φ(·), g∗¬k : C 7→ R, and κt =
φsep(xt). We note that extending to control-dependent constraints is straightforward.
Moreover, we can learn the (un)safe set for anM -dimensional vector-valued constraint
by learning g∗¬k(·) = maxi=1,...,M g∗i,¬k(·). We assume each demonstration ξloc solves
Prob. V.1 to local optimality, satisfying Prob. V.1’s KKT conditions Boyd and
Vandenberghe (2004). With Lagrange multipliers λ, ν, the relevant KKT conditions
for the jth demonstration ξdemj , denoted KKT(ξdemj), are:

Primal feasibility: g∗
¬k(φ(ξ

dem
j)) ≤ 0, (5.2a)

Lagrange mult. λ
j
k ≥ 0 (5.2b)

nonnegativity: λj,t
¬k ≥ 0, t = 1, ..., T j ⇔ λ

j
¬k ≥ 0 (5.2c)

Complementary λ
j
k ⊙ gk(ξ

dem
j) = 0 (5.2d)

slackness: λ
j
¬k ⊙ g∗

¬k(φ(ξ
dem
j)) = 0 (5.2e)

Stationarity: ∇ξxucΠ(ξ
dem
j) + λ

j
k
⊤∇ξxugk(ξ

dem
j)

+ λ
j
¬k
⊤∇ξxug

∗
¬k(φ(ξ

dem
j)) (5.2f)

+ ν
j
k
⊤∇ξxuhk(ξ

dem
j) = 0

where ⊙ denotes element-wise multiplication. Here, λj
k ∈ RNj

ineq , νj
k ∈ RNj

eq , and
λ

j
¬k ∈ RT j

are vectorized Lagrange multipliers for the known inequality, known equal-

ity, and unknown inequality constraints for ξdemj , i.e., λj
¬k = [λj,1

¬k, . . .λ
j,T j

¬k]. The blue
quantities are unknown to the learner. Intuitively, (5.2a) enforces that ξdemj is feasible
for Prob. V.1 (it lies in S and satisfies the known constraints), that a multiplier is

82

zero unless its associated constraint is tight (5.2b)-(5.2e), and that its cost cannot be
locally improved (5.2f).

In previous work Chou et al. (2020a,b), the unknown constraint is modeled as
g∗¬k(z, θ), where θ are parameters for a known representation of g∗¬k with a low-order
dependence on θ, e.g., linear g∗¬k(z, θ) = θ⊤g(z), where g(z) are known features; the
constraint learning problem then reduces to finding θ. In contrast, we do not require
a known parameterization for g∗¬k(·), instead approximating g∗¬k(·) as a GP to be
learned.

5.3.2 Overview of Gaussian processes

A GP is a set of (potentially infinitely many) random variables, any finite number
of which have a joint Gaussian distribution Rasmussen and Williams (2005). It is
defined by a mean function m(x) and a covariance function k(x, x′). In regression,
GPs are often used as the prior distribution for an unknown function f(x) of interest,
i.e., f ∼ GP(m, k). Given an input-output dataset D = {(xn, yn)}Nd

n=1, and assuming
a noisy observation model yn ∼ N (f(xn), σ

2), the predictive conditional posterior
f̃ |D is also a Gaussian if a GP is used as the prior. In performing inference at a set

of points {zm}Nq

m=1, the posterior mean and covariance on these points are given by

E[f̃(Z)|D] = k(Z,X)(k(X,X) + σ2I)−1Y, (5.3)
cov(f̃(Z)|D) = k(Z,Z)− k(Z,X)(k(X,X) + σ2I)−1k(X,Z). (5.4)

where Z, X, and Y are vectors containing all elements in {zm}Nq

m=1, {xn}Nd

n=1, and
{yn}Nd

n=1, respectively Rasmussen and Williams (2005).

5.3.3 Problem statement

Given locally-optimal demonstrations {ξdemj }Ns

j=1, we want an estimate g¬k(·) of
the unknown constraint g∗¬k(·), defining

S = {φsep(x) | g¬k(φsep(x)) ≤ 0} = {κ | g¬k(κ) ≤ 0} (5.5)

as a safe set that is consistent with the demonstrations’ KKT conditions, where
the true constraint g∗¬k(·) is assumed to be a sample from GP(m, k). Moreover,
we wish to use the learned constraint to plan trajectories ξplanxu that connect novel
start/goal states while satisfying g∗¬k(·) with at least some specified probability 1− δ,
i.e., Pr(g∗

¬k(φ(ξ
plan
xu)) ≤ 0) ≥ 1− δ.

5.4 Method

Our method determines where the unknown constraint is tight and its gradient at
those points from the KKT conditions (Sec. 5.4.1), uses this information to train a
GP representation of the constraint (Sec. 5.4.2), and plans novel probabilistically-safe
trajectories using the learned constraint (Sec. 5.4.3). We overview the flow of our
method in Fig. 5.2.

83

Demonstrations

Tight indices
(Problem V.2)

Gradient identification
(Problem V.4)

Pruning non-robust
gradients (Problem V.6, V.7)

Train GP (Chap. 5.4.2)Plan using GP-CCRRT
(Chap. 5.4.3)

´ ´
´ ´

´
´ ´

´´
´ ´

´´
´ ´

´

Section IV.A: Extracting constraint values and gradients

Figure 5.2: Method flow. Given a set of locally-optimal demonstrations, we first
find consistent constraint values and gradients (Sec. 5.4.1), then use this data to
train a consistent GP constraint representation (Sec. 5.4.2), and then finally plan
probabilistically-safe trajectories using the learned GP constraint (Sec. 5.4.3).

5.4.1 Obtaining constraint value and gradient information

For a locally-optimal demonstration, the KKT conditions (5.2) provide informa-
tion on the following:

1. If/when the unknown constraint g∗¬k(·) is tight (i.e., at which time steps of
the demonstration g∗¬k(φsep(xt)) = 0) via complementary slackness (5.2e) and
stationarity (5.2f).

2. How the constraint changes locally around these tight demonstration points, in
the form of the constraint gradient at that point, ∇xt

g∗¬k(φsep(xt)), via station-
arity (5.2f).

Combining both sources of information is crucial in recovering an accurate constraint
that is KKT-consistent.

5.4.1.1 Constraint value information

We first describe a method for inferring when the unknown constraint g∗¬k(·) is
tight. As shorthand, let the stationarity residual

statj(λj
k,λ

j
¬k,ν

j
k) =

statjx1
(λj

k,λ
j
¬k,ν

j
k),

...

statjxT
(λj

k,λ
j
¬k,ν

j
k)

statju1
(λj

kλ
j
¬k,ν

j
k)

...

statjut
(λj

kλ
j
¬k,ν

j
k)

∈ R|ξxu|

84

be the LHS of the stationarity condition (5.2f) for the jth demonstration ξdemj , where

statjxt/ut
(λj

k,λ
j
¬k,ν

j
k) ∈ Rnx/Rnu is the sub-vector containing the residual terms for

xt / ut. Recall that complementary slackness (5.2e) enforces that at each timestep,
the Lagrange multiplier for the the unknown constraint is zero unless the constraint
is tight. Moreover, as any locally-optimal trajectory ξloc must satisfy the stationarity
condition (5.2f), we can determine that the unknown constraint g∗¬k(·) must be tight
on ξdemj at timestep t if we cannot force the norm of the stationarity residual at
that timestep to be zero, i.e., ‖statjxt

‖ > 0, while also enforcing that g∗¬k(φsep(xt)) is
not tight (cf. Fig. 5.3.A for intuition) and that the KKT conditions for the known
constraints are satisfied. This is achieved by solving Prob. V.2 – a rapidly-solvable
linear program (LP):

Problem V.2 (Tightness check at time t on demonstration j).

minimize
λ
j
k
,νj

k

∥∥statjxt
(λj

k,0,ν
j
k)‖1

subject to (5.2b), (5.2d),

where the effect of the unknown inequality constraint on the residual is erased by
zeroing out its corresponding Lagrange multipliers λ

j
¬k. Then, the following result

holds:

Corollary V.3. If the optimal value of Prob. V.2, denoted pt,j,∗2 , is greater than 0,
then the true constraint is tight: g∗¬k(κ

j
t) = 0.

Proof. Suppose for contradiction that g∗¬k(κ
j
t) < 0. Then, since ξdemj satisfies (5.2),

g∗¬k(κ
j
t) < 0 implies via (5.2e)-(5.2f) that there exists λ

j
k, λ

j
¬k = 0, νj

k such that
pt,j,∗2 = 0. However, by the theorem statement, pt,j,∗2 > 0. Contradiction.

By solving Prob. V.2 and checking if pt,j,∗2 > 0 for t = 1, . . . , T j, we can find a set
of timesteps where g∗¬k(κ

j
t) = 0; call these identified tight timesteps tjtight. Intuitively,

Prob. V.2 checks if we can ensure g∗¬k(κ
j
t) = 0 despite the known constraints, e.g.,

dynamics, control constraints, which may be simultaneously tight. By solving Prob.
V.2

∑Ndem

j=1 T j times (once for each timestep), we can check tightness over the entire
dataset. We close with two important remarks. First, complementary slackness and
stationarity do not provide information on g¬k(κ

j
t) for timesteps tj¬tight

.
= {1, . . . , T j}\

tjtight; we can only deduce using primal feasibility that g∗¬k(κ
j
t) ≤ 0 for t ∈ tj¬tight.

Second, the estimated set of tight timesteps ttight may only be a subset of the true
set of tight timesteps, i.e., tjtight ⊆ {t | g∗¬k(κjt) = 0}; this is because the system may
lie on the constraint boundary but the cost cannot be improved by crossing it (Fig.
5.3.C), i.e., there are multipliers such that ‖statjxt

(λj
k,0,ν

j
k)‖1 = 0 despite λ

j,t
¬k = 0;

KKT cannot guarantee that these points are tight.

5.4.1.2 Gradient value information

Next, we obtain a set of KKT-consistent gradients of the unknown constraint at
each identified tight timestep t ∈ tjtight. In Prob. V.4, we set the Lagrange mutipliers

85

xt−1

xt

xt+1

∇xtc(ξxu)

ScS

xt−2
∇xt−1

c(ξxu) = 0

∇xt−2
c(ξxu) = 0

∇xt−1
c(ξxu) = 0

1 ·∇xtg
∗

¬k(xt)
xt−1

xt

xt+1

∇xtc(ξxu)

ScS

0 ·∇xtg
∗

¬k(xt)

xt−2
∇xt−1

c(ξxu) = 0

∇xt−2
c(ξxu) = 0

∇xt−1
c(ξxu) = 0

invalid
gradients

(A) (B)
xt−1

xt

xt+1

∇xtc(ξxu) = 0

ScS

xt−2

0 ·∇xtg
∗

¬k(xt)

(C)

Figure 5.3: Consider a demonstrator minimizing path length on a kinematic system;
φsep(xt) = xt ∈ R2. In this simplified setting, we can interpret (5.2f) as balancing
between vectors ∇c and λ∇g¬k; if they cancel to 0, stationarity holds. We visualize
this for Prob. V.2-V.4. (A) Prob. V.2: ‖statxt‖ can only go to zero if λt

¬k > 0;
thus, we detect g∗¬k(xt) = 0. (B) Prob. V.4: only a scaling of the magenta constraint
normal can make ‖statxt‖ = 0; all gradients in gold are are not anti-parallel to ∇c
and cannot cancel it. (C): sometimes if g∗¬k(xt) = 0, it is still possible for ‖statxt‖ = 0
with λt

¬k = 0.

λ
j,t
¬k = 1, for all t ∈ tjtight, and set the non-tight Lagrange multipliers as λj,t

¬k = 0, for

all t ∈ tj¬tight; denote the concatenation of the multipliers as 1tight(ξ
dem
j). We then

solve for gradients ∇xt
g¬k(φsep(x

j
t)), for all t ∈ tjtight, which make the demonstration

KKT-consistent along with the Lagrange multipliers of the known constraints:

Problem V.4 (Gradient identification on demonstration j).

find λ
j
k,ν

j
k,∇xt

g¬k(φsep(x
j
t)), ∀t ∈ tjtight

subject to (5.2a), (5.2b), (5.2d)

statj(λj
k,1tight(ξ

dem
j),νj

k) = 0.

Prob. V.4 remains an LP as we fix λ
j
¬k to avoid bilinearity. To show this does

not overly restrict the set of KKT-consistent gradients, we show that while the true
gradient may be not be feasible for Prob. V.4, a positive scaling of it will be. A
scaled gradient is acceptable for two reasons. First, it can be impossible to uniquely
identify an unscaled gradient via KKT alone: by letting the tight multipliers λ

j,t
¬k,

t ∈ tjtight take positive non-unit values, they can scale their values to satisfy KKT

for different scalings of ∇xt
g¬k(φsep(x

j
t)). Second, while a scaled gradient affects

how quickly the constraint changes away from the tight point, it does not affect
the shape of the constraint (i.e., it does not rotate the unit surface normal vector
at the boundary of the unsafe set). Let F be the feasible set of Prob. V.4 and
proj∇g¬k

(F) .= {∇g¬k | ∃(λk,νk,∇g¬k) ∈ F}. Then, we have the following result:

Theorem V.5. A positive scaling of the true constraint gradient αj
t∇xt

g∗¬k(φsep(x
j
t)),

for αj
t > 0, for all t ∈ tjtight, is contained in proj∇g¬k

(F).
Proof. Since ξdemj is locally-optimal, it satisfies its KKT conditions; i.e., there exists

λ
j
k ≥ 0, νj

k, and λ
j
¬k ≥ 0, where λ

j,t
¬k = 0, for all t ∈ tj¬tight. This is via Prob.

86

V.2: if t ∈ tj¬tight, the KKT conditions can be satisfied if λj,t
¬k = 0. Denote one such

KKT-consistent set of multipliers as λj,∗
k , νj,∗

k , and λ
j,∗
¬k. As g

∗
¬k(·) is state-dependent

and time-separable, we can write λ
j⊤

¬k∇ξxug
∗
¬k(φ(ξ

dem
j)) = [λj,1

¬k∇x1
g∗¬k(φsep(x

j
1)), . . . ,

λ
j,T
¬k∇xT

g∗¬k(φsep(x
j
T)),01×nu(T j−1)]. Then, a feasible solution for Prob. V.4 is λ

j
k =

λ
j,∗
k , νj

k = ν
j,∗
k , and ∇xt

g¬k(φsep(x
j
t)) = λ

j,∗,t
¬k ∇xt

g∗¬k(φsep(x
j
t)), for all t ∈ tjtight. Thus,

the theorem holds by setting αj
t = λ

j,∗,t
¬k .

While fixing λ
j
¬k restricts proj∇g¬k

(F) and reduces scaling ambiguity, due to other
active constraints, these recovered KKT-consistent gradients may still not be unique.
While scaled gradients are tolerable, a rotation of the true gradient can also lie in
proj∇g¬k

(F), complicating the learning as: 1) the unsafe set shape becomes uncertain,
2) modeling gradient uncertainty is challenging, as determining the set of all consistent
gradient vectors is computationally intensive Chou et al. (2020a), and 3) the gradient
uncertainty cannot be well-modeled by a Gaussian distribution, as required by our
GP representation.

Though quantifying the uncertainty in the constraint gradients is challenging, we
can efficiently check if a given KKT-consistent normal vector is unique, modulo a
positive scaling. This can be done by checking that there does not exist another
KKT-consistent normal vector that either A) lies in the orthogonal complement of
the given normal vector or B) points in directly the opposite direction (see Fig.
5.4). Let ∇xt

g̃j¬k be the gradient returned by Prob. V.4 for timestep t on ξdemj and

∇xt
g̃j,⊥¬k ∈ Rnc×(nc−1) as a basis for its orthogonal complement. Then, condition A)

can be checked by solving:

Problem V.6 (Orthogonal check at time t on demonstration j).

maximize
λ
j
k
,νj

k
,∇xtg¬k(φsep(x

j
t))

∥∥∇xt
g¬k(φsep(x

j
t))

⊤∇xt
g̃j,⊥¬k ‖1

subject to (5.2a), (5.2b), (5.2d)

statj(λj
k,1tight(ξ

dem
j),νj

k) = 0.

Intuitively, Prob. V.6 searches for an alternate gradient in the orthogonal complement
of the gradient obtained via Prob. V.4 such that some assignment of multipliers also
exists to satisfy the KKT conditions. Due to the non-convex objective, Prob. V.6 can
be modeled as a mixed integer linear program (MILP) with only a small number of
binary variables, thus remaining rapidly-solvable. Next, condition B) can be checked
via:

Problem V.7 (Anti-parallel check; time t on demonstration j).

minimize
λ
j
k
,νj

k
,∇xtg¬k(φsep(x

j
t))
∇xt

g¬k(φsep(x
j
t))

⊤∇xt
g̃j¬k

subject to (5.2a), (5.2b), (5.2d)

statj(λj
k,1tight(ξ

dem
j),νj

k) = 0.

Prob. V.7, an LP, searches for a KKT-consistent gradient minimizing the dot product
with ∇xt

g̃j¬k, i.e., pointing as anti-parallel to the original gradient as possible. Thm.

87

p
∗
4 S

c S
c

rxt
g̃¬k(xt) rxt

g̃¬k(xt)

(A) (B)

p
∗
5

Figure 5.4: Prob. V.6 and V.7 intuition. (A): Prob. V.6 searches for a new gradient
orthogonal to the original gradient by maximizing the distance from the origin as
measured in the coordinates of ∇xt

g̃⊥¬k. If p∗4 = 0 (i.e., the gradient remains in the
gap between the blue areas as the gap→ 0), the new gradient must remain in the span
of the original gradient. (B): Prob. V.7 searches for a new gradient with minimal
dot product w.r.t. the original gradient; if the result remains in the blue semicircle
(i.e., p∗5 > 0) and p∗4 = 0, the gradient from Prob. V.4 is unique up to a scaling.

V.8 shows how Probs. V.6-V.7 can check gradient uniqueness. Denote the optimal
values of Prob. V.6 and V.7 as p∗4 and p∗5. We have:

Theorem V.8. If p∗4 = 0 and p∗5 > 0, the true gradient ∇xt
g∗¬k(φsep(x

j
t)) is a positive

scaling of the recovered gradient ∇xt
g̃¬k(φsep(x

j
t)), i.e., there exists α > 0 such that

∇xt
g∗¬k(φsep(x

j
t)) = α∇xt

g̃¬k(φsep(x
j
t)).

Proof. First, p∗4 = 0 iff all feasible ∇xt
g¬k(φsep(x

j
t)) lie in span(∇xt

g̃¬k), as the ob-
jective of Prob. V.6 is just the norm of the coordinates of ∇xt

g¬k(φsep(x
j
t)) in the

basis of the orthogonal complement, i.e., there exists β ∈ R such that ∇xt
gj¬k =

β∇xt
g̃j¬k. Second, if p∗5 > 0, then ∇xt

gj,⊤¬k ∇xt
g̃j¬k > 0, for all ∇xt

gj¬k ∈ proj∇g¬k
(F).

Third, by combining these two results, we have that β∇xt
g̃j,⊤¬k ∇xt

g̃j¬k > 0, implying
β > 0, as ‖∇xt

g̃j¬k‖ > 0 in order for t ∈ tjtight. Finally, from Thm. V.5, we know
∇xt

g∗¬k = γ∇xt
g¬k, for some γ > 0 and ∇xt

g¬k ∈ proj∇g¬k
(F); we recover the theorem

statement by setting α = βγ.

Our approach is to use the tight points with a unique KKT-consistent unit normal
vector to train our GP constraint (see Sec. 5.4.2); we call these gradients robustly-
identified and their timesteps as tjrob ⊆ tjtight, for all j = 1, . . . , Ndem.

5.4.2 Embedding KKT-based information in a Gaussian process

Let the number of robustly-identified points over all demonstrations be Nrobust.
We collect the constraint states corresponding to the robustly-identified gradients
and denote it as Dκ

.
= {φsep(x

j
t) | t ∈ tjrob, j ∈ {1, . . . , Ndem}} ∈ RNrobust×nc . We

also collect the robustly-identified gradients D∇
.
= {∇xt

g¬k(φsep(x
j
t)) | t ∈ tjrob, j ∈

88

{1, . . . , Ndem}} ∈ RNrobust×nc . Moreover, as the value of the unknown constraint equals
zero at all robustly-identified points, we can define a third set Dg

.
= 0Nrobust

, i.e., the
zero vector of size Nrobust. We wish to learn a GP which is consistent with both the
constraint values Dg as well as the constraint gradients D∇. Note that derivative of a
GP is a GP, and the joint distribution of a GP and its derivative is also a GP Solak
et al. (2002); forming this joint GP provides us an avenue for incorporating both the
constraint value and gradient information. Like the derivation of the GP posterior
without derivative observations (Sec. 5.3.2), one can derive the posterior distribution
conditioned on the training inputs, their derivatives, and the outputs. For brevity,
please refer to Wu et al. (2018) for detailed derivations. For this joint GP, we can
define the training inputs and outputs as X = Dκ and Y = [Dg,D∇], comprising the
dataset D = (X,Y), and use the negative marginal log likelihood −LMLL (Rasmussen
and Williams , 2005, Eq. 2.30) to optimize the GP hyperparameters.

A key subtlety is that as the learned constraint is a GP, its constraint value at
any given query point is not deterministic; rather, it is sampled from a Gaussian
distribution whose mean and variance is determined by the training data and the
location of the query point (i.e., g¬k(κm) ∼ N (µm, σ

2
m | D, κm)). Moreover, while the

demonstrations are guaranteed safe by assumption (i.e., g¬k(κt) ≤ 0 for all t), the
stochasticity of the GP values prevents us from enforcing that the demonstrations
are safe with probability 1, as the Gaussian has infinite support. Instead, we select a
standard deviation threshold ρ for which we want the demonstrations to be safe and
add a hinge loss on its violation, where R =

∑Ndem

j=1 T j:

Lfeas = (1/R)
∑R

n=1 max(µ(xn | D) + ρσ(xn | D), 0). (5.6)

Then the full training loss is L = −LMLL + Lfeas.

5.4.3 Planning with the learned constraint

We describe a method for planning with the learned GP constraint. As the GP
is probabilistic, so is the boundary of the learned safe set S (5.5); thus, our planner
provides probabilistic, rather than deterministic, safety guarantees. As the dynamics
are assumed known, we only consider the uncertainty of the GP constraint in planning.
Recall that we wish to connect a start and goal state with a dynamically-feasible
trajectory ξplanxu that satisfies the true constraint g∗

¬k(φ(ξ
plan
xu)) with probability 1− δ.

From the assumption (Sec. 5.3.3) that g∗¬k is drawn from the GP, we achieve this by
satisfying the learned constraint g¬k(φ(ξ

plan
xu)) with probability 1− δ. Unlike previous

work in planning under uncertainty Blackmore et al. (2006); Luders et al. (2010, 2013),
we make no structural assumptions on the dynamics or the shape of the constraints.

We modify a constrained kinodynamic RRT LaValle (2006) to plan with the
learned constraint, though our method can be adapted to other sampling or optimization-
based planners. Our planner, which we refer to as Gaussian Process-Chance Con-
strained RRT (GP-CCRRT), is presented in Alg. V.1. The main novelty of the pro-
posed planner is its GP constraint-checker: when a new node xq is sampled, instead of
checking if xq satisfies the timestep-independent chance constraint Pr(g¬k(φsep(xq)) ≤

89

x1

x0

N

(

[

m(x0)

m(x1)

]

,

[

Σ(x0, x0) Σ(x0, x1)

Σ(x0, x1) Σ(x1, x1)

]

!

X
{x

| m
(x
)
≤
0}

g¬k(x1)
p
(
g
¬
k
(
x
0
)
,
g
¬
k
(
x
1
)
)

(x0 x1) = (g¬k(x0) ≤ 0 ^ g¬k(x1) ≤ 0)

=

Z
0

−1

Z
0

−1

p(\
g¬k(x0),

\
g¬k(x1))

\
g¬k(x0)

\
g¬k(x1)

g¬k(x0)

Figure 5.5: Illustration of GP-CCRRT. A candidate length 2 trajectory from the root
of the RRT induces a bivariate Gaussian; its safety probability can then be calculated
by calculating the CDF of the induced Gaussian.

0) ≥ 1− δ, we check if we can connect xq to the tree by exactly evaluating the joint
probability of safety for the full trajectory from the root to the candidate node xq
(line 7-8). Our ability to efficiently compute this probability relies on the Gaussian
structure of our learned GP constraint representation. Let the full trajectory from
the root to xq, denoted ξq, be length K. Evaluating the learned GP g¬k(·) at those K
points returns the mean and covariance matrix of the predictive posterior distribu-
tion, which is a K-variate Gaussian (line 7). Then, the trajectory safety probability,
pqsafe

.
= Pr(

∧K
n=1(g¬k(κn) ≤ 0)), is obtained by integrating the density of this |K|-

variate Gaussian from −∞ to 0 in each dimension (i.e., the cumulative distribution
function, or cdf), evaluated at 0K (line 8). Highly-optimized implementations of the
multivariate Gaussian CDF Genz and Trinh (2014) enable fast CDF evaluation at
planning time. Finally, node xq is accepted if ξq is safe with at least probability 1− δ
(line 8). We visualize the GP constraint check in Fig. 5.5.

Algorithm V.1: GP-CCRRT

Input: xI , xG, ǫ, goal bias
1 Tx ← {xI}, Tu ← {}
2 while True do
3 xdesired ← SampleState(goal bias)
4 xnear ← NearestNeighbor(Tx, xdesired)
5 ξprev ← PathFromRoot(xnear)
6 xq, uq → ShootToDesired(xnear, xdesired)
7 µ,Σ← g¬k(φ(ξprev ∪ xq))
8 if cdf(N (µ,Σ),0) ≥ 1− δ then (Tx, Tu)← (Tx, Tu) ∪ (xq, uq)
9 if ‖xq − xG‖ ≤ ǫ then

10 return ξplanxu ← ConstructPath(Tx, Tu, xq)

90

5.5 Results

We evaluate our method on learning complex, nonlinear constraints demonstrated
on a point robot, nonholonomic car, quadrotor, and arm. Please see the video for
visualizations. We train all GPs using GPyTorch with an RBF kernel using the Adam
optimizer. We obtain demonstrations by solving Prob. V.1 using IPOPT Wächter
and Biegler (2006). We compare with two baselines. The first, (Chou et al., 2020b,
Prob. 4), approximates the unknown constraint as a union of B axis-aligned boxes (as
in (Chou et al., 2019, Sec. 4.4)). In the second, we use a neural network (NN) instead
of a GP to fit the constraint using the same data; in all examples, the NN has 5 hidden
layers of size 256, 512, 1024, 512, and 128 and is trained for 200 epochs with learning
rate 5 × 10−5. To train the NN, we use MSE losses on the target tight constraint
values and gradients with a hinge loss that encourages all points to be feasible. We
also compute (Table 5.1) how many states are falsely claimed safe (“false safe (FS)”)
or unsafe (“false unsafe (FU)”) by setting S = {κ | µ(κ | D) + τσ(κ | D) ≤ 0} for
standard deviations τ ∈ {0, 1, 2, 2.33}. While S is not used in GP-CCRRT (it uses
joint instead of individual safety probabilities), it is a good surrogate for constraint
accuracy. Finally, Probs. V.2-V.7 are all solved in 0.5 seconds.

Our method Baselines
0σp 1σp 2σp 2.33σp Chou et al. (2020b) NN

Cup
FS (%) 0.004 0.000 0.000 0.000 22.616 52.706
FU (%) 0.022 1.294 3.532 4.684 5.284 0.000

Car
FS (%) 1.741 0.319 0.071 0.042 5.947 15.555
FU (%) 0.424 58.761 64.807 66.305 0.117 0.000

Box
FS (%) 3.230 0.462 0.189 0.138 0.000 10.859
FU (%) 1.648 81.146 86.641 87.190 0.000 0.000

Tree
FS (%) 0.593 0.057 0.004 0.000 14.867 23.427
FU (%) 0.729 11.108 31.412 37.773 0.160 0.000

Arm
FS (%) 1.403 0.163 0.012 0.003 17.179 15.029
FU (%) 0.658 57.294 70.644 73.490 0.808 0.151

Table 5.1: GP classification errors (False Safe (FS); False Unsafe (FU)).

2D cup constraint: The purpose of our first example is to demonstrate that our
approach can learn complicated unsafe sets with hollow interiors. Consider demon-
strations wiping the interior and exterior of a cup. The cup is centered at the origin
and has inner and outer radii r and r̄, respectively. One way to represent the wiping
task is to minimize the cumulative distance from the center of the rim over time, i.e.,
c(ξ) =

∑T
t=1 ‖‖χt‖− r̄+r

2
‖22, subject to point-robot dynamics, control constraints, and

nonpenetration with the cup, where χt = [xt, yt]. In this example, we aim to learn
the shape of the cup from the demonstrations (i.e., the unsafe set between the inner
and outer cup radii, see Fig. 5.6.A). Given four demonstrations (Fig. 5.6.A), and
by training the GP for 500 epochs at learning rate 0.05, we are able to recover the
cup shape (Fig. 5.6.B) with very high accuracy (see Table 5.1). In contrast, neither
of the baselines can accurately recover the constraint (Table 5.1); the NN fails to
accurately fit the constraint gradients, while Chou et al. (2020b) fails to accurately
fill the interior of the unsafe set (when allocated 5 boxes in its representation).

91

-2 -1 0 1 2
-2

-1

0

1

2

-2 0 2
-2

-1

0

1

2

0.1

0.2

0.3

0.4

0.5

True unsafe set

(A) (B)

Figure 5.6: 2D hollow cup constraint. (A) Demonstrations and true constraint. (B)
Learned GP posterior mean, with true constraint overlaid.

Tight pointsRobust
gradient
points

Gradients

Demonstrations

True
constraint

(A) (B)

Figure 5.7: 5D car example. (A) Hilly terrain map. (B) Demonstrations; identified
tight points (red); robustly-identified timesteps (green); robustly-identified gradients
(blue).

92

(A) (B) (C)

(D) (E) (F)

Figure 5.8: 5D car example, learned. (A) Learned GP constraint, mean function.
(B) Mean function misclassifications. (C) Constraint learned using baseline Chou
et al. (2020b). (D) Learned GP constraint, buffered by GP uncertainty. (E) Buffered
misclassifications. (F) Plans computed using learned GP constraint.

93

5D nonholonomic car: We first evaluate our method on a 5D car, showing that
can learn a nonlinear, disconnected constraint without prior knowledge. Consider an
autonomous vehicle driving on hilly terrain (Fig. 5.7.A) which must stay below a
maximum elevation; the corresponding unsafe set (i.e., the subset of the map above
the elevation limit) is the filled-in region in Fig. 5.7.B. We use the second-order
unicycle dynamics from (LaValle, 2006, Eq. 13.46) with a discretization time of ∆T
= 0.5. Prior work Chou et al. (2018a) studied a similar example; however, in Chou
et al. (2018a), the map (i.e., the constraint representation) is given, so the only the
elevation threshold must be learned. In contrast, we are not given the map, and must
learn the representation jointly with the threshold – a much harder problem.

We obtain 9 demonstrations minimizing the xy-space path length, and a control
constraint of ‖ut‖22 ≤ 5 is imposed for all time. Here, φsep maps to the xy-state
components. By solving Prob. V.2, we identify tight points (Fig. 5.7.B, red). Next,
by solving Probs. V.4-V.7, we find robustly-consistent gradients (Fig. 5.7.B, blue
arrows) at a subset of the tight points (Fig. 5.7.B, green). Note the accuracy of
Prob. V.2, which identifies that the cyan trajectory is not tight, despite it curving
due to dynamical constraints, and correct identification for the black trajectory, which
makes and breaks contact with the constraint boundary. The few tight points that are
not identified (e.g., near [−2, 2]) are where the constraint boundary is flat; thus, the
sub-trajectory is optimal despite being on the boundary (Fig. 5.3.C). Note that most
tight points also have robustly-identifiable gradients; the exceptions are before/after
the system leaves the constraint boundary; this is due to the dynamics, as the car may
brake/turn to prevent constraint violation, expanding the set of consistent gradients.

We train the GP for 150 epochs at learning rate 0.08. In Fig. 5.8, we show the
GP accuracy and compare with the baseline Chou et al. (2020b). Overall, the GP
mean faithfully recreates the true unsafe set (Fig. 5.8.A), though it misclassifies (Fig.
5.8.B) the center of the middle and top obstacles; this is as there are few tight points
in that area. Still, when buffering the GP with its uncertainty (Fig. 5.8.D-E), the
regions which are falsely classified shrink (see Table 5.1), though this is at the cost
of conservatively marking much of the map far from the demonstrations as unsafe.
This arises from the GP’s ability to capture epistemic uncertainty and can actually
be desirable as it leads to cautious plans that remain near the data and away from
unseen constraints that are inactive on the demonstrations. For the baseline Chou
et al. (2020b), we use 20 boxes and terminate the optimization after 60 minutes.
The result has higher error than the learned GP constraint and fails to capture the
constraint shape. The NN baseline is also inaccurate, as it drives the value of most
tight points to 0 but fails to fit the gradient data (Table 5.1). Finally, we plan with
GP-CCRRT with a safety probability of 0.9; five plans are shown in Fig. 5.8.F, which
all satisfy g∗¬k(·). On average, our planner solves in 3 minutes, with 20 and 50 percent
of that time being dedicated to GP posterior and CDF computation, respectively;
this can be sped up via lazy checking of the CDF constraint. Overall, this example
suggests we can learn nonconvex constraints with minimal a priori knowledge.
12D quadrotor: We evaluate our method on two constraint learning tasks on a
12D quadrotor (see (Chou et al., 2021b, Eq. 19) for the dynamics). We first show
our method achieves comparable performance with Chou et al. (2020b) for learning

94

constraints that can be represented as a union of boxes. We are given 24 short
demonstrations (Fig. 5.9.A) that minimize xyz path length while satisfying a control
constraint ‖ut‖22 ≤ 100, for all t. Moreover, the baseline Chou et al. (2020b) is also
provided the information that the constraint can be represented as a union of two
axis-aligned boxes (thus learning the constraint exactly). We train the GP for 600
epochs at learning rate 0.1, and the learned GP (Fig. 5.9.B) captures the union-of-
boxes shape well. Two main inaccuracies are A) the interior of the learned box is
hollow (this is expected, as no data can be collected in the obstacle) and B) there
are some “ringing effects” (this is caused by the GP, which favors smooth functions,
attempting to fit the discontinuous box gradients). Numerically, Table 5.1 shows that
the GP misclassifications are low, and moreover, the number of states that are falsely
claimed to be safe can be driven near zero by buffering with the GP uncertainty.
The GP outperforms the NN baseline, which again struggles to fit the gradient data.
Overall, this example suggests our method also performs well where previous methods
excel.

Next, we evaluate our approach on learning a complex nonlinear constraint which
is well beyond the capability of the baseline Chou et al. (2020b). We are given
25 demonstrations (Fig. 5.1.A, black) avoiding collisions with an unknown tree-
like obstacle to be learned, which is a union of three ellipsoids (Fig. 5.1.A, blue).
Crucially, we lack a priori knowledge on the structure of g∗¬k(·). The dynamics and
cost function used are as in Chou et al. (2020a) and Chou et al. (2020b), respectively,
and φsep maps to the xyz-state components. We train the GP for 150 epochs at
learning rate 0.08. In comparing with the baseline, we use 6 axis-aligned boxes and
time out the optimization after 2 hours.

We visualize our results in Fig. 5.1.B-C. Our learned GP is visually accurate
(Fig. 5.1.B), with minor errors (Fig. 5.1.C) where there are no tight points. This is
reasonable, as we cannot expect the GP to be accurate far from the data. In contrast,
the baseline Chou et al. (2020b) is inaccurate (Fig. 5.1.D), failing to cover the upper
portion of the obstacle; moreover, the shape is inaccurate due to the limitations of
axis-aligned boxes. The NN baseline is also inaccurate, failing to fit the constraint
gradients (Table 5.1). Numerical results in Table 5.1 suggest that the GP mean is
the most accurate when considering both metrics. As before, the “False Safe” rate
can be made smaller at the cost of conservativeness by buffering with the predictive
uncertainty. In contrast, the baseline has a high “False Safe” rate, which can lead to
constraint violation in planning. We show six plans computed via GP-CCRRT (Fig.
5.1.A, gold), which are safe with probability at least 0.9, and which are safe for the
true constraint. On average, planning takes 90 seconds; 55 and 20 percent of this
is due to GP posterior and CDF calculations. This example suggests our method
scales to complex constraints on high-dimensional systems while requiring minimal
prior information.
Planar 3-link manipulator: Finally, we evaluate our method on a kinematic pla-
nar 3-link arm. The arm is mounted at the origin and must avoid a blue nonconvex
workspace obstacle (Fig. 5.10.D, E). To show that our method can learn complex
constraints on articulated robots, we learn the configuration space (C-space) repre-
sentation of the obstacle (Fig. 5.10.A, blue), which is also nonconvex. We obtain

95

(A) (B) (C)

Figure 5.9: 12D quadrotor box example. (A) Two box obstacles; demonstrations.
(B) Learned GP constraint (mean). (C) GP misclassifications (mean).

(A) (B) (C)

(D) (E) (F)

Figure 5.10: 3-link planar arm example, learned. (A) True C-space constraint; plans
found using GP constraint (gold). (B) Learned GP constraint, mean function. (C)
Mean function misclassifications. (D-E) Plans computed using learned GP constraint
(workspace). (F) Constraint learned with baseline Chou et al. (2020b).

96

50 demonstrations (Fig. 5.10.A, black) which minimize the joint-space path length,
i.e., c(ξxu) =

∑T
t=1 ‖qt+1 − qt‖2 subject to a control constraint ‖qt+1 − qt‖ ≤ 0.1, for

all t. We train the GP for 150 epochs at learning rate 0.08, obtaining a GP whose
posterior mean is visually consistent with the true constraint (Fig. 5.10.B). The
posterior mean misclassifications are mostly on the interior of the C-space obstacle
(as expected, since no data can be collected there), as well as minor errors on the
constraint surface which are further away from the data. We plan via GP-CCRRT,
taking two minutes on average, where 40 and 45 percent of the time is due to GP pos-
terior and CDF computations, respectively. We use GP-CCRTT to obtain plans that
are safe with probability greater than 0.9; time-lapses of two such plans are shown in
Fig. 5.10.D-E. Finally, we evaluate the baseline Chou et al. (2020b) with 10 boxes,
timing out the optimization after 6 hours. Due to the number of demonstrations and
constraint parameters, the baseline struggles (Fig. 5.10.F), returning boxes that do
not adequately satisfy the KKT conditions and fail to capture the features of the true
constraint. As before, the posterior mean has low “false safe” and “false unsafe” rates,
and the “false safe” rate can be reduced via buffering (see Table 5.1). In contrast, the
baseline has a much higher “false safe” rate, since it fails to cover most of the unsafe
set, though it has a low “false unsafe” rate, since it marks most of the space as safe.
The NN baseline also fails to fit the gradient data, leading to low accuracy (Table
5.1). Overall, this example suggests that we can learn non-convex, non-workspace
constraints on articulated robots while requiring minimal prior information, which is
a necessity for C-space obstacles, which can be unintuitive.

5.6 Discussion and Conclusion

In this chapter, we learn constraints from demonstrations with minimal a priori
knowledge by finding where the unknown constraint is tight and a scaling of its
gradient at those points via the KKT conditions, and then training a GP-represented
constraint that is consistent with and generalizes this data. We also show that the
Gaussian structure of the GP uncertainty can exploited in an RRT-based planner to
compute plans which satisfy the unknown constraint with a specified probability. Our
results on a 5D car, 12D quadrotor, and 3-link planar arm show we can learn complex
constraints on realistic systems which prior methods cannot handle. We conclude by
discussing design choices and future work.
Why use a GP constraint representation? Our learning problem (fitting a
function using zero level set data (the tight points) and its gradients at those points)
closely relates to fitting manifolds Sutanto et al. (2020) and signed distance functions
Park et al. (2019) to data (though our method differs greatly in how it obtains the
data, i.e., the KKT conditions). In both Sutanto et al. (2020) and Park et al. (2019),
neural networks (NN) are used to fit large datasets on the order of 103 ∼ 104 and 105

for Sutanto et al. (2020) and Park et al. (2019), respectively. In Sec. 5.5, we show
that in training the NN with only ∼ 102 tight data points, the NN failed to provide an
accurate fit. In contrast, derivative data can be directly embedded via the joint GP,
which fits the constraint better with less data (on the order of 102). Moreover, GPs

97

handle constraint uncertainty in a principled way, which is crucial for safe planning.
Limitations and future work: First, as GPs are non-parametric, dense coverage
of the constraint space with tight points is needed to reduce the predictive uncer-
tainty. This results in cautious plans that stay near the training data, and may
needlessly restrict the robot. In future work, we will explore semi-parametric mod-
els which combine a known, insufficient parameterization with a non-parametric GP
to reduce uncertainty. Second, our method assumes demonstrations are precisely
locally-optimal, but this is often untrue due to noisy observations or partial observ-
ability Knuth et al. (2021b); in future work, we will investigate suboptimality models
(e.g., Ziebart et al. (2008)) that can be used to adjust the confidence in extracted con-
straint value/gradient data. Third, we wish to extend our method to time-varying
(e.g., temporal logic Chou et al. (2020c)) constraints. Finally, the scaling of GPs may
hamper the learning of high-dimensional constraints; thus, we will explore scalable
GP variants (e.g., sparse spectrum GP regression Rahimi and Recht (2007)).

98

CHAPTER VI

Learning Temporal Logic Formulas from

Suboptimal Demonstrations

In this chapter, we present a method for learning multi-stage tasks from demon-
strations by learning the logical structure and atomic propositions of a consistent lin-
ear temporal logic (LTL) formula. The learner is given successful but potentially sub-
optimal demonstrations, where the demonstrator is optimizing a cost function while
satisfying the LTL formula, and the cost function is uncertain to the learner. Our
algorithm uses the Karush-Kuhn-Tucker (KKT) optimality conditions of the demon-
strations together with a counterexample-guided falsification strategy to learn the
atomic proposition parameters and logical structure of the LTL formula, respectively.
We provide theoretical guarantees on the conservativeness of the recovered atomic
proposition sets, as well as completeness in the search for finding an LTL formula
consistent with the demonstrations. We evaluate our method on high-dimensional
nonlinear systems by learning LTL formulas explaining multi-stage tasks on a simu-
lated 7-DOF arm and a quadrotor, and show that it outperforms competing methods
for learning LTL formulas from positive examples. Finally, we demonstrate that our
approach can learn a real-world multi-stage tabletop manipulation task on a physical
7-DOF Kuka iiwa arm. This chapter is based off of the papers Chou et al. (2021b)
and Chou et al. (2020c).

6.1 Introduction

Imagine demonstrating a multi-stage task to a robot arm delivery worker, such
as finding and delivering a set of objects from a storage area to some customers
(Fig. 6.1). How should the robot understand and generalize the demonstration? One
popular method is inverse reinforcement learning (IRL), which assumes a level of opti-
mality on the demonstrations, and aims to learn a reward function that replicates the
demonstrator’s behavior when optimized Abbeel and Ng (2004); Argall et al. (2009);
Ng and Russell (2000); Ratliff et al. (2006). Due to this representation, IRL works
well on short-horizon goal-directed tasks, but can struggle to scale to multi-stage, con-
strained tasks Chou et al. (2018a); Krishnan et al. (2019); Vazquez-Chanlatte et al.
(2018). Transferring reward functions across environments (e.g., from one storage

99

Figure 6.1: Multi-stage delivery task: place the soup in an open-top box and deliver
it, then deliver the Cheez-Its to a second delivery location. To avoid spills, a pose
constraint is enforced while the soup is being delivered in the open-top box.

area to another) can also be difficult, as IRL may overfit to aspects of the training
environment. It may instead be fruitful to decouple the high- and low-level task
structure, learning a logic-based temporal abstraction of the task that is valid for
different environments which can combine low-level, environment-dependent skills.
Linear temporal logic (LTL) is well-suited for representing this abstraction, since it
can unambiguously specify high-level temporally-extended constraints Baier and Ka-
toen (2008) as a function of atomic propositions (APs), which can be used to describe
salient low-level state-space regions. To this end, a growing community in controls
and anomaly detection has focused on learning linear temporal logic (LTL) formulas
to explain trajectory data. However, the vast majority of these methods require both
positive and negative examples in order to regularize the learning problem. While this
is acceptable in anomaly detection, where one expects to observe formula-violating
trajectories, in the context of robotics, it can be unsafe to ask a demonstrator to
execute formula-violating behavior, such as dropping a fragile object or crashing into
obstacles.

In this chapter, our insight is that by assuming that demonstrators are goal-
directed (i.e., that they approximately optimize an objective function that may be
uncertain to the learner), we can regularize the LTL learning problem without being
provided any formula-violating behavior. In particular, we learn LTL formulas which
are parameterized by their high-level logical structure and low-level AP regions, and
we show that to do so, it is important to consider demonstration optimality both in
terms of the quality of the discrete high-level logical decisions and the continuous low-
level control actions. We use the Karush-Kuhn-Tucker (KKT) optimality conditions
from continuous optimization to learn the shape of the low-level APs, along with
notions of discrete optimality to learn the high-level task structure. We solve a mixed
integer linear program (MILP) to jointly recover LTL and cost function parameters
which are consistent with the demonstrations. We make the following contributions:

1. We develop a method for time-varying, constrained inverse optimal control,
where the demonstrator optimizes a cost function while respecting an LTL for-
mula, where the parameters of the atomic propositions, formula structure, and
an uncertain cost function are to be learned. We require only positive demon-
strations, can handle demonstration suboptimality, and for fixed formula struc-
ture, can extract guaranteed conservative estimates of the AP regions.

2. We develop conditions on demonstrator optimality needed to learn high- and

100

low-level task structure: AP regions can be learned with discrete feasibility,
while logical structure requires various levels of discrete optimality. We develop
variants of our method under these different assumptions.

3. We provide theoretical analysis of our method, showing that under mild assump-
tions, it is guaranteed to return the shortest LTL formula which is consistent
with the demonstrations, if one exists. We also prove various results on our
method’s conservativeness and on formula learnability.

4. We evaluate our method on learning complex LTL formulas demonstrated on
nonlinear, high-dimensional systems, show that we can use demonstrations of
the same task on different environments to learn shared high-level task structure,
and show that we outperform previous approaches.

6.2 Preliminaries and Problem Statement

We consider discrete-time nonlinear systems

xt+1 = f(xt, ut, t),

with state x ∈ X and control u ∈ U , where we denote state/control trajectories of
the system as ξxu

.
= (ξx, ξu).

We use linear temporal logic (LTL) Baier and Katoen (2008), which augments
standard propositional logic to express properties holding on trajectories over (po-
tentially infinite) periods of time. In this chapter, we will be given finite-length
trajectories demonstrating tasks that can be completed in finite time. To ensure that
the formulas we learn can be evaluated on finite trajectories, we focus on learning
formulas, given in positive normal form, which are described in a parametric temporal
logic similar to bounded LTL Jha et al. (2009), and which can be written with the
grammar

ϕ ::= p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | �[t1,t2]ϕ | ϕ1 U[t1,t2] ϕ2, (6.1)

where p ∈ P .
= {pi}NAP

i=1 are atomic propositions (APs) and NAP is known to the
learner. t1 ≤ t2 are nonnegative integers. Here, ¬p denotes the negation of atomic
proposition p, the “or” operator ϕ1 ∨ ϕ2 denotes the disjunction of formulas ϕ1 and
ϕ2, the “and” operator ϕ1 ∧ ϕ2 denotes the conjunction of formulas ϕ1 and ϕ2, the
“bounded-time always” operator �[t1,t2]ϕ denotes that ϕ “always” has to hold over
the interval [t1, t2], and the “bounded-time until” operator ϕ1 U[t1,t2] ϕ2 denotes that
ϕ2 must eventually hold during the interval [t1, t2], and ϕ1 must hold for all timesteps
prior to that. Due to the positive normal form structure, negation can only appear
directly before APs. Let the size of the grammar be Ng = NAP+No, where No is the
number of temporal/boolean operators in the grammar. A useful derived operator
is “bounded-time eventually” ♦[t1,t2]ϕ

.
= ⊤ U[t1,t2] ϕ, which denotes that a formula ϕ

eventually has to hold during the interval [t1, t2].

101

In this chapter, we will consider LTL formulas ϕ(θs, θp) that are parameterized
by θs ∈ Θs, which encode the logical and temporal structure of the formula, and
by θp

.
= {θpi }NAP

i=1 , where θpi ∈ Θp
i defines the shape of the region where pi holds.

Furthermore, we will consider APs of the form: x |= pi ⇔ gi(ηi(x), θ
p
i) ≤ 0, where

ηi(·) : X → C is a known nonlinear function, gi(·, ·) .
= [gi,1(·, ·), . . . , gi,N ineq

i
(·, ·)]⊤ is a

vector-valued parametric function, and C is the space in which the AP constraint is
evaluated, elements of which are denoted constraint states κ ∈ C.

To show how this notation maps onto a concrete robotics example, consider a
7-DOF arm. We can define the state x as the joint angles, the control u as the
joint velocities, the constraint state κ as the end effector pose, and the mapping
from the state to constraint state space η : X → C ⊆ R3 as the forward kinematics,
mapping from joint space to workspace. One possible atomic proposition is x |=
p ⇔ g(η(x), θp) = Aη(x) − θp ≤ 0, where A = [I3×3,−I3×3]

⊤ and In×n is the n × n
identity matrix. This atomic proposition p is satisfied if the end effector position is
contained within an axis-aligned rectangle in the workspace with extents described
by θp = [x̄, ȳ, z̄,−x,−y,−z], where x̄, ȳ, and z̄ denote the upper extents in the
x-, y-, and z-dimensions, and x, y, and z denote the lower extents in the x-, y-,
and z-dimensions. Finally, we can write an LTL formula ♦[t1,t2]p to enforce that all
trajectories must satisfy this workspace constraint at some point between time t1 and
t2.

We formalize the discussion above by defining the semantics, which describe the
satisfaction of an LTL formula ϕ by a trajectory ξxu. Specifically, we denote the
satisfaction of a formula ϕ on a finite-duration trajectory ξxu of total duration T ,
evaluated at time t ∈ {1, 2, . . . , T}, as (ξxu, t) |= ϕ. Then, the formula satisfaction is
defined recursively in the formal semantics (6.2). We will write ϕ |= ξxu as shorthand
for (ξxu, 1) |= ϕ. We emphasize that since we consider discrete-time trajectories, a
time interval [t1, t2] is evaluated only on integer time instants {t1, t1 + 1, . . . , t2}; this
is made concrete in (6.2).

We consider tasks that involve optimizing a parametric cost function (encoding
efficiency concerns, etc.), while satisfying an LTL formula ϕ(θs, θp) (encoding con-
straints for task completion):

(ξxu, t) |= pi ⇔ gi(ηi(xt), θ
p
i) ≤ 0

(ξxu, t) |= ¬pi ⇔ ¬((ξxu, t) |= pi)
(ξxu, t) |= ϕ1 ∨ ϕ2 ⇔ (ξxu, t) |= ϕ1 ∨ (ξxu, t) |= ϕ2

(ξxu, t) |= ϕ1 ∧ ϕ2 ⇔ (ξxu, t) |= ϕ1 ∧ (ξxu, t) |= ϕ2

(ξxu, t) |= �[t1,t2]ϕ ⇔ (t+ t1 ≤ T) ∧ (∀t̃ ∈ [t+ t1,min(t+ t2, T)], (ξxu, t̃) |= ϕ)
(ξxu, t) |= ϕ1U[t1,t2]ϕ2 ⇔ (t+ t1 ≤ T) ∧ (∃t̃ ∈ [t+ t1,min(t+ t2, T)]

s.t. (ξxu, t̃) |= ϕ2) ∧ (∀ť ∈ [t, t̃− 1], (ξxu, ť) |= ϕ1)
(ξxu, t) |= ♦[t1,t2]ϕ ⇔ (t+ t1 ≤ T) ∧ (∃t̃ ∈ [t+ t1,min(t+ t2, T)]

s.t. (ξxu, t̃) |= ϕ)
(6.2)

102

Problem VI.1 (Demonstrator’s forward problem).

minimize
ξxu

c(ξxu, θ
c)

subject to ξxu |= ϕ(θs, θp)
η̄(ξxu) ∈ S̄ ⊆ C

where c(·, θc) is a potentially non-convex cost function, parameterized by θc ∈ Θc.
Any a priori known constraints are encoded in S̄, where η̄(·) is known. In this
chapter, we encode in S̄ the system dynamics, start state, and if needed, a goal state
separate from the APs.

Next, to ease notation, we will define Gi(κ, θ
p
i)

.
= maxm∈{1,...,N ineq

i }

(
gi,m(κ, θ

p
i)
)
.

Define the subset of C where pi holds/does not hold, as

Si(θpi)
.
= {κ | Gi(κ, θ

p
i) ≤ 0} (6.3)

Ai(θ
p
i)

.
= cl({κ | Gi(κ, θ

p
i) > 0}) = cl(Si(θpi)c) (6.4)

To ensure that Problem VI.1 admits an optimum, we have defined Ai(θ
p
i) to be closed;

that is, states on the boundary of an AP can be considered either inside or outside.
For these boundary states, our learning algorithm can automatically detect if the
demonstrator intended to visit or avoid the AP (cf. Sec. 6.3.2).

We are given Ns demonstrations {ξdemj }Ns

j=1 of duration Tj, which approximately
solve Prob. VI.1, in that they are feasible (satisfy the LTL formula and known
constraints) and achieve a possibly suboptimal cost. Note that Prob. VI.1 can be
modeled with continuous (ξxu) and boolean decision variables (referred to collectively
as Z) Wolff et al. (2014); the boolean variables determine the high-level plan, con-
straining the trajectory to obey boolean decisions that satisfy ϕ(θs, θp), while the
continuous component synthesizes a low-level trajectory implementing the plan. We
will use different assumptions of demonstrator optimality on the continuous/boolean
parts of the problem, depending on if θp (Sec. 6.3), θs (Sec. 6.4), or θc (Sec. 6.5)
are being learned, discuss extensions and variants of these methods (Sec. 6.6), and
discuss how these different degrees of optimality can affect the learnability of LTL
formulas (Sec. 6.7).

Our goal is to learn the unknown structure θs and AP parameters θp of the LTL
formula ϕ(θs, θp), as well as unknown cost function parameters θc, given demonstra-
tions {ξdemj }Ns

j=1 and the a priori known safe set S̄.

6.3 Learning Atomic Proposition Parameters (θp)

We develop methods for learning unknown AP parameters θp when the cost func-
tion parameters θc and formula structure θs are known. We first review recent results
Chou et al. (2020b) on learning time-invariant constraints via the KKT conditions
(Sec. 6.3.1). Then, we show how the framework can be extended to learn θp (Sec.
6.3.2), and develop a method for extracting states which are guaranteed to satisfy or
to violate pi (Sec. 6.3.3). In all of Sec. 6.3, we will assume that demonstrations are

103

locally-optimal for the continuous component and feasible for the discrete component.

6.3.1 Learning time-invariant constraints via KKT

Consider a simplified variant of Prob. VI.1 that only involves always satisfying a
single AP; this reduces Prob. VI.1 to a standard trajectory optimization problem:

minimize
ξxu

c(ξxu)

subject to g(η(x), θp) ≤ 0, ∀x ∈ ξxu
η̄(ξxu) ∈ S̄ ⊆ C

(6.5)

To ease notation, θc is assumed known in Sec. 6.3-6.4 and reintroduced in Sec. 6.5.
Suppose we rewrite the constraints of (6.5) as hk(η(ξxu)) = 0, gk(η(ξxu)) ≤ 0, and
g¬k(η(ξxu), θ

p) ≤ 0, where k and ¬k group together the known and unknown con-
straints, respectively. Then, with Lagrange multipliers λ and ν, the KKT conditions
(first-order necessary conditions for local optimality Boyd and Vandenberghe (2004))
of the jth demonstration ξdemj , denoted KKT(ξdemj) are as written in (6.6),

KKT(ξdemj):

Primal feasibility: hk(η(xjt)) = 0, t = 1, . . . , Tj (6.6a)

gk(η(xjt)) ≤ 0, t = 1, . . . , Tj (6.6b)

g¬k(η(xjt), θ
p) ≤ 0, t = 1, . . . , Tj (6.6c)

Lagrange multiplier nonnegativity: λ
j,k
t ≥ 0, t = 1, . . . , Tj (6.6d)

λ
j,¬k
t ≥ 0, t = 1, . . . , Tj (6.6e)

Complementary slackness: λ
j,k
t ⊙ gk(η(xjt)) = 0, t = 1, . . . , Tj (6.6f)

λ
j,¬k
t ⊙ g¬k(η(xjt), θ

p) = 0, t = 1, . . . , Tj
(6.6g)

Stationarity: ∇xt
c(ξdemj) + λ

j,k
t

⊤∇xt
gk(η(xjt))

+ λ
j,¬k
t

⊤∇xt
g¬k(η(xjt), θ

p)

+ ν
j,k
t

⊤∇xt
hk(η(xjt)) = 0, t = 1, . . . , Tj

(6.6h)

where ⊙ denotes elementwise multiplication. Intuitively, primal feasibility ensures
that the demonstrations satisfy the learned constraint, complementary slackness en-
codes that a Lagrange multiplier for some constraint can only be nonzero if that con-
straint is active, and stationarity encodes that the cost cannot be locally improved
without violating a constraint.

We vectorize the multipliers λj,k
t ∈ RN ineq

k , λj,¬k
t ∈ RN ineq

¬k , and ν
j,k
t ∈ RN ineq

k , i.e.,

104

λ
j,k
t = [λj,kt,1 , . . . , λ

j,k

t,Nk
ineq

]⊤. We drop (6.6a)-(6.6b), as they involve no decision variables.

Then, we can find a constraint which makes the Ns demonstrations locally-optimal
by finding a θp that satisfies the KKT conditions for each demonstration:

Problem VI.2 (Inverse KKT problem, exact).

find θp, {λj,k
t ,λj,¬k

t ,νj,k
t }Tj

t=1, j = 1, ..., Ns

subject to {KKT(ξdemj)}Ns

j=1

If the demonstrations are only approximately locally-optimal, Prob. VI.2 may become
infeasible. In this case, we can relax stationarity and complementary slackness to cost
penalties:

Problem VI.3 (Inverse KKT problem, suboptimal).

minimize
θp,λj,k

t ,λj,¬k
t ,νj,k

t

Ns∑

j=1

(
‖stat(ξdemj)‖1 + ‖comp(ξdemj)‖1

)

subject to (6.6c)− (6.6e), ∀ξdemj , j = 1, . . . , Ns

where stat(ξdemj) denotes the left hand side (LHS) of Eq. (6.6h) and comp(ξdemj)
denotes the concatenated LHSs of Eqs. (6.6f) and (6.6g). Please see Sec. 6.6.4
for more discussion on the effect of demonstration suboptimality on learning θp.
Note that while we have written Prob. VI.2-VI.3 for general constraint parame-
terizations, not all parameterizations admit computationally-tractable inverse KKT
problems. For some constraint parameterizations (e.g., unions of boxes or ellip-
soids (Chou et al. (2020b), Chapter IV)), Prob. VI.2-VI.3 are MILP-representable1

and can be efficiently solved; we consider such parameterizations in further de-
tail in Sec. 6.3.2. In the experiments of this chapter, we focus on constraints
which are parameterized as axis-aligned boxes in the constraint space C ⊆ Rc, i.e.,
g(η(x), θp) ≤ 0⇔ Aη(x)− θp ≤ 0, where A = [Ic×c,−Ic×c]

⊤ and θp = [x̄1, . . . , x̄c,
x1, . . . , xc]

⊤ contains the upper extents x̄1, . . . , x̄c and lower extents x1, . . . , xc of the
box in each coordinate.

6.3.2 Modifying KKT for multiple atomic propositions

Having built intuition with the single AP case, we return to Prob. VI.1 and
discuss how the KKT conditions change in the multiple-AP setting. We first adjust
the primal feasibility condition (6.6c). Recall from Sec. 6.2 that we can solve Prob.
VI.1 by finding a continuous trajectory ξxu and a set of boolean variables Z enforcing
that ξxu |= ϕ(θs, θp). For each ξdemj , let Zj(θpi) ∈ {0, 1}NAP×Tj , and let the (i, t)th

index Zj
i,t(θ

p
i) indicate if on ξdemj , constraint state κt |= pi for parameters θpi ; that is,

1This problem can also be represented and solved with satisfiability modulo theories (SMT)
solvers.

105

♦ ♦

∧

p1 p2[Zj
1,1, ..., Z

j
1,Tj

]

[
∨Tj

i=1
Zj
1,i, ...,

∨Tj

i=Tj
Zj
1,i]

[Zj
2,1, ..., Z

j
2,Tj

]

[
∨Tj

i=1
Zj
2,i, ...,

∨Tj

i=Tj
Zj
2,i]

(
[
∨Tj

i=1
Zj
1,i, ...,

∨Tj

i=Tj
Zj
1,i]

)∧(
[
∨Tj

i=1
Zj
2,i, ...,

∨Tj

i=Tj
Zj
2,i]

)

Figure 6.2: A directed acyclic graph (DAG) model of the LTL formula ϕ =
(♦[0,Tj−1]p1)∧ (♦[0,Tj−1]p2) (eventually satisfy p1 and eventually satisfy p2). The DAG
representation can be interpreted as a parse tree for ϕ (cf. Sec. 6.4.1). The Tj boolean
values for each node represent the truth value of the formula associated with the DAG
subtree when evaluated on ξdemj , starting at times t = 1, . . . , Tj, respectively. Each

ξdemj |= ϕ iff the first entry at the root node, (
∨Tj

i=1 Z
j
1,i)
∧
(
∨Tj

i=1 Z
j
2,i), is true.

Zj
i,t(θ

p
i) = 1⇔ κt ∈ Si(θpi),

Zj
i,t(θ

p
i) = 0⇔ κt ∈ Ai(θ

p
i).

(6.7)

Since LTL operators have equivalent boolean encodings Wolff et al. (2014), the truth
value of ϕ(θs, θp) can be evaluated as a function of Zj, θp, and θs, denoted as
Φ(Zj, θp, θs) (we suppress θs, as it is assumed known for now). For example, con-
sider the LTL formula ϕ(θs, θp) = (♦[0,Tj−1]p1) ∧ (♦[0,Tj−1]p2), which enforces that
the system must eventually satisfy p1 and eventually satisfy p2. Two trajectories
which satisfy this formula are shown in Fig. 6.3. We can evaluate the truth value of
ϕ(θs, θp) on ξdemj by calculating Φ(Zj, θp) = (

∨Tj

t=1 Z
j
1,t(θ

p
1)) ∧ (

∨Tj

t=1 Z
j
2,t(θ

p
2)) (cf. Fig.

6.2). Boolean encodings of common temporal and logical operators can be found in
Biere et al. (2006). Enforcing that Zj

i,t(θ
p
i) satisfies (6.7) can be done with a big-M

formulation and binary variables sji,t ∈ {0, 1}N
ineq
i Bertsimas and Tsitsiklis (1997):

gi(κ
j
t , θ

p
i) ≤M(1N ineq

i
− sji,t)

1⊤
N ineq

i

sji,t −N ineq
i ≤MZj

i,t −Mǫ

gi(κ
j
t , θ

p
i) ≥ −Msji,t

1⊤
N ineq

i

sji,t −N ineq
i ≥ −M(1− Zj

i,t)

(6.8)

where 1d is a d-dimensional vector of ones, M is a large positive number, and
Mǫ ∈ (0, 1). In practice, M and Mǫ can be carefully chosen to improve the solver’s
performance. Note that sji,m,t, the mth component of sji,t, encodes if κjt satisfies a

negated gi,m(κ
j
t , θ

p
i), i.e., if s

j
i,m,t = 1 or 0, then κjt satisfies gi,m(κ

j
t , θ

p
i) ≤ or ≥ 0.

We can more compactly rewrite the constraint enforced on the demonstrations as

106

gi(κ
j
t , θ

p
i)⊙ (2sji,t − 1N ineq

i
) ≤ 0 for each i, t; we use this form to adapt the remaining

KKT conditions. While enforcing (6.8) is hard in general, if gi(κ, θ
p
i) is affine in θpi for

fixed κ, (6.8) is MILP-representable; henceforth, we assume gi(κ, θ
p
i) is of this form.

Note that this can still describe non-convex regions in the constraint space, as the
dependency on κ can be nonlinear.

As a concrete example, for the blue trajectory in Fig. 6.3, Z1 = [0, 1, 0, 0, 0] and
Z2 = [0, 0, 0, 1, 0]. Consider the first AP p1. Here, since p1 is a box in the state space,
g1,m(κt, θ

p
1) ≤ 0 can be written as xt,m − θp1,m ≤ 0, where θp1,m defines the offset for

the mth hyperplane that defines the boundary of the box for AP p1. Then, s1,m,t

determines if the polarity of halfspace constraint m is flipped at time t on the blue
trajectory.

To modify complementary slackness (6.6g) for the multi-AP case, we note that
the elementwise product in (6.6g) is MILP-representable:

[
λ

j,¬k
i,t , −gi(κ

j
t , θ

p
i)⊙ (2sji,t − 1N ineq

i
)
]
≤MQj

i,t

Qj
i,t12 ≤ 1N ineq

i

(6.9)

where Qj
i,t ∈ {0, 1}N

ineq
i ×2. Intuitively, (6.9) enforces that either 1) the Lagrange mul-

tiplier is zero and the constraint is inactive, i.e., gi,m(κ, θ
p
i) ∈ [−M, 0] if sji,m,t = 1

or gi,m(κ, θ
p
i) ∈ [0,M] if sji,m,t = 0, 2) the Lagrange multiplier is nonzero and

gi,m(κt, θ
p
i) = 0, or both; the value of Q toggles between these options. The sta-

tionarity condition (6.6h) must also be modified to consider whether a particular
constraint is negated; this can be done by modifying the second line of (6.6h) to

terms of the form
(
λ

j,¬k
i,t

⊤⊙ (2sji,t− 1)
)
∇xt

g¬k
i (η(xt), θ

p). The KKT conditions for the

multi-AP case, denoted KKTLTL(ξ
dem
j), then can be written as in (6.10).

As mentioned in Sec. 6.2, if κjt lies on the boundary of AP i, the KKT conditions
will automatically determine if κjt ∈ Si(θpi) or κjt ∈ Ai(θ

p
i) based on whichever option

enables sji,t to take values that satisfy (6.10). To summarize, our approach is to (A)

find Zj, which determines the feasibility of ξdemj for ϕ(θs, θp), (B) find sji,m,t, which

link the value of Zj from the AP-containment level (i.e., κjt ∈ Si(θpi)) to the single-
constraint level (i.e., gi,m(κ

j
t , θ

p
i) ≤ 0), and (C) enforce that ξdemj satisfies the KKT

conditions for the continuous optimization problem defined by θp and fixed values of
sji,t. Finally, we can write the problem of recovering θp for a fixed θs as:

Problem VI.4 (Learning θp, for fixed template).

find θp,λj,k
t ,λj,¬k

i,t ,νj,k
t , sji,t,Q

j
i,t,Z

j, ∀i, j, t
subject to {KKTLTL(ξ

dem
j)}Ns

j=1

We can also encode prior knowledge in Prob. VI.4, e.g., known AP labels or a
prior on θpi , which we discuss in Sec. 6.6.1.

107

KKTLTL(ξ
dem
j):

Primal feasibility: Equations (6.6a)− (6.6b), t = 1, . . . , Tj (6.10a)

Equation (6.8), i = 1, . . . , NAP, t = 1, . . . , Tj

(6.10b)

Lagrange multiplier nonnegativity: Equation (6.6d), t = 1, . . . , Tj (6.10c)

λ
j,¬k
i,t ≥ 0, i = 1, . . . , NAP, t = 1, . . . , Tj (6.10d)

Complementary slackness: Equation (6.6f), t = 1, . . . , Tj (6.10e)

Equation (6.9), i = 1, . . . , NAP, t = 1, . . . , Tj

(6.10f)

Stationarity: ∇xtc(ξ
dem
j) + λ

j,k
t

⊤∇xtg
k(η(xjt))

+

Nineq∑

i=1

[(
λ
j,¬k
i,t

⊤ ⊙ (2sji,t − 1)
)
∇xtg

¬k
i (η(xjt), θ

p
i)
]

+ ν
j,k
t

⊤∇xth
k(η(xjt)) = 0, t = 1, . . . , Tj (6.10g)

6.3.3 Extraction of guaranteed learned AP

As with the constraint learning problem, the LTL learning problem is also ill-
posed: there can be many θp which explain the demonstrations. Despite this, we
can measure our confidence in the learned APs by checking if a constraint state κ is
guaranteed to satisfy/not satisfy pi for a given AP parameterization. This check is
particularly useful when planning trajectories which satisfy the learned LTL formula,
as we discuss shortly. Denote Fi as the feasible set of Prob. VI.4, projected onto Θp

i

(feasible set of θpi). Then, we say κ is learned to be guaranteed contained in Si(θpi)
if for all θpi ∈ Fi, Gi(κ) ≤ 0 (i.e., κ |= pi, for all feasible θpi). Similarly, we say κ is
learned to be guaranteed excluded from Si(θpi) if for all θpi ∈ Fi, Gi(κ) ≥ 0. Denote
by:

Gis
.
=
⋂

θ∈Fi

{κ | Gi(κ, θ) ≤ 0} (6.11)

Gi¬s
.
=
⋂

θ∈Fi

{κ | Gi(κ, θ) ≥ 0} (6.12)

as the sets of κ which are guaranteed to satisfy/not satisfy pi. Having the ability
to check if a constraint state lies within Gis or Gi¬s is useful when planning with the
learned LTL formula, as we can design our plans to be robust to any uncertainty
in the learned APs. For instance, if some constraint state κ on a candidate plan
must satisfy/not satisfy AP i for the plan to satisfy the learned LTL formula, we can
instead force κ to be contained in Gis or Gi¬s, respectively. Then, plans generated in this

108

fashion are guaranteed to satisfy the LTL formulas corresponding to any consistent
θp.

Concretely, to query if κ is guaranteed to satisfy/not satisfy pi, we can check the
feasibility of the following problem:

Problem VI.5 (Query containment of κ in/outside of Si(θpi)).

find θp,λj,k
t ,λj,¬k

i,t ,νj,k
t , sji,t,Q

j
i,t,Z

j, ∀i, j, t
subject to {KKTLTL(ξ

dem
j)}Ns

j=1

Gi(κ, θ
p
i) ≥ 0 OR Gi(κ, θ

p
i) ≤ 0

If forcing κ to (not) satisfy pi renders Prob. VI.5 infeasible, we can deduce that to
be consistent with the KKT conditions, κ must (not) satisfy pi. Similarly, continuous
volumes of κ which must (not) satisfy pi can be extracted by solving:

Problem VI.6 (AP volume extraction).

minimize
ε,κnear,θp,λ

j,k
t ,λj,¬k

i,t ,

ν
j,k
t ,sji,t,Q

j
i,t,Z

j

ε

subject to {KKTLTL(ξ
dem
j)}Ns

j=1

‖κnear − κquery‖∞ ≤ ε

Gi(κnear, θ
p
i) > 0 OR Gi(κnear, θ

p
i) ≤ 0

Prob. VI.6 searches for the largest box centered around κquery contained in Gis/Gi¬s.
An explicit approximation of Gis/Gi¬s can then be obtained by solving Prob. VI.6 for
many different κquery.

Finally, we note that another avenue to handle the ambiguity in the learned θp is
to directly recover the set of all θp which are consistent with the demonstration, and
planning to satisfy the LTL formulas associated with as many consistent θp as possible.
This method is described in detail in Chapter VII for time-invariant constraints, and
a detailed investigation in applying this approach to temporal logic constraints is the
subject of future work.

6.4 Learning Temporal Logic Structure (θp, θs)

We will discuss how to frame the search over LTL structures θs (Sec. 6.4.1), the
learnability of θs based on demonstration optimality (Sec. 6.4.2), and how we combine
notions of discrete and continuous optimality to learn θs and θp (Sec. 6.4.3).

6.4.1 Representing LTL structure

We adapt Neider and Gavran (2018) to search for a directed acyclic graph (DAG),
D, that encodes the structure of a parametric LTL formula and is equivalent to its
parse tree, with identical subtrees merged. Hence, each node still has at most two

109

-3 -2 -1 0 1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

ϕf

ϕµ-SO
ϕg(♦

p1)
∨
(♦
p2)

(♦p1) ∧ (♦p2)

♦((p1 ∨ ¬p1) ∧ (p2 ∨ ¬p2))

(¬p2 U p1) ∧ ♦p2

♦(p1∨¬p1)∨p2 p
1∨♦(p

2∨¬p
2)

x1

x1

Figure 6.3: Left: Two demonstrations which satisfy the LTL formula ϕ =
(¬p2 U[0,Tj−1] p1) ∧ ♦[0,Tj−1]p2 (first satisfy p1, then satisfy p2). The demonstrations
satisfy kinematic constraints and are minimizing path length while satisfying input
constraints and start/goal constraints. The blue and yellow demonstrations begin at
the corresponding x1 states and end at x5 and x9, respectively. Right: Some exam-
ple formulas that are consistent with ϕ, for various levels of discrete optimality (ϕf :
discrete feasibility, ϕs: spec-optimality, ϕg: discrete global optimality).

children, but can have multiple parents. This framework enables both a complete
search over length-bounded LTL formulas and encoding of specific formula templates
through constraints on D Neider and Gavran (2018).

Each node in D is labeled with an AP or operator from (6.1) and has at most
two children; binary operators like ∧ and ∨ have two, unary operators like ♦[t1,t2]

have one, and APs have none (see Fig. 6.2). Formally, a DAG with NDAG nodes,
D = (X,L,R), can be represented as: X ∈ {0, 1}NDAG×Ng , where Xu,v = 1 if node
u is labeled with element v of the grammar and 0 else, and L,R ∈ {0, 1}NDAG×NDAG ,
where Lu,v = 1 / Ru,v = 1 if node v is the left/right child of node u and 0 else. The
DAG is enforced to be well-formed (i.e., there is one root node, no isolated nodes,
etc.) with further constraints; see Neider and Gavran (2018) for more details. Since
D defines a parametric LTL formula, we set θs = D.

As a concrete example, consider the DAG in Fig. 6.2. Let the grammar be ϕ ::=
p1 | p2 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | �ϕ | ♦ϕ, with DAG nodes labeled by {p1, p2,∨,∧,�,♦}.
We refer to element 1 of the grammar as p1, element 2 as p2, element 3 as ∨, and so
on. The DAG in Fig. 6.2, encoding (♦p1) ∧ (♦p2), can be represented with:

X =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 1

, L =

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0

, R =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

where p1, p2, ∧, the left ♦, and the right ♦, are labeled as nodes 1, 2, 3, 4, and 5
respectively. As convention, the unary operators are defined to have only left children.

To ensure that demonstration j satisfies the LTL formula encoded by D, we in-
troduce a satisfaction matrix Sdem

j ∈ {0, 1}NDAG×Tj , where Sdem
j,(u,t) encodes the truth

value of the subformula for the subgraph with root node u at time t (i.e., Sdem
j,(u,t) = 1

iff the suffix of ξdemj starting at time t satisfies the subformula). This can be encoded

110

with constraints:

|Sdem
j,(u,t) − Φt

uv| ≤M(1−Xu,v) (6.13)

where Φt
uv is the truth value of the subformula for the subgraph rooted at u if labeled

with v, evaluated on the suffix of ξdemj starting at time t. The truth values are
recursively generated, and the leaf nodes, each labeled with some AP i, have truth
values set to Zj

i (θ
p
i). Next, we can enforce that the demonstrations satisfy the formula

encoded in D by enforcing:

Sdem
j,(root,1) = 1, j = 1, . . . , Ns (6.14)

Continuing our example, consider again the blue trajectory in Fig. 6.3, which
satisfies the aforementioned LTL formula (♦p1) ∧ (♦p2). For this trajectory, S

dem is:

Sdem =

0 1 0 0 0
0 0 0 1 0
1 1 0 0 0
1 1 0 0 0
1 1 1 1 0

Note that Sdem
(root=3,1) = 1, which reflects that the trajectory satisfies the formula.

Furthermore, our method will also use synthetically-generated invalid trajectories
{ξ¬s}N¬s

j=1 (Sec. 6.4.3). To ensure {ξ¬s}N¬s

j=1 do not satisfy the formula, we add more
satisfaction matrices S¬s

j and enforce:

S¬s
j,(root,1) = 0, j = 1, . . . , N¬s. (6.15)

After discussing learnability, we will show how D can be integrated into the KKT-
based learning framework in Sec. 6.4.3.

6.4.2 A detour on learnability

When learning only the AP parameters θp (Sec. 6.3), we assumed that the demon-
strator chooses any feasible assignment of Z consistent with the specification, then
finds a locally-optimal trajectory for those fixed Z. Feasibility is enough if the struc-
ture θs of ϕ(θs, θp) is known: to recover θp, we just need to find some Z which is
feasible with respect to the known θs (i.e., Φ(Zj, θp, θs) = 1) and makes ξdemj locally-
optimal; that is, the demonstrator can choose an arbitrarily suboptimal high-level
plan as long as its low-level plan is locally-optimal for the chosen high-level plan.
However, if θs is also unknown, only using boolean feasibility is not enough to recover
meaningful logical structure, as this makes any formula ϕ for which Φ(Zj, θp, θs) = 1
consistent with the demonstration, including trivially feasible formulas always evalu-
ating to ⊤. Formally, we will refer to the set of formulas for which the demonstrations
are feasible in the discrete variables and locally-optimal in the continuous variables
as ϕf .

111

On the other end of the spectrum, we can assume the demonstrator is globally-
optimal in solving Prob. VI.1, i.e., there does not exist any trajectory with lower
cost than the demonstration which satisfies both the specification and the known
constraints. Let the set of all formulas which make the demonstrations globally-
optimal be denoted ϕg. Assuming global optimality invalidates many structures in ϕf ,
as any formula which accepts a trajectory with a lower cost than the demonstration
cannot belong in ϕg.

To make things concrete, consider again the example in Fig. 6.3. Assume for now
that θp1, θ

p
2 are known. Assuming boolean feasibility, we cannot distinguish between

formulas in ϕf , a subset of which are written in the Venn diagram in Fig. 6.3. ϕf

contains trivial formulas like ⊤ or ϕ = (♦[0,Tj−1]p1)∨(♦[0,Tj−1]p2), Assuming global op-
timality, on the other hand, invalidates many structures in ϕf , i.e., the blue trajectory
should not visit both S1 and S2 if ϕ = (♦[0,Tj−1]p1) ∨ (♦[0,Tj−1]p2); we achieve a lower
cost by only visiting one. Using global optimality, we can distinguish between all but
the formulas with globally-optimal trajectories of equal cost (formulas in ϕg), i.e., we
cannot learn the ordering constraint (¬p2 U[0,Tj−1] p1) from only the blue trajectory,
as it coincides with the globally-optimal trajectory for ϕ = (♦[0,Tj−1]p1)∧(♦[0,Tj−1]p2);
we need the yellow trajectory to distinguish the two.

From this discussion, we see that imposing global optimality of the demonstrations
in the learning problem can be quite powerful for reducing the set of consistent LTL
formulas (provided that the demonstrations are actually globally-optimal). Unfortu-
nately, enforcing global optimality of the demonstrations in the learning problem is
challenging, as it requires an exhaustive verification that there are no feasible trajecto-
ries with lower cost than the demonstrations. To overcome this challenge, we define
an optimality condition that is more restrictive than feasibility and less restrictive
than global optimality, and which crucially is easier to impose in learning:

Definition VI.7 (Spec-optimality). A demonstration ξdemj is µ-spec-optimal (µ-SO),
where µ ∈ Z+, if for every index set ι

.
= {(i1, t1), ..., (iµ, tµ)} in I .

= {ι | im ∈
{1, ..., NAP}, tm ∈ {1, ..., Tj},m = 1, ..., µ}, at least one of the following holds:

• ξdemj is locally-optimal after removing the constraints associated with pim on

κjtm , for all (im, tm) ∈ ι.

• For each index (im, tm) ∈ ι, the formula is not satisfied for a perturbed Z, de-
noted Ẑ, where Ẑim,tm(θ

p
im
) = ¬Zim,tm(θ

p
im
), for all m = 1, . . . , µ, and Ẑi′,t′(θ

p
i′) =

Zi′,t′(θ
p
i′) for all (i

′, t′) /∈ ι.

• ξdemj is infeasible with respect to Ẑ.

Spec-optimality enforces a level of logical optimality, evaluated locally around a
demonstration: if a state κjt on demonstration ξdemj lies inside/outside of AP i (i.e.,

Gi(κ
j
t , θ

p
i) ≤ 0 / ≥ 0), and the cost c(ξdemj) can be lowered if that AP constraint

is relaxed, then the constraint must hold to satisfy the specification. Intuitively,
this means that the demonstrator does not visit/avoid APs which will needlessly
increase the cost and are not needed to complete the task. Note that the conditions

112

in Def. VI.7 are essentially checking how the local optimality of a demonstration
changes as a result of local perturbations to the assignments of the discrete variables
Z. The three conditions in Def. VI.7 capture the three possibilities upon perturbing
Z: the demonstration could become infeasible if Z is perturbed (this is what the third
condition checks), the demonstration could remain feasible but local optimality may
not change (this is what the first condition checks), or the demonstration could remain
feasible and no longer be locally-optimal (this is what the second condition checks).
By enforcing that a demonstration is spec-optimal with respect to the formula being
satisfied, we enforce that this last possibility (feasible but not locally-optimal) never
occurs. We would want to enforce this, for instance, if the demonstration is assumed to
be globally-optimal for the true LTL formula, because there should be no alternative
assignment of Z which admits a feasible direction in which the demonstration cost
can be improved.

Returning to the discussion on the example in Fig. 6.3, we will show how spec-
optimality can be used to distinguish between ϕ = (¬p2 U[0,Tj−1] p1)∧♦[0,Tj−1]p2 and
ϕ̂ = ♦[0,Tj−1]p1 ∨ ♦[0,Tj−1]p2 using only the blue demonstration. Specifically, we show
the demonstration is 1-SO with respect to ϕ but not for ϕ̂. For both formulas ϕ and ϕ̂,
we can see that I = {(1, 1), . . . , (1, 5), (2, 1), . . . , (2, 5)}. Let’s consider ϕ first. In this
case, for values of ι ∈ {(1, 1), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 5)}, the third
condition in Def. VI.7 will hold, since for these time-AP pairs, the demonstration is
not on the boundary of the paired AP. For ι ∈ {(1, 2), (2, 4)}, the second condition
in Def. VI.7 will hold, since perturbing Z at either of these time-AP pairs (from
Z1,2(θ

p
1) = 1 to 0 or from Z2,4(θ

p
2) = 1 to 0) will cause ϕ to be not satisfied. Thus,

the demonstration is spec-optimal with respect to ϕ. On the other hand, for ϕ̂,
again for values of ι ∈ {(1, 1), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 5)}, the third
condition in Def. VI.7 will hold. However, none of the three conditions will hold for
ι ∈ {(1, 2), (2, 4)}, since the demonstration will not be locally-optimal upon relaxing
the constraints for either p1 or p2, and since ϕ̂ only enforces that either one of S1 or
S2 are visited, ϕ̂ is still satisfied if either Z1,2(θ

p
1) or Z2,4(θ

p
2) is flipped to 0. Hence,

the demonstration is not spec-optimal with respect to ϕ̂.
In contrast, we can show that it is not possible to use spec-optimality to distinguish

between the formulas ϕ = (¬p2 U[0,Tj−1] p1)∧♦[0,Tj−1]p2 and ϕ̂ = ♦[0,Tj−1]p1∧♦[0,Tj−1]p2
using the yellow demonstration in Fig. 6.3. This follows from noting that perturbing
any combination of Z1,4(θ

p
1), Z2,6(θ

p
2) from their values of 1 to 0 will cause both ϕ and

ϕ̂ to be not satisfied. Hence, the yellow demonstration is spec-optimal with respect
to both ϕ and ϕ̂; however, it is not globally-optimal for ϕ̂, as the demonstrator can
achieve a lower cost by first satisfying p2 and then satisfying p1.

We will conclude this subsection with some theoretical results which motivate how
demonstration spec-optimality can be used to help the learning of LTL formulas. We
first show that all globally-optimal demonstrations must also be µ-spec-optimal for
the true specification, for any positive integer µ.

Lemma VI.8. All globally-optimal trajectories are µ-SO.

Proof. We show that it is not possible for a demonstration ξdemj to be globally-optimal
while failing to satisfy (a), (b), and (c). If the constraints corresponding to pim at

113

κjtm are relaxed, for some {(im, tm)}µm=1, then ξ
dem
j can either remain locally-optimal

(which means (a) is satisfied, and happens if all the constraints are inactive or re-
dundant) or become not locally-optimal. If ξdemj becomes not locally-optimal for the
relaxed problem (i.e., (a) is not satisfied), then at least one of the original constraints
is active, implying

∨µ
m=1

(
Gim(κ

j
tm) = 0

)
. In this case, one of the following holds:

either (1) each κjtm lies on its constraint boundary:
∧µ

m=1

(
Gim(κ

j
tm) = 0

)
, or (2) at

least one κtm does not lie on its constraint boundary. If (2) holds, then ξdemj must be

infeasible for Ẑ, so (c) must be satisfied. If (1) holds, then ξdemj is both feasible for

Ẑ and not locally-optimal with respect to the relaxed constraints. Then, there exists
some trajectory ξ̂xu such that c(ξ̂xu) < c(ξdemj), and for at least one m in 1, . . . , µ,

Gim(κ̂
j
tm) > 0, where κ̂jtm is the constraint state at time tm on ξ̂xu. ξ̂xu cannot be fea-

sible with respect to the true specification, since it makes ξdemj not globally-optimal,
so in this case (b) must hold.

Given this result, we can use spec-optimality to vastly reduce the search space
when searching for formulas which make the demonstrations globally-optimal (Sec.
6.4.3). To formalize this search space reduction, we prove that the set of consistent
formulas shrinks as µ increases, approaching ϕf with lower values of µ and approach-
ing ϕg with higher values of µ.

Theorem VI.9 (Distinguishability). For the consistent formula sets defined in Sec.
6.4.2, we have ϕg ⊆ ϕµ̃-SO ⊆ ϕµ̂-SO ⊆ ϕf , for µ̃ > µ̂.

Proof. ϕg ⊆ ϕµ̃-SO, since per Lemma VI.8, all globally-optimal trajectories are µ̃-SO.
Thus, restricting Prob. VI.11 to enforce global optimality requires more constraints
than restricting Prob. VI.11 to enforce µ̃-SO. With more constraints, the feasible set
of consistent formulas cannot be larger for global optimality. Similarly, as enforcing
µ̃-SO requires more constraints than enforcing µ̂-SO, the feasible set of consistent
formulas cannot be larger for µ̃-SO than for µ̂-SO. ϕµ-SO ⊆ ϕf , since enforcing µ-SO
also enforces feasibility. Thus, restricting Prob. VI.11 to enforce µ-SO requires more
constraints than the standard Prob. VI.11. With more constraints, the feasible set
of consistent formulas cannot be larger for µ-SO.

6.4.3 Counterexample-guided framework

In this section, we will assume that the demonstrator returns a solution to Prob.
VI.1 which is boundedly-suboptimal with respect to the globally optimal solution, in
that c(ξdemj) ≤ (1+ δ)c(ξ∗j), for a known suboptimality slack parameter δ, where c(ξ∗j)
is the cost of the optimal solution. This is reasonable as the demonstration should
be feasible (completes the task), but may be suboptimal in terms of cost (e.g., path
length, etc.), and δ can be estimated from repeated demonstrations. We sketch one
way δ can be estimated in Sec. 6.6.4.

Under the bounded-suboptimality assumption, any trajectory ξxu satisfying the
known constraints η̄(ξxu) ∈ S̄ at a cost lower than the suboptimality bound, i.e.,
c(ξxu) ≤ c(ξdemj)/(1 + δ), must violate ϕ(θs, θp) (Chapter III). We can use this to

114

Algorithm VI.1: Falsification

1 Input: {ξdemj }Ns

j=1, S̄, Output: θ̂s, θ̂p

2 NDAG ← 0, {ξ¬s} ← {}
3 while ¬ consistent do
4 NDAG ← NDAG + 1
5 while Problem VI.11 is feasible do

6 θ̂s, θ̂p ← Problem VI.11({ξdemj }Ns

j=1, {ξ¬s}, NDAG)

7 for j = 1 to Ns do
8 ξjxu ← Problem VI.10(ξdemj)

9 if Problem VI.10 is feasible then {ξ¬s} ← {ξ¬s} ∪ ξjxu ;

10 if Prob. VI.10 infeasible, for all j = 1, . . . , Ns then
11 consistent ← ⊤; break

reject candidate structures θ̂s and parameters θ̂p. If we can find a counterexample
trajectory that satisfies the candidate LTL formula ϕ(θ̂s, θ̂p) at a lower cost by solving
Prob. VI.10,

Problem VI.10 (Counterexample search).

find ξxu
subject to ξxu |= ϕ(θ̂s, θ̂p)

η̄(ξxu) ∈ S̄(ξdemj) ⊆ C
c(ξxu) < c(ξdemj)/(1 + δ)

then ϕ(θ̂s, θ̂p) cannot be consistent with the demonstration. Thus, we can search for a
consistent θ̂s and θ̂p by iteratively proposing candidate θ̂s / θ̂p by solving Prob. VI.11
(a modified version of Prob. VI.4, which we will discuss shortly) and searching for
counterexamples that can prove the parameters are invalid/valid; this is summarized
in Alg. VI.1. Heuristics on the falsification loop are discussed in Sec. 6.6.3.

We note that the structure of the falsification loop in Alg. VI.1 is crucial for
enforcing that the returned LTL formula makes the demonstrations globally-optimal
(or boundedly-suboptimal), since as discussed in Sec. 6.4.2, it is challenging to encode
global optimality directly. As a result, we will rely on encoding conditions that are
weaker than global optimality but which can be efficiently enforced, proposing LTL
formulas which make the demonstration feasible or spec-optimal (see Prob. VI.11).
Thus, the loop is needed to reject formulas which make the demonstrations feasible
or spec-optimal but not globally-optimal, in order to ensure that the formula that is
eventually returned makes the demonstrations globally-optimal. We now discuss in
detail the core components of Alg. VI.1: counterexample generation, addressed in
Prob. VI.10, and a combined search for θp and θs, addressed in Prob. VI.11).
Counterexample generation: We propose different methods to solve Prob. VI.10
based on the dynamics. For piecewise affine systems, Prob. VI.10 can be solved
directly as a MILPWolff et al. (2014). However, the LTL planning problem for general
nonlinear systems is challenging Fu et al. (2017); Li and Fu (2017). Probabilistically-

115

complete sampling-based methods Fu et al. (2017); Li and Fu (2017) or falsification
tools Annpureddy et al. (2011) can be applied, but can be slow on high-dimensional
systems. For simplicity and speed, we solve Prob. VI.10 by finding a trajectory ξ̂xu |=
ϕ(θ̂s, θ̂p) and boolean assignment Z for a kinematic approximation of the dynamics via
solving a MILP, then warm-start the nonlinear optimizer with ξ̂xu and constrain it to
be consistent with Z, returning some ξxu. We use IPOPT Wächter and Biegler (2006)
and TrajOpt Schulman et al. (2014) to solve these nonlinear optimization problems
for the simulation and hardware experiments, respectively. If c(ξxu) < c(ξdemj)/(1+δ),

then we return, otherwise, we generate a new ξ̂xu. Whether this method returns a
valid counterexample depends on if the nonlinear optimizer converges to a feasible
solution; hence, this approach is not complete. However, we show that it works
well in practice (see Sec. 6.8-6.9); moreover, the optimal sampling-based planning
approaches (e.g., Li and Fu (2017)) can always be used as a complete alternative, at
the expense of higher computation time.
Unifying parameter and structure search: When both θp and θs are unknown,
they must be jointly learned due to their interdependence: learning the structure in-
volves finding an unknown boolean function of θp, parameterized by θs, while learning
the AP parameters θp requires knowing which APs were selected or negated, deter-
mined by θs. This can be done by combining the KKT (6.10) and DAG constraints
(6.13)-(6.15) into a single MILP, which can then be integrated into Alg. VI.1:

Problem VI.11 (Combined search for θp, θs).

find
D,Sdem

j ,S¬s
j , θ

p,λj,k
t ,λj,¬k

i,t ,νj,k
t , sji,t,Q

j
i,t,Z

j,

∀i, j, t
s.t. {KKTLTL(ξ

dem
j)}Ns

j=1

topology constraints (except single root) for D
Equation (6.13), j = 1, . . . , Ns

Equation (6.14), j = 1, . . . , Ns

Equation (6.15), j = 1, . . . , N¬s

In Prob. VI.11, since 1) the Zj
i (θ

p
i) at the leaf nodes of D are constrained via (6.8)

to be consistent with θp and ξdemj and 2) the formula defined by D is constrained
to be satisfied for the Z via (6.13), the low-level demonstration ξdemj must be feasi-
ble for the overall LTL formula defined by the DAG, i.e., ϕ(θs, θp), where θs = D.
KKTLTL(ξ

dem
j) then chooses AP parameters θp to make ξdemj locally-optimal for the

continuous optimization induced by a fixed realization of boolean variables. Overall,
Prob. VI.11 finds a pair of θp and θs which makes ξdemj locally-optimal for a fixed
Zj which is feasible for ϕ(θs, θp), i.e., Φ(Zj, θp, θs) = 1, for all j. To also impose the
spec-optimality conditions (Def. VI.7), we can add these constraints to Prob. VI.11:

116

Sdem,Ẑj
n

j,(root,1) ≤ b1nj (6.16a)

‖λj,¬k
im,tm

⊤∇xt
g¬k
im (η(x

j
t), θ

p
im
)‖ ≤M(1− b2nj),

m = 1, ..., µ
(6.16b)

g¬k
im (η(x

j
t), θ

p
im
) ≥ −M(1− ejnm), m = 1, ..., µ (6.16c)

1⊤
N im

ineq

ejnm ≥ Ẑj
imtm

(θpim)− b3nj, m = 1, ..., µ (6.16d)

g¬k
im (η(x

j
t), θ

p
im
) ≤M(Ẑj

im,tm
+ b3nj) (6.16e)

b1nj + b2nj + b3nj ≤ 1, bnj ∈ {0, 1}3,
ejnm ∈ {0, 1}N

im
ineq

(6.16f)

for n = 1, . . . , |I|, where Sdem,Ẑj
n

j is the satisfaction matrix for ξdemj where the leaf nodes

are perturbed to take the values of Ẑj
n, where n indexes an ι ∈ I. (6.16a) models

the case when the formula is not satisfied, (6.16b) models when ξdemj remains locally-
optimal upon relaxing the constraint (zero stationarity contribution), and (6.16c)-
(6.16e) model the infeasible case. Generally, without spec-optimality, the falsification
loop in Alg. VI.1 will need to eliminate more formulas on the way to finding a
formula which makes the demonstrations globally-optimal. We conclude this section
with some remarks on spec-optimality and the falsification loop:

Remark VI.12. If µ = 1, the infeasibility constraints (6.16c)-(6.16e) can be ignored
(since together with (6.16a), they are redundant), and we can modify (6.16f) to b1nj +
b2nj ≤ 1, bnj ∈ {0, 1}2.

Remark VI.13. It is only useful to enforce spec-optimality on index pairs (i1, t1), . . . , (iµ, tµ)
where Gim(κ

j
tm , θ

p
im
) = 0 for all m = 1, ..., µ; otherwise the infeasibility case automat-

ically holds. If θp is unknown, we won’t know a priori when this holds, but if θp are
(approximately) known, we can pre-process so that spec-optimality is only enforced for
salient ι ∈ I.

Remark VI.14. We can interpret µ as a tuning knob for shifting the computation
between the falsification loop and Prob. VI.11; imposing a larger µ can potentially rule
out more formulas at the cost of adding additional constraints and decision variables
to Problem VI.11.

Remark VI.15. Prob. VI.11 with spec-optimality constraints (6.16) can be used to
directly search for a ϕ(θ̂s, θ̂p) which can be satisfied by visiting a set of APs in any
order (e.g., surveillance-type tasks) without using the loop in Alg. VI.1, since (6.16)
directly enforces that any AP (1-SO) or a set of APs (µ-SO) which were visited and
which prevent the trajectory cost from being lowered must be visited for any candidate
ϕ(θ̂s, θ̂p).

117

6.5 Learning Cost Function Parameters (θp, θs, θc)

If θc is unknown, it can be learned by modifying KKTLTL to also consider θc in
the stationarity condition: all terms containing ∇ξxuc(ξ

dem
j) should be modified to

∇ξxuc(ξ
dem
j , θc). When c(·, ·) is affine in θc for fixed ξdemj , the stationarity condition

is representable with a MILP constraint. However, the falsification loop in Alg. VI.1
requires a fixed cost function in order to judge if a trajectory is a counterexample.
Thus, one valid approach is to first solve Prob. VI.11, searching also for θc, then
fixing θc, and running Alg. VI.1 for the fixed θc. Specifically, the approach is the
same as Alg. VI.1, apart from an additional outer while loop, where candidate θc

are selected. We formally write this procedure in Alg. VI.2, where we refer to the
Prob. VI.11 variant that searches over θc as Prob. VI.11′, and to the Prob. VI.10
variant that takes in θc as input as Prob. VI.10′. Upon the failure of a θc to yield a
consistent θp and θs, the θc is added into a set of cost parameters for Problem VI.11
to avoid, Θc

av. The avoidance condition can be implemented with integer constraints,
i.e., |θci − θ̂ci | ≥ εav − (1− ziav),

∑
i z

i
av ≥ 1, for i = 1, . . . , |θc| and for binary variables

ziav. Here, εav is a hyperparameter that defines the size of an infinity-norm ball around
θ̂i which should be avoided in future iterations. One can also achieve a similar effect
without this hyperparameter by adding an objective function maxθc ‖θc − θ̂ci‖∞ to
Prob. VI.11′, which is MILP-representable.

Algorithm VI.2: Falsification, unknown cost function

1 Input: {ξdemj }Ns

j=1, S̄, Output: θ̂s, θ̂p, θ̂c

2 NDAG ← 0, {ξ¬s} ← {}, Θc
av ← {}

3 while true do

4 θ̂s, θ̂p, θ̂c←Problem VI.11′({ξdemj }Ns

j=1, {ξ¬s}, NDAG,Θ
c
av)

5 while ¬ consistent do
6 NDAG ← NDAG + 1
7 while Problem VI.11 is feasible do

8 θ̂s, θ̂p ← Problem VI.11({ξdemj }Ns

j=1, {ξ¬s}, NDAG, θ̂
c)

9 for j = 1 to Ns do

10 ξjxu ← Problem VI.10′(ξdemj , θ̂c)

11 if Problem VI.10′ is feasible then
12 {ξ¬s} ← {ξ¬s} ∪ ξxu
13 if Prob. VI.10′ infeasible, for all j = 1, . . . , Ns then
14 consistent ← ⊤; break
15 if consistent then return;

16 else Θc
av ← Θc

av ∪ θ̂c; break;

Note that this procedure either eventually returns an LTL formula consistent with
the fixed θc, or Alg. VI.1 becomes infeasible, and a new θc must be generated and
Alg. VI.1 rerun. This is guaranteed to eventually return a set of θc, θs, and θp which
make each ξdemj globally-optimal with respect to c(ξxu, θ

c) under ϕ(θs, θp). However,
it may require iterating through an infinite number of candidate θc and hence is not

118

guaranteed to terminate in finite time (Cor. VI.23). Nonetheless, we note that for
a certain class of formulas (Rem. VI.15), a consistent set of θc, θs, and θp can be
recovered in one shot.

6.6 Method extensions, variants, and discussion

In this section, we discuss some extensions and variants of our approach which
can improve learning (Sec. 6.6.1) and computational performance (Sec. 6.6.2, Sec.
6.6.3). Finally, we discuss the effect of suboptimality on the learning procedure and
how the suboptimality slack parameter δ can be estimated (Sec. 6.6.4).

6.6.1 Encoding prior knowledge

In some situations, we may have some a priori knowledge on the atomic proposi-
tions, e.g., which labels correspond to which atomic proposition regions, or a rough
estimate of the AP parameters θp. We describe how this knowledge can be integrated
into our method.
Known labels: We have assumed that the demonstrations only include state/control
trajectories and not the AP labels; this can lead to ambiguity as to which S should
be assigned to which proposition pi. For example, consider the example in Fig. 6.3
(left), where the aim is to recover ϕ(θp) = ♦S1(θp1) ∨ ♦S2(θp2). The KKT conditions
will imply that the demonstrator had to visit two boxes and their locations, but not
whether the left box should be labeled S1 or S2. However, in some settings it may be
reasonable that the labels for each AP are provided, e.g., for an AP which requires
a robot arm to grasp an object, we might have sensor data determining if the object
has been grasped. In this case, we can incorporate this by simply constraining Zj

i (θ
p
i)

to be the labels; this then removes the ambiguity mentioned earlier.
Prior knowledge on θp: In some settings, we may have a rough idea of θp, e.g., as
noisy bounding boxes from a vision system. We might then want to avoid deviating
from these nominal parameters, denoted θpnom, or restrict θp to some region around
θpnom, denoted Θi,nom, subject to the KKT conditions holding. This can be done by

adding
∑NAP

j=1 ‖θpi − θpi,nom‖1 as an objective or θpi,nom ∈ Θi,nom as a constraint to Prob.
VI.4 instead of simply solving Prob. VI.4 as a feasibility problem.

6.6.2 Faster reformulations for the falsification loop

A shortcoming of Alg. VI.1 is that it can be computationally intensive. This
is primarily due to Prob. VI.11, which is a mixed-integer program that contains
many binary decision variables, including the DAG structure variables (X,L,R) and
variables Q and Z which are needed to learn the continuous parameters θp. While
Prob. VI.11 can still be solved for examples of moderate size (see the results in
Sec. 6.8), we observe that its computation time can become unrealistic for examples
with very long LTL formulas (i.e., a large search space for (X,L,R)). Intuitively,
increasing the dimensionality of (X,L,R) combinatorially increases the number of

119

possible assignments, which can cause the optimizer to struggle to find a feasible
solution in a reasonable timeframe.

To address these computational challenges, we propose a reformulation for Prob.
VI.11 which is better suited for large-scale problems. Instead of fixing the number
of nodes NDAG in the DAG D and searching over grammar element types Xuv for
which to populate the nodes, we can fix X to contain a number of instances of each
grammar element, and relax the constraint that there is only one root node, and
enforce the constraints of Prob. VI.11 on the LTL formula defined by the subgraph of
a particular root node; that is, we enforce the constraints on one tree in the forest of
an expanded DAG where AP nodes with common labels are not merged. Additionally,
instead of incrementing the total DAG size NDAG in the outer loop of Alg. VI.1, we
should increment the number of instances of each grammar element by one. As a
concrete example, instead of searching for a DAG with 5 nodes, where each node can
be labeled with any element in the grammar {p1, p2,∧,♦,�}, one possibility under
this reformulation would be to fix X to contain 11 nodes, with one instance each of
p1 and p2 and three instances each of ∧, ♦, and �. The optimizer would then choose
a subset of these nodes to include in the candidate LTL formula by choosing a root
node and (L,R) accordingly.

More concretely, this reformulated problem can be written as a modification of
Prob. VI.11, where X is dropped as a decision variable and an additional binary
vector r ∈ {0, 1}NDAG is added. The purpose of r is to encode that at least one node
in the DAG is a root node, and that conditions (6.14), (6.15), and (6.16) hold for each
root node; concretely, if ri = 1, node i is a root node, and if ri = 0, then node i is not
a root node. This adjustment can be performed by taking constraints (6.14), (6.15),
and (6.16) and relaxing them depending on the value of r, using a big-M formulation.
As a concrete example, (6.14) would be modified to

1− Sdem
j,(ri,1)

≤M(1− ri), i = 1, . . . , NDAG,

j = 1, . . . , Ns.
(6.17)

By holding X constant instead of considering it as a decision variable, we dra-
matically reduce the computational cost of solving Prob. VI.11, by combinatorially
reducing the search space size compared to searching over the entirety of (X,L,R).
Furthermore, this does not overly restrict the LTL formula search, since we can still
represent different formulas by searching over L and R, and by allowing for multiple
root nodes, we can still find different formulas involving a different number of nodes
(i.e., the method can return formula defined by a subtree containing only a subset of
the nodes in X). For instance, consider representing the formula ϕ = ♦p1∧♦p2 using
either formulation. Using the original formulation, one can represent ϕ by searching
for a DAG with 5 nodes, resulting in the structure in Fig. 6.2. Using the reformu-
lation, we can represent ϕ even when selecting one instance each of p1 and p2 and
three instances each of ∧, ♦, and �, as long as some subgraph in the resulting DAG
replicates the structure in Fig. 6.2, and the root of that subgraph (say node i) is
marked as a root node (ri = 1). However, these computational gains can come at the
cost of easily finding the shortest LTL formula consistent with the demonstrations,

120

as we discuss in Cor. VI.20 (see Rem. VI.21 for more discussion). Thus, this for-
mulation should be used for large-scale learning problems with many APs and LTL
grammar elements, while it should be avoided when the primary priority is to return
the simplest possible LTL formula.

6.6.3 Prioritized variants on the falsification loop

Depending on the desired application, it may be useful to impose an ordering
in which candidate structures θs are returned in line 4 of Alg. VI.1. For example,
the user may want to return the most restrictive formulas first (i.e., formulas with
the smallest language), since more restrictive formulas are less likely to admit coun-
terexamples (and hence the falsification should terminate in fewer iterations). On the
other hand, the user may want to return the least restrictive formulas first, generating
many invalid formulas in order to explicitly know what formulas do not satisfy the
demonstrator’s wishes.

However, imposing an entailment-based ordering on the returned formulas is com-
putationally challenging, as in general this will involve pairwise LTL entailment checks
over a large set of possible LTL formulas, and each check is in PSPACE Demri and
Schnoebelen (2002). Despite this, we can heuristically approximate this by assigning
weights to each node type in the DAG based on their logical “strength”, such that each
DAG with the same set of nodes has an overall weight w =

∑NDAG

u=1

∑Ng

v=1wu,vXu,v.
For example, ∨ should be assigned a lower weight than ∧, since ∨s can never re-
strict language size, while ∧ can never grow it. Then, stronger/weaker formulas
can be returned first by adding constraint w ≥ wthresh/w ≤ wthresh, where wthresh is
reduced/increased until a consistent formula is found.

Note that multiple consistent formula structures can be also generated by adding
a constraint for Prob. VI.11 to not return the same formula structure and continuing
the falsification loop after the first consistent formula is found.

6.6.4 Demonstration suboptimality

We conclude this section by describing a method for estimating the suboptimality
slack parameter δ, which is crucial for maintaining the correctness of Alg. VI.1,
and by discussing how demonstrator suboptimality can affect the performance of our
algorithm.

We first describe how δ can be estimated. Assume that the cost function param-
eters θc are fixed. Suppose that the demonstrator repeats task j R times, generating
suboptimal demonstrations {ξdemj,r }Rr=1 with corresponding costs {c(ξdemj,r)}Rr=1, where
c(ξj,r)

dem ≥ c(ξ∗j), for all r, where c(ξ
∗
j) is the cost of a globally-optimal solution for

task j, which we assume is finite. Using these repeated demonstrations, we would
like to estimate the suboptimality bound δ. Assuming the demonstration costs are
independent and identically distributed realizations of a random variable, we can
estimate c(ξ∗j) using the location parameter of a Weibull distribution that is fit to
the observed costs De Haan and Ferreira (2007); Knuth et al. (2021a); Weng et al.
(2018). This follows from the Fisher-Tippett-Gnedenko Theorem from extreme value

121

theory De Haan and Ferreira (2007), which states that if the limiting distribution
of the minimum of a set of realizations of a random variable converges to a finite
value, the limit distribution is Weibull. Then, the location parameter of the Weibull
distribution can be used to estimate the minimum c(ξ∗j); let this estimate be denoted
ĉ∗j . One can also compute a confidence interval around ĉ∗j Knuth et al. (2021a), which
can be used to determine if the demonstration needs to be further repeated (i.e., if the
confidence interval is large). Finally, we can recover an estimate of δ by taking the
lowest-cost trajectory (which will be selected as the demonstration used in learning2)
with cost c(ξdemj)

.
= min1≤r≤R c(ξ

dem
j,r) and setting

δ =
c(ξdemj)− ĉ∗j

ĉ∗j
. (6.18)

We demonstrate this procedure on a simulated example in Sec. 6.8.2.
This δ estimation procedure can also be altered to work for the case of unknown

θc. Since Alg. VI.2 fixes a single consistent θc in an outer loop and then runs the
falsification loop of Alg. VI.1 for that fixed θc, we can estimate δ for each θc which
comes up in the outer loop directly using the procedure described previously for a
fixed θc. Thus, δ changes based on the current candidate θc.

We now discuss the overall effect of suboptimality on our method. Recall that
our approach relies on a continuous notion of optimality to learn θp and θc (the
KKT conditions) and discrete notions of optimality in a falsification loop to learn the
LTL structure θs. We first discuss the effect of suboptimality on learning θp and θc;
in these cases, any demonstrator suboptimality is reflected by the KKT conditions
failing to hold exactly on the demonstrations (i.e., with an error in the stationarity
or complementary slackness terms). This can be dealt with by solving Prob. VI.3,
which relaxes the KKT conditions to a penalty, so the optimization problem remains
feasible despite the suboptimality. In essence, Prob. VI.3 finds the cost function/AP
parameters which make the demonstrations as close to satisfying the KKT conditions
as possible. Unfortunately, these parameters may not reflect the true parameters if the
demonstrations are extremely suboptimal; as a result, the accuracy of the recovered
parameters can be sensitive to suboptimality. Quantifying uncertainty in the learned
parameters as a function of the demonstrator’s suboptimality may help mitigate any
performance degradation, and is an interesting direction for future work.

Learning the LTL structure θs is in general less sensitive to suboptimality. To
understand this, let us return to the two-AP setting of Fig. 6.3. In this setting,
we first sort the possible LTL structures on a number line by the optimal trajectory
cost that they admit (see Fig. 6.4 for a depiction of this idea). There are finitely
many possible LTL structures θs, and many different θs may be semantically identical
(for example, many θs have corresponding formulas which are just permutations of
each other), thus admitting optimal trajectories of the same cost. Thus, while there
may be exponentially many possible θs, there tends to only be a small number of

2Provided that the remaining higher-cost demonstrations are feasible, they can still be used in the
learning process; we can enforce that these demonstrations should still be feasible for any candidate
LTL formula.

122

b b b b
c(ξ∗)

c∗A c∗B c∗C c∗D

�¬p1
�¬p2

♦p1

♦p1 ∧�¬p2
♦p1 ∧ ♦p2

♦p1 ∧ ♦p2 ∧ ¬�¬p1
(¬p2 U p1) ∧ ♦p2

(¬p2 U p1) ∧ ♦p2 ∧ ⊤

c(ξdemj)

1+δ

(A) (B) (C) (D)

etc. etc. etc. etc.

Figure 6.4: Consider the two-AP setting first shown in Fig. 6.3. We visualize here sets
of LTL formulas which can be distinguished based on cost. Formulas within group
(·) have an optimal cost c∗· . The formulas listed in each group (A), (B), (C), and (D)
are just a small subset of a much larger set of cost-indistinguishable formulas. For
instance, if a demonstration has a δ-adjusted cost c(ξdemj)/(1 + δ) falling in the green
range, Alg. VI.1 will return some LTL formula structure in group (D), each of which
would have an optimal cost of c∗D.

groups of cost-distinguishable formulas (i.e., each such group contains formulas with
equal optimal cost). Recall that in running Alg. VI.1 using the given demonstrations
to learn θs, the falsification loop terminates when the optimal cost of a trajectory
satisfying the current candidate LTL formula and the known constraints exceeds the
δ-adjusted demonstration cost c(ξdemj)/(1+ δ). As an example, consider a suboptimal
demonstration of ϕ = (¬p2 U p1) ∧ ♦p2 which belongs to group (D) in Fig. 6.4 and
has a δ-adjusted cost c(ξdemj)/(1 + δ). As long as this adjusted cost lies anywhere
within the green interval in Fig. 6.4, some formula from group (D) is returned, which
will be a formula consistent with the bounded suboptimality of the demonstration.
Note that the estimate of δ must be an overestimate of the true δ in order for the
adjusted cost to lie in the green region in Fig. 6.4; this can be encouraged by setting
the confidence interval described earlier in this section to be large, and selecting δ as
the fit Weibull location parameter padded by the confidence interval. In Sec. 6.8.2,
we show that we can obtain an overestimate of the true δ using this approach.

6.7 Theoretical Analysis

In this section, we prove some theoretical guarantees of our method: that it is
complete under some assumptions, without (Thm. VI.19) or with (Cor. VI.22)
spec-optimality, that it returns the shortest LTL formula consistent with the demon-
strations (Cor. VI.20), and that we can compute guaranteed conservative estimates
of Si/Ai (Thm. VI.24).

Assumption VI.16. Prob. VI.10 is solved with a complete planner.

Assumption VI.17. Each demonstration is locally-optimal (i.e., satisfies the KKT
conditions) for fixed boolean variables.

123

Assumption VI.18. The true parameters θp, θs, and θc are in the hypothesis space
of Prob. VI.11: θp ∈ Θp, θs ∈ Θs, θc ∈ Θc.

We will use these assumptions to show that when the cost function parameters
θp are known, our falsification loop in Alg. VI.1 is guaranteed to return a consistent
formula; that is, it makes the demonstrations globally-optimal.

Theorem VI.19 (Completeness and consistency, unknown θs, θp). Under Assump-
tions VI.16-VI.18, Alg. VI.1 is guaranteed to return a formula ϕ(θs, θp) such that 1)
ξdemj |= ϕ(θs, θp) and 2) ξdemj is globally-optimal under ϕ(θs, θp), for all j, 3) if such
a formula exists and is representable by the provided grammar.

Proof. To see the first point - that Alg. VI.1 returns ϕ(θ̂s, θ̂p) such that ξdemj |=
ϕ(θ̂s, θ̂p) for all j, note that in Prob. VI.11, the constraints (6.13)-(6.15) on the
satisfaction matrices Sdem

j encode that each demonstration is feasible for the choice

of θp and θs; hence, the output of Prob. VI.11 will return a feasible ϕ(θ̂s, θ̂p). As
Alg. VI.1 will eventually return some ϕ(θ̂s, θ̂p) which is an output of Prob. VI.11,
the ϕ(θ̂s, θ̂p) that is ultimately returned is feasible.

Next, to see the second point - that the ultimately returned ϕ(θ̂s, θ̂p) makes each
ξdemj globally-optimal. Note that at some iteration of the inner loop, if Prob. VI.10
is feasible and its solution algorithm is complete (Assumption VI.16), it will return
a trajectory which is lower-cost than the demonstration and satisfies ϕ(θ̂s, θ̂p). Note
that disregarding the lower-cost constraint, Prob. VI.10 will always be feasible, since
Prob. VI.11 returns θp, θs for which the demonstration is feasible, and the feasible set
of Prob. VI.10 contains the demonstration. The falsification loop will continue until
Prob. VI.10 cannot produce a trajectory of strictly lower cost for each demonstration;
this is equivalent to ensuring that each demonstration is globally optimal for the
ϕ(θ̂s, θ̂p).

To see the last point, we note that if there exists a formula ϕ(θ̂s, θ̂p) which satisfies
the demonstrations, it is among the feasible set of possible outputs of Alg. VI.1; that
is, the representation of LTL formulas, D, is complete (cf. Lemma 1 in Neider and
Gavran (2018)).

We will further show that the formula returned by Alg. VI.1 is the shortest
formula which is consistent with the demonstrations; this is due to NDAG only being
incremented upon infeasibility of a smaller NDAG to explain the demonstrations.

Corollary VI.20 (Shortest formula). Let N∗ be the size of a minimal DAG for
which there exists (θp, θs) such that ξdemj |= ϕ(θs, θp) for all j. Under Assumptions
VI.16-VI.18, Alg. VI.1 is guaranteed to return a DAG of size N∗.

Proof. The result follows since Algorithm VI.1 increases NDAG incrementally (in the
outer loop) until some ϕ(θ̂s, θ̂p) is returned which makes all of the demonstrations
feasible and globally-optimal, and each inner iteration of Algorithm VI.1 is guaranteed
to find a consistent ϕ(θ̂s, θ̂p) if one exists (cf. Theorem VI.19).

124

Remark VI.21. A similar shortest formula guarantee can be obtained for the refor-
mulation of Alg. VI.1 described in Sec. 6.6.2 only if it is tractable to perform an
exhaustive search over the number of nodes allocated to each grammar element, in
order to find the shortest-length combination. This can be computationally intensive,
and is in contrast to the simple “line-search” over a single complexity variable, NDAG,
that the original Alg. VI.1 enjoys.

Using Lem. VI.8, we can show that modifying Alg. VI.1 to additionally impose
the spec-optimality conditions in Prob. VI.11 still enjoys the completeness properties
discussed in Theorem VI.19, while also in general reducing the number of falsification
iterations needed as a result of the reduced search space.

Corollary VI.22 (Alg. VI.1 with spec-optimality). By modifying Alg. VI.1 so
that Prob. VI.11 uses constraints (6.16), Alg. VI.1 still returns a consistent solution
ϕ(θ̂s, θ̂p) if one exists, i.e., each ξdemj is feasible and globally optimal for each ϕ(θ̂s, θ̂p).

Proof. The result follows from completeness of Alg. VI.1 (cf. Theorem VI.19) and
Lemma VI.8: adding (6.16a)-(6.16c) enforces that ξdemj are spec-optimal, and via
Lemma VI.8, ξdemj , which is a globally-optimal demonstration, must also be spec-
optimal. Hence, imposing constraints (6.16a)-(6.16c) is consistent with the demon-
stration.

Next, we show how the consistency properties extend to the case of unknown cost
function, if Alg. VI.2 returns a solution, which it is not guaranteed to do in finite
time.

Corollary VI.23 (Consistency, unknown θc). Under Assumptions VI.16-VI.18, if
Alg. VI.2 terminates in finite time, it returns a formula ϕ(θs, θp) such that 1) ξdemj |=
ϕ(θs, θp) and 2) ξdemj is globally-optimal with respect to θc under the constraints of
ϕ(θs, θp), for all j, 3) if such a formula exists and is representable by the provided
grammar.

Proof. Note that Alg. VI.2 is simply Alg. VI.1 with an outer loop where potential cost
parameters θc are chosen. From Theorem VI.19, we know that under Assumptions
VI.16-VI.17, for the true cost parameter θc, Alg. VI.1 is guaranteed to return θp and
θs which make the demonstrations globally-optimal under θc. From Assumption VI.18
and the fact that the true parameters θp, θs, and θc will make the demonstrations
globally-optimal, we know there exists at least one consistent set of parameters (the
true parameters). Then, Alg. VI.2 will eventually find a consistent solution (possibly
the true parameters), as it iteratively runs Alg. VI.1 for all consistent θc.

Finally, we show that for fixed LTL structure and cost function, querying and
volume extraction (Problems VI.5 and VI.6) are guaranteed to return conservative
estimates of the true Si or Ai.

Theorem VI.24 (Conservativeness for unknown θp). Suppose that θs and θc are
known, and θp is unknown. Then, extracting Gis and Gi¬s, as defined in (6.11)-(6.12),
from the feasible set of Prob. VI.4 projected onto Θp

i (denoted Fi), returns Gis ⊆ Si
and Gi¬s ⊆ Ai, for all i ∈ {1, . . . , NAP}.

125

Proof. We first prove that Gi¬s ⊆ Ai. Suppose that there exists κ ∈ Gi¬s such that
κ /∈ Ai. Then by definition, for all θpi ∈ Fi, Gi(κ, θ

p
i) ≥ 0. However, we know that

all locally-optimal demonstrations satisfy the KKT conditions with respect to the
true parameter θp,∗i ; hence, θp,∗i ∈ F . Then, x ∈ A(θp,∗i). Contradiction. Similar
logic holds for proving that Gis ⊆ Si. Suppose that there exists x ∈ Gis such that
x /∈ Si. Then by definition, for all θpi ∈ Fi, Gi(κ, θ

p
i) ≤ 0. However, we know that all

locally-optimal demonstrations satisfy the KKT conditions with respect to the true
parameter θp,∗i ; hence, θp,∗i ∈ Fi. Then, κ ∈ Si(θp,∗i). Contradiction.

6.8 Simulation Experiments

We show that our algorithm outperforms a competing method (Sec. 6.8.1), can
be robust to suboptimality in the demonstrations (Sec. 6.8.2), can learn shared
task structure from demonstrations across environments (Sec. 6.8.3), and can learn
LTL formulas θp, θs and uncertain cost functions θc on high-dimensional problems.
Specifically, we demonstrate Alg. VI.1 on a simulated manipulation example (Sec.
6.8.4) and the one-shot learning described in Rem. VI.15 on a quadrotor surveillance
task (Sec. 6.8.5). Please refer to the supplementary video for visualizations of the
results.

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-4

-3

-2

-1

0

1

2

3

4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-4

-3

-2

-1

0

1

2

3

4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-4

-3

-2

-1

0

1

2

3

4

Figure 6.5: Toy example for baseline comparison Jha et al. (2019). The baseline is
unable to disambiguate between possible APs as it does not consider the demonstra-
tor’s objective.

6.8.1 Baseline comparison

Likely the closest method to ours is Jha et al. (2019), which learns a pSTL for-
mula that is tightly satisfied by the demonstrations via solving a nonconvex prob-
lem to local optimality: argmaxθp minj τ(θ

p, ξdemj), where τ(θp, ξdemj) measures how
tightly ξdemj fits the learned formula. We run the authors’ code Jha (2017) on
a toy problem (see Fig. 6.5), where the demonstrator has kinematic constraints,
minimizes path length, and satisfies start/goal constraints and ϕ = ♦[0,8]p1, where

x |= p1 ⇔ [I2×2,−I2×2]
⊤x ≤ [3, 2,−1, 2]⊤ = [3, θp1]

⊤. We assume the structure θs is
known, and we aim to learn θp to explain why the demonstrator deviated from an
optimal straight-line path to the goal. Solving Prob. VI.6 returns G1s = S1 (Fig.
6.5, right). On the other hand, we run TeLEx multiple times, converging to different
local optima, each corresponding to a “tight” θp (Fig. 6.5, center): TeLEx cannot

126

-1 0 1 2 3

-2

-1

0

1

2

3

4

3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6

0

2

4

6

8

10

Figure 6.6: Left: We are given 25 suboptimal demonstrations of the same task, with
each demonstration starting at [−1, 1], ending at [3, 4], and satisfying ♦[0,8]p1. The
globally-optimal cost is 3.25, while the best cost observed within the 25 demonstra-
tions is 3.274. Right: We fit a Weibull distribution (orange) to the demonstration
costs (right). The fitted location parameter, adjusted by its 95% confidence interval,
is 3.248 < 3.25, which leads to a valid overestimate of δ.

distinguish between multiple different “tight” θp, which makes sense, as the method
tries to find any “tight” solution. This example suggests that if the demonstrations
are goal-directed, a method that leverages their optimality is likely to better explain
them.

6.8.2 δ-estimation for suboptimal demonstrations

In this example, we demonstrate the suboptimality estimation method described
in Sec. 6.6.4. In this example, we consider the same problem setting as in Sec. 6.8.1,
but instead use suboptimal versions of the blue demonstration in Fig. 6.5. We are
given 25 such demonstrations (Fig. 6.6, left), and we are interested in estimating the
suboptimality slack parameter δ. To do so, we follow the method in Sec. 6.6.4, fitting
a Weibull distribution (Fig. 6.6, right, orange) to the demonstration costs (Fig. 6.6,
right, blue histogram). The fitted Weibull distribution has a location parameter of
3.248 after being adjusted by its 95% confidence interval, which is smaller than the
optimal cost of 3.25. Using the suboptimal demonstration with the lowest cost (in
this case, 3.274), we can estimate δ = 0.008 using (6.18), which overestimates the true
δ = 0.007. Per the discussion in Sec. 6.6.4, it is important to be able to obtain an
estimate of δ which is a tight overestimate of the true δ, which this example achieves.
Overall, this example suggests that our δ-estimation technique can effectively estimate
the suboptimality bound, which is important for learning consistent LTL formulas in
spite of suboptimality in the demonstrations.

6.8.3 Learning shared task structure

In this example, we show that our method can extract logical structure shared
between demonstrations that complete the same high-level task, but in different en-
vironments (Fig. 6.7). A point robot must first go to the mug (p1), then go to the

127

coffee machine (p2), and then go to goal (p3) while avoiding obstacles (p4, p5). As
the floor maps differ, θp also differ, and are assumed known. We add two relevant
primitives to the grammar, sequence:

ϕ1 Q ϕ2
.
= ¬ϕ2 U[0,Tj−1] ϕ1,

enforcing that ϕ2 cannot occur until after ϕ1 has occurred for the first time, and
avoid: Vϕ .

= �[0,Tj−1]¬ϕ, enforcing ϕ never holds over [1, Tj]. Then, the true formula
is:

ϕ∗ = Vp4 ∧ Vp5 ∧ (p1 Q p2) ∧ (p2 Q p3) ∧ ♦[0,Tj−1]p3.

Suppose first that we are given the blue demonstration in Environment 2. Running
Alg. VI.1 with 1-SO constraints (6.16) terminates in one iteration at NDAG = 14 with

ϕ0 = Vp4 ∧ Vp5 ∧ ♦[0,Tj−1]p2 ∧ ♦[0,Tj−1]p3 ∧ (p1 Q p2).

That is, always avoid obstacles 1 and 2, eventually reach coffee and goal, and visit
mug before coffee. This formula is insufficient to complete the true task (the ordering
constraint between coffee and goal is not learned). This is because the optimal tra-
jectories satisfying ϕ0 and ϕ∗ are the same cost, i.e., both ϕ0 and ϕ∗ are consistent
with the demonstration and could have been returned, and ϕ0, ϕ

∗ ∈ ϕg (cf. Sec. 6.7).
Now, we also use the blue demonstration from Environment 1 (two examples total).
Running Alg. VI.1 terminates in two iterations at NDAG = 14 with the formulas

ϕ1 = Vp4 ∧ Vp5 ∧ ♦[0,Tj−1]p1 ∧ ♦[0,Tj−1]p2 ∧ ♦[0,Tj−1]p3

(which enforces that the mug, coffee, and goal must be eventually visited, but in any
order, while avoiding obstacles) and ϕ2 = ϕ∗. Since the demonstration in Environ-
ment 1 doubles back to the coffee before going to goal, increasing its cost over first
going to goal and then to coffee, the ordering constraint between the two is learnable.
We also plot the generated counterexample (Fig. 6.7, yellow), which achieves a lower
cost, as ϕ1 involves no ordering constraints. We can use the learned formula to plan
a path completing the task in a new environment (with different AP parameters θp)
in Fig. 6.8.

Overall, this example suggests we can use demonstrations from different environ-
ments to learn common task structure and disambiguate between potential explana-
tions.

128

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

-2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

Figure 6.7: We learn a common LTL formula from demonstrations in different envi-
ronments (different θp) with shared task (same θs).

-5 -4 -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

1

2

3

4

5

6

Figure 6.8: Trajectory planned with the learned LTL formula on the environment-
transfer example.

Figure 6.9: Multi-stage simulated manipulation task: first fill the cup, then grasp
it, and then deliver it. To avoid spills, a pose constraint is enforced after the cup is
grasped.

129

p6

p5

p3p2

p1

Figure 6.10: Demonstrations and counterexamples for the simulated manipulation
task.

6.8.4 Multi-stage manipulation task

We consider the setup in Figs. 6.9, 6.10 of teaching a 7-DOF Kuka iiwa robot
arm to prepare a drink: first move the end effector to the button on the faucet (p1),
then grasp the cup (p2), then move the cup to the customer (p3), all while avoiding
obstacles. After grasping the cup, an end-effector pose constraint (α, β, γ) ∈ S4(θp4)
(p4) must be obeyed. We add two “distractor” APs: a different cup (p5) and a region
(p6) where the robot can hand off the cup. We also modify the grammar to include
the sequence operator Q, (defined as before), and add an “after” operator

ϕ1 T ϕ2
.
= �[0,Tj−1](ϕ2 → �[0,Tj−1]ϕ1),

that is, ϕ1 must hold after and including the first timestep where ϕ2 holds. The true
formula is:

ϕ∗ = (p1 Q p2) ∧ (p2 Q p3) ∧ ♦[0,Tj−1]p3 ∧ (p4 T p2).

We use a kinematic arm model: jit+1 = jit + uit, i = 1, . . . , 7, where ‖ut‖22 ≤ 1 for all t.

Two suboptimal human demonstrations (δ = 0.7) optimizing c(ξxu) =
∑T−1

t=1 ‖jt+1 −
jt‖22 are recorded in a Unity virtual reality (VR) environment. We assume we have
nominal estimates of the AP regions Si(θpi,nom) (e.g., from a vision system), and we
want to learn the θs and θp of ϕ∗. We use IPOPT Wächter and Biegler (2006) to
solve the nonlinear optimization problems needed to compute counterexamples.

130

Figure 6.11: Trajectories planned using the learned LTL formula, for the simulated
7-DOF arm.

We run Alg. VI.1 with the 1-SO constraints (6.16), and encode the nominal θpi
by enforcing that Θp

i = {θpi | ‖θpi − θpi,nom‖1 ≤ 0.05}. At NDAG = 11, the inner loop
runs for 3 iterations (each taking 30 minutes on an i7-7700K processor), returning
candidates

ϕ1 = (p1Qp3) ∧ (p2Qp3) ∧ (♦[0,Tj−1]p3) ∧ (p4T p3),
ϕ2 = (p1Qp3) ∧ (p2Qp3) ∧ (♦[0,Tj−1]p3) ∧ (p4T p2),

and ϕ3 = ϕ∗. ϕ1 says that before going to the customer, the robot has to visit the
button and cup in any order, and then must satisfy the pose constraint after visiting
the cup. ϕ2 has the meaning of ϕ∗, except the robot can go to the button or cup
in any order. Note that ϕ3 is a stronger formula than ϕ2, and ϕ2 than ϕ1; this
is a natural result of the falsification loop, which returns incomparable or stronger
formulas with more iterations, as the counterexamples rule out weaker or equivalent
formulas. Also note that the distractor APs don’t feature in the learned formulas,
even though both demonstrations pass through p6. This happens for two reasons:
we increase NDAG incrementally and there was no room to include distractor objects
in the formula (since spec-optimality may enforce that p1-p3 appear in the formula),
and even if NDAG were not minimal, p6 would not be guaranteed to show up, since
visiting p6 does not increase the trajectory cost.

We plot the counterexamples in Fig. 6.10: blue/purple are from iteration 1; orange
is from iteration 2. They save cost by violating the ordering and pose constraints:
from the left start state, the robot can save cost if it visits the cup before the button
(blue, orange trajectories), and loosening the pose constraint can reduce joint space

131

cost (orange, purple trajectories). The right demonstration produces no counterex-
ample in iteration 2, as it is optimal for this formula (changing the order does not
lower the optimal cost). For the learned θp, θpi = θpi,nom except for p2, p3, where the
box shrinks slightly from the nominal; this is because by tightening the box, a La-
grange multiplier can be increased to reduce the KKT residual. We use the learned
θp and θs to plan trajectories which complete the task from new initial conditions in
the environment (Fig. 6.11).

Overall, this example suggests that Alg. VI.1 can recover θp and θs on a high-
dimensional problem and ignore distractor APs, despite demonstration suboptimality.

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

Figure 6.12: Quadrotor surveillance demonstrations (top) and learning curves (bot-
tom).

6.8.5 Multi-stage quadrotor surveillance

We demonstrate that we can jointly learn θp, θs, and θc in one shot on a 12D
nonlinear quadrotor system. The system dynamics for the quadrotor Sabatino (2015)

132

are:

χ̇
ẏ
ż
α̇

β̇
γ̇
χ̈
ÿ
z̈
α̈

β̈
γ̈

=

χ̇
ẏ
ż

β̇ sin(γ)
cos(β) + γ̇ cos(γ)

cos(β)

β cos(γ)− γ̇ sin(γ)

α̇+ β̇ sin(γ) tan(β) + γ̇ cos(γ) tan(β)
− 1

m [sin(γ) sin(α) + cos(γ) cos(α) sin(β)]u1
− 1

m [cos(α) sin(γ)− cos(γ) sin(α) sin(β)]u1
g − 1

m [cos(γ) cos(β)]u1
Iy−Iz
Ix

β̇γ̇ + 1
Ix
u2

Iz−Ix
Iy

α̇γ̇ + 1
Iy
u3

Ix−Iy
Iz

α̇β̇ + 1
Iz
u4

, (6.19)

with control constraints ‖ut‖2 ≤ 10. We time-discretize the dynamics by performing
forward Euler integration with discretization time δt = 1.2 seconds. The 12D state
is x = [χ, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇]⊤, and the relevant constants are g = −9.81m/s2,
m = 1kg, Ix = 0.5kg ·m2, Iy = 0.1kg ·m2, and Iz = 0.3kg ·m2.

We are given four demonstrations of a quadrotor surveilling a building (Fig. 6.12):
it needs to visit three regions of interest (Fig. 6.12, green) while not colliding with the
building. All visitation constraints can be learned directly with 1-SO (see Rem. VI.15)
and collision-avoidance can also be learned with 1-SO, with enough demonstrations.
The true formula is

ϕ∗ = ♦[0,Tj−1]p1 ∧ ♦[0,Tj−1]p2 ∧ ♦[0,Tj−1]p3 ∧�[0,Tj−1]¬p4,

where p1-p3 represent the regions of interest and p4 is the building. We aim to
learn θpi for the parameterization Si(θpi) = {[I3×3,−I3×3]

⊤[x, y, z]⊤ ≤ θpi }, assuming
θp4,6 = 0 (the building is not hovering). The demonstrations minimize c(ξxu, θ

c) =∑
r∈R

∑T−1
t=1 γr(rt+1−rt)2, where R = {x, y, z, α̇, β̇, γ̇} and γr = 1, i.e., equal penalties

to path length and angular acceleration. We assume γr ∈ [0.1, 1] and is unknown: we
want to learn the cost weights for each state.

133

Figure 6.13: Trajectories planned using the learned LTL formula, for the quadrotor
system.

Solving Prob. VI.11 with 1-SO conditions (at NDAG = 12) takes 44 minutes and
recovers θp, θs, and θc in one shot. To evaluate the learned θp, we show in Fig. 6.12
that the coverage of the Gis and Gi¬s for each pi (computed by fixing the learned θs and
running Prob. VI.6) monotonically increases with more data. In terms of recovered
θs, with one demonstration, we return

ϕ1 = ♦[0,Tj−1]p2 ∧ ♦[0,Tj−1]p3 ∧ ♦[0,Tj−1]p4 ∧�[0,Tj−1]¬p1.

This highlights the fact that since we are not provided labels, there is an inherent
ambiguity of how to label the regions of interest (i.e., pi, i = 1, . . . , 3 can be associated
with any of the green boxes in Fig. 6.12 and be consistent). Also, one of the regions
of interest in ϕ gets labeled as the obstacle (i.e., p1 and p4 are swapped), since one
demonstration is not enough to disambiguate which of the four pi should touch the
ground. Note that this ambiguity can be eliminated if labels are provided (see Sec.
6.6.1) or if more demonstrations are provided: for two and more demonstrations, we
learn ϕi = ϕ∗, i = 2, . . . , 4. When using all four demonstrations, we recover the cost
parameters θc and structure θs exactly, i.e., ϕ(θ̂s, θ̂p) = ϕ∗, and fixing the learned θs

and running Prob. VI.6 returns Gis = Si and Gi¬s = Ai, for all i. The learned θc,
θs, and θp are used to plan trajectories that efficiently complete the task for different
initial and goal states. Furthermore, assuming that the parameterization is correct,
these plans are guaranteed to satisfy the true LTL formula; these trajectories are
presented in Fig. 6.13.

Overall, this example suggests that our method can jointly recover a consistent
set of θp, θs, and θc for high-dimensional systems.

6.9 Physical experiments

To demonstrate that our method can scale to handle the challenges of real hard-
ware, we use our method to learn a real-world multi-stage manipulation task. A video

134

Figure 6.14: We build a Unity virtual reality environment to collect demonstrations
for the real-world object delivery manipulation task.

(a) (b) (c)

(d) (e) (f)

Figure 6.15: One demonstration is recorded in the Unity virtual reality environment
for the object delivery task, seen here from a first-person perspective. (a) Initial
state. (b) First, grasp the soup. (c) Next, place the soup in the blue box, avoiding
the mustard bottle which is in the way. (d) Place the box with the soup in the blue
delivery region while satisfying a pose constraint. (e) Move to grasp the Cheez-It
box. (f) Place the Cheez-It box in the green delivery box.

135

of our physical experiment can be found in the supplementary material.

6.9.1 Environment and task description

Consider a tabletop manipulation task where the arm needs to retrieve several
objects, put them in boxes, and deliver them in a particular order (see Fig. 6.14).
Specifically, the task of interest is to first place a can of soup into a box (Fig. 6.15
(b)-(c)), to then deliver that box to a blue delivery region (Fig. 6.15 (d)). Next, the
robot must move a Cheez-It box into a box located at a green delivery region (Fig.
6.15 (e)-(f)). Finally, while the box containing the soup is grasped by the robot, the
robot must keep its end effector upright so that the soup does not fall out of the box.
The robot should also avoid colliding with the furniture as well as any other objects
in the scene. There are a total of 11 objects in the scene, not including the delivery
boxes or the furniture, which are taken from the YCB dataset Çalli et al. (2017).

To describe the aforementioned task concisely in LTL, we define another new
grammar element:

ϕ1 M ϕ2
.
= �[0,Tj−1]((ϕ2 → ϕ1)) ∧ ♦[0,Tj−1]ϕ2,

i.e., if ϕ2 holds, then ϕ1 must also hold, and ϕ2 must eventually hold. We define the
following atomic propositions:

• pS: The soup is grasped

• pB: The movable box is grasped

• pG1: The end effector is inside the blue delivery region

• pC : The Cheez-It box is grasped

• pG2: The end effector is inside the green delivery region

• pP : The end effector is pointed upwards

• pD1: End effector is within 0.05 distance of the gelatin

• pD2: End effector is within 0.05 distance of the bowl

• pD3: End effector is within 0.05 distance of the Master Chef coffee can

• pD4: End effector is within 0.05 distance of the sugar

• pD5: End effector is within 0.05 distance of the mustard bottle

• pD6: End effector is within 0.05 distance of the banana

• pD7: End effector is within 0.05 distance of the Pringles

• pD8: End effector is within 0.05 distance of the pitcher

136

Figure 6.16: Counterexample visualization on the object delivery task. The red,
green blue, and cyan trajectories correspond to ϕ2, ϕ3, ϕ8, and ϕ13, respectively, as
described in Sec. 6.9.2.

• pD9: End effector is within 0.05 distance of the mug

We can then write an LTL formula which enforces the task as

ϕ∗ = (pS M pB) ∧ (pB M pG1) ∧ (pC M pG2) ∧
(pG1 Q pC) ∧ (pP M pB).

The first through fourth clauses enforce that the soup, moving box, blue goal region,
Cheez-It, and green delivery region are visited in the correct order, while the fifth
clause enforces that the pose constraint is satisfied when the moving box is grasped.
This is not overly restrictive, since per the first clause, it is not possible for the moving
box to be grasped without the soup also being grasped. Note that we assume the
demonstrator performs collision avoidance by avoiding contact with any object which
is not the current grasp target.

6.9.2 LTL formula learning

For this experiment, we seek to learn the LTL formula structure θs while the AP
parameters θp and cost function parameters γ are assumed known. This is reasonable
for this example, since the APs detailed in Sec. 6.9.1 can be readily measured and the
suboptimality parameter δ can be used to handle an imprecisely-known cost function.
Specifically, we assume the cost function is

137

c(ξ, γ) =
T−1∑

t=1

‖jt+1 − jt‖22 + cgrasp
∑

o∈O

T∑

t=1

zograsp, t,

where jt denotes the arm joint values at time t, zograsp, t ∈ {0, 1} evaluates to 1 if
object o is grasped at time t and 0 otherwise, O is the set of all manipulable objects,
and cgrasp = 0.01 is a small penalty which discourages the unnecessary grasping of
objects. Note that the learning is relatively robust to the specific value of cgrasp, as
long as cgrasp is kept small enough such that the grasp cost term does not outweigh
the path length term (in our experiments, this holds if cgrasp ≤ 0.115). Mapping back
to the notation of Prob. VI.1, the state xt contains the joint values jt and the grasp
status of each object zot , while the control input contains the joint velocities and a
binary variable for each object to model grasping and releasing. The dynamics are
constructed such that the grasp input for a given object is nullified if the end effector
is far from that object.

We obtain one demonstration of this task which is recorded in a Unity VR en-
vironment (see Fig. 6.14 and 6.15). The demonstration consists of the state-control
trajectory of the arm, as well as a binary trajectory for each object, evaluating to 0 or
1 at a given timestep depending on if that object is currently grasped. Furthermore,
the initial configurations of all of the objects are given. Note that this information is
sufficient to reconstruct the value of every atomic propositions. We also note that the
VR environment does not simulate the grasp physics, and simply allows the demon-
strator to attach an object to the grippers when it is close by. To learn θs, we run
Alg. VI.1, where Prob. VI.11 uses the variant described in Sec. 6.6.2. We elect to
use this variant instead of the original Prob. VI.11 as in the simulated manipulation
example (Sec. 6.8.4) since there are many more APs in this example (15 compared
to 6 in Sec. 6.8.4), causing the original Prob. VI.11 to be slow. We allocate one node
for each AP, four “∧” nodes, four “M” nodes, one “Q” node, and one “♦” node.
We use a suboptimality parameter δ = 0.1. Running Alg. VI.1 generates 13 falsified
candidate LTL formulas, including the following:

• ϕ2 = (pC M pG2)∧(pS M pP)∧(pB Q pG1)∧(pP M pB)∧(♦pD5). This formula
does not capture that the Cheez-Its should only be grasped after the soup has
been grasped.

• ϕ3 = (pB M pP) ∧ (pP M pB) ∧ (pG1 Q pC) ∧ (pC M pG2) ∧ (pS M pG1). This
formula does not capture that the soup should be contained in the box upon
delivery.

• ϕ8 = (pC M pG2) ∧ (pS M pP) ∧ (pB M pG1) ∧ (pP Q pC) ∧ (♦ pD5). This
formula does not capture that the Cheez-Its should only be grasped after the
movable box has been grasped.

• ϕ13 = (pP M pG1)∧ (pC M pG2)∧ (pB M pP)∧ (pS M pP)∧ (pG1 Q pC). This
formula does not enforce the pose constraint at the correct timesteps.

138

Figure 6.17: Setup of the object delivery task in the real world. The small brown box
corresponds to the small blue box in the VR environment, while the large brown box
corresponds to the green box in the VR environment.

The candidate LTL formulas are falsified by the counterexample generation, for
which we employ TrajOpt Schulman et al. (2014) as the nonlinear trajectory optimizer
(see Sec. 6.4.3). We visualize the counterexamples for ϕ2, ϕ3, ϕ8, and ϕ13 in Fig.
6.16. One can observe that the missing constraints in these candidate LTL formulas
accept lower-cost trajectories (achieved for example by not delivering the goods in the
desired order, or by not picking up particular objects) which contradict the optimality
of the demonstration. We emphasize that our method can ignore the large number
of distractor objects. Limiting the expressibility of the DAG by limiting the number
of nodes encourages the learned formula to be parsimonious, since the free nodes will
be needed to explain demonstrator optimality rather than involving the distractor
objects. In the 14th iteration, our method terminates after a total of 5 minutes,
returning the true formula ϕ∗.

(a) (b) (c)

Figure 6.18: Object segmentation. (a) RGBD data provided by the Kinect sensor.
(b) Segmented image. (c) Segmented point cloud, which is used to infer object poses.

139

(a) (b) (c)

(d) (e) (f)

Figure 6.20: Executed trajectory on the real robot. The robot first grasps the tomato
soup (a), moves to place it inside the movable box (b), drops the soup into the box
and grasps the loaded box (c), and moves the loaded the box to the blue delivery
region (d). The robot then moves to grasp the Cheez-It box (e), and finally places it
in the box located at the green delivery region.

Figure 6.19: Planning environment used. Object poses are recovered from the seg-
mented depth cloud by running ICP.

140

6.9.3 Real-world planning and execution

Now that an LTL formula describing the desired task has been learned, we seek to
use the learned formula to plan in the real world. We work with the real-world setup
in Fig. 6.17. This setup has different furniture and object configurations compared
to the VR demonstration environment. However, recall that since the learned LTL
formula is parameterized by the APs, the learned LTL formula is not hardcoded to
specific configurations and can handle changes in the object locations.

To reflect the realistic situation where the robot may be tasked to find and deliver
a set of objects scattered across the workspace with a priori unknown locations, we
assume that the locations of the delivery regions and the movable box are known,
while the YCB objects have unknown location. The movable blue box in the VR
environment corresponds to the small brown box on the left in Fig. 6.17, while the
green box in the VR environment corresponds to the big brown box on the right in
Fig. 6.17.

To apply our learned LTL formula, we first estimate the poses of the YCB objects
using RGBD (image and point cloud) data provided by a Kinect sensor mounted
above the base of the arm. We do so by leveraging the deep learning-based object
segmentation framework in Zhou et al. (2019) and train it on the YCB object dataset.
The trained network takes the Kinect RGBD data as input and returns a segmented
point cloud (Fig. 6.18). We use the iterative closest point (ICP) algorithm Rusu and
Cousins (2011) with 1000 random initializations to estimate the object poses from
the segmented point cloud by fitting them to the source point clouds. We visualize
the objects at their estimated poses in an Openrave environment, which we also use
for trajectory planning (Fig. 6.19). We note that due to occlusions and sensor noise
present in the point cloud data, the poses recovered for the objects further from the
Kinect can suffer from rotational inaccuracies (e.g., the mustard bottle is upside down
and the pitcher is rotated around 90 degrees). While this degree of pose accuracy is
sufficient to complete our task, we also note that more sophisticated methods can be
employed (e.g., Deng et al. (2019), which provides good pose recovery on the YCB
dataset in the presence of occlusions and object symmetry).

Now that the object poses have been determined (and thus so have the APs),
we can employ the learned LTL formula to plan in the real environment. To do so,
we solve Prob. VI.1 for ϕ(θs, θ̂p) using the approach detailed in Sec. 6.4.3. Specifi-
cally, we construct a high-level plan Z by solving a MILP, and then find a low-level
joint trajectory which is consistent with Z with the trajectory optimization algorithm
TrajOpt Schulman et al. (2014). Like for the counterexample generation, we choose
TrajOpt instead of IPOPT as it is better tuned for manipulation in cluttered envi-
ronments. Snapshots of the executed plan are presented in Fig. 6.20. Please see the
supplementary video for a full visualization.

Overall, this experiment suggests that our learned LTL formulas can be used to
transfer complex long-horizon task specifications across environments, and that the
method is applicable to high-dimensional robotic systems acting in the real world.

141

6.10 Conclusion

This chapter presents a method that learns LTL formulas with unknown atomic
propositions and logical structure from only positive demonstrations, assuming the
demonstrator is optimizing an uncertain cost function. We leverage both implicit and
explicit optimality conditions on the demonstrations, namely the KKT conditions
and algorithmically-generated lower-cost counterexample trajectories, respectively, in
order to reduce the hypothesis space of LTL specifications consistent with the demon-
strations. The generated lower-cost counterexample trajectories, together with the
rejected candidate LTL formulas which admitted them, are concrete examples of the
alternative behaviors and task specifications rejected by our method, which can make
our approach more explainable for an end user. We also derive theoretical guarantees
for our method and demonstrate its applicability across a wide range of experiments
in simulation and hardware. Specifically, we show that our method outperforms base-
line approaches (Sec. 6.8.1), can learn abstract high-level task structure shared across
demonstrations, which can transfer to tasks in different environments (Sec. 6.8.3 and
Sec. 6.9), and scales to high-dimensional systems in simulation (Sec. 6.8.4 and Sec.
6.8.5) and in the real world (Sec. 6.9).

In future work, we aim to robustify our method to mislabeled demonstrations,
explicitly consider demonstration suboptimality arising from risk, and reduce our
method’s computation time. We are also interested in integrating the methods
presented in this chapter with our results on uncertainty-aware constraint learning
(Chapter VII) in order to plan with uncertain LTL formulas.

142

CHAPTER VII

Uncertainty-Aware Constraint Learning and

Planning via Constraint Beliefs

In this chapter, we present a method for learning to satisfy uncertain constraints
from demonstrations. Our method uses robust optimization to obtain a belief over
the potentially infinite set of possible constraints consistent with the demonstrations,
and then uses this belief to plan trajectories that trade off performance with satis-
fying the possible constraints. We use these trajectories in a closed-loop policy that
executes and replans using belief updates, which incorporate data gathered during
execution. We derive guarantees on the accuracy of our constraint belief and prob-
abilistic guarantees on plan safety. We present results on a 7-DOF arm and 12D
quadrotor, showing our method can learn to satisfy high-dimensional (up to 30D) un-
certain constraints, and outperforms baselines in safety and efficiency. This chapter
is based on the paper Chou et al. (2020a).

7.1 Introduction

A core problem in learning from demonstration (LfD), and constraint-learning
in particular, is the unidentifiability of the constraints: there is often an infinite
set of possible constraints which are sufficient to explain a demonstration. While
previous work (Chapter IV) has evaded this problem when planning with the learned
constraint by planning guaranteed-safe trajectories that satisfy all possible constraints
consistent with the data, this is impossible in most realistic scenarios, where the set
of possible constraints is so large that the planning problem becomes infeasible. For
example, consider planning for an arm in a cluttered home environment: unless the
demonstrations activate each of the multitude of constraints, we cannot claim that a
trajectory is guaranteed-safe.

Our insight is that to plan under large constraint uncertainty, it is vital to plan
trajectories that trade off safety and efficiency by reasoning over the set of possible
constraints, and to update this set using constraint information gathered when exe-
cuting these trajectories. Specifically, we leverage robust optimization and Bayesian
inference to obtain and update our belief over the possible constraints consistent with
the demonstrations and gathered data. Then, we propose a policy for adaptively sat-
isfying the constraints which interleaves chance-constrained planning, execution, and

143

belief updates until the task is completed. This chapter makes following specific
contributions:

1. We show how to extract all possible constraints, for some constraint parameter-
ization, consistent with a set of locally-optimal demonstrations, which we use
to construct a belief over constraints.

2. We provide a novel method for planning approximately-optimal open-loop tra-
jectories between new start and goal states, which are safe under the constraint
belief with a prescribed probability.

3. We show how to use these open-loop trajectories to construct a closed-loop
policy to adaptively satisfy the uncertain constraints, incorporating constraint
information observed during execution.

4. We theoretically analyze our algorithm, proving the completeness of constraint
extraction for various constraint parameterizations and providing probabilistic
safety guarantees for our planner.

5. We evaluate our method by planning for a 7-DOF arm and a quadrotor with
uncertain high-dimensional constraints, showing that our methods outperform
baselines in efficiency and safety.

7.2 Preliminaries and Problem Setup

We consider demonstrations performed on systems xt+1 = f(xt, ut, t), x ∈ X ,
u ∈ U completing tasks Π ∈ P , represented as constrained optimizations over
state/control trajectories ξxu

.
= (ξx, ξu):

Problem VII.1 (Forward (demonstrator’s) problem / “task” Π).

minimize
ξxu

cΠ(ξxu)

subject to φ(ξxu) ∈ S(θ) ⊆ C ⇔ g¬k(ξxu, θ) ≤ 0
φ̄(ξxu) ∈ S̄ ⊆ C̄, φΠ(ξxu) ∈ SΠ ⊆ CΠ ⇔ hk(ξxu) = 0, gk(ξxu) ≤ 0

where cΠ(·) is task-dependent and φ(·) maps from trajectories to constraint space C;
elements of C are denoted constraint states κ ∈ C. φ̄(·) and φΠ(·) map to constraint
spaces C̄ and CΠ, containing a known shared safe set S̄ and task-dependent safe
set SΠ; we embed the dynamics in S̄ and start/goal constraints in SΠ. We group
the constraints of Prob. VII.1 as (in)equality (ineq/eq) and (un)known (¬k/k),
where hk(ξxu) ∈ RNeq

k , gk(ξxu) ∈ RN ineq
k , and g¬k(ξxu, θ) ∈ RN ineq

¬k , and let g(κ, θ)
.
=

maxi∈{1,...,N ineq
¬k

}

(
gi,¬k(κ, θ)

)
. Let the unknown safe and unsafe sets defined by param-

eter θ ∈ Θ ⊆ Rd be S(θ) and A(θ), respectively:

S(θ) .= {κ ∈ C | g(κ, θ) ≤ 0} (7.1)

144

A(θ) .= S(θ)c = {κ ∈ C | g(κ, θ) > 0} (7.2)

We assume each state-control demonstration ξloc approximately solves Prob. VII.1
to local optimality, satisfying Prob. VII.1’s Karush-Kuhn-Tucker (KKT) conditions
Boyd and Vandenberghe (2004) within a tolerance. Intuitively, this means ξloc is
feasible for Prob. VII.1 (it remains within the safe set S(θ) and satisfies the known
constraints) and is within the neighborhood of a local optimum. With Lagrange
multipliers λ, ν, the relevant KKT conditions for the jth demonstration ξlocj , denoted
KKT(ξlocj), are:

g¬k(ξ
loc
j , θ) ≤ 0 (7.3a)

λ
j
k ⊙ gk(ξ

loc
j) = 0, λ

j
k ≥ 0 (7.3b)

λ
j
¬k ⊙ g¬k(ξ

loc
j , θ) = 0, λ

j
¬k ≥ 0 (7.3c)

∇ξxucΠ(ξ
loc
j) + λ

j
k
⊤∇ξxugk(ξ

loc
j) + λ

j
¬k
⊤∇ξxug¬k(ξ

loc
j , θ) + ν

j
k
⊤∇ξxuhk(ξ

loc
j) = 0 (7.3d)

Problem VII.2 (Inverse constraint learning problem).

find θ,L .
= {λj

k,λ
j
¬k,ν

j
k}Ns

j=1

subject to {KKT(ξlocj)}Ns

j=1

where ∇ξxu(·) differentiates with respect to a flattened ξxu and ⊙ denotes element-
wise product. (7.3a) enforces primal feasibility, (7.3b)-(7.3c) enforces complementary
slackness, and stationarity (7.3d) enforces the demonstration cannot be locally im-
proved. As in Chapter IV, we can solve Prob. VII.2 to find constraints that make
the demonstrations locally-optimal by finding a θ and Lagrange multipliers which
are together consistent with the KKT conditions of the demonstrations. To han-
dle approximate local-optimality in Prob. VII.2, we relax constraints (7.3b)-(7.3d)
to penalties. This framework can also learn unknown cost function parameters (cf.
App. B.2). Let F denote the feasible set of Prob. VII.2. Denote the projection of F
onto Θ (the set of all consistent constraints θ) as Fθ, and the projection of Fθ onto C
(the set of possibly-unsafe constraint states) as projC(Fθ):

Fθ
.
= {θ | ∃L : (θ,L) ∈ F} (7.4)

projC(Fθ)
.
= {κ ∈ C | ∃θ ∈ Fθ, g(κ, θ) > 0} (7.5)

While Prob. VII.2 returns one possible θ, there can be an infinite set of possible θ:
Fθ. Thus, Fθ represents the constraint uncertainty. We use Fθ to build a constraint
belief (Sec. 7.3) and use projC(Fθ) for planning (Sec. 7.4). Finally, let the set of
learned guaranteed-safe/unsafe constraint states be Gs and G¬s, where κ is learned
guaranteed (un)safe if it is marked (un)safe for all θ ∈ Fθ (cf. Fig. 7.2):

145

Gs .
=
⋂

θ∈Fθ

{κ | g(κ, θ) ≤ 0} (7.6)

G¬s .
=
⋂

θ∈Fθ

{κ | g(κ, θ) > 0} (7.7)

Previous work (Chapter IV) plans guaranteed-safe trajectories by enforcing that
they always remain in Gs, but Gs can be tiny or disconnected (Fig. 7.2), making
planning infeasible. In this work, we allow plans to pass through possibly-unsafe
space projC(Fθ), but seek to minimize constraint violations.

Problem statement: We are given Ns demonstrations {ξlocj }Ns

j=1, known shared
and task-dependent safe sets S̄ / SΠ, and a prior p(θ) over the unknown constraint.
Our goals are: 1) recover the set of all constraint parameters Fθ ⊆ Θ consistent with
the demonstrations to obtain a constraint belief bdem(θ)

.
= p(θ | {ξlocj }Ns

j=1) ∈ P(Θ),
and 2) compute a policy π(·, ·, ·) : P(Θ)× X × (O)∗ → U , which takes a prior, start
state x0, and a sequence of constraint observations, and returns a control input u, and
completes a task (in this chapter, we consider a task as reaching a goal xg from x0)
while minimizing one of two objectives. In the first variant, denoted Prob. MCV, we
want to reach the goal with the minimum number of expected constraint violations.
In the second variant, denoted Prob. MEC, we want to minimize the expected cost
of some general objective function.

Demonstrations
(solving Prob. VII.1)

Extract all possible
constraints .

(Prob. VII.3 / Alg. VII.1)
Fθ

Plan with belief (Prob. VII.7 /
Prob. VII.8, sampled approximations)

Gather constraint data in execution

Belief update .
.(App. B.4.4)

b(θ)

Closed-loop policyInitialize constraint belief from demonstrations

Figure 7.1: Overall method flow for adaptive planning from demonstrations. We refer
to both the ideal (red), but intractable, subproblems, as well as the tractable (blue)
variants of those subproblems.

Method overview: To prime the reader, we outline two variants of our method
in Fig. 7.1: 1) an ideal variant that requires the solution of intractable optimiza-
tions, and 2) tractable variants which approximate the idealized problems or exploit
simplifying problem structure. For closed-loop planning, both variants compute the
constraint belief (Sec. 7.3), then iteratively plan with the belief, update the belief
with constraint data measured in execution, and replan with the updated belief (Sec.
7.4).

146

7.3 Obtaining a belief over constraints

-1 0 1 2 3 4 5

0

2

4

Figure 7.2: Fθ for a one-box parameterization of A(θ), induced by a demo. and two
safe states, projected onto X . With the data, the upper x / y bounds x̄(θ) / ȳ(θ)
remain uncertain. Also: some possible A(θ) (dotted).

Extracting Fθ is crucial for obtaining an accurate belief over constraints. In this
section, we show how to use robust optimization to obtain Fθ for some constraint pa-
rameterizations. We can robustify Prob. VII.2, where θ is considered as an uncertain
variable in uncertainty set F̂θ ⊆ Θ:

Problem VII.3 (Inverse constraint learning, robustified in θ).

sup
F̂θ

Vol(F̂θ)

s.t. ∀θ ∈ F̂θ, ∃{λj
k,λ

j
¬k,ν

j
k | KKT(ξlocj)}Ns

j=1

and search for the largest set F̂θ ⊆ Θ where each θ ∈ F̂θ satisfies KKT; the
optimizer of Prob. VII.3 is Fθ. However, Prob. VII.3 is intractable due to 1) the
optimization over arbitrarily-shaped sets F̂θ, 2) measuring the volume of such sets,
and 3) the existential quantifiers ∃, implying we may need to find different Lagrange
multipliers for each θ ∈ F̂θ. We address these challenges in the following.

7.3.1 Obtaining the set of demonstration-consistent constraints Fθ

We assume the unknown constraint A(θ) can be represented as a union of boxes
in constraint space {κ | ⋃i[I,−I]⊤κ ≤ θi}. This assumption is reasonable as any
shape can be represented by unioning enough boxes Tao (2016), though this can
be inefficient (thus, we relax the assumption in App. B.3.1). In App. B.2.3.1, we
prove that if A(θ) can be described as a union of boxes, so can Fθ. By exploiting
this structure, we develop a tractable variant of Prob. VII.3 using robust linear
programming Ben-Tal et al. (2009).

147

We address the challenge of set optimization by optimizing over only boxes. Us-
ing the identity sup‖u‖∞≤1 a

⊤u = ‖a‖1, a linear constraint a⊤(x + s ⊙ u) ≤ b in-
volving uncertain variable u : ‖u‖∞ ≤ 1, can be equivalently written without u as
a⊤x+‖a⊙ s‖1 ≤ b, where s ∈ Rd

≥0 scales the uncertainty. We can use this idea to en-
force that the KKT conditions robustly hold everywhere in some box θ+s⊙u, where
‖u‖∞ ≤ 1. Concretely, we can replace (7.3a) with g¬k(ξ

loc
j , θ + s⊙ u) ≤ 0, (7.3c)

with λ
j
¬k ⊙ g¬k(ξ

loc
j , θ + s⊙ u) = 0, and (7.3d) with ∇ξxuc(ξ

loc
j) + λ

j
k
⊤∇ξxugk(ξ

loc
j) +

λ
j
¬k
⊤∇ξxug¬k(ξ

loc
j , θ + s⊙ u) + ν

j
k
⊤∇ξxuhk(ξ

loc
j) = 0, and eliminate u with the iden-

tity. We denote (7.3b) and the robustified (7.3a), (7.3c), and (7.3d) together as
KKTbox

rob (ξ
dem
j), which are representable in a mixed integer linear program (MILP)

(we need binary variables to enforce the robustified (7.3c)).

5 1 2 3 4 5

1

2

3

4

5

Figure 7.3: Extracting Fθ via Alg. VII.1: requires 3 iterations. Overlaid: Bεmin

i (black
dotted) and BR

i (orange dotted), i = 1, ..., 3, optimized by solving Probs. VII.8-εmin

and VII.8-R (plans in Fig. 7.4).

The box representation of F̂θ simplifies volume optimization. Since s scales the
uncertainty (and thus the volume of F̂θ), we can satisfy a⊤(x + s ⊙ u) ≤ b with
“maximum robustness” by jointly finding x and s to maximize the volume of F̂θ,

∏
i si,

where si is the ith entry of s. While
∏

i si is non-convex in s, its geometric mean,
(
∏

i si)
1/d, is conic-representable Alizadeh and Goldfarb (2003). It is also a monotonic

transform of the volume, and thus an exact surrogate for volume maximization.

Finally, we can ignore the existential quantifiers in this case: (7.3d) does not
involve θ (as ξxu does not multiply θ), (7.3c) implies that λj¬k,i = 0 for any coordinates

i where g¬k,i(ξ
dem
j , θ) varies (hence one value, λ = 0, suffices), and (7.3a) does not

involve L. Thus, a single set of multipliers suffices, and we find the largest box-shaped
F̂θ via Prob. VII.4, a mixed integer second order cone program (MISOCP).

Problem VII.4 (Box robustification).

maximize
s,θ,L

(∏
i si
)1/d

subject to {KKTbox
rob (ξ

loc
j)}Ns

j=1

Solving Prob. VII.4 returns the largest box contained within Fθ: F̂θ = {θ′ |∧d
i=1 |θ′i− θi| ≤ si} ⊆ Fθ. As Fθ is a union of boxes, we can extract Fθ in its entirety

148

by solving Prob. VII.4, removing the extracted F̂θ from its feasible set (done with
binary variables), and re-solving Prob. VII.4 with the modified feasible set until it
becomes infeasible (Alg. VII.1, Fig. 7.3). Concretely, Fθ =

⋃Ninfeas

i=1 F̂ i
θ, where F̂ i

θ is
the box returned at the ith iteration and Ninfeas is the iteration when infeasibility is
reached. We can also prove some theoretical guarantees on Alg. VII.1 (see App. B.5
for proofs).

Theorem VII.5. If Alg. VII.1 terminates for any parameterization, its output is
guaranteed to cover Fθ.

Theorem VII.6. Alg. VII.1 is guaranteed to terminate in finite time for union-of-
boxes parameterizations.

Algorithm VII.1: Iterative Fθ extraction

1 i = 0; while Prob. VII.4 feasible do

2 i← i+ 1; F̂ i
θ ← Prob. VII.4({F̂ j

θ}i−1
j=1);

3 remove F̂ i
θ from Prob. VII.4’s feasible set;

4 return
⋃

i F̂ i
θ

In closing, we refer to App. B.3.1, where we modify Alg. VII.1 to more efficiently
extract Fθ for other constraint parameterizations by covering Fθ with zonotopes in-
stead of boxes.

7.3.2 Obtaining the constraint belief b(θ)

To perform a Bayesian update of p(θ), conditioning on the extracted Fθ, we assume
that a demonstration is equally likely to have been generated in response to any θ for
which it is locally-optimal:

p({ξdemj }Ndem

j=1 | θ) ∝
{
1 if {KKT(ξdemj , θ)}Ndem

j=1 satisfied

0 else
(7.8)

Then, a Bayesian update incorporating the demonstrations amounts to removing
all probability mass from KKT-inconsistent θ and renormalizing the probabilities for
the KKT-consistent θ:

bdem(θ)
.
= p(θ | {ξdemj }Ndem

j=1) =
p({ξdemj }Ndem

j=1 | θ)p(θ)∫
Θ
p({ξdemj }Ndem

j=1 | θ)p(θ)dθ
=

{
p(θ)∫

Fθ
p(θ)dθ

if θ ∈ Fθ

0 else

(7.9)
Finally, we note that this approach is also compatible with uninformative priors

(i.e., if no demonstrations are provided) by using the initial prior as the belief: b(θ) =
p(θ).

149

7.4 Policies for adaptive constraint satisfaction

We describe how to use the belief over infinite constraints bdem(θ) to plan open-
loop trajectories with exact safety probability guarantees (Sec. 7.4.1), how to plan
with more complex constraints with samples from bdem(θ) (Sec. 7.4.2), how bdem(θ)
can be updated to use constraint data sensed in execution (Sec. 7.4.3), and how the
open-loop plans can be used in a closed-loop policy (Sec. 7.4.4).

7.4.1 Planning open-loop trajectories with an infinite set of possible con-
straints

Problem VII.7. Chance-constrained plan

min
ξxu

cΠ(ξxu) (7.10a)

s.t. φ̄(ξxu) ∈ S̄ ⊆ C̄ (7.10b)

φΠ(ξxu) ∈ SΠ ⊆ CΠ (7.10c)

Pr(ξxu safe) ≥ 1− ε (7.10d)

We wish to solve Prob. VII.7 for convex (7.10a), which seeks to complete a task
while ensuring the plan is safe with probability at least 1− ε under the belief bdem(θ),
that is, Pr(ξxu safe) =

∫
Θs
bdem(θ)dθ, where Θs = {θ | φ(ξxu) ∈ S(θ)} ⊆ Fθ is the

set of constraints that ξxu satisfies. Here, the safety threshold ε ∈ [0, 1] may be
predetermined, or if we wish to plan the safest possible trajectory, we can find the
smallest ε for which Prob. VII.7 is feasible; denote this variant as Prob. VII.7-
εmin. Intuitively, Prob. VII.7 seeks to solve a chance-constrained variant of Prob.
VII.1 for a novel task Π, where the uncertain constraints must be satisfied with a
sufficiently high probability. Prob. VII.7 is challenging due to (7.10d), as evaluating
this probability requires integrating high-dimensional parameters θ over a possibly
arbitrarily-shaped Θs; hence, (7.10d) is intractable to enforce exactly for arbitrary
distributions and Θs. We show that by sacrificing global optimality, it is tractable to
enforce (7.10d) exactly for simple priors p(θ) by assuming a simple shape for Θs.

Problem VII.8. Riemann-sum chance-constrained plan

min
ξxu,Bi,ti

cΠ(ξxu) (7.11a)

s.t. φ̄(ξxu) ∈ S̄ ⊆ C̄, φΠ(ξxu) ∈ SΠ ⊆ CΠ (7.11b)

ξxu ∈ S(θ), ∀θ ∈ B1, . . . ,BNbox
(7.11c)

Bi ∩ Bj = ∅, i 6= j, Bi ⊆ Fθ, ∀i (7.11d)

0 ≤ ti ≤ (
∏

i b
scale
i)1/d, i = 1, ..., Nbox (7.11e)

∑
i t

d
i ≥ (1− ε)Vol(Fθ) (7.11f)

Our solution, Prob. VII.8, optimizes over subsets Θs that can be represented as
a union of boxes Θs =

⋃Nboxes

i=1 Bi, Bi ⊆ Fθ, for all i (cf. Sec. 7.3.1). Each box is
parameterized with a center bceni ∈ Rd and scalings bscalei ∈ Rd

+: Bi = {bceni + bscalei ⊙u |

150

u ∈ [−1, 1]d}. (7.11c)-(7.11f) implement this box-limited chance constraint (see de-
tailed explanations for each constraint in App. B.1). We restrict focus to priors p(θ)
that can be integrated over boxes in closed form, and for which a monotonic trans-
formation of the resulting integral is concave in bceni and bscalei . While the concavity
assumption is satisfied by the broad class of log-concave distributions Bagnoli and
Bergstrom (2005), the closed-form integral is more restrictive. In this chapter, we
focus only on a uniform p(θ) (see App. B.4.3 for extensions to other distributions);
note that this does not imply a uniform probability of safety over the constraint space
C. Intuitively, Prob. VII.8 performs a box-limited Riemann sum integration over the
constraint belief. Each box Bi represents a subset of Fθ over which the probability
is integrated (cf. Fig. 7.3). For piecewise affine (PWA) dynamics, Prob. VII.8 can
be written as an MISOCP, except for (7.11f) which renders Prob. VII.8 an MIBLP:
solvable with Gurobi Optimization (2020), but possibly slow. We can replace (7.11f)
with a linear surrogate

∑
i ti ≥ (1 − ε)Vol(Fθ), but this can still be slow if Nbox is

large. We discuss efficient reformulations of Prob. VII.8 in App. B.4. Overall, we
have this result (proof in App. B.5):

Theorem VII.9. A solution to Prob. VII.8 is a guaranteed feasible, possibly subop-
timal solution to Prob. VII.7.

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

S̄ = [−1, 4]× [−1, 4]

7

7 ε
xg

x0

xB

xA

Figure 7.4: Generated plans for Bi in Fig. 7.3. projX (Bi) are overlaid (with matched
color).

Instead of the chance-constrained formulation, we can directly trade off the cost
and the safety probability in the objective; i.e., in Probs. VII.7; VII.8, change (7.10a);
(7.11a) to the ratio cΠ(ξxu)/Pr(ξxu safe); cΠ(ξxu)/

∑
i t

d
i and remove (7.10d); (7.11f).

Denote these variants Prob. VII.7-R; Prob. VII.8-R. Note that after linearizing
∑

i t
d
i ,

the objective is quasi-convex, so we can rewrite Prob. VII.8-R as a feasibility problem
with a new optimization constraint cΠ(ξxu)− αPr(ξxu safe) ≤ 0, and do a line search
on α, solving Prob. VII.8-R as a sequence of MISOCPs.

151

7.4.2 Planning open-loop trajectories with a finite set of sampled possi-
ble constraints

For complex constraints arising from nonlinear dynamics or constraint parame-
terizations, Prob. VII.8 is hard to solve as it involves both integer variables and
nonlinearities. While sometimes we can plan for a PWA model that roughly captures
the nonlinear dynamics (i.e., modeling a quadrotor as a double integrator), we gen-
erally use sampled approximations of Prob. VII.8 when it cannot be written as a
mixed integer convex program (MICP), in particular, Minimum Constraint Removal
(MCR) Hauser (2014) and the Blindfolded Traveler’s Problem (BTP) Saund et al.
(2019), briefly described here (cf. App. B.4 for details):

1. MCR takes a finite set of constraints and incrementally constructs a roadmap
to connect a start and goal state while violating the minimum number of con-
straints. MCR can be used to approximate Prob. VII.8-εmin by sampling a
finite set of constraints {θi ∼ b(θ)}Nsam

i=1 as input to MCR.

2. BTP is a roadmap-based planner for additive cost functions cΠ(ξxu) which takes
as input a state space graph (V,E), where executing edge e ∈ E costs c(e)
with probability p(e) of being safe. To use BTP, we sample constraints {θi ∼
b(θ)}Nsam

i=1 , and use them to approximate p(e); we plan on the graph by running
A* with modified edge costs

∑
e cΠ(e)− βp(e safe), for some weight β.

We note that while the sampled approximations can be more flexible than Prob.
VII.8, they are not guaranteed to return a feasible solution to Prob. VII.7, as it
depends on the constraints that are sampled.

7.4.3 Updates to b(θ) in online execution

Our framework can also incorporate uncertain information about the true con-
straint sensed in execution by computing a belief update. Suppose that we are given
Cs

.
= {Ci

s}Ns

i=1 and C¬s
.
= {Ci

¬s}N¬s

i=1 as a set of sets of possibly safe/unsafe states, respec-
tively, where each C

i
s / C

i
¬s denotes a finite set where at least one state is safe/unsafe.

Let the set of all constraints consistent with Cs, C¬s be F s,¬s
θ

.
= {θ ∈ Fθ |

∧Ns

i=1(∃κ ∈
C
i
s, g(κ, θ) ≤ 0) ∧∧N¬s

i=1 (∃κ ∈ C
i
¬s, g(κ, θ) > 0)}. We compute F s,¬s

θ iteratively with a
variant of Alg. VII.1 (see App. B.4.4 for details). Finally, we perform the update:

bex(θ)
.
= p(θ | {ξdemj }Ndem

j=1 , Cs, C¬s) =

p(θ)∫
F
s,¬s
θ

p(θ)dθ
if θ ∈ F s,¬s

θ

0 else
(7.12)

This setup can handle data from many different constraint sensing modalities, like
direct, exact sensing (from a bump sensor), long-range measurements (from bounded-
range LiDAR), or uncertain contact measurements Saund et al. (2019) where collision
cannot be exactly localized on the robot volume (see App. B.4.4 for more details).

152

Contingencies

x0 xgInitial plan

Figure 7.5: Policy tree: initial plan and contingencies, rooted at possibly unsafe
states. Green / red / yellow states in Gs / G¬s / projC(Fθ).

7.4.4 Closed-loop policies for adaptive constraint satisfaction

Finally, we compute closed-loop policies for Probs. MCV and MEC. Our strategy
is simple: for Probs. MCV and Prob. MEC, solve Prob. VII.8-εmin and Prob. VII.8-
R, respectively, in a receding horizon fashion, i.e at each time-step, we update b(θ)
with the new constraint information, re-solve the optimization, and switch to the
new solution if the previous plan is suboptimal/unsafe. This policy takes p(θ) and a
sequence of observations O = (Cs,C¬s) to estimate a belief, and uses the belief and
current state to output u. These strategies are motivated by results in sequential
decision making that provide approximation guarantees for greedy policies proposing
solutions that minimize the ratio of cost to safety probability at each iteration Dor
et al. (1998); Probs. VII.8-εmin, VII.8-R both do this.

Note that as our policy executes a plan until sensing implies it is suboptimal or
unsafe, upon which it switches, it can be represented as a tree, where contingency
plans are rooted only at states on the current plan where switches can occur. See Fig.
7.5 for the simple case where the policy only switches upon learning the current plan is
unsafe; here, the branching is sparse, occurring only at possibly unsafe points (yellow)
on the initial and replanned trajectories. In these cases, we can exploit the sparsity
to avoid solving Prob. VII.8 at runtime by precomputing the contingency plans,
facilitating real-time policy execution. For tractability, the precomputation assumes
no unmodeled obstacles appear at runtime (this eliminates the sparse branching,
as it makes each state on the plan possibly unsafe), discretizes the set of possible
continuous sensing measurements (if not, we could need to compute contingencies for
an infinite set of possible measurements), and terminates branching at a finite tree
depth (as planning may be infeasible for a worst-case constraint). If the assumptions
do not hold (as in some of our results), we can always compute new plans online,
though it can be slow.

As an example, consider computing contingencies for the green plan in Fig. 7.4.
Only xA and xB lie in the possibly unsafe (yellow) region, so if no unmodeled obstacles
appear at runtime, we can only be forced to replan in two cases: 1) xA is unsafe, 2)
xA is safe and xB is unsafe. In case 1, we update the belief, keeping only constraints
marking xA as unsafe, and plan a contingency satisfying as many constraints as

153

possible from the new belief. This repeats recursively, up to a finite recursion depth,
for any possibly unsafe states on the contingency. In case 2, updating the belief to
mark xA as safe and xB as unsafe renders the belief empty, since this is impossible
given the initial belief and box parameterization. We can thus avoid computing
further contingencies on this policy tree branch.

Constraints/prior
Problem

Prob. MCV Prob. MEC

MICP-representable Prob. VII.8-εmin Prob. VII.8-R
Not MICP-rep. MCR BTP

Table 7.1: Which open-loop planner to use?

To recap, we would ideally solve Prob. VII.7 to get open-loop plans for our policy,
but it is intractable. If all constraints (dynamics, uncertain constraints, etc.) and
the integrals of p(θ) are MICP-representable, we can approximate Prob. VII.7 with
Prob. VII.8, which enjoys theoretical guarantees by using the infinite belief. If not,
we use MCR/BTP, which use finite samples from the belief. This is summarized in
Table 7.1.

7.5 Experiments

We show our method scales to safely and efficiently plan for high-dimensional
(12D) systems with combined state/control constraint uncertainty, constraint sensing
uncertainty, and high-dimensional (30D) constraints. See App. B.6 for more details
and experiments (7-DOF arm planning with suboptimal demonstrations, and nonlin-
ear constraint planning using zonotope-based Fθ extraction), App. B.6.6 for compu-
tation time discussion, and https://youtu.be/aWZ_U-gWQJI for visualizations.

Mixed quadrotor uncertainty: We plan for a quadrotor (dynamics in App.
B.6) carrying a payload of uncertain weight around uncertain obstacles. We are
given one demonstration (Fig. 7.6.B, pink) to learn a 7D constraint θ ∈ R7 (6
for obstacle, 1 for control). After extracting Fθ with Alg. VII.1, (Fig. 7.6.B), we
remain uncertain about the obstacle’s y-extents. We model the uncertain weight as
an unknown control constraint ‖u‖22 ≤ Ū(θ); from the demonstration, we learn that
‖u‖22 ≤ 97.85 is guaranteed safe (Fig. 7.6.A), and KKT also tells us the constraint
is inactive, so ‖u‖22 ∈ (97.85, 100] = projU(Fθ) is possibly unsafe. The quadrotor has
bump and torque sensors to directly detect state and control constraint violations,
respectively. We now solve Prob. MCV starting from a lower initial state (Fig.
7.6.C), which we do by solving Prob. VII.8-εmin for an initial plan and contingencies,
directly optimizing over the infinite constraint belief. We use a double-integrator
approximation of the quadrotor dynamics and restrict each open-loop trajectory to
30 timesteps; thus, it is not possible to satisfy all constraints in Fθ while reaching
the goal in the time limit. Solving Prob. VII.8-εmin returns Plan 1 (Fig. 7.6.C),
which violates some possible control constraints in order to lift the quadrotor over all
possible obstacles. Our policy also generates contingencies (Fig. 7.6.D-F) in case Plan
1 violates the true control constraint, and we must plan to avoid the possible obstacles.
To emphasize the benefit of optimizing over the infinite set of possible constraints, we

154

https://youtu.be/aWZ_U-gWQJI

compare to two baselines: a variant of the scenario approachGrammatico et al. (2016),
where we iteratively sample and enforce {θi ∼ b(θ)}Nsam

i=1 until the planning problem
becomes infeasible, and an optimistic planner, which only avoids G¬s and replans upon
violating a constraint (see App. B.6.1 for baseline details). We evaluate the number
of violations on constraints uniformly drawn from Fθ. Our policy suffers 0.54 ± 0.94
constraint violations (average ± standard deviation), the scenario approach 1.30 ±
1.36 violations, and the optimistic strategy 9.10 ± 4.65 violations. We outperform
the scenario approach, as we optimize over the set of constraints to satisfy, and the
optimistic strategy, as it ignores constraint uncertainty. Running Alg. VII.1 and
Prob. VII.8 takes 3.3 and 1.1 sec., respectively. See App. B.6.3 for a constraint
violation histogram empirically validating our probabilistic safety guarantees.

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

A

Demo
(control)

for Plan 1Θs
for Contingency 2Θs for Contingency 5Θs

kuk2
2

Figure 7.6: Mixed quadrotor uncertainty example. A-B. Initial control and state constraint
uncertainty. C. Initial plan for a new task. D-F. Contingencies are pre-computed, and the
system switches if the initial plan is unsafe.

7-DOF arm with contact sensing uncertainty: We plan for a 7-DOF arm
(dynamics in App. B.6) near a storage rack. We are given two demonstrations
(Fig. 7.7.A), and after running Alg. VII.1 to obtain bdem(θ), partly reveal the shelf
constraint (Fig. 7.7.B), which has parameters θ ∈ R6. We assume an uncertain
contact sensing model Saund and Berenson (2018), where contact is assumed to be
at any point on the arm downstream on the kinematic chain where a torque limit
is exceeded (cf. App. B.4). We solve Prob. MEC for cΠ(ξxu) =

∑T−1
t=1 ‖xt+1 −

xt‖2, for the task of moving the arm from below to above the shelf (Fig. 7.7.B),
using 100 (uniform) samples from bdem(θ) in BTP. We compare our policy to 1)
BTP without demonstrations and the union-of-boxes parameterization, and 2) an
optimistic approach that executes the optimal path on the BTP graph after removing
unsafe edges, and replanning if a constraint is violated. From the demonstrations,
we can determine that a subset of the shelf is guaranteed unsafe (Fig. 7.7, dark
red); beyond that, we are uncertain (Fig. 7.7.B). Thus, we plan to avoid that region,
swinging the arm around and over the uncertain area. However, in doing so, the
arm bumps into an unmodeled obstacle: a box on the lower shelf (Fig. 7.7.C).
The contact sensor informs our method that some point on the end effector is in
collision; we add 300 sampled points on the end effector to C¬s and samples from the
traversed free space to Cs. Our method then automatically determines that it needs
to update the constraint parameterization, as geometrically there is no single box
that can explain the demonstrations, Cs, and C¬s. After updating θ to include two
boxes (now θ ∈ R12), we extract Fθ for this updated parameterization, and resample
100 (uniform) samples from the updated bex(θ) as input to BTP (see Fig. 7.7.D). As
our belief now indicates an uncertain region near the lower shelf obstacle, our policy
plans to move further out from the shelf to avoid the uncertain region, and reaches

155

the goal. Running Alg. VII.1 and BTP takes 20 and between 5-20 min. (can be
sped up by precomputing arm swept volumes, see Saund et al. (2019), App. B.6.6),
respectively. Overall, our policy reaches the goal with a cost of 8.19 rad, while the
cost without demonstrations/boxes is 18.24 rad, and the optimistic approach is 143.31
rad. Without demonstrations/boxes, we need several more iterations bumping into
the shelf before it is sufficiently localized, and the optimistic approach ignores spatial
correlation in edge validity, exploring far more edges (cf. App. B.6 for details).
This example suggests our method scales to high-dimensional systems, can detect
when the constraint representation is insufficient, and can use complex constraint
measurements.

A B C D

Figure 7.7: Arm with contact sensing uncertainty. A: Demonstrations. B. Initial
constraint uncertainty (red) and plan (blue). C. The initial plan violates an unmod-
eled constraint, triggering a belief update. D. Replan online.

Quadrotor maze: We plan for a quadrotor in clutter with two-meter radius
LiDAR sensing (Fig. 7.8). We know the brown obstacles a priori, and are given
five demonstrations that reveal five obstacles (θ ∈ R30) (Fig. 7.8.A), but provide
little information about their size. We solve Prob. MEC steering from the bottom
to the top of the maze (Fig. 7.8.D) while minimizing c(ξxu) =

∑T−1
t=1 ‖ut‖22 by solving

Prob. VII.8-R, optimizing directly over the continuous b(θ), and computing contin-
gencies. We also modify Prob. VII.8-R to never collide in execution by avoiding
the set of inevitable collision states Fraichard and Asama (2004) under the double-
integrator model; this is modeled with additional constraints (see App. B.4). We
obtain dynamically-feasible quadrotor trajectories by warmstarting the nonlinear op-
timization with the double-integrator trajectory. We visualize our policy in Fig. 7.8.
Running Alg. VII.1 and Prob. VII.8 takes 1 sec. and 1 min., respectively. Plan 1
(pink) intelligently trades off risk and performance. Note there may exist a direct
path to the goal between the brown obstacles; however, the orange demonstration in-
duces an obstacle that likely blocks this path. Also, moving left is riskier than moving
right, as the uncertain obstacle on the left may create a dead end. Plan 1 avoids both
traps, moving to the right and increasing altitude to avoid all possible obstacles in-
duced by the dark blue demonstration. This enables maintenance of higher speed and
thus lower cost, instead of cautiously approaching the uncertain region to determine
if it is safe to cut through. Finally, Plan 1 cuts through the possibly-unsafe region
induced by the green demonstration, as the obstacle is unlikely to extend down to the
brown obstacle. We discretize the possible constraint measurements in this region
on a grid, planning contingencies if the passage is partially (Contingencies 1-3) or
completely blocked (4). We compare to two approaches, Chou et al. (2020b), which
plans trajectories which are guaranteed-safe under the constraint parameterization,

156

and Janson et al. (2018), which plans optimistically over sets of subgoals on the fron-
tier (see App. B.6.1 for more details). Drawing constraints uniformly from Fθ, our
policy solves Prob. MCE with a cost of 1.28 ± 0.27, while Chou et al. (2020b) is
conservative, with a cost of 6.29, and Janson et al. (2018) returns a cost of 5.51 ±
1.65, as it explores the likely dead end between the brown obstacles. This example
suggests our method scales to high-dimensional systems and constraint spaces and
can compute a policy integrating sensor inputs to adaptively switch between plans
and contingencies.

A B C D

Figure 7.8: Quadrotor maze. A. Demos., initial constraint uncertainty. B-D. Three
views of the initial plan (pink) and contingencies for different sensing possibilities,
obtained by gridding the possible sensor measurements.

7.6 Conclusion

We present a method to address uncertainty in constraints learned from demon-
strations. Instead of trying to satisfy all possible constraints, we obtain a belief over
constraints, then design open-loop planners which use the belief to “be as safe as pos-
sible while remaining efficient”. We use these planners in a closed-loop policy that
uses constraint data gathered online to help complete the task. In future work, we
aim to speed up our method with parallel extraction and fast integer programming
Bertsimas and Stellato (2019), and extend our method to adaptively plan with beliefs
over temporal logic formulas (Chapter VI).

157

CHAPTER VIII

Safe Planning and Execution with Learned

Dynamics via Data-Driven Model Error Bounds

In this chapter, we present a method for feedback motion planning of systems with
unknown dynamics which provides probabilistic guarantees on safety, reachability,
and goal stability. To find a domain in which a learned control-affine approximation of
the true dynamics can be trusted, we estimate the Lipschitz constant of the difference
between the true and learned dynamics, and ensure the estimate is valid with a given
probability. Provided the system has at least as many controls as states, we also
derive existence conditions for a one-step feedback law which can keep the real system
within a small bound of a nominal trajectory planned with the learned dynamics.
Our method imposes the feedback law existence as a constraint in a sampling-based
planner, which returns a feedback policy around a nominal plan ensuring that, if the
Lipschitz constant estimate is valid, the true system is safe during plan execution,
reaches the goal, and is ultimately invariant in a small set about the goal. We
demonstrate our approach by planning using learned models of a 6D quadrotor and
a 7DOF Kuka arm. We show that a baseline which plans using the same learned
dynamics without considering the error bound or the existence of the feedback law
can fail to stabilize around the plan and become unsafe. This chapter is based on the
paper Knuth et al. (2021a).

8.1 Introduction

Planning and control with guarantees on safety and reachability for systems with
unknown dynamics has long been sought-after in the robotics and control community.
Model-based optimal control can achieve this if the dynamics are precisely modeled,
but modeling assumptions inevitably break down when applied to real physical sys-
tems due to unmodeled effects from friction, slip, flexing, etc. To account for this gap,
data-driven machine learning methods and robust control seek to sidestep the need to
precisely model the dynamics a priori. While robust control can provide strong guar-
antees when the unmodeled component of the dynamics is small and satisfies strong
structural assumptions Zhou and Doyle (1998), such methods requires an accurate
prior which may not be readily available. In contrast, machine learning methods are

158

flexible but often lack formal guarantees, precluding their use in safety-critical appli-
cations. For instance, small perturbations from training data cause drastically poor
and costly predictions in stock prices and power consumptionMode and Hoque (2020).
Since even small perturbations from the training distribution can yield untrustworthy
results, applying AI systems to predict dynamics can lead to unsafe, unpredictable
behavior.

To address this gap, we propose a method for planning with learned dynamics
which yields probabilistic guarantees on safety, reachability, and goal invariance in
execution on the true system. Our core insight is that we can determine where
a learned model can be trusted for planning using the Lipschitz constant of the
error (the difference between the true and learned dynamics), which also informs
how well the training data covers the task-relevant domain. Under the assumption
of deterministic true dynamics, we can plan trajectories in this trusted domain with
strong safety guarantees for an important class of learned dynamical systems.

Specifically, with a Lipschitz constant, we can bound the difference in dynamics
between a novel point (that our model was not trained on) and a training point.
Since the bound grows with the distance to training points, we can naturally define a
domain where the model can be trusted as the set of points within a certain distance
to training points. Conversely, to obtain a small bound over a desired domain, it
is necessary to have good training data coverage in the task-relevant domain. At
a high level, to obtain a small bound on the error in a domain, we want to have
good coverage over the domain and regularity of the learned model via the Lipschitz
constant of the error.

Our safety and reachability guarantees ultimately rely on an overestimate of the
smallest Lipschitz constant. To find an estimate that exceeds the smallest Lipschitz
constant with a given probability ρ, we use a statistical approach based on Extreme
Value Theory De Haan and Ferreira (2007) and validate its result with a Kolmogorov-
Smirnov goodness-of-fit test DeGroot and Schervish (2013). If the test validates
our estimate, we can choose a confidence interval DeGroot and Schervish (2013)
with an upper bound that overestimates the true Lipschitz constant with probability
ρ. Our method requires the estimation of three Lipschitz constants, translating to
system safety and reachability guarantees which hold with a probability of at least ρ3.
This guarantee is fairly strong as it holds for all time, unlike many methods offering
probabilistic guarantees on a per trajectory or episode basis Akametalu et al. (2014)
Berkenkamp et al. (2017) van den Berg et al. (2011).

If the learned dynamics have at least as many controls as states and are control-
affine (note we do not assume the true dynamics are also control-affine), then we also
determine conditions for the existence of a feedback controller that tightly tracks the
planned trajectory in execution under the true dynamics. The tight tracking error
bound yields favorable properties for our planner and controller: if we have a valid
Lipschitz constant estimate for a sufficiently-accurate learned model, 1) we guarantee
safety if no obstacle is within the tracking error of the trajectory, 2) we guarantee we
can reach the goal within a small tolerance, and 3) if we can assert a feedback law
that keeps the system at the goal exists, then the closed-loop system is guaranteed
to remain in a small region around the goal. In this chapter, we assume the learned

159

dynamics are control-affine, deterministic, and have at least as many controls as states
(such as a robotic arm under velocity control), the true dynamics are deterministic,
and that independent samples of the true dynamics can be taken in the domain of
interest. Our contributions are:

1. A method to bound error between two general dynamics functions in a domain
by using a Lipschitz constant

2. A condition for uncertain control-affine systems that guarantees the existence
of a feasible feedback law

3. A planner that probabilistically guarantees safety and closed-loop stability-like
properties about the goal for learned dynamics with as many controls as states

4. Evaluation on a 7DOF Kuka arm and a 6D quadrotor

8.2 Preliminaries

Let f : X × U → X be the true unknown discrete-time dynamics where X is the
state space and U is the control space, which we assume are deterministic. We define
g : X × U → X to be an approximation of the true dynamics that is control-affine
and therefore can be written as follows

g(x, u) = g0(x) + g1(x)u. (8.1)

In this chapter, we represent the approximate dynamics with a neural network,
though our method is agnostic to the structure of the model and how it is de-
rived. Let S = {(xi, ui, f(xi, ui))}Ni=1 be the training data for g, and let Ψ =
{(xj, uj, f(xj, uj))}Mj=1 be another set of samples collected near S that will be used to
estimate the Lipschitz constant. We use ·̄ to refer to data points from S or Ψ. We
place no assumption on how S is obtained; any appropriate method (uniform sam-
pling, perturbations from expert trajectories, etc.) may be employed, although we
require independent and identically distributed (i.i.d.) samples for Ψ. A single state-
control pair is written as (x, u). With some abuse of notation, we write (x̄, ū) ∈ S if
(x̄, ū) = (xi, ui) for some 1 ≤ i ≤ N (similarly for Ψ).

A Lipschitz constant bounds how much outputs change with respect to a change
in the inputs. For some function h, a Lipschitz constant over a domain Z is any
number L such that for all z1, z2 ∈ Z

‖h(z1)− h(z2)‖ ≤ L‖z1 − z2‖ (8.2)

Norms ‖ · ‖ are always the 2-norm or induced 2-norm. We define Lf−g, Lg0 , and
Lg1 as the smallest Lipschitz constants of the error f − g, g0, and g1. The input to
f−g is a state-control pair (x, u) and its output is a state. For g0, both the input and
output are a state. For g1, its input is a state and its output is a dim(X) × dim(U)
matrix where dim(·) is the dimension of the space. A ball Br(x) of radius r about
a point x is defined as the set {y | ‖y − x‖ < r}, also referred to as a r-ball about

160

x. We suppose the state space X is partitioned into safe Xsafe and unsafe Xunsafe sets
(e.g., the states in collision with an obstacle).

The method consists of two major components. First, we determine a trusted
domain D ⊆ X × U and estimate the Lipschitz constants. Second, we use D to find
a path to the goal satisfying our safety and reachability requirements.

Problem VIII.1. Given a learned model g, unknown dynamics f , and datasets Ψ
and S, determine the trusted domain D where ‖f(x, u)−g(x, u)‖ ≤ ǫ, for some ǫ > 0.
Additionally determine the Lipschitz constants Lf−g, Lg0, and Lg1 in D.

Problem VIII.2. Given control-affine g, unknown f , start xI , goal xG, goal tolerance
λ, D, Lf−g, Lg0, Lg1, and Xunsafe, plan a trajectory (x0, . . . , xK), (u0, . . . , uK−1) such
that x0 = xI , xk+1 = g(xk, uk), K <∞, and ‖xK − xG‖ ≤ λ. Additionally, under the
true dynamics f , guarantee that closed loop execution does not enter Xunsafe, converges
to Bǫ+λ(xG), and remains in Bǫ+λ(xG) after reaching xK.

8.3 Method

Secs. 8.3.1 - 8.3.2 and 8.3.3 - 8.3.4 cover our approaches to Probs. VIII.1 and
VIII.2, respectively. In Sec. 8.3.1, we show how Lf−g can establish a trusted domain
and how Lf−g can be estimated in Sec. 8.3.2. In Sec. 8.3.3, we design a planner that
ensures safety, that the system remains in the trusted domain, and that a feedback
law maintaining minimal tracking error exists. We present the full algorithm in Sec.
8.3.4.

8.3.1 The trusted domain

For many systems, we are only interested in a task-relevant domain, and it is often
impossible to collect data everywhere in state space, especially for high-dimensional
systems. Hence, it is natural that our learned model is only accurate near training
data. With a Lipschitz constant of the error, we can precisely define how accurate
the learned dynamics are in a domain constructed from the training data. We note
this derivation can also be done for systems without the control-affine assumption on
the learned dynamics, and thus it can still be useful for determining where a broader
class of learned models can be trusted. However, removing the control-affine structure
makes controller synthesis much more difficult, and is the subject of future work.

Consider a single training point (x̄, ū) and a novel point (x, u). We derive a bound
on the error between the true and estimated dynamics at (x, u) using the triangle
inequality and Lipschitz constant of the error:

‖f(x, u)− g(x, u)‖
= ‖f(x, u)− g(x, u)− f(x̄, ū) + g(x̄, ū)

+ f(x̄, ū)− g(x̄, ū)‖
≤ Lf−g‖(x, u)− (x̄, ū)‖+ ‖f(x̄, ū)− g(x̄, ū)‖.

(8.3)

161

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0

0.5

Figure 8.1: An example with f(x) = x′, dim(X) = 1, and dim(U) = 0. True dynamics:
yellow; learned linear dynamics: orange; S: green crosses; Ψ: light blue crosses;
domain D: interval [−1, 2], bordered in black. Here, bT = 0.3633 (purple) and
eT = 0.1161 (blue). The Lipschitz constant of the error is Lf−g = 0.1919, yielding
ǫ = 0.1859. We can use this bound to ensure the difference between the learned and
true dynamics is no more than ǫ in D (shaded orange area). Note Lf−g can be larger
outside of D.

The above relation describes the error at a novel point, but we can also generalize
to any domain D. Define bT to be the dispersion LaValle (2006) of S ∩D in D and
define eT to be the maximum training error of the learned model. Explicitly,

bT
.
= sup

(x,u)∈D

min
(x̄,ū)∈S∩D

‖(x, u)− (x̄, ū)‖ (8.4)

eT
.
= max

(x̄,ū)∈S∩D
‖f(x̄, ū)− g(x̄, ū)‖ (8.5)

Then, we can uniformly bound the error across the entire set D to yield a simple and
exact relation between f and g.

ǫ
.
= Lf−gbT + eT (8.6)

∀(x, u) ∈ D f(x, u) = g(x, u) + δ, ‖δ‖ ≤ ǫ (8.7)

See Fig. 8.1 for an example of these quantities. For the remainder of the method,
we select D to be the union of r-balls about a subset of the training data SD ⊂ S:

D =
⋃

(x̄,ū)∈SD

Br(x̄, ū) (8.8)

In the next section we discuss selection of SD, its role in estimating Lf−g, and how r
is selected.

162

8.3.2 Estimating the Lipschitz constant

For (8.7) to hold over all of D, we require that Lf−g is a Lipschitz constant for the

error. We use results from Extreme Value Theory to obtain an estimate L̂f−g that

overestimates Lf−g, i.e., L̂f−g ≥ Lf−g, with a user-defined probability ρ.
We build on Wood and Zhang (1996)-Weng et al. (2018), which find an estimate

L̂h of the Lipschitz constant Lh for a function h(z) over a domain Z by estimating
the location parameter γ of a three-parameter reverse Weibull distribution, which for
a random variable W has the cumulative distribution function (CDF)

FW (w) =

{
exp(−(γ−w

α
)β), if w < γ

1, if w ≥ γ.

Here, the location parameter γ is the upper limit on the support of the distribution,
and α and β are the scale and shape parameters, respectively. Consider the ran-
dom variable described by the maximum slope taken over NL pairs of i.i.d. samples

{(zi1, zi2)}NL

i=1 from Z, i.e., s = maxi
‖h(zi1)−h(zi2)‖

‖zi1−zi2‖
. From the Fisher-Tippett-Gnedenko

Theorem De Haan and Ferreira (2007), s follows one of the Frechet, reverse Weibull,
or Gumbel distributions in the limit as NL approaches infinity. If s follows the reverse
Weibull distribution, which we validate in our results using the Kolmogorov-Smirnov
(KS) goodness-of-fit test DeGroot and Schervish (2013) with a significance value of
0.05 (the same threshold used in Weng et al. (2018)), then Lh is finite and equals γ.
We estimate Lh using the location parameter γ̂ of a reverse Weibull distribution fit
via maximum likelihood to NS samples of s. Finally, we compute a confidence interval
c = Φ−1(ρ)ξ on γ̂. Here ξ is the standard error of the fit γ̂, which correlates with
the quality of the fit, and Φ(·) is the standard normal CDF DeGroot and Schervish
(2013). We select the upper end of the confidence interval as our estimate L̂h = γ̂+c,
which overestimates Lh with probability ρ. Note that increasing ρ increases c, im-
proving the safety probability at the cost of loosening L̂h, which can make planning
more conservative. We also note that this probability is valid in the limit as NL

approaches infinity, due to the Fisher-Tippett-Gnedenko theorem making claims only
on the asymptotic distribution. We summarize the estimation method in Alg. VIII.1.

Algorithm VIII.1: Lipschitz estimation for h(z) over Z
Input: NS, NL, ρ

1 for j = 1, . . . , NS do

2 sample {(zi,j1 , zi,j2)}NL

i=1 uniformly in Z
3 compute sj = maxi ‖h(zi,j1)− h(zi,j2)‖/‖zi,j1 − zi,j2 ‖
4 fit reverse Weibull to {sj} to obtain γ̂ and standard error ξ
5 validate fit using KS test with significance level 0.05

6 if validated return L̂h = γ̂ + Φ−1(ρ)ξ else return failure

We wish to choose D to be large enough for planning while also keeping Lf−g

small. To achieve this, we use a filtering procedure to reduce the impact of outliers
in S. Let µ and σ be the mean and standard deviation of the error over S. Then, let

163

SD = {(x̄, ū) ∈ S | ‖f(x̄, ū)−g(x̄, ū)‖ ≤ µ+aσ} where a is a user-defined parameter.
Then, we run Alg. VIII.2 in order to grow D. This method works by proposing values
of r, estimating Lf−g, and increasing r until r > ǫ or Lf−g ≥ 1. Finding D with r > ǫ
and Lf−g < 1 is useful for planning (described further in Sec. 8.3.3, see (8.10)). Note
that, in Euclidean spaces, r ≥ bT . If no filtering is done, r = bT , since no point in
D is further than a distance r from SD and the furthest any point in D can lie from
a point in SD is r; however, filtering shrinks D and thus decreases the dispersion,
making it possible that r ≥ bT . The parameter a should be chosen to balance the
size of D against the magnitude of Lf−g, which we tune heuristically.

This filtering lets us exclude regions where our learned model is less accurate,
yielding smaller eT . Note that filtering does not affect the i.i.d. property of the
samples needed for Alg. VIII.1; it only applies a mask to the domain. We also note
that Alg. VIII.2 returns a minimum value for r, but a larger r can be chosen as long
as Lf−g is estimated with Alg. VIII.1. A larger r makes planning easier by expanding
the trusted domain.

Algorithm VIII.2: Selecting r and D

Input: µ, σ, a, SD, Ψ, α > 0
1 r ← µ+ aσ
2 while True do
3 construct D using equation (8.8)
4 estimate Lf−g using Alg. VIII.1 and Ψ
5 calculate ǫ using equation (8.6)
6 if Lf−g ≥ 1 then return failure
7 if r > ǫ then return r and D
8 else r ← ǫ+ α // α is a small constant

While we never explicitly address the assumption that the true dynamics are
deterministic, the estimated Lipschitz constant may be unbounded in the stochastic
case, such as when two samples have the same inputs but different outputs due to
noise, causing a division by 0 in line 3 of Alg. VIII.1.

Lg0 and Lg1 may also be estimated with Alg. VIII.1, which we employ in the
results. Alternatively, Fazlyab et al. (2019) can give tight upper bounds on the Lips-
chitz constant of neural networks, though it could not scale to the networks used in
our results. Other approaches Jordan and Dimakis (2020) improve scalability at the
cost of looser Lipschitz upper bounds, and will be examined in the future.

8.3.3 Planning

We want to plan a trajectory from start xI to goal xG using the learned dynamics
while remaining in Xsafe in execution. We constrain the system to stay inside D, as
model accuracy may degrade outside of the trusted domain. We develop a planner
similar to a kinodynamic RRT LaValle and James J. Kuffner (2001), growing a search
tree T by sampling controls that steer towards novel states until we reach the goal.
If a path is found the we can ensure the goal is reachable with safety guarantees.

164

Figure 8.2: Visualizing D (boundary in black), Dǫ (yellow), and D
c (complement of

D). Each point in Dǫ is at least ǫ distance away from Dc. If the system is controlled
to a point in Dǫ from anywhere in D under the learned dynamics, then it remains in
D under the true dynamics.

8.3.3.1 Staying inside D

To remain inside the set D, we introduce another set Dǫ := D ⊖ Bǫ(0), which
is the Minkowski difference between D and a ball of radius ǫ. Every point in Dǫ is
at least a distance of ǫ from any point in the complement of D. Since the learned
dynamics differs from the true dynamics by at most ǫ in D, controlling to a point in
Dǫ under the learned dynamics ensures the system remains within D under the true
dynamics (see Fig. 8.2).

How do we determine if a query point (x, u) is inside of Dǫ? Since we define D to
be a union of balls (8.8), it would suffice to find a subset of training points W ⊂ SD

such that the union of r-balls about the training points completely covers an ǫ-ball
about (x, u). Explicitly, ⋃

(x̄,ū)∈W

Br(x̄, ū) ⊃ Bǫ(x, u) (8.9)

In general, checking (8.9) is difficult, but if Lf−g < 1 and

r >
eT

1− Lf−g

, (8.10)

then only one training point within a distance r− ǫ is needed to ensure a query point
is in Dǫ (see Fig. 8.3). Note by Alg. VIII.2 lines 6-7, either (8.10) is guaranteed or
Lf−g ≥ 1, in which we return failure.

Lemma VIII.3. If Lf−g < 1 and r is selected according to equation (8.10), then a
point (x, u) is in Dǫ if there exists (x̄, ū) ∈ S such that ‖(x, u)− (x̄, ū)‖ ≤ r − ǫ.
Proof. To prove, note we can rearrange terms in equation (8.10) to get r > Lf−gr +
eT ≥ ǫ. If there exists (x̄, ū) ∈ SD such that ‖(x, u)− (x̄, ū)‖ ≤ r− ǫ, then Bǫ(x, u) ⊂

165

ε

r

r

ε

Figure 8.3: Illustrating the advantage of Lf−g < 1 and r selected according to (8.10).
An ǫ-ball about a query point is shown in black; r-balls about training data are shown
in blue. Left: Lf−g > 1, therefore requiring many training points to cover an ǫ-ball
about the query point. Right: Lf−g < 1 and r is selected according to (8.10). Under
these conditions, only one training point within a r − ǫ distance ensures an ǫ-ball
about the (x, u) is entirely in D, ensuring that the query point is in Dǫ.

Br(x̄, ū) ⊂ D since no point in Bǫ(x, u) is further than r distance from (x̄, ū). Since
Bǫ(x, u) ⊂ D, (x, u) is at least ǫ distance from any point in Dc and therefore (x, u) ∈
Dǫ.

In order to ensure Lf−g < 1, since it is derived from the training data and learned
model, we must train a learned model that is sufficiently accurate (i.e., low error on
S ∪Ψ). In our experiments, it was enough to minimize mean squared error over the
training set to learn models with this property.

To ensure that the resulting trajectory remains in Dǫ, we ensure that correspond-
ing pairs of state and control lie in Dǫ at each step. In growing the search tree T , we
break down this requirement into two separate checks, the first of which optimisti-
cally adds states to the search tree and the second that requires pairs of states and
controls to lie in Dǫ. To illustrate, suppose we sample a new configuration xnew and
grow the tree from some x to xnew. At this point, when sampling a control u to steer
from x to xnew we enforce that (x, u) ∈ Dǫ (see line 11 in Alg. VIII.3). However, how
do we know the resulting state, x′ = g(x, u), will lie in Dǫ? Since x′ is a state and
not a state-control pair, the above question is not well defined. Instead, we perform
an optimistic check in adding x′ which requires that there exists some û such that
(x′, û) ∈ Dǫ (see line 14 in Alg. VIII.3). In turn, when growing the search tree from x′

to some other sampled point x′new we ensure that the pair of state and newly sampled
control u′ lies in Dǫ, i.e., (x

′, u′) ∈ Dǫ.

166

Figure 8.4: The one-step feedback law: plan with the learned dynamics (dashed
black); rollout with the true dynamics (blue); prediction with the learned dynamics
using the feedback law (red). At each point, we use (8.12) to find a feedback control
ũk so xk+1 = g(x̃k, ũk). We arrive within ǫ of the next state under the true dynamics.
This repeats until we reach the goal.

8.3.3.2 One step feedback law

To prevent drift in execution, we also seek to ensure the trajectory planned with
RRT can be tracked with minimal error. One key requirement to guarantee a feedback
law exists is that the system is sufficiently actuated under the learned dynamics. This
requires that dim(U) ≥ dim(X). The check for sufficient actuation is done on a per
state basis and can be done as we grow T . This feedback law ensures that, under the
learned dynamics, we can return to a planned trajectory in exactly one step.

Suppose we are executing a trajectory (x0, . . . , xK) with corresponding control
(u0, . . . , uK−1) planned with the learned dynamics, and the system is currently at
xk−1. Under the learned dynamics, the plan is to move to xk = g(xk−1, uk−1), but,
under the true dynamics, the system will end up at some x̃k = f(xk−1, uk−1) which
is no more than an ǫ distance from xk. Our goal is to find an input ũk such that
xk+1 = g(x̃k, ũk). If this one-step feedback law exists for all 1 ≤ k ≤ K−1, it ensures
the executed trajectory stays within ǫ distance of the planned trajectory (see Fig.
8.4).

With Lipschitz constants Lg0 and Lg1 , we can bound how much the learned dy-
namics varies in the ǫ-ball about xk.

∀x̃k ∈ Bǫ(xk) g(x̃k, u) = g0(xk) + ∆0 + (g1(xk) + ∆1)u (8.11)

where ‖∆0‖ ≤ Lg0ǫ and ‖∆1‖ ≤ Lg1ǫ. With (8.11), the existence of ũk is informed by

167

a perturbed linear equation:

xk+1 = g(x̃k, ũk), x̃k ∈ Bǫ(xk)
⇒ xk+1 = g0(xk) + ∆0 + (g1(xk) + ∆1)ũk

⇒ Aũk = b

with A = g1(xk) + ∆1 and b = xk+1 − g0(xk)−∆0

(8.12)

Prior to execution, we seek to answer two questions: when does ũk exist and
does ũk lie in the control space U (for instance in the presence of box constraints)?
Results from the literature Lötstedt (1983) give a bound on the difference between
the nominal solution uk and perturbed solution ũk,

‖uk − ũk‖ ≤
‖g1(xk)+‖(‖∆1‖‖uk‖+ ‖∆0‖)

1− ‖g1(xk)+‖‖∆1‖
.
= upert, (8.13)

where g1(xk)
+ is the pseudo-inverse of g1(xk) (in general g1(xk) is not square). We

can use this bound to ensure that ũk is guaranteed to lie in U by enforcing that
uk + upert1∞ ⊆ U , where 1∞ is the unit infinity-norm ball. Furthermore, A may
become singular if 1−‖g1(xk)+‖ ‖∆1‖ ≤ 0. In this case, ũk is not guaranteed to exist.

If ũk exists and satisfies the control constraints for all 1 ≤ k ≤ K − 1, then we
ensure that the system will track the path up to an ǫ error under the one-step feedback
law. In planning, we add the existence of a valid one step feedback law as a check
when growing the search tree. Formally:

Theorem VIII.4. For trajectory (x0, . . . , xK) and (u0, . . . uK−1), if the solution to
the perturbed linear equation (8.12), ũk, exists for all k ∈ {1, . . . , K − 1}, then under
the true dynamics ‖x̃k − xk‖ ≤ ǫ for all k, given Lf−g, Lg0, and Lg1 are each an
overestimate of the true Lipschitz constant of f − g, g0, and g1, respectively.

Proof. Proof by induction. For the induction step, assume ‖x̃k − xk‖ ≤ ǫ for some k.
Since x̃k ∈ Bǫ(xk), the perturbed linear equation (8.12) is valid. If a solution exists,
then xk+1 = g(x̃k, ũk) and ‖f(x̃k, ũk) − xk+1‖ ≤ ǫ. This satisfies the induction step.
For the base case, we have g(x0, u0) = x1 and ‖f(x0, u0) − x1‖ ≤ ǫ. Thus, for all k,
‖x̃k − xk‖ ≤ ǫ.

8.3.3.3 Ensuring safety and invariance about the goal

Since it is guaranteed by Thm. VIII.4 that ‖x̃− xk‖ ≤ ǫ, we check that Bǫ(xk) ⊂
Xsafe for each xk on the path to ensure safety.

The exact nature of this check depends on the system and definition of Xunsafe. For
example, in our experiments on quadrotor, the state includes the quadrotor’s position
in R3 and Xunsafe is defined by unions of boxes in R3. By defining a bounding sphere
that completely contains the quadrotor, we can verify a path is safe via sphere-box
intersection. With the Kuka arm, we randomly sample joint configurations in an
ǫ-ball about states, transform the joint configurations via forward kinematics, and
check collisions in workspace. While this method is not guaranteed to validate the

168

entire ball around a state, in practice no collisions resulted from execution of plans.
Another approach computes a free-space bubble Quinlan (1994) around a given state
x and check if it contains Bǫ(x), however this is known to be conservative.

To stay near the goal after executing the trajectory, we use the same perturbed
linear equation to ensure the existence of a one-step feedback law. Here, rather than
checking the next state along the trajectory is reachable from the previous, we check
that the final state is reachable from itself, i.e., xK is reachable from xK . Similar
to the arguments above, we can repeatedly execute the feedback law to ensure the
system remains in an (ǫ+ λ)-ball about the goal. Formally, we have:

Theorem VIII.5. If the solution, denoted ust, to the perturbed linear equation exists
for A = g1(xK)+∆1 and b = xK−g0(xK)−∆0 for all x ∈ Bǫ(xK), then the closed loop
system will remain in Bǫ+λ(xG), given Lf−g, Lg0, and Lg1 are each an overestimate
of the true Lipschitz constant of f − g, g0, and g1, respectively.
Proof. By Thm. VIII.4, ‖x̃K −xK‖ ≤ ǫ. Thus, if the solution to the perturbed linear
equation with A = g1(xK) + ∆1 and b = xK − g0(xK) − ∆0 exists and is valid then
g(x̃K , ust) = xK and ‖f(x̃K , ust)−xK‖ ≤ ǫ. Since ‖xK−xG‖ ≤ λ, the system remains
in Bǫ+λ(xK) by the triangle inequality.

To close, we note that the overall safety and invariance probability of our method
is ρ3, arising from our need to estimate three Lipschitz constants: Lf−g, Lg0 , and Lg1 .
Given independent samples for overestimating each constant with probability ρ via
Alg. VIII.1, the overall correctness probability is the product of the correctness of
each constant, i.e., ρ3.

8.3.4 Algorithm

We present our full method, Learned Models in Trusted Domains (LMTD-RRT),
in Alg. VIII.3. In practice, we implemented SampleState and SampleControl in two
different ways: uniform sampling and perturbations from training data. Sampling
perturbations (up to a norm of r−ǫ) does not exclude valid (x, u) pairs since all points
in Dǫ lie within r−ǫ from a training point, and, in cases where Dǫ is a relatively small
volume, can yield a faster search. However, it also biases samples near regions where
training data is more dense. We define the set SX = {x̄ | ∃ū s.t. (x̄, ū) ∈ SD} to
describe the optimistic check described in Sec. 8.3.3.1. NN finds the nearest neighbor
and OneStep checks that a valid feedback exists as described in Sec. 8.3.3.2. Model

evaluates the learned dynamics and InCollision checks if an ǫ-ball is in Xsafe as
described in Sec. 8.3.3.3.

Once a plan has been computed, it can be executed in closed-loop with Alg. VIII.4.
ModelG0 and ModelG1 evaluate g0 and g1 of the learned model. SolveLE solves the
linear equation and Dynamics executes the true dynamics f .

8.4 Results

We present results on 1) a 2D system to illustrate the need for remaining near the
trusted domain, 2) a 6D quadrotor to show scaling to higher-dimensional systems,

169

Algorithm VIII.3: LMTD-RRT

Input: xI , xG, SX , SD, r, ǫ, λ, Nsamples, goal bias
1 T ← {xI}
2 while True do
3 while ¬sampled do
4 xnew ← SampleState(goal bias)
5 if ‖xnew− NN(SX , xnew)‖ ≤ r − ǫ then
6 sampled ← True

7 xnear ← NN(T , xnew)
8 i← 0, ubest ← ∅, xbest ← ∅, d←∞
9 while i < Nsamples do

10 u← SampleControl()

11 if ‖(xnear, u)−NN(SD, (xnear, u))‖ ≤ r − ǫ then
12 xnext ← Model(xnear, u)
13 if OneStep(xnear, u, xnext) ∧
14 ‖xnext− NN(SX , xnext)‖ ≤ r − ǫ ∧
15 ‖xnext − xG‖ < d ∧
16 ¬InCollision(xnext, ǫ) then
17 ubest ← u, xbest ← xnext
18 d← ‖xnext − xG‖
19 i← i+ 1

20 if ubest then
21 T ← T ∪ {xbest}
22 if ‖xbest − xG‖ ≤ λ then
23 return ConstructPath(T , xbest)

Algorithm VIII.4: LMTD-Execute

Input: {xk}Kk=0, {uk}K−1
k=0

1 x̃0 ← x0, k ← 0
2 for k = 1 . . . n− 1 do
3 b← xk+1− ModelG0(x̃k), A←ModelG1(x̃k)
4 ũk ←SolveLE(A, b)
5 x̃k+1 ← Dynamics(x̃k, ũk)

170

and 3) a 7DOF Kuka arm simulated in Mujoco Todorov et al. (2012) to show scaling
to complex dynamics that are not available in closed form. Using ρ = 0.975, we plan
with LMTD-RRT and rollout the plans in open-loop (no computation of ũk) and
closed-loop (Alg. VIII.4). We compare with a näıve kinodynamic RRT that skips
the checks on lines 5, 11, 13-14 of Alg. VIII.3 in both open and closed loop. See the
video for experiment visualizations.

8.4.1 2D Sinusoidal Model

To aid in visualization, we demonstrate LMTD-RRT on a 2D system with dynam-
ics f(x, u) = f0(x) + f1(x)u:

f0(x) =

[
x
y

]
+∆T

[
3 sin(0.3(x+ 4.5)

)∣∣ sin
(
0.3(y + 4.5))

∣∣
3 sin(0.3(y + 4.5)

)∣∣ sin
(
0.3(x+ 4.5))

∣∣

]

f1(x) = ∆T

[
1 + 0.05 cos(y) 0

0 1 + 0.05 sin(x)

]

where ∆T = 0.2. We are given 9000 training points (xi, ui, f(xi, ui)), where xi is
drawn uniformly from an ‘L’-shaped subset of X (see Fig. 8.5) and ui is drawn
uniformly from U = [−1, 1]2. g0(x) and g1(x) are modeled with separate neural
networks with one hidden layer of size 128 and 512, respectively. We select a = 3 in
Alg. VIII.2. 1000 more samples are used to estimate Lf−g via Alg. VIII.1, which we
validate with a KS test with a p value of 0.56, far above the 0.05 threshold significance
value. We obtain γ̂ = 0.117 and c = 6.85× 10−4, giving ǫ = 0.215 over D.

See Fig. 8.5 for examples of the nominal, open-loop, and closed-loop trajectories
planned with LMTD-RRT and a näıve kinodynamic RRT. The plan computed with
LMTD-RRT remains in regions where we can trust the learned model (i.e. within Dǫ)
and the closed-loop execution of the trajectory converges to Bǫ+λ(xG). In contrast,
both the open-loop and closed-loop execution of the näıve RRT plan diverge. We
provide statistics in Table 8.1 of maximum ℓ2 tracking error maxi∈{1,...,T} ‖x̃i − xi‖
and final ℓ2 distance to the goal ‖x̃T − xG‖2 for both the open loop (OL) and closed
loop (CL) variants, averaged over 70 random start/goal states. To give the baseline
an advantage, we fix the start/goal states and plan with näıve RRT using two different
dynamics models: 1) the same learned dynamics model used in LMTD-RRT and 2)
a learned dynamics model with the same hyperparameters trained on the full dataset
(104 datapoints), and report the statistics on the minimum of the two errors. The
worst case tracking error for the plan computed with LMTD-RRT was 0.199, which
is within the guaranteed tracking error bound of ǫ = 0.215, while despite the data
advantage, plans computed with näıve RRT suffer from higher tracking error. Average
planning times for LMTD-RRT and näıve RRT are 4.5 and 17 seconds, respectively.
Overall, this suggests that planning with LMTD-RRT avoids regions where model
error may lead to poor tracking, unlike planning with a näıve RRT.

171

-5 0 5 10 15

-4

-2

0

2

4

6

8

x

x

Figure 8.5: 2D sinusoidal dynamics. The LMTD-RRT plan (magenta) stays in D and
ensures a valid feedback law exists at each step. The plan can be tracked within ǫ
under closed loop control (cyan). If feedback is not applied, the system drifts to the
edge of the trusted domain, exits, and diverges (green). The näıve RRT plan (brown)
does not consider D, and does not reach the goal under closed loop (grey) or open
loop (red) control.

LMTD-RRT Näıve kino. RRT
Max. trck. err. (CL) 0.099 ± 0.036 (0.199) 8.746 ± 4.195 (15.21)
Goal error (CL) 0.039 ± 0.020 (0.113) 7.855 ± 3.851 (14.78)

Max. trck. err. (OL) 12.84 ± 4.444 (20.92) 10.39 ± 1.962 (15.31)
Goal error (OL) 12.40 ± 4.576 (20.92) 10.12 ± 1.762 (15.20)

Table 8.1: Sinusoid errors in closed loop (CL) and open loop (OL).
Mean ± standard deviation (worst case).

-4 -3 -2 -1 0 1 2 3 4

-1

-0.5

0

0.5

1

x

x

-1

1

-0.5

0

0.5

0.5 1
0 0.5

0-0.5 -0.5

Figure 8.6: Quadrotor tracking example. The trajectory planned with LMTD-RRT
(magenta) is tracked in closed loop (blue) and reaches the goal. The open loop
(green) also converges near the goal, but not as close as the closed loop. The näıve
RRT produces a plan (brown) that leaves the trusted domain. Thus, both the open
(red) and closed (light blue) loop rapidly diverge.

172

8.4.2 6D Quadrotor Model

We evaluate our method on 6-dimensional fully-actuated quadrotor dynamics
Sabatino (2015) with state x = [χ, y, z, φ, θ, ψ]⊤, where f(x, u) = f0(x) + f1(x)u,
f0(x) = x and f1(x) =

∆T

cθcψ −cφsψ + cψsφsθ sψsφ + cφcψsθ 0 0 0
cθsψ cφcψ + sφsψsθ −cψsφ + cφsψsθ 0 0 0
−sθ cθsφ cφcθ 0 0 0
0 0 0 1 sφtθ cφtθ
0 0 0 0 cφ −sφ
0 0 0 0 sφ/cθ cφ/cθ

,

where ∆T = 0.1 and s(·), c(·), and t(·) are short for sin(·), cos(·), and tan(·) respectively.
We are given 9× 106 training data tuples (xi, ui, f(xi, ui)), where xi, ui are generated
with Halton sampling over [−1, 1]3 × [− π

20
, π
20
]3 and [−1, 1]6, respectively (data is

collected near hover). As f0(x) is a simple integrator term, we assume it is known
and we set g0(x) = x, while g1(x) is learned with a neural network with one hidden
layer of size 4000. We select a = 6 in Alg. VIII.2. We use 106 more samples in Alg.
VIII.1 to estimate Lf−g, and conduct a KS test resulting in a p-value of 0.43≫ 0.05.
We obtain γ̂ = 0.205, c = 0.011, and ǫ = 0.134.

See Fig. 8.6 for examples of the planned, open-loop, and closed-loop trajectories
planned with LMTD-RRT and a näıve RRT. The trajectory planned with LMTD-
RRT remains close to the training data, and the closed-loop system tracks the planned
path with ǫ-accuracy converging to Bǫ+λ(xG). We note that using the feedback con-
troller to track trajectories planned with näıve RRT tends to worsen the tracking
error, implying our learned model is highly inaccurate outside of the domain. We
provide statistics in Table 8.2 for maximum tracking error and distance to goal, av-
eraged over 100 random start/goal states. The worst case closed-loop tracking error
for trajectories planned with LMTD-RRT is 0.011, again much smaller than ǫ. As
with the 2D example, we give the baseline an advantage in computing tracking error
statistics by reporting the minimum of the two errors when planning with 1) the same
model used in LMTD-RRT and 2) a model trained on the full dataset (107 points).
Despite the data advantage, the plans computed using näıve RRT have much higher
tracking error. Average planning times for our unoptimized code are 100 sec. for
LMTD-RRT and 15 min. for näıve RRT, suggesting that sampling focused near the
training data can improve planning efficiency.

We also evaluate LMTD-RRT on an obstacle avoidance problem (Fig. 8.7). We
perform collision checking as described in Sec. 8.3.3.3. As the tracking error tubes (of
radius ǫ = 0.134) centered around the nominal trajectories never intersect with any
obstacles, we can guarantee that the system never collides in execution. Empirically,
in running Alg. VIII.3 over 500 random seeds to obtain different nominal paths, the
closed-loop trajectory never collides. In contrast, the näıve RRT plan fails to be
tracked and collides (Fig. 8.7, right).

173

Start

Goal

Figure 8.7: Left: Quadrotor obstacle (red) avoidance. Example plans (green, blue,
black), tracking error bound ǫ overlaid (light blue). Closed-loop trajectories remain
in the tubes, converging to the goal without colliding. Right: Näıve RRT plan (pink)
fails to be tracked (cyan) and collides (red dots).

LMTD-RRT Näıve kino. RRT
Max. trck. err. (CL) 0.003 ± 0.001 (0.008) 10.59 ± 16.75 (153.26)
Goal error (CL) 0.001 ± 0.001 (0.004) 8.247 ± 8.434 (46.150)

Max. trck. err. (OL) 0.020 ± 0.007 (0.040) 4.289 ± 2.340 (12.986)
Goal error (OL) 0.019 ± 0.008 (0.040) 3.265 ± 2.028 (11.670)

Table 8.2: Quadrotor errors (no obstacles) in closed loop (CL) and
open loop (OL). Mean ± standard deviation (worst case).

174

F
ig
u
re

8.
8:

P
la
n
n
in
g
to

m
ov
e
a
7D

O
F

ar
m

fr
om

b
el
ow

to
ab

ov
e
a
ta
b
le
.
T
ra
je
ct
or
y
-t
ra
ck
in
g
ti
m
e-
la
p
se

(t
im

e
in
cr
ea
se
s
fr
om

le
ft

to
ri
gh

t)
.
R
ed

(n
om

in
al
),

gr
ee
n
(c
lo
se
d
lo
op

),
b
lu
e
(o
p
en

lo
op

).
T
o
p
:
L
M
T
D
-R

R
T

(r
ed
,
gr
ee
n
,
b
lu
e
ov
er
la
p
d
u
e
to

ti
gh

t
tr
ac
k
in
g)
.
B
o
tt
o
m
:
N
äı
ve

R
R
T

(p
o
or

tr
ac
k
in
g
ca
u
se
s
co
ll
is
io
n
).

175

LMTD-RRT Näıve kino. RRT
Max. trck. err. (CL) 0.010 ± 0.010 (0.038) 0.090 ± 0.250 (1.265)
Goal error (CL) 0.004 ± 0.004 (0.018) 0.082 ± 0.251 (1.265)

Max. trck. err. (OL) 0.036 ± 0.041 (0.142) 0.076 ± 0.084 (0.282)
Goal error (OL) 0.035 ± 0.040 (0.140) 0.071 ± 0.075 (0.225)

Table 8.3: 7DOF arm errors (no obstacles) in closed loop (CL) and
open loop (OL). Mean ± standard deviation (worst case).

8.4.3 7DOF Kuka Arm in Mujoco

We evaluate our method on a 7DOF Kuka iiwa arm simulated in Mujoco Todorov
et al. (2012) using a Kuka model from gym-kuka mujoco (2019). We train two models
using different datasets, one for evaluating tracking error without the presence of
obstacles (Table 8.3), and the other for obstacle avoidance. For both models, g0(x) is
again set to be x while g1(x) is learned with a neural network with one hidden layer
of size 4000. For the results in Table 8.3, we are provided 2475 training data tuples,
which are collected by recording continuous state-control trajectories from an expert
and evaluating f(x, u) on the trajectories and on random state-control perturbations
locally around the trajectories. We select a = 5 in Alg. VIII.2. 275 more samples
are used in Alg. VIII.1 to estimate Lf−g, validated with a KS test with a p value of
0.58 ≫ 0.05. We obtain γ̂ = 0.087 and c = 0.001, leading to ǫ = 0.111. In Table
8.3, we provide statistics on maximum tracking error and distance to goal under
plans with LMTD-RRT and the näıve RRT baseline (with a model trained on the full
dataset of 2750 points), averaged over 25 runs of each method. Notably, closed-loop
tracking of plans found with LMTD-RRT have lowest error, with a worst case error
much smaller than ǫ = 0.111. Planning takes on average 1.552 and 0.167 sec. for
LMTD-RRT and näıve RRT, respectively. We suspect the näıve RRT exploits poor
dynamics outside of D, expediting planning.

For the obstacle avoidance example (Fig. 8.8), we are provided 15266 datapoints,
which again take the form of continuous trajectories plus perturbations. We select
a = 8 in Alg. VIII.2, and use 1696 more points to estimate Lf−g using Alg. VIII.1,
which we validate with a KS test with a p value of 0.37≫ 0.05. We obtain γ̂ = 0.156
and c = 0.010, leading to ǫ = 0.111. In planning, as described in Sec. 8.3.3.3, we
perform collision checking by randomly sampling configurations in an ǫ-ball about
each point along the trajectory. Though this collision checker is not guaranteed to
detect collision, in running LMTD-RRT over 20 random seeds, we did not observe
collisions in execution for any of the 20 plans, and the arm safely reaches the goal
without collision. Over these trajectories, the worst case tracking error is 0.107,
which remains within ǫ = 0.111. One such plan computed by LMTD-RRT and the
corresponding open-loop and closed-loop tracking trajectories, is shown in the top row
of Fig. 8.8. The three trajectories nearly overlap exactly due to small tracking error.
In contrast, the näıve RRT plan cannot be accurately tracked, even with closed-
loop control, due to planning outside of the trusted domain, causing the executed
trajectories to diverge and collide with the table.

176

8.5 Discussion and Conclusion

We present a method to bound the difference between learned and true dynamics
in a given domain and derive conditions that guarantee a one-step feedback law exists.
We combine these two properties to design a planner that can guarantee safety, goal
reachability, and that the closed-loop system remains in a small region about the goal.

While the method presented has strong guarantees, it also has limitations which
are interesting targets for future work. First, the true dynamics are assumed to
be deterministic. Stochastic dynamics may be possible by estimating the Lipschitz
constant of the mean dynamics while also appropriately modeling the noise. Second,
the actuation requirement limits the systems that this method can be applied to. For
systems with dim(U) < dim(X), it may be possible to construct a similar feedback
law that guarantees the learned dynamics will lie within a tolerance of planned states
which, in turn, could still give strong guarantees on safety and reachability; we will
present a method for doing precisely this in the next chapter.

177

CHAPTER IX

Safe Planning and Execution with Learned

Underactuated Dynamics via Contraction Theory

In this chapter, we present a method for contraction-based feedback motion plan-
ning of locally incrementally exponentially stabilizable systems with unknown dynam-
ics that provides probabilistic safety and reachability guarantees. Given a dynamics
dataset, our method learns a deep control-affine approximation of the dynamics. To
find a trusted domain where this model can be used for planning, we obtain an
estimate of the Lipschitz constant of the model error, which is valid with a given
probability, in a region around the training data, providing a local, spatially-varying
model error bound. We derive a trajectory tracking error bound for a contraction-
based controller that is subjected to this model error, and then learn a controller that
optimizes this tracking bound. With a given probability, we verify the correctness
of the controller and tracking error bound in the trusted domain. We then use the
trajectory error bound together with the trusted domain to guide a sampling-based
planner to return trajectories that can be robustly tracked in execution. We show
results on a 4D car, a 6D quadrotor, and a 22D deformable object manipulation
task, showing our method plans safely with learned models of high-dimensional un-
deractuated systems, while baselines that plan without considering the tracking error
bound or the trusted domain can fail to stabilize the system and become unsafe. This
chapter is based on the paper Chou et al. (2021c).

9.1 Introduction

Provably safe motion planning algorithms for unknown systems are critical for
deploying robots in the real world. While planners are reliable when the system
dynamics are known exactly, the dynamics often may be poorly modeled or unknown.
To address this, data-driven methods (i.e., model-based reinforcement learning) learn
the dynamics from data and plan with the learned model. However, such methods
can be unsafe, in part because the planner can and will exploit errors in the learned
dynamics to return trajectories which cannot actually be tracked on the real system,
leading to unpredictable, unsafe behavior when executed. Thus, to guarantee safety,
it is of major interest to establish a bound on the error that the true system may see

178

when attempting to track a trajectory planned with the learned dynamics, and to use
it to guide the planning of robustly-trackable trajectories.

One key property of learned dynamics models is that they have varying error across
the state space: they should be more accurate on the training data, and that accuracy
should degrade when moving away from it. Thus, the model error that the system
will see in execution will depend on the domain that it visits. This reachable domain
also depends on the tracking controller; for instance, a poor controller may lead to the
system visiting a larger set of possible states, and thus experiencing a larger possible
model error. To analyze this, we need a bound on the trajectory tracking error for a
given disturbance description (a tracking tube). In this chapter, we consider tracking
controllers based on contraction theory. Introduced in Lohmiller and Slotine (1998)
for autonomous systems and extended to the control-affine case in Manchester and
Slotine (2017), control contraction theory studies the incremental stabilizability of
a system, making it uniquely suited for obtaining trajectory tracking tubes under
disturbance. In the past, tracking tubes have been derived for contraction-based
controllers under simple uniform disturbance bounds Singh et al. (2019) (i.e., a UAV
subject to wind with a known uniform upper bound). However, these assumptions
are ill-suited for handling learned model error. Assuming a uniform disturbance
bound over the space can be highly conservative, since the large model error far from
the training data would yield enormous tracking tubes, rendering planning entirely
infeasible. To complicate things further, obtaining an upper bound on the model
error can be challenging, as we only know the value of the error on the training data.

To address this gap, we develop a method for safe contraction-based motion plan-
ning with learned dynamics models. In particular, our method is designed for high-
dimensional neural network (NN) learned dynamics models, and provides probabilistic
guarantees on safety and goal reachability for the true system. Our core insight is
that we can derive a tracking error bound for a contraction-based controller under
a spatially-varying model error description, and that we can use this error bound to
bias planning towards regions in the state/control space where trajectories can be
more robustly tracked. We summarize our contributions as:

• A trajectory tracking error bound for contraction-based controllers subjected to
a spatially-varying, Lipschitz constant-based model error bound that accurately
reflects the learned model error.

• A deep learning framework for joint learning of dynamics, control contraction
metrics (CCMs), and contracting controllers that are approximately optimized
for planning performance under this model error description.

• A sampling-based planner that returns plans which can be safely tracked under
the learned dynamics/controller.

• Evaluation of our method on learned dynamics up to 22D, and demonstrating
that it outperforms baselines.

179

9.2 Preliminaries and Problem Statement

9.2.1 System models, notation, and differential geometry

We consider deterministic unknown continuous-time nonlinear systems ẋ = h(x, u),
where h : X × U → X , X ⊆ Rnx , and U ⊆ Rnu . We define g : X × U → X to be a
control-affine approximation of the true dynamics:

g(x, u) = f(x) + B(x)u. (9.1)

While we do not assume that the true dynamics are control-affine, we do assume
that they are locally incrementally exponentially stabilizable, that is, there exists a
β, λ > 0, and feedback controller such that ‖x∗(t)− x(t)‖ ≤ βe−λt‖x∗(0)− x(0)‖ for
all solutions x(t) in a domain. Many underactuated systems satisfy this condition
(for a subset of their trajectories), and it is much weaker than requiring nx = nu, as
in Knuth et al. (2021a). Also, this only needs to hold in a task-relevant domain D,
defined later.

For a function η, a Lipschitz constant over a domain Z is any L such that for
all z1, z2 ∈ Z, ‖η(z1) − η(z2)‖ ≤ L‖z1 − z2‖. Norms ‖ · ‖ are always the 2-norm.
We define Lh−g as the smallest Lipschitz constant of the error h− g. The argument
of h − g is a state-control pair (x, u) and its value is a state. We define a ball
Br(x) as {y | ‖y − x‖ < r}, also referred to as a r-ball about x. We suppose the
state space X is partitioned into safe Xsafe and unsafe Xunsafe sets (e.g., collision

states). We denote Q̂
.
= Q + Q⊤ as a symmetrization operation on matrix Q, and

λ̄(Q̂) and λ(Q̂) as its maximum and minimum eigenvalues, respectively. We overload
notation when Q(x) is a matrix-valued function, denoting λ̄Q(Q)

.
= supx∈Q λ̄(Q(x))

and λQ(Q)
.
= infx∈Q λ(Q(x)). Let In be the identity matrix of size n × n. Let S>0

n

denote the set of symmetric, positive definite n × n matrices. Let the Lie derivative
of a matrix-valued function Q(x) ∈ Rn×n along a vector y ∈ Rn be denoted as
∂yQ(x)

.
=
∑n

i=1 y
i ∂Q
∂xi . Let xi denote the ith element of vector x. Let the notation

Q⊥(x) refer to a basis for the null-space of matrix Q(x).
Finally, we introduce the needed terminology from differential geometry. For a

smooth manifold X , a Riemannian metric tensor M : X → S>0
nx

equips the tan-
gent space TxX at each element x with an inner product δ⊤xM(x)δx, providing a
local length measure. Then, the length l(c) of a curve c : [0, 1] → X between
points c(0), c(1) can be computed by integrating the local lengths along the curve:

l(c)
.
=
∫ 1

0

√
V (c(s), cs(s))ds, where for brevity V (c(s), cs(s))

.
= cs(s)

⊤M(c(s))cs(s),
and cs(s)

.
= ∂c(s)/∂s. Then, the Riemann distance between two points p, q ∈ X

can be defined as dist(p, q)
.
= infc∈C(p,q) l(c), where C(p, q) is the set of all smooth

curves connecting p and q. Finally, we define the Riemann energy between p and q
as E(p, q) .= dist2(p, q).

9.2.2 Control contraction metrics (CCMs)

Contraction theory studies how the distance between trajectories of a system
changes with time to infer properties on incremental stability. This can be formalized

180

{(x̃i, x
∗
i
, u

∗
i
)}N

i=1{(xi, ui, h(xi, ui))}
N

i=1

{xi}
N

i=1

M(x)

(Chap. 9.3.2.1)

M(x), u(x̃, x
∗
, u

∗
)

(Chap. 9.3.2.2)

Designing D
(Sec. 9.3.3)

f(x), B(x)

(Chap. 9.3.2)

Learn the model,

CCM, & controller

Analyze the learned

components

Lh−g

λ̄D(M)
λD(M)

δ̄u

λ
(·)

Estimate constants
(Chap. 9.3.3)

Tracking bound .

(Chap. 9.3.1)
ε̄(t)

Planning

LMTCD-RRT
(Sec. 9.3.4)

Figure 9.1: Method flowchart. Left: First, we learn a model of the dynamics using
dataset S and obtain a contracting controller for this learned model (Prob. IX.1).
Center: Next, within a trusted domain D, we verify (with a given probability)
the correctness of the controller, bound the model error, and bound the trajectory
tracking error under this model error (Prob. IX.2). Right: Finally, we use the error
bounds to plan trajectories within D that can be safely tracked in execution (Prob.
IX.3).

with a contraction metric M(x) : X → S>0
nx

to measure if the differential distances
between trajectories V (x, δx) = δ⊤xM(x)δx shrink with time. Control contraction
metrics (CCMs) adapt this analysis to control-affine systems (9.1). For dynamics of

the form (9.1), the differential dynamics can be written as δ̇x = (∂f
∂x

+
∑nu

i=1 u
i ∂Bi

∂x
)δx+

B(x)δu Singh et al. (2019), where Bi(x) is the ith column of B(x). Then, we call
M(x) : X → S>0

nx
a CCM if there exists a differential controller δu such that the

closed-loop system satisfies V̇ (x, δx) < 0, for all x, δx.
How do we find a CCM M(x) ensuring the existence of δu? First, define the dual

metricW (x)
.
=M−1(x). Then, two sufficient conditions for contraction are (9.2)-(9.3)

Singh et al. (2019); Sun et al. (2020):

B⊥(x)
⊤
(
− ∂fW (x) + ∂f(x)

∂x W (x)

∧

+ 2λW (x)
)
B⊥(x) � 0 (9.2a)

B⊥(x)
⊤
(
∂BjW (x)− ∂Bj(x)

∂x W (x)

∧)
B⊥(x) = 0, j = 1...nu (9.2b)

Ṁ(x) +M(x)(A(x) +B(x)K(x̃, x∗, u∗))
∧

+ 2λM(x) ≺ 0 (9.3)

where A
.
= ∂f

∂x
+
∑nu

i=1 u
i ∂Bi

∂x
and K = ∂u(x̃,x∗,u∗)

∂x
, where u : X × X × U → U is a

feedback controller which takes as input the tracking deviation x̃(t)
.
= x(t) − x∗(t)

from a nominal state x∗(t), as well as a state/control x∗(t), u∗(t) on the nominal
state/control trajectory that is being tracked x∗ : [0, T] → X , u∗ : [0, T] → U .
We refer to the LHSs of (9.2a) and (9.3) as Cs(x) and Cw(x̃, x∗, u∗), respectively.
Intuitively, (9.2a) is a contraction condition simplified by the orthogonality condition
(9.2b), which together imply that all directions where the differential dynamics lack
controllability must be naturally contracting at rate λ. The conditions (9.2) are
stronger than (9.3), which does not make this orthogonality assumption.

How do we recover a tracking feedback controller u(x̃, x∗, u∗) for (9.1) from (9.2)
and (9.3)? For (9.2), the controller is implicit in the dual metric W (x), and can
be computed by solving a nonlinear optimization problem, which can be solved at
runtime with pseudospectral methods Leung and Manchester (2017); Singh et al.

181

(2019). In (9.3), u(x̃, x∗, u∗) is directly involved as the function defining K; as a
consequence, M(x) and u(x̃, x∗, u∗) both need to be found. Thus for our purposes,
the benefit of using (9.2) is that we have fewer parameters to learn. However, as
some systems may not satisfy the properties needed to apply (9.2), we resort to using
(9.3) in these cases (see Sec. 9.3.2.2). Finally, for a given CCM M(x) and associated
controller u(x̃, x∗, u∗), for an unperturbed system tracking a nominal trajectory x∗(t),
the Riemannian energy E(x∗(t), x(t)) satisfies ‖x(t)−x∗(t)‖ ≤ β‖x(0)−x∗(0)‖e−λt for
an overshoot constant β, and thus the Euclidean distance also decays at this rate. If
the system is subjected to bounded perturbations, it is instead guaranteed to remain
in a tube around x∗(t).

9.2.3 Problem statement

Our method has three major components. First, we learn a model (9.1), and
then learn a contraction metric M(x) and/or controller u(x̃, x∗, u∗) for (9.1). Next,
we analyze the learned (9.1), M(x), and/or u(x̃, x∗, u∗) to determine a trusted do-
main D ⊆ X × U where trajectories can be robustly tracked. Finally, we design a
planner which computes a nominal state/control trajectory x∗(t), u∗(t) (feasible for
the learned dynamics), that steers between states in D, such that under the tracking
controller u(x̃, x∗, u∗), the system remains safe in execution and reaches the goal. In
this chapter, we represent the approximate dynamics g(x, u) with an NN, though
our method is agnostic to the structure of the model and how it is derived. We
note that due to this NN representation (where we use Lipschitz continuous activa-
tion functions), trajectories planned with the learned model will be continuous. Let
S = {(xi, ui, h(xi, ui))}Ni=1 be the training data for g obtained by any means (i.e.,
random sampling, expert demonstrations, etc.), and let Ψ = {(xj, uj, h(xj, uj))}Mj=1

be a set of independent and identically distributed (i.i.d.) samples collected near S.
Then, our method involves solving the following:

Problem IX.1 (Learning). Given S, learn a control-affine model g, a contraction
metric M(x), and find a contraction-based controller u(x̃, x∗, u∗) that satisfies (9.2)
or (9.3) over S.

Problem IX.2 (Analysis). Given Ψ, g, M(x), and u(x̃, x∗, u∗), design a trusted
domain D. In D, find a model error bound ‖h(x, u) − g(x, u)‖ ≤ e(x, u), for all
(x, u) ∈ D, and verify, with high probability, if for all x ∈ D, M and u are valid, i.e.,
satisfying (9.2)/ (9.3).

Problem IX.3 (Planning). Given g, M(x), u(x̃, x∗, u∗), start xI , goal xG, goal tol-
erance µ, maximum tracking error tolerance µ̂, trusted domain D, and Xsafe, plan a
nominal trajectory x∗ : [0, T]→ X , u∗ : [0, T]→ U under the learned dynamics g such
that x(0) = xI , ẋ = g(x, u), ‖x(T)−xG‖ ≤ µ, and x(t), u(t) remains in D∩Xsafe for
all t ∈ [0, T]. Also, guarantee that in tracking (x∗(t), u∗(t)) under the true dynamics
h with u(x̃, x∗, u∗), the system remains in D ∩ Xsafe and reaches Bµ̂+µ(xG).

182

9.3 Method

We first describe a spatially-varying, Lipschitz constant-based model error bound,
and derive a trajectory tracking error bound for a CCM-based controller under this
error description (Sec. 9.3.1). We then show how we can learn a dynamics model,
CCM, and tracking controller to optimize the tracking error bound (Sec. 9.3.2).
Then we show how we can design a trusted domain D and probabilistically verify
the correctness of the model error bound, tracking error bound, and controller within
D (Sec. 9.3.3). Finally, we show how this tracking bound can be embedded into a
sampling-based planner to ensure that plans provably remain safe in execution and
reach the goal (Sec. 9.3.4). We summarize our method in Fig. 9.1.

9.3.1 CCM-based tracking tubes under Lipschitz model error

We first establish a spatially-varying bound on model error within a trusted do-
main D which can be estimated from the model error evaluated at training points.
For a single training point (x̄, ū) and a novel point (x, u), we can bound the error
between the true and learned dynamics at (x, u) using the triangle inequality and
Lipschitz constant of the error Lh−g:

‖h(x, u)− g(x, u)‖
≤ Lh−g‖(x, u)− (x̄, ū)‖+ ‖h(x̄, ū)− g(x̄, ū)‖. (9.4)

As this holds between the novel point and all training points, the following (pos-
sibly) tighter bound can be applied:

‖h(x, u)− g(x, u)‖ ≤ min
1≤i≤N

{
Lh−g‖(x, u)− (xi, ui)‖
+ ‖h(xi, ui)− g(xi, ui)‖

}
.

(9.5)

To exploit higher model accuracy near the training data, we define D as the union
of r-balls around S, where r <∞:

D =
N⋃

i=1

Br(xi, ui). (9.6)

We note that r should be chosen to be large enough, in order to make tracking
tube containment checks feasible (described in Sec. 9.3.4). For these bounds to hold,
Lh−g must be a valid Lipschitz constant over D. In Sec. 9.3.3, we discuss how to
obtain a probabilistically-valid estimate of Lh−g and how to choose r. We now derive
an upper bound ǭ(t) on the Euclidean tracking error ǫ(t) around a nominal trajectory
(x∗(t), u∗(t)) ⊆ D for a given metric M(x) and feedback controller u(x̃, x∗, u∗), such
that the executed and nominal trajectories x(t) and x∗(t) satisfy ‖x(t)−x∗(t)‖ ≤ ǭ(t),
for all t ∈ [0, T], when subject to the model error description (9.5). In Sec. 9.3.2, we
discuss how M and u can be learned from data.

In Singh et al. (2019), it is shown that by using a controller which is contracting

183

with rate λ according to metricM(x) for the nominal dynamics (9.1), the Riemannian
energy E(t) of a perturbed control-affine system ẋ(t) = f(x(t)) +B(x(t))u(t) + d(t) is
bounded by the following differential inequality:

D+E(t) ≤ −2λE(t) + 2
√
E(t)λ̄D(M)‖d(t)‖, (9.7)

where λ̄D(M) = supx∈D λ̄(M(x)) and D+(·) is the upper Dini derivative of (·). Here,
the energy E(t) = E(x∗(t), x(t)) is the squared trajectory tracking error according
to the metric M(x) at a given time t, and d(t) is an external disturbance. Suppose
that the only disturbance to the system comes from the discrepancy between the
learned and true dynamics, i.e., d(t) = h(x(t), u(t)) − g(x(t), u(t))1. For short, let
ei

.
= ‖h(xi, ui) − g(xi, ui)‖ be the training error of the ith data-point. In this case,

we can use (9.5) to write:

‖d(t)‖ ≤ min
1≤i≤N

{
Lh−g

∥∥∥∥∥

[
x(t)
u(t)

]
−
[
xi
ui

] ∥∥∥∥∥+ ei

}
. (9.8)

As (9.8) is spatially-varying, it suggests that in solving Prob. IX.3, plans should stay
near low-error regions to encourage low error in execution. However, (9.8) is only
implicit in the plan, depending on the state visited and feedback control applied in
execution: x(t) = x∗(t) + x̃(t) and u(x̃(t), x∗(t), u∗(t)) = u∗(t) + ufb(t). To derive
a tracking bound that can directly inform planning, we first introduce the following
lemma:

Lemma IX.4. The Riemannian energy E(t) of the perturbed system ẋ(t) = f(x(t))+
B(x(t))u(t) + d(t), where ‖d(t)‖ satisfies (9.8), satisfies the differential inequality
(9.11), where λD(M) = infx∈D λ(M(x)), ūfb(t) is a time-varying upper bound on the
feedback control ‖u(t)− u∗(t)‖, and i∗(t) achieves the minimum in (9.8).

Proof sketch. We use the triangle inequality to simplify (9.8):

‖d(t)‖ ≤ min
1≤i≤N

{
Lh−g

(∥∥∥∥∥

[
x∗(t)
u∗(t)

]
−
[
xi
ui

] ∥∥∥∥∥+
∥∥∥∥∥

[
x̃(t)
ufb(t)

] ∥∥∥∥∥

)
+ ei

}

≤ Lh−g

∥∥∥∥∥

[
x̃(t)
ufb(t)

] ∥∥∥∥∥+ min
1≤i≤N

{
Lh−g

∥∥∥∥∥

[
x∗(t)
u∗(t)

]
−
[
xi
ui

] ∥∥∥∥∥+ ei

}
.

Note that as ‖d(t)‖ depends on x̃(t), the disturbance bound itself depends on ǫ(t).
To make this explicit, we use ‖x̃(t)‖ = ǫ(t) and ‖ufb(t)‖ ≤ ūfb(t) to obtain

‖d(t)‖ ≤ Lh−g

(
ǫ(t) + ūfb(t)

)
+

min
1≤i≤N

{
Lh−g

∥∥∥∥∥

[
x∗(t)
u∗(t)

]
−
[
xi
ui

] ∥∥∥∥∥+ ei

}
.

(9.9)

1In addition to model error, we can also handle runtime external disturbances with a known
upper bound; we assume the training data is noiseless.

184

D+E(t) ≤ −2
(
λ−Lh−g

√
λ̄D(M)

λD(M)

)
E(t)+2

√
E(t)λ̄D(M)

(
Lh−g

(∥∥∥∥∥

[
x∗(t)
u∗(t)

]
−
[
xi∗(t)
ui∗(t)

] ∥∥∥∥∥+ūfb(t)

)
+ei∗(t)

)

(9.11)

To obtain ūfb(t), if we use CCM conditions (9.2), we can use the optimization-based
controller in Singh et al. (2019) (cf. Sec. 9.2.2), which admits the upper bound (Singh
et al., 2019, p.28):

‖ufb(t)‖ ≤ ǫ(t) sup
x∈D

λ̄(L(x)−⊤F (x)L(x)−1)

2σ>0(B
⊤(x)L(x)−1)

.
= ǫ(t)δu, (9.10)

whereW (x) = L(x)⊤L(x), F (x) = −∂fW (x)+ ∂f(x)
∂x

W (x)

∧

+2λW (x), and σ>0(·) is the
smallest positive singular value. If we instead use condition (9.3), we must estimate
ūfb(t) for the learned controller (cf. Sec. 9.3.3).

To obtain the result, we plug (9.9) into (9.7) after relating ǫ(t) with E(t). Since
E(x∗(t), x(t)) = dist2(x∗(t), x(t)) ≥ λD(M)‖x∗(t) − x(t)‖2, we have that ǫ(t) ≤√
E(t)/λD(M). Finally, we can plug all of these components into (9.7) to obtain

(9.11), where i∗(t) denotes a minimizer of (9.8).

For intuition, let us interpret the spatially-varying disturbance bound (9.9). Note
that (9.9) depends on several components. First, it depends on ǫ(t), which in turn
relies on the disturbance magnitude: intuitively, this is because with better tracking
performance, the system will visit a smaller set of states and thus experience lower
worst-case model error. Second, it depends on ufb(t): if a large feedback is applied,
the combined control input u(t) = u∗(t)+ufb(t) can be far from the control inputs that
the learned model is trained on, possibly leading to high error. Finally, it is driven
by the model error via closeness to the training data and the corresponding training
error (minimization term of (9.9)). We can also gain some insight by comparing our
derived tracking error bound (9.11) with the tracking bound for a uniform disturbance

description (9.7). Notice that the “effective” contraction rate λ−Lh−g

√
λ̄D(M)
λD(M)

shrinks

with Lh−g, as the model error grows with tracking error. If the optimization-based
controller Singh et al. (2019) is used, the ǫ(t) dependence of (9.10) reduces this rate

to λ− Lh−g

√
λ̄D(M)
λD(M)

(1 + δu). Now, we are ready to obtain the tracking bound:

Theorem IX.5 (Tracking bound under (9.8)). Let ERHS denote the RHS of (9.11).
Assuming that the perturbed system ẋ(t) = f(x(t))+B(x(t))u(t)+d(t) satisfies E(t1) ≤
Et1 and ‖d(t)‖ satisfies (9.8). Then, ǭ(t) is described at some t2 > t1 as:

ǭ(t2) =
√(∫ t2

τ=t1
ERHS(t)dτ

)
/λD(M), E(t1) = Et1 . (9.12)

Proof sketch. We apply the Comparison Lemma Khalil (2002) on (9.11). To use
the Comparison Lemma, the right hand side of (9.11) must be Lipschitz continuous
in E and continuous in t Khalil (2002). Lipschitz continuity in E holds for (9.11)
since it only contains a linear and a square-root term involving E , each with finite

185

coefficients; continuity in t follows by noting that the minimization in (9.9) is the
pointwise minimum of N continuous functions of t, and thus is itself a continuous
function of t.

Note that Thm. IX.5 provides a Euclidean tracking error tube under the model
error bound (9.8) that can be evaluated for any nominal trajectory computed with
the learned dynamics. Note that at the cost of additional conservativeness, we have
removed the explicit dependence on ufb(t) by replacing it with the upper bound ūfb(t).
Moreover, as (9.12) can be integrated incrementally in time, it is well-suited to guide
planning in an RRT (Rapidly-exploring Random Tree LaValle and James J. Kuffner
(2001)); see Sec. 9.3.4 for more details.

9.3.2 Optimizing CCMs and controllers for the learned model

Having derived the tracking error bound, we discuss our solution to Prob. IX.1,
i.e., how we learn the control-affine dynamics (9.1), a contraction metric M(x), and
(possibly) a stabilizing controller u in a way that optimizes the size of (9.12). In this
chapter, we represent f(x), B(x), M(x), and u(x̃, x∗, u∗) as deep neural networks.

Ideally, we would learn the dynamics jointly with the contraction metric to min-
imize the size of the tracking tubes (9.12). However, we observe this leads to poor
learning, generally converging to a valid CCM for highly inaccurate dynamics. In-
stead, we elect to use a simple two step procedure: we first learn g, and then fix g and
learn M(x) and u(x̃, x∗, u∗) for that model. While this is sufficient for our examples,
in general an alternation procedure may be helpful. Finally, we note that this learn-
ing procedure is not complete; even if a valid CCM and controller exist (within the
chosen NN architectures) for the learned dynamics, the learning procedure is prone
to local optima that can prevent convergence to that valid CCM and controller; this
is in contrast to prior CCM synthesis methods Manchester and Slotine (2017); Singh
et al. (2019) for polynomial systems that rely on tools like SoS programming.
Dynamics learning. Inspecting (9.11), we note that the model-error related terms
are the Lipschitz constant Lh−g and training error ei, i = 1, . . . , N . Thus, in training
the dynamics, we use a loss function penalizing the mean squared error and a batch-
wise estimate of the Lipschitz constant:

Ldyn =
1

Nb

Nb∑

i=1

e2i + α1 max
1≤i,j≤Nb

{
‖ei − ej‖

‖(xi, ui)− (xj , uj)‖

}
, (9.13)

where ei = ‖g(xi, ui) − h(xi, ui)‖, Nb ≤ N is the batch size, and α1 trades off the
objectives. Note that (9.13) promotes ei to be small while remaining smooth over the
training data, in order to encourage similar properties to hold over D. We also note
that while there are existing approaches for providing trainable approximations for
neural network Lipschitz constants Huang et al. (2021); Pauli et al. (2022), we apply
the batch-wise estimate because we require the Lipschitz constant of the error, not
the network itself.
CCM learning. We describe two variants of our learning approach, depending on if
the stronger CCM conditions (9.2a) and (9.2b) or the weaker condition (9.3) is used.

186

9.3.2.1 Using (9.2a) and (9.2b)

We parameterize the dual metric as W (x) = Wθw(x)
⊤Wθw(x) + wIn×n, where

Wθw(x) ∈ Rnx×nx , θw are the NN weights, and w is a minimum eigenvalue hyperpa-
rameter. This structure ensures that W (x) is symmetric positive definite for all x.
To enforce (9.2a), we follow Sun et al. (2020), relaxing the matrix inequality to an
unconstrained penalty Ls

NSD over training data, where:

L
(·)
NSD = max

1≤i≤Nb

λ̄
(
C(·)(xi)

)
. (9.14)

As we ultimately wish (9.2a) to hold everywhere in D, we can use the continuity in x
of the maximum eigenvalue λ̄(λs(x)) to verify (probabilistically) if (9.2a) holds over
D (cf. Sec. 9.3.3). However, the equality constraints (9.2b) are problematic; by using
unconstrained optimization, it is difficult to even satisfy (9.2b) on the training data,
let alone on D. To address this, we follow Singh et al. (2020) by restricting the dy-
namics learning to sparse-structured B(x) of the form, where θB are NN parameters:

B(x) = [0⊤
nx−nu×nu

, BθB(x)
⊤]⊤. (9.15)

Restricting B(x) to this form implies that to satisfy (9.2b),W (x) must be a function of
only the first nx−nu states Singh et al. (2020), which can be satisfied by construction.
When this structural assumption does not hold, we use the method in Sec. 9.3.2.2

In addition to the CCM feasibility conditions, we introduce novel losses to optimize
the tracking tube size (9.12). As (9.12) depends on the nominal trajectory, it is hard to
optimize a tight upper bound on the tracking error independent of the plan. Instead,
we maximize the effective contraction rate,

Ls
opt = α2 max

1≤i≤Nb

(
λ− Lh−g

√
λ̄(M(xi))

λ(M(xi))
(1 + δu(x̃i))

)
, (9.16)

where α2 is a tuned parameter. Optimizing (9.16) while ensuring (9.2a) holds over
the dataset is a challenging task for unconstrained NN optimizers. To ameliorate this,
we use a linear penalty on constraint violation and switch to a logarithmic barrier
Keshavarz et al. (2011) to maintain feasibility upon achieving it. Let the combination
of the logarithmic barrier and the linear penalty be denoted logb(·). Then, the full
loss function can be written as logb(−Ls

NSD) + Ls
opt.

9.3.2.2 Using (9.3)

For systems that do not satisfy (9.15), we must use the weaker contraction condi-
tions (9.3). In this case, we cannot use the optimization-based controllers proposed
in Singh et al. (2019), and we instead learn u(x̃, x∗, u∗) in tandem with M(x). As
in (9.14), we enforce (9.3) by relaxing it to Lw

NSD. We represent u(x̃, x∗, u∗) with the
following structure:

u(x̃, x∗, u∗) = |θu1 | tanh
(
uθu2 (x̃, x

∗)x̃
)
+ u∗, (9.17)

187

where θui are NN weights. The structure of (9.17) simplifies ūfb estimation, since
‖u(x̃, x∗, u∗)− u∗‖ < |θu1 | for all x, x∗, u∗. We define Lw

opt as in (9.16), without the δu
term. Then, our full loss function is logb(−Lw

NSD) + Lw
opt + α3|θu1 |.

We note that since the optimizer can reach a local minima, we may not find a
valid CCM even if one exists. Some strategies we found to improve training reliability
were the log-barrier and by gradually increasing α2 and α3 with the training epoch.
If we can find a valid CCM on S, we can verify in probability if it is also valid over
D, as we now discuss.

9.3.3 Designing and probabilistically verifying the trusted domain

The validity of the tracking bound (9.12) depends on having overestimates of Lh−g,
λ̄D(M), and δu, an underestimate of λD(M), and the validity of (9.2a)/(9.3) over D.
In this section, we describe our solution to Prob. IX.2, showing how to design a D
and how to estimate these constants over D.

First, let us consider how to estimate the constants over a given D. To obtain
probabilistic over/under-estimates of these constants that are each valid with a user-
defined probability ρ, we use a stochastic approach from extreme value theory. For
brevity, we describe the basics and refer to (Knuth et al., 2021a, p.3), Weng et al.
(2018) for details. This approach estimates the maximum of a function η(z) over a
domain Z by collecting Ns batches of i.i.d. samples of z ∈ Z of size Nb, and evaluating
{sj}Ns

j=1
.
= {max1≤i≤Nb

η(zji)}Ns

j=1 to obtainNs samples of empirical maxima. If the true
maximum is finite and the distribution of sampled sj converges with increasing Ns,
the Fisher-Tippett-Gnedenko (FTG) theorem De Haan and Ferreira (2007) dictates
that the samples converge to a Weibull distribution. This can be empirically verified
by fitting a Weibull distribution to the sj, and validating the quality of the fit with a
Kolmogorov-Smirnov (KS) goodness-of-fit test DeGroot and Schervish (2013). If this
KS test passes, the location parameter of the fit Weibull distribution, adjusted with a
confidence interval which scales in size with the value of the user-defined probability
ρ, can serve as an estimate for the maximum which overestimates the true maximum
with probability ρ. Finally, we note (as in Chapter VIII) that this probability holds
in the limit of infinite samples Ns, since the FTG theorem only makes claims on
asymptotic convergence to the Weibull distribution.

To estimate Lh−g, we follow Knuth et al. (2021a) to obtain a probabilistic overesti-
mate of Lh−g by defining Z = D and η to be the slopes between pairs of points drawn
i.i.d. fromD. This approach can also be used as follows to estimate λ̄D(M), −λD(M),
and δu. Since the eigenvalues of a continuously parameterized matrix function are
continuous in the parameter Li and Zhang (2019) (here, the parameter is x, sinceM is
a function of x) and D is bounded, these constants are finite, so by the FTG theorem,
we can expect the samples sj to be Weibull. Hence, we can estimate these constants
by defining Z = projx(D), where projx(D)

.
=
⋃

x̄∈S Br(x̄) ⊃ {x | ∃u, (x, u) ∈ D},
and by setting η appropriately for each constant. Finally, FTG can also proba-
bilistically verify (9.2a) and (9.3), since the verification is equivalent to ensuring

supx∈projx(D) λ̄(C
(·)(x)) ≤ λ

(·)
CCM for some λ

(·)
CCM < 0. λsCCM can be estimated by set-

ting Z = projx(D) and η(x) = λ̄(Cs(x)). To estimate λwCCM, we set Z = Bǫmax
(0)×D

188

(xi, ui) ∈ SD

r

xI

xG

X

D

xn(tn)

ε̄n(tn
)

xc(t)

ε̄c(t)

X

Figure 9.2: Left: an example of the trusted domain D, with the dataset S being
shown as black dots. Note that a careful choice of r is needed; for a slightly smaller
r than that shown in the figure, the upper and lower portions of D will become
disconnected, leading to plan infeasibility. Right: An example of LMTCD-RRT in
action. Regions in D that are shaded darker blue have smaller model error ‖d‖;
lighter shades have higher error ‖d‖. Note that D is also a union of balls here;
we have suppressed the boundaries of each individual ball to reduce clutter. The
orange extension to the pink branch of the RRT is rejected, since the tube around
that extension (dark magenta) exits D and intersects with the obstacle; the larger
size of this tube results from the pink branch traveling through higher error regions.
In contrast, the cyan branch (lower) accepts the yellow candidate extension, as its
corresponding tube (dark cyan) remains inside D and collision-free; the smaller tube
sizes reflect that the blue branch has traveled through lower-error regions. This type
of behavior biases the planner to ultimately return a path that travels through lower-
error regions.

and η(x̃, x∗, u∗) = λ̄(Cw(x̃, x∗, u∗)), and sample (x∗, u∗) ∈ D and x̃ ∈ Bǫmax
(0). Here,

ǫmax ≤ µ̂ will upper-bound the allowable tracking tube size during planning (cf. Alg.
IX.1, line 8); thus, to ensure that planning is minimally constrained, ǫmax should be
selected to be as large as possible while maintaining λwCCM < 0. As all samples are
i.i.d., the probability of (9.12) holding, and thus the overall safety probability assured
by our method, is the product of the user-selected ρ for each constants.

Before moving on, we note that other than for Lh−g, the estimation procedure
does not affect data-efficiency, as it queries the learned dynamics and requires no new
data of the form (x, u, h(x, u)). Moreover, some methods Fazlyab et al. (2019); Jordan
and Dimakis (2020) deterministically give guaranteed upper bounds on the Lipschitz
constant of NNs, and can be used to estimate all constants except Lh−g. We do not
use these methods due to their scalability issues, but as further work is done in this
area, these methods may also become applicable.

Finally, we discuss how to select r, which determines D (Fig. 9.2, left). A rea-

189

sonable choice of r is one that is maximally permissive for planning, during which
we will need to ensure that the tracking tube around the planned trajectory remains
entirely in D (cf. Sec. 9.3.4 for more details). However, finding this r is non-trivial
to achieve and requires trading off many factors. For large r, planning may become
easier since this increases the size of D; however, model error and Lh−g also degrades
with increased r, which may make ǭ(t) and ūfb(t) grow, which in turn grows the track-
ing tube size, making it harder to fit the tube within D. Also, (9.2a)/(9.3) may not
be satisfied over D for large r. For small r, the model error and Lh−g remain smaller
due to the closeness to S, leading to smaller tubes, but planning can be challenging,
as D may be too small to contain even these smaller tubes. In particular, planning
between two states in D can become infeasible if D becomes disconnected.

Algorithm IX.1: LMTCD-RRT

Input: xI , xG, S, {ei}Ni=1, estimated constants, µ, E0
1 T ← {(xI ,

√
E0/λD(M), 0)};P ← {(∅, ∅)} // node: state, energy,

time; parent: previous control/dwell time

2 while True do
3 (xn, ǭn, tn)← SampleNode(T) // sample a node from the tree for

expansion

4 (uc, tc)← SampleCandidateControl () // sample a control action

and dwell time

5 (x∗c(t), u
∗
c(t))← IntegrateLearnedDyn (xn, uc, tc) // apply control

for dwell time; get candidate tree extension

6 ǭc(t)← TrkErrBndEq12 (ǭn, x
∗
c(t), u

∗
c(t), S, {ei}Ni=1) // compute

tracking error tube for candidate tree extension

7 D1
chk ← (x∗(t), u∗(t)) ∈ Dǭc(t)−ūfb(t), ∀t ∈ [tn, tn + tc) // check if tube

around cand. extension remains within D
8 if controller learned using (9.3) then D2

chk ← ǭc(t) ≤ ǫmax, ∀t ∈ [tn, tn + tc)
9 else D2

chk ← True // if using a controller satisfying (9.3),
check if accumulated tracking error is below tolerance

10 C ← InCollision (x∗(t), u∗(t), ǭc(t)) // check if tracking error

tube collides with obstacles

11 if D1
chk ∧D2

chk ∧ ¬C then T ← T ∪ {(x∗(tn + tc), ǭc(tn + tc), tc)};
P ← P ∪ {(uc, tc)}

12 else continue // add node and corresponding parent if all checks

pass

13 if ∃t, x∗c(t) ∈ Bµ(xG) then break; return plan // return path upon

reaching goal

To trade off these competing factors, we propose the following solution for selecting
r. We first find a minimum r, rconnect, such that D has a single connected component.
Depending on how S is collected, one may wish to first filter out outliers that lie far
from the bulk of the data. We calculate the connected component by considering the
dataset as a graph, where an edge between (xi, ui), (xj, uj) ∈ S exists if ‖(xi, ui) −
(xj, uj)‖ ≤ r. We then determine if the contraction condition (9.2a)/(9.3) is satisfied

190

for r = rconnect, using the FTG-based procedure. If it is not satisfied, we decrement
r until (9.2a)/(9.3) holds, and select r as the largest value for which (9.2a)/(9.3) are
satisfied. Since r < rconnect in this case, planning can only be feasible between start
and goal states within each connected component; to rectify this, more data should
be collected to train the CCM/controller. If the contraction condition is satisfied
at r = rconnect, we incrementally increase r, starting from rconnect. In each iteration,
we first determine if the contraction condition (9.2a)/(9.3) is still satisfied for the
current r, using the FTG-based procedure. If the contraction condition is satisfied,
we evaluate an approximate measure of planning permissiveness under “worst-case”
conditions2: r− ǭ(t)− ūfb(t), evaluated at a fixed time t = Tquery, where ǭ(t) and ūfb(t)
are computed assuming that for all t ∈ [0, Tquery], ‖(x∗(t), u∗(t)) − (xi∗(t), ui∗(t)))‖ =
max1≤i≤N min1≤j≤N ‖(xi, ui)− (xj, uj)‖, i.e., the dispersion of the training data, and
experiences the worst training error (i.e., ei∗(t) = max1≤i≤N ei, for all t). If the
contraction condition is not satisfied, we terminate the search and select the r with
the highest permissiveness, as measured by the aforementioned procedure.

9.3.4 Planning with the learned model and metric

Finally, we discuss our solution to safely planning with the learned dynamics
(Prob. IX.3). We develop an incremental sampling-based planner akin to a kino-
dynamic RRT LaValle and James J. Kuffner (2001), growing a search tree T by
forward-propagating sampled controls held for sampled dwell-times, until the goal is
reached. To ensure the system remains within D in execution (where the contrac-
tion condition and (9.12) are valid), we impose additional constraints on where T is
allowed to grow.

We denote (with a subscript) Dq = D ⊖ Bq(0) as the state/controls which are at
least distance q from the complement of D, where ⊖ refers to the Minkowski differ-
ence. Since (9.12) defines tracking error tubes for any given nominal trajectory, we
can efficiently compute tracking tubes along any candidate edge of an RRT. Specif-
ically, suppose that we wish to extend the RRT from a state on the planning tree
x∗cand(t1) with initial energy satisfying Ecand(t1) ≤ Et1 to a candidate state x∗cand(t2)
by applying control u∗cand over [t1, t2). This information is supplied to (9.12), and we
can obtain the tracking error ǭcand(t), for all t ∈ [t1, t2). Then, if we enforce that
(x∗(t), u∗(t)) ∈ Dǭcand(t)+ūfb(t) for all t ∈ [t1, t2), we can ensure that the true system
remains within D when tracked with a controller that satisfies ufb(t) ≤ ūfb(t) in exe-
cution. Otherwise, the extension is rejected and the sampling continues. When using
a learned u(x̃, x∗, u∗) with (9.3), an extra check that ǭcand(t) ≤ ǫmax is needed to
remain in Bǫmax

(0)×D (cf. Sec. 9.3.3). Since D is a union of balls, exactly checking
(x∗(t), u∗(t)) ∈ Dǭ(t)+ūfb(t) can be unwieldy. However, a conservative check can be
efficiently performed by evaluating (9.18):

Theorem IX.6. If (9.18) holds for some index 1 ≤ i ≤ N in S,

‖(x∗(t), u∗(t))− (xi, ui)‖ ≤ r − ǭ(t)− ūfb(t), (9.18)

2Roughly, this compares the size of D to the tracking error tube size and feedback control bound,
cf. Sec. 9.3.4 and Thm. IX.6 for further justification.

191

then (x∗(t), u∗(t)) ∈ Dǭ(t)+ūfb(t).

Proof. By (9.18), all (x̄, ū) ∈ Bǭ(t)+ūfb(t)(x
∗(t), u∗(t)) satisfy ‖(xi, ui) − (x̄, ū)‖ ≤ r

by the triangle inequality. Thus, Bǭ(t)+ūfb(t)(x
∗(t), u∗(t)) ⊂ Br(xi, ui) ⊂ D. As

Bǭ(t)+ūfb(t)(x
∗(t), u∗(t)) ⊂ D, (x∗(t), u∗(t)) is at least ǭ(t) + ūfb(t) distance from the

complement of D; thus, (x∗(t), u∗(t)) ∈ Dǭ(t)+ūfb(t).

We note that it can be quite conservative to rely on containment within a single
r-ball; this can be mitigated by a pre-processing step where larger balls are “carved”
out of unions of intersecting r-balls and are also used in the containment check; this
can be potentially done with a method like Deits and Tedrake (2014). We perform
collision checking between the tracking tubes and the obstacles, which we assume are
expanded for the robot geometry; this is made easier since (9.12) defines a sphere for
all time instants. We visualize our planner (Fig. 9.2, right), which we denote Learned
Models in Trusted Contracting Domains (LMTCD-RRT), and summarize it in Alg.
IX.1. We conclude with the following correctness result:

Theorem IX.7 (LMTCD-RRT correctness). Assume that the estimated Lf−g, λ̄D(M),

ūfb(t), and λ
(·)
CCM overapproximate their true values and the estimated λD(M) under-

approximates its true value. Then, when using a controller u(x̃, x∗, u∗) derived from
(9.2), Alg. IX.1 returns a trajectory (x∗(t), u∗(t)) that remains within D in execution
on the true system. Moreover, when using a controller u(x̃, x∗, u∗) derived from (9.3),
Alg. IX.1 returns a trajectory (x∗(t), u∗(t)) such that (x̃∗(t), x∗(t), u∗(t)) remains in
Bǫmax

(0)×D in execution on the true system.

Proof. First, we consider a controller that is derived from (9.2). By Thm. IX.6, Alg.
IX.1 returns a plan (x∗(t), u∗(t)) such that for all t ∈ [0, T], (x∗(t), u∗(t)) ∈ Dǫ(t)+ūfb(t).
If the constants are estimated correctly, Thm. IX.5 holds, ensuring that the tracking
error ǫ(t) in execution is less than ǭ(t), for all t ∈ [0, T]. Furthermore, by the correct
estimation of ūfb(t), the feedback control satisfies ‖ufb(t)‖ ≤ ūfb(t). Thus, for all
t ∈ [0, T], the state/control in execution (x(t), u(t)) remains in Bǫ(t)+ūfb(t)(x

∗(t), u∗(t)).
As (x∗(t), u∗(t)) ∈ Dǫ(t)+ūfb(t), (x(t), u(t)) ∈ D, for all t ∈ [0, T]. To apply this result
for the learned NN controller derived using (9.3), we note that Alg. IX.1 further
ensures that ǭ(t) ≤ ǫmax, for all t ∈ [0, T]. As the preceding discussion shows that
ǫ(t) ≤ ǭ(t) in execution, we have that ǫ(t) ≤ ǫmax; therefore, (x̃∗(t), x∗(t), u∗(t))
remains within Bǫmax

(0)×D in execution.

9.4 Results

To demonstrate LMTCD-RRT on a wide range of systems, we show our method
on a 4D acrobot, 4D nonholonomic car, a 6D underactuated quadrotor, and a 22D
rope manipulation task. Throughout, we will compare with four baselines to show
the need to both use the bound (9.12) and to remain within D, where the bound is
accurate: B1) planning inside D and assuming the model error is uniformly bounded
by the average training error ‖d(t)‖ ≤ ∑N

i=1 ei/N to compute ǭ(t), B2) planning
inside D and using the maximum training error ‖d(t)‖ ≤ max1≤i≤N ei as a uniform

192

0 1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

-2 -1.5 -1 -0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Start

Goal

Figure 9.3: 4D car; planned (solid lines) and executed trajectories (dotted lines).
The filled red circles are obstacles. Tracking tubes for all methods are drawn in the
same color as the planned trajectory. To aid in visualizing D, the small black dots
are a subsampling of S. We plot state space projections of the trajectories: Left:
projection onto the x, y coordinates; Right: projection onto the θ, v coordinates. For
this example, LMTCD-RRT, B1, and B2 remain in D in execution, while B3 and B4
exit D, and also exit their respective tracking tubes, leading to crashes.

Avg. trk. error (Car) Goal error (Car) Avg. trk. error (Quadrotor) Goal error (Quadrotor) Avg. trk. error (Rope) Goal error (Rope)
LMTCD-RRT 0.008 ± 0.004 (0.024) 0.009 ± 0.004 (0.023) 0.0046 ± 0.0038 (0.0186) 0.0062 ± 0.0115 (0.0873) 0.0131 ± 0.0063 (0.0278) 0.0125 ± 0.0095 (0.0352)

B1: Mean, in D 0.019 ± 0.012 (0.054) 0.023 ± 0.016 (0.078) 0.0052 ± 0.0051 (0.0311) 0.0104 ± 0.0161 (0.0735) 18.681 ± 55.917 (167.79) 42.307 ± 126.81 (380.45)
B2: Max, in D 0.02 ± 0.01 (0.05) [19/50] 0.019 ± 0.012 (0.062) [19/50] — [65/65] — [65/65] 17.539 ± 52.380 (157.22) 21.595 ± 64.295 (193.05)
B3: Max, /∈ D 0.457 ± 0.699 (3.640) 1.190 ± 1.479 (7.434) 0.1368 ± 0.2792 (1.5408) 0.8432 ± 1.3927 (9.0958) 111.86 ± 39.830 (170.96) 236.34 ± 72.622 (331.83)
B4: Lip., /∈ D 0.704 ± 2.274 (13.313) 2.246 ± 8.254 (58.32) 0.4136 ± 0.4321 (1.9466) 1.8429 ± 1.5260 (6.9859) 17.301 ± 49.215 (148.43) 36.147 ± 52.092 (147.76)

Table 9.1: Statistics for the car, quadrotor, and rope. Mean ± standard deviation
(worst case) [if nonzero, number of failed trials].

bound, B3) not remaining in D in planning and assuming a uniform bound on model
error ‖d(t)‖ ≤ max1≤i≤N ei in computing ǭ(t) for collision checking, and B4) not
remaining in D and using our error bound (9.12). We note that B3-type assumptions
are common in prior CCM work Singh et al. (2019); Sun et al. (2020). In baselines
that leave D, the space is unconstrained: X = Rnx , U = Rnu . We set the FTG-
based estimation probability ρ = 0.975 for each constant. Please see Table 9.1 for
planning statistics and https://tinyurl.com/lmtcdrrt for a supplementary video which
overviews the method and visualizes our results.
Acrobot (4D): We consider the Acrobot system (an underactuated double pendu-
lum system with a single actuator at the “elbow”); the equations of motion can be
found in Stachowiak and Okada (2006). The system state is four-dimensional, con-
taining the angular positions and velocities: x = [θ1, θ2, θ̇1, θ̇2]

⊤, and the control is
one-dimensional: u = u1. As this model satisfies (9.15), we use the stronger CCM
conditions (9.2). We use 100000 training data-points, with states uniformly sampled
from a tube of width 0.3 around a nominal swing-up trajectory obtained via trajec-
tory optimization on the true dynamics, and with controls uniformly sampled between
[−3, 3]. We note that the executed control at runtime is not explicitly constrained
to fall in this range; however, at planning time, satisfaction of these constraints is

193

https://drive.google.com/file/d/1R1mE417aWerVO0zXISi8_wSM1IzYIP1M/view?usp=sharing

0 0.5 1 1.5 2 2.5 3 3.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-3

-2

-1

0

1

2

3

4

5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

3

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

3

Dataset and tracking tube LMTCD-RRT (Closed-loop)

LMTCD-RRT (Open-loop)Naïve (Closed-loop)

Figure 9.4: 4D underactuated double pendulum; planned (blue lines) and executed
trajectories from various perturbed initial conditions (red lines). Tracking tubes are
shown in grey. The small black dots are a subsampling of S. We plot state space
projections of the trajectories onto the θ1, θ2 coordinates, as well as the θ̇1, θ̇2 coor-
dinates. Top left: the tracking tube computed by LMTCD-RRT, wrapped around a
trajectory planned with the learned dynamics (blue), and overlaid by a subsampling
of the training data. Top right: when using the CCM-based tracking controller,
LMTCD-RRT remains within its tracking tube, and robustly converges to the up-
right equilibrium. Bottom right: executing the plan computed with LMTCD-RRT
open-loop diverges, due to the chaotic nature of the system. Bottom left: a plan
which exits D results in divergence at runtime, leading to failure to converge to the
upright equilibrium.

ensured (probabilistically) by the estimated upper bound on the feedback control ūfb,
together with the check for containment in D. We use this data to train f(x), B(x),
andM(x), with the x needed to trainM(x) coming directly from the state data in the
training set. We model f as an NN with five hidden layers, each of width 512, and B
as a vector of four learnable parameters. We modelM(x) as an NN with three hidden
layers, each of size 512. For simplicity, instead of representing D as a union of balls
around the training data, we simply select D to be {x | ∃t, ‖x− ξt‖ ≤ 0.3} × [−3, 3],
where ξt is the state at time t on the nominal swing-up trajectory.

In Fig. 9.4, we demonstrate that our approach can robustly stabilize around a
swing-up trajectory planned with the learned dynamics. Using LMTCD-RRT, we
plan a trajectory using the learned dynamics (Fig. 9.4, top left, blue), starting
from the downwards equilibrium x0 = [0, 0, 0, 0]⊤, and swinging up to the upright
equilibrium point xG = [π, 0, 0, 0]⊤. To test the robustness of the CCM-based tracking
controller around this plan, we additionally perturb the initial conditions such that
the initial Riemannian energy is bounded by 0.03. The corresponding tracking tube

194

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 9.5: 4D underactuated double pendulum; time-lapse of planned trajectories
and executed rollouts. Fainter (darker) lines correspond to configurations close to the
beginning (end) of the rollout.

Avg. trk. error (Acrobot) Goal error (Acrobot)
LMTCD-RRT (closed-loop) 0.0161 ± 0.0105 (0.2394) 0.0048 ± 0.0050 (0.0255)
LMTCD-RRT (open-loop) 1.7611 ± 1.4001 (47.7217) 8.2124 ± 8.2605 (46.4244)

B3: Max, /∈ D 7.2321 ± 3.7502 (138.3515) 31.8162 ± 22.3194 (110.4946)
Table 9.2: Statistics for the acrobot example. Mean ± standard deviation (worst
case).

195

which accounts for the perturbation in initial condition and the model error is shown
in grey in Fig. 9.4. Using the CCM-based controller around the plan generated
by LMTCD-RRT successfully reaches the upright equilibrium, and all trajectories
remain well within the computed tube (Fig. 9.4, top right). To demonstrate the need
for using the CCM-based controller, we can see that for most of the perturbed initial
conditions, executing the control trajectory planned by LMTCD-RRT in an open-loop
fashion (Fig. 9.4, bottom right) leads to divergence and failure to reach the upright
equilibrium; this is reflective of the chaotic nature of the double pendulum system. We
also compare with a näıve planner, which is not constrained to remain within D (Fig.
9.4, bottom left). As expected, the executed rollouts exit the tubes, as the model
error bound underapproximates the error outside of D, and diverge wildly due both
due to 1) the inability to track the planned trajectory, which contains several sharp
kinks which are artifacts of inaccuracies in the learned dynamics, and 2) the failure
of the CCM-based controller, which may behave poorly outside of D. For intuition,
we also plot time-lapses of the executed trajectory for one of the perturbed initial
conditions in Fig. 9.5. Finally, numerical statistics on the average tracking error
pointwise in time over the rollouts, as well as the average goal error, are presented in
Table 9.2, and show that our method yields both the lowest average tracking error
and goal error.
Nonholonomic car (4D): We consider the vehicle model

ṗx
ṗy
θ̇
v̇

 =

v cos(θ)
v sin(θ)

0
0

+

0 0
0 0
1 0
0 1

[
ω
a

]
,

where u = [ω, a]⊤. As this model satisfies (9.15), we use the stronger CCM conditions
(9.2). We use 50000 training data-points uniformly sampled from [0, 5] × [−5, 5] ×
[−1, 1] × [0.3, 1] to train f(x), B(x), and M(x), with the x needed to train M(x)
coming directly from the state data in S. We model f and B as NNs, each with
a single hidden layer of size 1024 and 16, respectively. We model M(x) as an NN
with two hidden layers, each of size 128. In training, we set w = 0.01 and gradually
increase α1 and α2 to 0.01 and 10, respectively. We select r = 0.6 by incrementally
growing r as described in Sec. 9.3.3, collecting 5000 new datapoints for Ψ, giving us
λ = 0.09, Lh−g = 0.006. δu = 1.01, λ̄D(M) = 0.258, and λD(M) = 0.01.

We plan for 50 different start/goal states in D, taking on average 6 mins, and
compare against the four baselines. We visualize one trial in Fig. 9.3. Over the trials,
LMTCD-RRT and B2 never violate their respective bounds in any of the trials, while
B1, B3, and B4 violate their bounds in 6, 48, and 43 of the 50 trials, respectively,
which could lead to a crash (indeed, B3 and B4 crash in Fig. 9.3). This occurs
as the tracking error bounds for the baselines are invalid, as the baselines’ model
error bounds underestimate the true model error which could be seen in execution.
Moreover, planning is infeasible in 19/50 of B2’s trials, because the large uniform
error bound can make it impossible to reach a goal while remaining in D. This
suggests the utility of a fine-grained disturbance bound like (9.9), especially when

196

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

3

4

-1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

Start

Goal Start

Goal

Figure 9.6: 6D planar (xz plane) quadrotor; planned (solid lines) and executed tra-
jectories (dotted lines). The filled red circles are obstacles. Tracking tubes for all
methods are drawn in the same color as the planned trajectory. The small black dots
are a subsampling of S. We plot state space projections of the trajectories onto the
px, pz coordinates. Left: for this example, LMTCD-RRT remains within its tracking
tube, and all baselines violate their respective bounds near the end of execution (see
inset). Right: for this example, LMTCD-RRT remains within its tracking tube, and
B3 and B4 exit D and crash.

planning in D, which is quite constrained. Note that while B2 does not crash in this
particular example, using the maximum training error can still be unsafe (as will be
seen in later examples), as the true error can be higher in D \ S. Finally, we note
that the tracking accuracy difference between LMTCD-RRT and B1/B2 reflects that
the spatially-varying error bound steers LMTCD-RRT towards lower error regions in
D. Overall, this example suggests that (9.12) is accurate, while coarser disturbance
bounds or exiting D can be unsafe.
Underactuated planar (2D) quadrotor (6D state space): We consider the
quadrotor model in (Singh et al., 2019, p.20) with six states and two inputs:

ṗx
ṗy
φ̇
v̇x
v̇z
φ̈

=

vx cos(φ)− vz sin(φ)
vx sin(φ) + vz cos(φ)

φ̇

vzφ̇− g sin(φ)
−vxφ̇− g cos(φ)

0

+

0 0
0 0
0 0
0 0

1/m 1/m
l/J −l/J

[
u1
u2

]
,

where x = [px, pz, φ, vx, vz, φ̇], modeling the linear/angular position and velocity, and
u = [u1, u2], modeling thrust. We use the parameters m = 0.486, l = 0.25, and
J = 0.125. These dynamics also satisfy (9.15), so we use the stronger CCM conditions
(9.2). We sample 245000 training points from [−2, 2]×[−2, 2]×[−π/3, π/3]×[−1, 1]×
[−1, 1]×[−π/4, π/4] to train f(x), B(x), andM(x), with the x data for trainingM(x)

197

being the state data in S. We model f and B as NNs with a single hidden layer of size
1024 and 16, respectively. We model M(x) as an NN with two hidden layers of size
128. In training, we set w = 0.01 and gradually increase α1 and α2 to 0.001 and 0.33,
respectively. We select r = 1.0 by incrementally growing r as in Sec. 9.3.3, resulting
in 10000 new datapoints for Ψ. This gives us λ = 0.09, Lh−g = 0.007. δu = 1.9631,
λ̄D(M) = 4.786, and λD(M) = 0.0909.

We plan for 65 different start/goal states within D, taking 1 min on average, and
compare against the baselines. We visualize two trials in Fig. 9.6. Our attempts to
run B2 failed, as the error bound was too large to feasibly plan withinD in all 65 trials,
again suggesting the need for a local model error bound. Over these trials, LMTCD-
RRT never violates its computed bound in execution, while B1, B3, and B4 violate
their bounds 14/65, 32/65, and 65/65 times, respectively. As for the car example,
these bounds are violated because the model error descriptions assumed by these
baselines can underestimate the true model error seen in execution. From Table 9.1,
one can see that LMTCD-RRT obtains the lowest error, though it is closely matched
by B1. However, LMTCD-RRT never violates the tracking tubes in execution, while
B1 does (i.e., Fig. 9.6, left). B3-B4 perform poorly, with the controller failing to
overcome the model error, causing crashes (Fig. 9.6, right). Overall, this example
highlights the need for LMTCD-RRT’s local error bounds while demonstrating our
method’s applicability to highly-underactuated systems.
10-link rope (22D): To demonstrate that our method scales to high-dimensional,
non-polynomial systems well beyond the reach of SoS-based methods, we consider
a planar rope manipulation task simulated in Mujoco Todorov et al. (2012). We
consider a 10-link (11-node) rope approximation, where each link can stretch, and
the head of the rope (see Fig. 9.7(d)) is velocity-controlled. The system has 22
states: the first two contain the xy position of the head, and the rest are the xy
positions of the other nodes, relative to the head, and the system has two controls for
the commanded xy head velocities. We wish to steer the tail of the rope to a given
xy region while ensuring the rope does not collide in execution (cf. Fig. 9.7). This
is a challenging task, as the tail of the rope is highly underactuated, and steering it
to a goal requires modeling the complicated friction forces that the rope is subjected
to. We collect three demonstrations to train the dynamics (see the supplementary
video for a visualization): in the first, the rope begins horizontally and performs a
counterclockwise elliptical loop; the second starts vertically and moves up, the third
begins horizontally and moves right, giving a total of 20500 datapoints. As the rope
dynamics do not satisfy (9.15), we learn both M(x) and u(x̃, x∗, u∗); to do so, we
sample 20500 state/control perturbations around the demonstrations and evaluate
the dynamics at these points, giving |S| = 41000. We model f and B as three-layer
NNs of size 512. M(x) is modeled with two hidden layers of size 128, and u(x̃, x∗, u∗)
is modeled with a single hidden layer of size 128. In training, we set w = 1.0 and
gradually increase α1 and α3 to 0.005 and 0.56, respectively. To ensure that the
CCM and controller are invariant to translations of the rope, we enforce M(x) and
u(x̃, x∗, u∗) to not be a function of the head position. To simplify the dynamics
learning, we note that as the head is velocity-controlled, it can be modeled as a
single-integrator; we hardcode this structure and learn the dynamics for the other

198

20 states. We obtain ǫmax = 0.105 and select r = 0.5 by incrementally growing r
as in Sec. 9.3.3, resulting in |Ψ| = 10000, λ = 0.0625, Lh−g = 0.023, ūfb = 0.249,
λ̄D(M) = 3.36, and λD(M) = 1.

We plan for 10 different start/goal states within D, taking 9 min on average, and
compare against the baselines. As this example uses the learned controller (9.17),
we adapt the baselines so that B1 and B2 remain in Bǫmax

(0) ×D, while B3 and B4
are unconstrained. We visualize one task in Fig. 9.7: the rope starts horizontally,
with the head at [0, 0], and needs to steer the tail to [3, 0], within a 0.15 tolerance.
LMTCD-RRT stays very close to the training data, reaching the goal with small
tracking tubes. B1 and B2 also remain close to the training data as they plan in D,
but as both the mean and maximum bounds may underestimate the true model error
in D, they stray too close to the boundary of D, and the larger model error pushes
them out of D, causing the system to become unstable as the learned u applies large
inputs in an attempt to stabilize around the plan. B3 exploits errors in the model,
planning a trajectory which is highly unrealistic. This is allowed to happen because
the maximum error severely underestimates the model error outside of D, leading
to a major underestimate of the tracking error that would be seen in execution.
When executing, the system immediately goes unstable due to the large distance
between the plan and the training data. The plan from B4 is forced to remain close
to the training data at first, in order to move through the narrow passage. This is
because the Lipschitz bound, while an underestimate outside of D, still grows quickly
with distance from S; attempting to plan a trajectory similar to B3 fails, since the
tracking error tube grows so large in this case that it becomes impossible to reach
the goal without the tube colliding with the obstacles. After getting through the
narrow passage, B4 drifts from D and correspondingly fails to be tracked beyond
this point. Over these 10 trials, LMTCD-RRT never violates the computed tracking
bound, and B1, B2, B3, and B4 violate their bounds in 10, 6, 10, and 9 trials out
of 10, respectively. Overall, this result suggests that contraction-based control can
scale to very high-dimensional systems (i.e., deformable objects) if one finds where
the model and controller are good and takes care to stay there during planning and
execution.

9.5 Limitations and Future Directions

In this section, we discuss some limitations of the approach that we propose in
this chapter, as well as ways that these limitations can be addressed.

• Finding a valid CCM for the learned dynamics can be a challenging
and unreliable process. By representing the CCM as a neural network, we
resort to using standard optimization techniques based on stochastic gradient
descent to minimize violation of the CCM conditions (9.3) on the training set;
however, this training procedure is quite prone to local optima. One particu-
larly common local optimum is one where the CCM becomes nearly uniform
across the training set, and all of its eigenvalues approach the preset minimum
eigenvalue w; this is a local optimum which leads to a smaller magnitude of

199

0 1 2 3

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-0.5 0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(LMTCD-RRT) (B1) (B2)

(Mujoco simulation environment) (B3) (B4)

Start

Goal

Head

Tail

Figure 9.7: 22D planar rope dragging task. Snapshots of the planned trajectory
are in black, snapshots of the executed trajectory are in magenta, and the tracking
error tubes are in green. For further concreteness, for each snapshot, we mark the
head of the rope with an asterisk, and we mark the tail of the rope with a solid dot.
Additionally, the trajectory of the tail in the plan is plotted in orange, while the
trajectory of the tail in execution is plotted in blue. Only LMTCD-RRT reaches the
goal, while all baselines become unstable when attempting to track their respective
plans. We also show the original Mujoco simulation environment in the bottom left.

200

violation of the CCM condition (9.3), but generally at this configuration, all
training points tend to still violate (9.3) by some margin. Heuristics that we
have explored which discourage convergence to this optimum are still not very
reliable, and oftentimes many random weight initializations are required to find
a valid CCM. More work is required to improve the robustness of CCM training,
either in improving the loss function to be more robust to these local optima,
or in improving the initialization step by reliably initializing the weights within
the basin of attraction of a valid configuration.

• Systems cannot be arbitrarily underactuated in D. If the stabilizability
properties of the system are not strong enough in the trusted domain D, a

CCM may not exist, or a CCM that does exist is nearly unusable, e.g., λ̄D(M)
λD(M)

becomes extremely large. Worsening this problem is the previous limitation:
the CCM search procedure is far from complete – even if a CCM exists, we are
not guaranteed to find one through our proposed procedure. This can make it
challenging to determine if we need to adjust the domain D over which we are
searching for a CCM, or if we should just restart the training procedure from a
new initialization.

• Training accurate dynamics models and valid CCMs is a data-hungry
process: in using standard multi-layer perceptrons to represent the dynamics
and CCM, accurate generalization to unseen states is generally poor. Conse-
quently, we require large datasets in order to learn dynamics models which are
sufficiently accurate to induce tubes of a reasonable size at planning time. Simi-
larly, to learn a valid CCM, we generally need to enforce (9.3) at many locations
to be valid. To improve this, we can look into leveraging dynamics models with
built-in invariances Zhang et al. (2021) for improved out-of-distribution gen-
eralization, and modifying our model error bound to account for this broader
generalization.

• Obtaining informative data can be challenging. In this work, we assume
that we have enough data to learn a sufficiently accurate dynamics model in the
regions of the state space relevant for steering the system to the desired goal
region. This is realistic if, for instance, demonstrations are provided to help
guide the data collection (as is assumed in the acrobot and rope examples in
Sec. 9.4). In general, without this guidance, it can be challenging to design a
good policy for collecting task-relevant dynamics data. For instance, random
trajectories which attempt to generate data for solving the acrobot swing-up
task in Sec. 9.4 are likely to fail, as the system’s underactuation makes it
challenging to reach parts of the state space where data is needed to complete
the task. An important direction for future work revolves around designing
principled strategies for quickly identifying structure within the underactuated
system to enable informed data collection.

• Known state representations. In this work, we assume that we know the
state variables relevant for completing the task, i.e., the state representation

201

x is known, and we aim to learn a dynamics model within the limitations of
that fixed state representation. In general, one may not know which state
variables should be included to learn a sufficiently accurate model, especially
when learning models from raw observations. Extending our approach to certify
safety for learned latent space planning modules is a direction of our current
research.

• Sim-to-real gap. It can be challenging to collect sufficiently large and accurately-
annotated datasets on hardware platforms, so we may opt to collect data in a
simulator to generate the data used to train our models. However, the simulator
is inevitably an approximation of the real system, and this can increase the in-
accuracy of the learned model relative to the true system. Future work involves
bounding the discrepancy between the simulated and true systems using online
data and using this to buffer our computed tracking tubes, and extending our
approach to work with stochastic systems with noise corruption in the training
dataset. One possible way to achieve this is by directly training a spatially-
varying error bound (and then bounding the underapproximation error with
a spatially-constant buffer, estimated via FTG), instead of parameterizing the
model error with the Lipschitz constant, which is highly sensitive to noise.

• Current tube-based planning is conservative and not adaptive. Two of
the largest bottlenecks in planning are 1) the conservativeness of the tracking
tubes, as well as 2) the conservativeness of our check for containment in the
trusted domain D. For the first shortcoming, a major reason for the conser-
vativeness lies in the fact that we only leverage offline data for training the
dynamics model. To mitigate this issue, we can look into an adaptive variant,
where online data is used to refine the bound on the tracking error, or resort
to shorter-horizon MPC-style planning, which can still admit safety guarantees
if we compute an encompassing robust controlled-invariant set which we can
keep the system within. To mitigate the second issue, we can resort to more
computationally-expensive checks to determine if a query ball (the set of states
that the system is guaranteed to remain within) is contained inside a union of
balls (the trusted domain), or by computing large convex regions of free space
(denoted C) contained within D (as in Deits and Tedrake (2014)) and checking
containment of the query ball inside C, instead of individual balls in the trusted
domain, as is done in this chapter.

9.6 Conclusion

We present a method for safe feedback motion planning with unknown dynam-
ics. To achieve this, we jointly learn a dynamics model, a contraction metric, and
contracting controller, and analyze the learned model error and trajectory tracking
bounds under that model error description, all within a trusted domain. We then
use these tracking bounds together with the trusted domain to guide the planning of
probabilistically-safe trajectories; our results demonstrate that ignoring either com-

202

ponent can lead to plan infeasibility or unsafe behavior. In the next chapter, we
will discuss how we can build upon the ideas presented in this chapter in order to
guarantee safety and robust goal reachability when controlling from image observa-
tions, in the face of uncertain dynamics and potentially inaccurate learned perception
modules.

203

CHAPTER X

Safe Output Feedback Motion Planning from

Images via Learned Perception Modules and

Contraction Theory

In this chapter, we present a motion planning algorithm for a class of uncertain
control-affine nonlinear systems which guarantees runtime safety and goal reachabil-
ity when using high-dimensional sensor measurements (e.g., RGB-D images) and a
learned perception module in the feedback control loop. First, given a dataset of
states and observations, we train a perception system that seeks to invert a subset of
the state from an observation, and estimate an upper bound on the perception error
which is valid with high probability in a trusted domain near the data. Next, we use
contraction theory to design a stabilizing state feedback controller and a convergent
dynamic state observer which uses the learned perception system to update its state
estimate. We derive a bound on the trajectory tracking error when this controller
is subjected to errors in the dynamics and incorrect state estimates. Finally, we
integrate this bound into a sampling-based motion planner, guiding it to return tra-
jectories that can be safely tracked at runtime using sensor data. We demonstrate our
approach in simulation on a 4D car, a 6D planar quadrotor, and a 17D manipulation
task with RGB(-D) sensor measurements, demonstrating that our method safely and
reliably steers the system to the goal, while baselines that fail to consider the trusted
domain or state estimation errors can be unsafe. This chapter is based off the paper
Chou et al. (2022a).

10.1 Introduction

Safely and reliably deploying an autonomous robot requires a systematic analysis
of the uncertainties that it may face across its perception, planning, and feedback
control modules. State-of-the-art methods largely analyze each module separately;
e.g., by first certifying perception Yang et al. (2021), finding a safe plan under a
nominal dynamics model LaValle (2006), and then using a stable tracking controller
Singh et al. (2019). However, this ignores how the errors in each module can prop-
agate. Inaccuracies in the dynamics and perception can destabilize the downstream

204

Measurement:
RGB image

(C)Measurement:
RGB-D image (A)

Measurement:
RGB image

(B)

py

px

pz

px

Figure 10.1: For a 4D car, a 6D quadrotor, and a 14D arm, we compute plans that
can be safely stabilized to reach goals at runtime using rich sensor observations in the
form of RGB(-D) images.

feedback controller and lead to failure, revealing a need to unify perception, planning,
and control to guarantee safety for the end-to-end autonomy pipeline.

To address this gap, we consider one such unified approach: the Output Feedback
Motion Planning problem (OFMP) Renganathan et al. (2020), which jointly plans
nominal trajectories and designs feedback controllers which safely stabilize the sys-
tem to some goal when using imperfect state information (i.e., output feedback). A
concrete way to solve the OFMP is to bound the set of states that the system may
reach while tracking a plan using output feedback, that is, a closed-loop output feed-
back trajectory tracking tube, and ensure it is collision-free. Practical robots present
challenges in solving the OFMP:

1. The tracking tubes should be efficiently computable for arbitrary trajectories so
that they can be used in the planning loop to restrict the set of states that can
be safely visited. However, solving this reachability problem is computationally
demanding.

2. Processing rich sensor data (e.g., images, depth maps, etc.) at runtime is often
done via deep learning-based perception modules, which are powerful but error-
prone. Bounding this error and bounding its effect on trajectory tracking error
is difficult.

To address the first challenge, we use contraction theory, which is of specific
interest for the OFMP as it enables the 1) design of stabilizing feedback controllers
Manchester and Slotine (2017) and convergent state estimators Dani et al. (2015) and
2) fast computation of tracking/estimation tubes, given a bound on the disturbances
that the controller and observer are subjected to Manchester and Slotine (2014).
Estimating this bound is central to our solution of the second challenge, where we
use data to 1) estimate a bound on the error of a learned perception module which is
valid with high probability and 2) bound the level to which incorrect state estimates
can destabilize the controller. Combining these solutions provides accurate tubes
that can be used in planning. In summary, we develop a contraction-based output
feedback motion planning algorithm for control-affine systems stabilized from image
observations, which retains probabilistic guarantees on safety and goal reachability.
Our specific contributions are:

• A learning-based framework for integrating high-dimensional observations into

205

contraction-based control and estimation that can generalize across environ-
ments

• A trajectory tracking error bound for contraction-based feedback controllers in
output feedback, subjected to a disturbance that accurately reflects the percep-
tion error

• A sampling-based planner which solves the OFMP, returning plans that can be
safely tracked and that reliably reach the goal at runtime using image observa-
tions

• Validation in simulation on a 4D nonholonomic car, a 6D planar quadrotor, and
a 17D manipulation task, maintaining safety whereas baseline approaches fail

10.2 Preliminaries and Problem Statement

We consider uncertain continuous-time control-affine nonlinear systems (which
include many common mechanical systems of interest LaValle (2006)) with output
observations

ẋ(t) = f(x(t)) + Bu(t) + Bw(t)wx(t) (10.1a)

y(t) = h(x(t), θ) + Bywy(t) (10.1b)

where f : X → X , X ⊆ Rnx , B ∈ Rnx×nu , Bw : [0,∞) → Rnx×nwx , By ∈ Rny×nwy ,
U ⊆ Rnu , and wx ∈ Rnwx is a possibly stochastic state disturbance where ‖wx(t)‖ ≤
w̄x, for all t. Without loss of generality, we assume ‖Bw(t)‖ ≤ 1, for all t. Norms ‖ · ‖
without subscript are the (induced) 2-norm. We obtain high-dimensional observations
y ∈ Y ⊆ Rny (e.g., N × N -pixel RGB-D images, leading to ny = 4N2), generated
by a deterministic, nonlinear function h(x, θ) : X × Θ → Y which is unknown to
the robot; here, θ ∈ Rnp are external parameters (e.g., location of obstacles, map
of environment, etc.). The observations may be corrupted by (possibly stochastic)
sensor noise wy(t) ∈ Rnwy , where ‖wy(t)‖ ≤ w̄y, for all t. We note that our results
also apply to time-varying B(t) under some conditions on its null-space.

We assume that (10.1a) is locally incrementally exponentially stabilizable (IES) in
domain Dc ⊆ X , that is, there exists an α, λ > 0, and some feedback controller such
that for any nominal trajectory x∗(t) ⊆ Dc, ‖x∗(t) − x(t)‖ ≤ αe−λt‖x∗(0) − x(0)‖
for all t. While stronger than asymptotic stability, many underactuated systems
are IES Manchester et al. (2015). We also assume that (10.1) is locally universally
detectable Manchester and Slotine (2014), which ensures that any two trajectories
x1(t) and x2(t) in a domain De ⊆ X that yield identical observations y1(t) and y2(t)
for all t converge to each other as t→∞, i.e., x1(t)→ x2(t). Similar assumptions are
common in the estimation literature Maybeck (1979) to ensure estimator convergence,
and do not require the full state to be observable instantaneously, e.g., as in Dean
et al. (2020b).
Definitions: We assume X is partitioned into (un)safe (Xunsafe) Xsafe sets (e.g.,
obstacles). Let (S>0

n) Sn be the set of (positive definite) symmetric n×n matrices. For

206

Q ∈ Sn, denote λ̄(Q) and λ(Q) as its maximum and minimum eigenvalues. If Q(x)
is a matrix-valued function over a domain D, we denote λ̄D(Q)

.
= supx∈D λ̄(Q(x))

and λD(Q)
.
= infx∈D λ(Q(x)). Let the Lie derivative of a matrix-valued function

Q(x) ∈ Rn×n along a vector y ∈ Rn be denoted as ∂yQ(x)
.
=
∑n

i=1 y
i ∂Q
∂xi , where x

i is
the ith element of vector x. For a smooth manifold X , a Riemannian metric tensor
M : X → S>0

nx
provides the tangent space TxX with an inner product δ⊤xM(x)δx,

where δx ∈ TxX . The length l(c) of a curve c : [0, 1] → X between c(0), c(1) is

l(c)
.
=
∫ 1

0

√
V (c(s), cs(s))ds, where V (c(s), cs(s))

.
= cs(s)

⊤M(c(s))cs(s), and cs(s)
.
=

∂c(s)/∂s. The Riemannian distance between p, q ∈ X is d(p, q)
.
= infc∈C(p,q) l(c),

where C(p, q) contains all smooth curves between p and q; a curve γ(p, q) achieving
the argmin is called a geodesic.

10.2.1 Problem statement

We formally state the output feedback motion planning problem (OFMP) as fol-
lows:
OFMP: Given start xI , external parameter θ ∈ Dθ, goal region G ⊆ Dx (Dθ, Dx are
defined in the next paragraph), and safe set Xsafe, we want to plan a state-control
trajectory x∗ : [0, T] → X , u∗ : [0, T] → U , x∗(0) = xI , under the nominal dynamics
ẋ(t) = f(x(t))+Bu(t) such that in execution on the true system (10.1a), x(t) ∈ Xsafe

for all t ∈ [0, T] and x(T) ∈ G. At runtime, we do not observe x(t); we are only
given observations y(t) generated by (10.1b), and must track x∗ using a (dynamic)
output feedback controller that we must also design. We assume f , B, Bw, and By

are known; h is unknown; wx, wy are not measurable but w̄x and w̄y are known. If
nr ≤ nx of the states can be inferred directly from y, we denote these indices as the
reduced observation yr = Crx ∈ Rnr , where Cr ∈ {0, 1}nr×nx is a boolean matrix that
selects the observable dimensions of x. We assume that we are given Cr. Let x(t) be
the executed trajectory of (10.1a), and let x̂(t) be the trajectory of the state estimate.
We are given upper bounds d̄c(0), d̄e(0)on the Riemannian distance between the true
and estimated initial state de(x(0), x̂(0)) and between the true/planned initial state
dc(x

∗(0), x(0)); de(·, ·) and de(·, ·) are defined with respect to (w.r.t.) metrics Mc and
Me, defined in Sec. 10.2.2.

To help solve the OFMP, we are given two datasets. The first is S = {h(xi, θi), xi, θi}Ndata

i=1 ,
a dataset of noiseless (cf. Sec. 10.5 for some possibilities on how to relax this as-
sumption) observation-state-parameter triplets, where xi ∈ Dp ⊆ X , θi ∈ Dθ ⊆ Θ
are collected by any means (sampling, demonstrations, etc.). We assume Dp and
Dθ (the domains where S is drawn from) are known, though this can be relaxed by
estimating these sets as in Chou et al. (2021c); Knuth et al. (2021a). We are also
given a validation dataset V = {h(xi, θi), xi, θi}Nval

i=1 collected i.i.d. in Dp×Dθ. In the
context of (10.1b), h(x, θ) may be a simulated image, and Bywy(t) is the sensor noise
at runtime. We also define a “trusted domain” for planning, D = Dx×Dθ ⊆ X ×Θ,
where Dx = Dr∩Dc∩De and Dr is defined as follows: for ease, suppose Cr selects the
first nr indices of x, then Dr = (CrDp)×Rnx−nr . Dr is defined similarly if Cr selects
other indices (cf. Fig. C.1). Ultimately, Dx is a set where a stabilizing controller (in
Dc) and state estimator (in De) exist, and where the perception is valid (in Dr).

207

10.2.2 Control/observer contraction metrics (CCMs/OCMs)

As our approach builds on contraction theory, we provide an overview here. Con-
trol contraction theory Manchester and Slotine (2017) studies incremental stabiliz-
ability by measuring the distances between trajectories w.r.t. a Riemannian metric
Mc : X → S>0

nx
. For (10.1a) if wx ≡ 0, a sufficient condition Singh et al. (2019) for Mc

to be called a control contraction metric (CCM) is:

B⊤
⊥

(
− ∂fWc(x) + A(x)Wc(x) +Wc(x)A(x)

⊤ + 2λcWc(x)
)
B⊥ � 0 (10.2a)

B⊤
⊥

(
∂BjWc(x)

)
B⊥ = 0, j = 1...nu, (10.2b)

for all x ∈ Dc, where Wc(x)
.
= M−1

c (x), A(x) = ∂f(x)
∂x

, and B⊥ is a basis for the null-
space of B. The CCM also defines a controller u : X × X × U → U , which takes the
current state x(t) and a state/control x∗(t), u∗(t) on the nominal state/control tra-
jectory being tracked x∗ : [0, T]→ X , u∗ : [0, T]→ U , and returns a u that contracts
x towards x∗ at rate λc > 0. The controller u(x, x∗, u∗) can be computed directly
via Wc(x) (cf. Sec. 10.3.2). If wx ≡ 0, for any nominal x∗(t), applying u(x, x∗, u∗)
renders the system closed-loop IES, i.e., ‖x(t) − x∗(t)‖ ≤ αc‖x(0) − x∗(0)‖e−λct for
αc > 0. For bounded wx, (10.1a) remains in a tube around x∗(t); we exploit this in
Sec. 10.3.2. Contraction also analyzes the convergence of state observers Dani et al.
(2015); Manchester and Slotine (2014), i.e., whether a state estimate x̂(t) approaches
the true state x(t). Consider the nominal closed-loop system ẋ = f(x)+Bu(x̂, x∗, u∗)
with noiseless observations y = h(x, θ) and a nominal observer

˙̂x = f(x̂) + Bu(x̂, x∗, u∗) + 1
2
ρ(x̂)Me(x̂)C(x̂)

⊤(y − h(x̂, θ)) (10.3)

for the nominal system, where C(x) = ∂h(x,θ)
∂x

, ρ(x) ≥ 0 is a multiplier term, and
Me : X → S>0

nx
is called an observer contraction metric (OCM), which should satisfy

∂f+BuWe(x̂) +We(x̂)A(x̂) + A(x̂)⊤We(x̂)− ρ(x̂)C(x̂)⊤C(x̂) ≤ −2λeWe(x̂) (10.4)

for all x̂ ∈ De ⊆ X , u ∈ U . Here, We(x̂) = M−1
e (x̂). To show that the estimated

and true trajectories x̂(t) and x(t) converge, we can analyze a nominal “meta-level”
virtual system with state q Tsukamoto and Chung (2021), which recovers the nominal
x(t) and x̂(t) when integrated from initial conditions q(0) = x(0) and q(0) = x̂(0):

q̇ = f(q) + Bu(x̂, x∗, u∗) + 1
2
ρ(x̂)Me(x̂)C(x̂)

⊤(y − h(q, θ)). (10.5)

By setting q = x̂, we recover the estimator dynamics (10.3); if we set q = x, we
recover ẋ = f(x) + Bu(x̂, x∗, u∗). We can then analyze the convergence of x̂ to x
via (10.5), and Tsukamoto and Chung (2021) shows that if (10.4) holds, then x̂(t)
contracts at some rate γ ∈ (0, λe] towards x(t). If Me(x) and C(x) are constant, one
can show that this holds for γ = λe, and in our experiments, we will rely on constant
Me(x) and C(x). In particular, ‖x(t)− x̂(t)‖ ≤ αe‖x(0)− x̂(0)‖e−λet for αe > 0, and
x̂(t) remains in a tube around x(t) if (10.3) is perturbed. For polynomial systems
of moderate dimension (nx . 12) with polynomial observation maps, CCMs and

208

u(x̂, x
∗
, u

∗
) ẋ = f(x) +Bu(x̂, x

∗
, u

∗
) +Bwwx

ĥ−1
(y, θ)

θ

y

ŷrx̂

System dynamicsCCM-based controller

OCM-based observer
˙̂x = f(x̂) +Bu(x̂, x∗, u∗

) +

) +
1

2
ρMeC

⊤

r
(ŷr − Crx̂)

(x
∗
, u

∗
)

Plan:

Compute tubes
2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

OFFLINE ONLINE

Ωc,Ωe

(e.g. obstacle map)

Figure 10.2: Our method. Offline: After learning a perception system ĥ−1 (Sec.
10.3.1), we bound its error to derive tracking tubes under imperfect perception
(Sec. 10.3.2). We use these tubes to find safely-trackable plans (Sec. 10.3.4). On-
line: We design a CCM/OCM-based controller/observer (Sec. 10.3.3) to track the
plan/perform state estimation at runtime, using ĥ−1 to process rich observations y.

OCMs can be found via convex Sum of Squares (SoS) programs Singh et al. (2019).
CCMs/OCMs can also be found for high-dimensional non-polynomial systems via
learning-based methods (e.g., Chou et al. (2021c); Sun et al. (2020)).

10.3 Method

We describe our solution to the OFMP (cf. Fig. 10.2). Using dataset S, we first
train a perception system that returns a reduced-order observation that simplifies the
search for the contraction metrics (Sec. 10.3.1). Second, we bound the error of the
learned perception module, and propagate this perception error bound through the
system to derive bounds on the tracking and estimation error when using a CCM-
/OCM-based controller/estimator (Sec. 10.3.2). Third, we obtain a CCM and OCM
which optimizes this bound via SoS programming (Sec. 10.3.3). Finally, we use these
bounds to constrain a planner to return trajectories that enable safe runtime tracking
and robust goal reachability from observations (Sec. 10.3.4). For space, all proofs for
the theoretical results are in App. C.3.

10.3.1 Learning a perception module for contraction-based estimation

Let us reconsider the observer (10.3), which updates its estimate directly using
y − h(x̂, θ) in the rich observation space. To implement (10.3), one can use S to
train a deep approximation of h, denoted ĥ, design an OCM satisfying (10.4) for

C(x̂) = ∂ĥ(x̂,θ)
∂x

, and plug ĥ and the OCM into (10.3). This näıve solution is flawed: 1)

as ny is large, learning an accurate ĥ can be difficult; 2) the C(x̂) in (10.4) becomes
the Jacobian of a (non-polynomial) deep network, complicating OCM synthesis by
precluding the use of SoS programming.

We can take a more structured approach if we know which states can be directly
inferred from y; this is reasonable if the states have semantic meaning (e.g., poses,
velocities). Recall Cr (Sec. 10.2.1) defines this reduced observation as yr = Crx ∈ Rnr .
We can then learn an approximate inverse ĥ−1(y, θ) : Rny×Rnp → Rnr which maps a y
and θ to the reduced observation. Note that if each unique y corresponds to a unique
yr, this inverse is well-defined and does not require the full state to be invertible

209

from a single y. Concretely, consider a car with position, orientation, and velocity
states [px, py, φ, v] and RGB-D data from an onboard camera (Fig. 10.1.A) driving
in several obstacle fields. In this case, yr = [px, py, φ]

⊤ and θ could be the obstacle

locations. We model ĥ−1 as a neural network and train it via the mean squared error
between ĥ−1(yi, θi) and Crxi for all i ∈ 1, . . . , Ndata. Note that as the nominal reduced
observations are roughly linear, i.e., ĥ−1(h(x, θ), θ) ≈ Crx, this simplifies the nominal
observer (10.3) to ˙̂x = f(x̂) +Bu(x̂, x∗, u∗) + 1

2
ρ(x̂)Me(x̂)C

⊤
r Cr(x− x̂), and simplifies

OCM synthesis: as C⊤
r Cr is constant, (10.4) is SoS-representable, despite ĥ−1 being

non-polynomial. Compared to the nominal reduced observer, the true observer we
use,

˙̂x = f(x̂) + Bu(x̂, x∗, u∗) + 1
2
ρ(x̂)Me(x̂)C

⊤
r (ĥ

−1(h(x, θ) + Bywy, θ)− Crx̂), (10.6)

experiences disturbance from model error Bwwx, sensor noise Bywy, and learning

error ‖ĥ−1(h(x, θ), θ)− Crx‖. Quantifying these errors for our vision-based observer
(10.6) is one of our core contributions and is key in deriving tracking bounds useful
for planning.

10.3.2 Bounding tracking error and state estimation error for planning

To begin, assume we have a CCM Mc and an OCM Me that are valid in Dc ⊆
X and De ⊆ X and which contract at rate λc and λe, respectively. We discuss
CCM/OCM synthesis in Sec. 10.3.3. Define the nominal closed-loop state and virtual
dynamics as:

ẋ(t) = f(x(t)) +Bu(x(t), x∗(t), u∗(t)) (10.7a)

q̇(t) = f(q(t)) +Bu(x̂(t), x∗(t), u∗(t)) + 1
2ρ(q(t))Me(q(t))C

⊤
r Cr(x(t)− q(t)) (10.7b)

Factor the CCM/dual OCM as Mc(x) = Rc(x)
⊤Rc(x) and We(x) = Re(x)

⊤Re(x).
Let γtc(s), s ∈ [0, 1] be the geodesic between x∗(t) and x(t) w.r.t. Mc, and γte(s),
s ∈ [0, 1] be the geodesic between x̂(t) and x(t) w.r.t. We. Manchester and Slotine
(2014) shows if γtc(s) ⊆ Dc for all t, s and (10.7a) is perturbed by wc(t), i.e., ẋ =
f(x) + Bu(x, x∗, u∗) + wc, the Riemannian distance w.r.t. Mc between the true and
nominal state, dc(t) = dc(x

∗(t), x(t)), satisfies:

ḋc(t) ≤ −λcdc(t) +
∫ 1

0
‖Rc(γ

t
c(s))wc(t)‖ds. (10.8)

If γte(s) ⊆ De for all t, s and (10.7b) is perturbed by additive wq(t) Tsukamoto and
Chung (2021), the Riemannian distance w.r.t. We between the true and estimated
state, de(t) = de(x(t), x̂(t)), satisfies

ḋe(t) ≤ −λede(t) +
∫ 1

0
‖Re(γ

t
e(s))wq(t)‖ds. (10.9)

We will use (10.8) and (10.9) to obtain upper bounds on the tracking/estimation
Riemannian distances, denoted as d̄c(t) and d̄e(t), respectively. These upper bounds

210

define tracking and state estimation tubes, i.e., a bound on where x and x̂ can be,
which we denote as Ωc(t) = {x | dc(x∗(t), x) ≤ d̄c(t)} and Ωe(t) = {x̂ | de(x(t), x̂) ≤
d̄e(t)}, respectively. These tubes are crucial in informing where the planner can safely
visit, since tracking any Ωc-buffered candidate trajectory within Dx which remains in
Xsafe is guaranteed to remain safe. However, for these tubes to be usable in a planner,
we need explicit bounds on the integral terms in (10.8) and (10.9).

In this section, we first present the final derived bounds on the integrals (Lem-
mas X.1 and X.2), describe the ideas behind the derivations, and postpone the full
mathematical details to App. C.2.

Lemma X.1 (ḋc(t)). The integral term in (10.8) can be bounded as

∫ 1

0
‖Rc(γ

t
c(s))wc(t)‖ds ≤

√
λ̄Dc

(Mc)w̄x + L∆kde. (10.10)

In the second term, L∆k is the Lipschitz constant of the controller error (to be de-
scribed later) which, together with state estimate error de, bounds the destabilizing
effect of using incorrect state estimates in feedback control. This term, which can
be explicitly estimated and thus concretely informs tube size in planning, is the key
novelty of Lemma X.1. Overall, (10.10) states that tracking degrades with larger
dynamics and estimation error.

Lemma X.2 (ḋe(t)). Let σ̄(By) denote the maximum singular value of By. For
constant ρ and Me, the integral in (10.9) simplifies to ‖Rewq(t)‖ and can be bounded
as:

‖Rewq(t)‖ ≤
√
λ̄(We)w̄x +

1
2ρλ̄(Me)

1/2
(
Lĥ−1

√
σ̄(By)w̄y + ǭ{1,2,3}(x

∗, θ)
)

(10.11)

We write Lemma X.2 for constant ρ and Me, as this is the representation used in
Sec. 10.4. Here, Lĥ−1 is the local Lipschitz constant of ĥ−1, and ǭ{1,2,3}(x

∗, θ) are

(spatially-varying) bounds on its error ‖ĥ−1(h(x, θ), θ) − Crx‖, each with different
strengths/weaknesses (cf. Fig. 10.4 for a visual overview). Relative to prior work,
Lemma X.2 is novel as it bounds high-dimensional measurement error and learned
perception module error. Overall, (10.11) states that estimation accuracy degrades
with larger dynamics error, measurement error, and learned perception module error.

10.3.2.1 Bounding tracking error:

We explain more details behind Lemma X.1. As Lemma X.1 relies on a bound
for wc(t), we first break down the components that make up wc(t). Relative to the
nominal closed-loop dynamics (10.7a), our true closed-loop system

ẋ(t) = f(x(t)) + Bu(x̂(t), x∗(t), u∗(t)) + Bw(t)wx(t) (10.12)

is subject to two disturbances. The first is the dynamics error Bw(t)wx(t). The
second is imperfect state feedback: we apply u(x̂, x∗, u∗) instead of u(x, x∗, u∗), which
unlike the latter, may not stabilize (10.7a) at rate λc. Näıvely, one can bound this
error by rewriting (10.12) as ẋ = f(x)+Bu(x̂, x∗, u∗)− Bu(x, x∗, u∗)+Bu(x, x∗, u∗)+

211

u(x̂1, x
∗
, u

∗)

u ,1(x̂1, x, x
∗
, u

∗)

u(x̂2, x
∗
, u

∗) =

u(x, x
∗
, u

∗
) = (0, 0)

) =

U

U (x, x
∗
, u

∗
)

u ,2(x̂2, x, x
∗
, u

∗)

Figure 10.3: uclosest can be much closer to u(x̂, x∗, u∗) than u(x, x∗, u∗): we show this
for two different state estimates x̂1 and x̂2.

Bwwx, where the difference between output/perfect state feedback is in red. While
‖Bu(x̂, x∗, u∗)−Bu(x, x∗, u∗)‖ is a valid disturbance bound, we can obtain a tighter
bound by exploiting the structure of u(x, x∗, u∗). In general, many ufb ∈ U can
make ẋ = f(x) + B(u∗ + ufb) contract at rate λc towards x∗, w.r.t. Mc. Define
ẋ∗ = f(x∗)+Bu∗; then, the contracting ufb Singh et al. (2019) are defined by a linear
inequality constraint,

Ufeas(x, x∗, u∗) = {ufb | γ⊤c,s(1)Mc(x)ẋ− γ⊤c,s(0)Mc(x
∗)ẋ∗ ≤ −λcdc(x

∗, x)2}, (10.13)

where γc,s(·) = ∂γc(·)
∂s

. As in Singh et al. (2019), we select the minimum-norm feasible
control to be u(x̂, x∗, u∗), i.e., u(x̂, x∗, u∗) = argminu∈Ufeas(x̂,x∗,u∗) ‖u‖. Then, using
Ufeas, we can rewrite (10.12) as ẋ = f(x) +B(u(x̂, x∗, u∗)− uclosest + uclosest) +Bwwx,
where uclosest(x̂, x, x

∗, u∗)
.
= argminu∈Ufeas(x,x∗,u∗) ‖u − u(x̂, x∗, u∗)‖ is the closest con-

trol input to u(x̂, x∗, u∗) that contracts the nominal dynamics at x. Bounding the
imperfect state feedback as ‖Bu(x̂, x∗, u∗) − Buclosest‖ instead of ‖Bu(x̂, x∗, u∗) −
Bu(x, x∗, u∗)‖ can be far tighter, as u(x̂, x∗, u∗) may still contract the system at rate
λc (Fig. 10.3: x̂2 case), or there can be a contracting u closer to u(x̂, x∗, u∗) than
u(x, x∗, u∗) (Fig. 10.3: x̂1 case). Combining with the dynamics error, we can write
wc:

wc(t)
.
= Bu(x̂(t), x∗(t), u∗(t))− Buclosest(t) + Bw(t)wx(t) (10.14)

As (10.14) still depends on x and x̂, which are unknown at planning time, extra
steps must be taken to obtain a useful bound that is independent of x and x̂; we
achieve this by bounding the first two terms of (10.14) via a Lipschitz constant.
Define ∆k(x̂, x, x∗, u∗) = maxs∈[0,1] ‖Rc(γ

t
c(s))B(u(x̂, x∗, u∗) − uclosest)‖, and L∆k as

its local Lipschitz constant in the first argument, i.e., for all x∗ ∈ D, u∗ ∈ U , {x |
dc(x

∗, x) ≤ c̄}, and {x̂ | de(x, x̂) ≤ ē} for predetermined c̄, ē > 0 (adjustable based on
the expected error),

|∆k(x̂1, x, x∗, u∗)−∆k(x̂2, x, x
∗, u∗))| ≤ L∆kde(x̂1, x̂2). (10.15)

See Rem. X.4 for details on estimating L∆k. In estimating L∆k, we measure input

212

X
D

e(x)

ē1

X
D

e(x)

ē2(x
∗)

x
∗

S

Ωc

X
D

e(x)

ē3(x
∗)

x
∗

Ωc

LpR

(A) (B) (C)

r r r

Figure 10.4: Our perception error bounds. (A) ǭ1 is simple but conservative. B) ǭ2(x
∗)

is tighter, as it only seeks to be valid over the tube Ωc. However, it scales linearly
with the size of Ωc. C) ǭ3(x

∗) can be tighter for larger Ωc by adding a Lipschitz-based
buffer to the largest training error in Ωc.

distances w.r.t. We; this reduces conservativeness due to the form of our estimation
error bound. Combining (10.14)-(10.15) yields Lemma X.1; see App. C.3 for the
detailed proof.

10.3.2.2 Bounding estimation error:

Now, we provide more details behind Lemma X.2. To bound
∫ 1

0
‖Re(γ

t
e(s))wq(t)‖ds,

we first note that ‖wq‖ is bounded by the sum of the disturbance magnitudes when
q = x and when q = x̂ Tsukamoto and Chung (2021). If q = x, (10.7b) becomes
ẋ = f(x) + Bu(x̂, x∗, u∗); relative to the true closed-loop dynamics (10.12), the dis-
turbance is Bw(t)wx(t). If instead q = x̂, (10.7b) becomes ˙̂x = f(x̂) +Bu(x̂, x∗, u∗) +
1
2
ρ(x̂)Me(x̂)C

⊤
r Cr(x− x̂); relative to the true observer (10.6), the disturbance is

we(t)
.
= 1

2
ρ(x̂(t))Me(x̂(t))C

⊤
r (ĥ

−1
(
h(x(t), θ) + Bywy(t), θ

)
− Crx(t)). (10.16)

Two errors drive we(t): the perception error ĥ−1(h(x, θ), θ) − Crx, and the run-
time observation noise Bywy. Combining with the dynamics error gives wq(t)

.
=

Bw(t)wx(t)+we(t). Bw(t)wx(t) can be bounded as in Lemma X.1, but we(t) is harder
to bound. Let yp = h(x, θ) and y = h(x, θ) + Bywy. We rewrite the norm of the red
term in (10.16) as:

‖ĥ−1
(
y, θ
)
− Crx‖ = ‖ĥ−1

(
y, θ
)
− ĥ−1

(
yp, θ

)
+ ĥ−1

(
yp, θ

)
− Crx‖

≤ Lĥ−1‖Bywy‖︸ ︷︷ ︸
from measurement noise

+ ‖ĥ−1
(
yp, θ

)
− Crx‖︸ ︷︷ ︸

from learning error
.
=ǫ(x,θ)

. (10.17)

Here, Lĥ−1 is the local Lipschitz constant of the learned inverse function in y, i.e.,

‖ĥ−1(ỹ, θ)− ĥ−1(y̌, θ)‖ ≤ Lĥ−1‖ỹ − y̌‖, ∀ỹ, y̌ ∈ Dy ⊕ Yd, ∀θ ∈ Dθ, (10.18)

where Dy = h(Dr, Dθ) is the image of the training data domains, ⊕ is the Minkowski
sum, and Yd = {Bywy | ‖wy‖ ≤ w̄y} is the set of feasible measurement noise. The
first braced term in (10.17) bounds the effect of measurement error on the reduced
observation and is valid for all (x, θ) ∈ Dr × Dθ and observation noise satisfying
‖wy‖ ≤ w̄y.

Now, consider the second braced term in (10.17). How can we bound the learned

213

perception module error ǫ(x, θ)
.
= ‖ĥ−1

(
h(x, θ), θ

)
−Crx‖ over Dr×Dθ? We describe

three options (Fig. 10.4) at a high level, highlight their strengths/drawbacks, and
provide the details in App. C.2. The first bound, denoted ǭ1, is a constant bound on
ǫ(x, θ) globally over Dr ×Dθ (Fig. 10.4.A). This works well if the error is consistent,
but is loose if there are any error spikes. The second bound (Fig. 10.4.B), denoted
ǭ2(x

∗, θ), bounds the error only in the tube Ωc around a nominal x∗, using the Lipschitz
constant of ǫ(x, θ) (denoted Lp). Due to its locality, ǭ2(x

∗, θ) can be tighter than ǭ1;
however, it scales linearly with the size of Ωc, even if ǫ(x, θ) remains constant. The
third bound, ǭ3(x

∗, θ) (Fig. 10.4.C), also bounds the error in the tube but avoids the
linear scaling by taking the worst training error in Ωc and buffering it with a constant
value, which depends on Lp and the dataset dispersion R. Each of these bounds
ǭ{1,2,3} on ǫ(x, θ) can be plugged into Lemma X.2 to upper bound ǫ(x, θ); see App.
C.2 for details.

10.3.2.3 Integrating the differential inequalities:

Now that we can bound the RHSs of the differential inequalities (10.8) and (10.9)
via Lemmas X.1 and X.2, we show how these bounds on ḋc and ḋe bound the values
of dc and de, thereby providing the desired tubes. By grouping terms in (10.8)-(10.9),
we have the following affine vector-valued differential inequality,

[
ḋc
ḋe

]
≤
[
−λc L∆k

(∗) −λe

] [
dc
de

]
+

[√
λ̄Dc(Mc)w̄x√

λ̄(We)w̄x +
ρ
2 λ̄(Me)

1/2
(
Lĥ−1w̄y + ǭ{1,2̃,3}(x

∗, θ)
)
]
,(10.19)

where we regroup the terms for ǭ2(x
∗, θ) as ǭ2̃(x

∗, θ)
.
= ǭ2(x

∗, θ) − Lpdc/
√
λDc

(Mc),

and (∗) = 0.5Lpρ
√
λ̄(Me)/λDc

(Mc) if using ǭ2 and 0 else. Then, we have this result:

Theorem X.3 (From derivative to value). Let RHS denote the right hand side of
(10.19). Given bounds on the Riemannian distances at t = 0: dc(0) ≤ d̄c(0) and
de(0) ≤ d̄e(0), upper bounds d̄c(t) ≥ dc(t) and d̄e(t) ≥ de(t) for all t ∈ [0, T] can be
written as

[
dc(t)
de(t)

]
≤

t∫

τ=0

RHS
(
τ,

[
dc
de

])
dτ

.
=

[
d̄c(t)
d̄e(t)

]
, dc(0) = d̄c(0), de(0) = d̄e(0). (10.20)

Evaluating the integral in (10.20) is efficient as RHS is affine, so d̄c and d̄e can
be readily used in planning (cf. Sec. 10.3.4). However, note that these tubes are
only locally valid, e.g., evaluating the tubes outside of Dx will give incorrect values.
We detail a set of validity conditions in Sec. 10.3.4, prove their sufficiency in Thm.
X.5, use them in our planner, and show in Sec. 10.4 that a baseline that ignores
these conditions is unsafe. Finally, we close with a remark on how we estimate the
constants in the bounds.

Remark X.4 (Estimating constants from data). The derived bounds depend on sev-
eral constants that are unknown a priori, such as L∆k and Lĥ−1 , and if ǭ1, ǭ2, or ǭ3

214

is being used, ǭ1, Lp, and {Lp,R} also need to be estimated, respectively. As over-
approximating each constant also yields valid (and looser) bounds, we use the i.i.d.
validation set V to overestimate each constant via a sampling-based approach based
on extreme value theory Chou et al. (2021c). This returns a value which overesti-
mates the true constant with a user-desired probability δ, where δ holds in the limit
of infinite samples. See Chou et al. (2021c); Knuth et al. (2021a); Weng et al. (2018)
for details.

10.3.3 Optimizing CCMs and OCMs for output feedback

We briefly discuss how we obtain the CCM/OCM that define the controller/observer;
for space, we detail our method in App. C.4. We write two SoS programs to indepen-
dently synthesize the CCM/OCM, which are approximately optimized to minimize
their tube sizes. We search over polynomial CCMs and constant OCMs. For polyno-
mial dual CCMsWc(x), we also find a constant metric W̄c � Wc(x), for all x, in order
to simplify constraint checking in Sec. 10.3.4. For linear systems, these SoS programs
simplify to a standard semidefinite program (SDP), which scale to higher-dimensional
systems.

10.3.4 Solving the OFMP

Algorithm X.1: Contraction-based Output feedback RRT (CORRT)

Input: xI , G, θ, S, training error {ei}Ndata

i=1 , estimated constants, d̄c(0), d̄e(0),
c̄, ē

1 T ← {(xI , d̄c(0), d̄e(0), 0)} // node: state, CCM/OCM Riem. dist.

bound, time

2 P ← {(∅, ∅)} // parent: previous control/dwell time

3 while True do
4 (xn, d̄

n
c , d̄

n
e , tn)← SampleNode(T) // sample node from tree

5 (up, tp)← SampleProposedControl () // sample ctrl/dwell time

6 (x∗p(t), u
∗
p(t)), t ∈ [tn, tn + tp)← IntegrateDyn (xn, up, tp) // get

extension

7 (d̄nc (t), d̄
n
e (t)), t ∈ [tn, tn + tp)← ErrBnd (d̄nc , d̄

n
e , x

∗
p(t), u

∗
p(t), S, {ei}, θ)

// new tube

8 (bcL, b
e
L)← (d̄nc (t) ≤ c̄, d̄ne (t) ≤ ē), ∀t ∈ [tn, tn + tp) // check upper bound

9 bc ← Ωn
c (t) ⊆ (Dc ∩Dr ∩Xsafe), ∀t ∈ [tn, tn+ tp) // check tracking tube

10 be ← Ωn
c (t)⊕ (Ωn

e (t)⊖ {x(t)}) ⊆ (De ∩Dc), ∀t ∈ [tn, tn + tp) // chk.

estimator tube

11 if bcL ∧ beL ∧ bc ∧ be then T ← T ∪{(x∗c(tn+ tp), d̄
n
c (tn+ tp), d̄

n
e (tn+ tp), tp)};

P ← P ∪ {(up, tn + tp)}
12 else continue // add extension if all checks pass

13 if ∃t,Ωn
c (t) ⊆ G then break; return plan // return if in G

Given the CCM, OCM, and the ability to compute tracking tubes, we can now
solve the OFMP. Our solution builds upon a kinodynamic RRT LaValle (2006),

215

though we note that the tubes derived in Sec. 10.3.2 are planner-agnostic. We
grow a search tree T by integrating sampled controls held for sampled dwell-times
until G is reached. To ensure we stay in Xsafe at runtime, we impose extra constraints
on each candidate transition, which are informed by the tubes; this translates to a
restriction on where T can grow (cf. Fig. 10.5).

x*(0)

Ω
1

c
(t1)

[

τ∈[t1,t1+tc)

Ω
1

c
(τ)x

1
(τ), τ ∈ [t1, t1 + tc)

x
1
(t1)

X

X Dx

x
2
(t2)

Ω
2

c
(t2)

[

τ∈[t2,t2+tc)

Ω
2

c
(τ)

x
2
(τ), τ ∈ [t2, t2 + tc)

rejected

accepted

Figure 10.5: Visualization of Alg. X.1.

To use the Riemannian dis-
tance bounds d̄c(t) and d̄e(t) from
(10.20) in planning, recall that
these bounds define sets centered
around x∗(t) and x(t), Ωc(t) and
Ωe(t), which x and x̂ are guar-
anteed to remain within. We
can use these sets for collision
and constraint checking. If the
metric defining Ω(t) is constant,
each Ω(t) defines an ellipsoid, i.e.,
Ωc(t) = {x(t) | (x(t) − x∗(t))⊤Mc(x(t) − x∗(t)) ≤ d̄c(t)

2} and Ωe(t) = {x̂(t) |
(x̂(t) − x(t))⊤We(x̂(t) − x(t)) ≤ d̄e(t)

2}. If the metric is state-dependent (as is the
case for some CCMs we use), we can use W̄c (see Sec. 10.3.3) to obtain an ellipsoidal
outer approximation of Ωc(t): Ωc(t) ⊆ {x(t) | (x(t) − x∗(t))⊤(W̄c)

−1(x(t) − x∗(t)) ≤
d̄c(t)

2} .
= Ω̃c(t) that can ease constraint checking. Thus, we can guarantee at plan-

ning time that in execution, x(t) ∈ Ω̃c(t), and x̂(t) ∈ Ω̃c(t)⊕ (Ωe(t)⊖ {x(t)}), where
A⊖B .

= {x− y | x ∈ A, y ∈ B}. As (10.20) defines Ω for any nominal trajectory, we
can quickly compute tubes along all edges in T . For instance, suppose we wish to ex-
tend from some node in T , x∗n(tn), which satisfies dnc (tn) ≤ d̄nc (tn) and d

n
e (tn) ≤ d̄ne (tn),

to a candidate state x∗n(tn + tp) by applying control u over [tn, tn + tp). Then, using
(10.20), we can obtain d̄nc (t) and d̄

n
e (t), for all t ∈ [tn, tn+ tp), and to remain collision-

free in execution, we require the induced Ω̃c(t) ⊆ Xsafe; we check this in line 9 of
our planner, Alg. X.1. Here, we assume obstacles are inflated to account for robot
geometry.

To remain collision-free at runtime, we must add extra constraints on T to ensure
the tubes are valid, as discussed in Sec. 10.3.2. We describe these constraints now,
and prove they are sufficient in Thm. X.5. At a high level, the estimated constants,
CCM, and OCM must be valid for any x and x̂ that can be reached at runtime. Thus,
in line 8, we ensure dc(t) and de(t) remain less than c̄ and ē for all time, so that L∆k

(10.15) is valid. In line 9, we ensure that Ωc(t) ⊆ Dc ∩Dr, i.e., the system remains
where the controller can contract x towards x∗, and ǭi is valid. In line 10, we ensure
x̂ remains in De ∩Dc; this ensures that (10.6) contracts towards the true state x via
(10.2), and that a feasible feedback control exists in (10.13); ensuring this at planning
time (when we only know x∗(t)) requires a Minkowski sum of Ωc and Ωe ⊖ {x(t)}.
Constraint-satisfying candidate extensions are added to T (line 11); else, they are
rejected (line 12). This continues until the goal is reached (line 13). We visualize our
planner (Fig. 10.5), Contraction-based Output feedback RRT (CORRT), detailed in
Alg. X.1. Finally, Thm. X.5 shows our method ensures safety and goal reachability
if all estimated constants are valid; as our estimates are probabilistically-valid, the

216

CORRT trk. err. CORRT est. err. B1 trk. err. B1 est. err. B2 trk. err. B2 est. err. B3 trk. err. B3 est. err.
Car 0.175 ± 0.117 0.032 ± 0.022 17.49 ± 79.86 143.4 ± 1202 1.520 ± 6.306 3.597 ± 19.90 — —
Quad 0.151 ± 0.187 0.029 ± 0.028 39.30 ± 142.1 52.64 ± 185.9 40.56 ± 302.1 63.53 ± 424.1 — —
Arm 2.0e-4 ± 1.3e-5 0.053 ± 0.039 2.0e-4 ± 1.4e-5 0.145 ± 0.239 — — 0.000 ± 0.000 0.316 ± 0.249

Table 10.1: Statistics on the tracking/estimation error reduction across all exper-
imental results. “Trk. err.” = ‖x∗(T) − x(T)‖/‖x∗(0) − x(0)‖. “Est. err.”
= ‖x̂(T) − x(T)‖/‖x̂(0) − x(0)‖. In each cell: average error ± standard deviation
over all trials.

overall guarantees are probabilistic (cf. Rem. C.8):

Theorem X.5 (CORRT correctness). Assume that L∆k, Lĥ−1, and the estimated con-
stants in ǭ{1,2,3} are valid over their computed domains. Then Alg. X.1 returns a tra-
jectory (x∗(t), u∗(t)), which when tracked on the true system (10.1a) using u(x̂, x∗, u∗)
with state estimates x̂ generated by (10.6), reaches G while satisfying x(t) ∈ Xsafe, for
all t ∈ [0, T].

10.4 Results

We evaluate CORRT on a 4D car with RGB-D observations, a 6D quadrotor
with RGB observations, and a 14D acceleration-controlled 7DOF arm with RGB
observations. All observations are rendered in PyBullet. We compare with three
baselines; two are shared across experiments, so we overview them here. To show
the need to plan where the CCM/OCM are valid and the error bounds are accurate,
Baseline 1 (B1) plans using the tracking tubes from (10.20) inside Alg. X.1 but is
not constrained to stay within D, i.e., the checks in line 8-10 of Alg. X.1 are relaxed.
To show the need to consider estimation error in planning, Baseline 2 (B2) assumes
perfect state knowledge in computing its tubes, i.e., de(t) ≡ 0. All baselines execute
with the same CCM/OCM as our method. See Table 10.1 for error statistics and the
video http://tinyurl.com/wafr22corrt for visualizations.

10.4.0.1 4D nonholonomic car

We consider a ground vehicle in an obstacle field (Fig. 10.1.A), governed by
(C.15). The observations are given by 48x48 RGB-D images taken from a front-
facing onboard camera (Fig. 10.1.A, inset); this makes y ∈ R9216. Three states
can be directly inferred from a single image: px, py, and φ. For this example,
θ ∈ R5 parameterizes the py-translation of each of the five obstacles. We are given

Ndata = 250000 datapoints to train the perception system ĥ−1, sampled uniformly
from CrDp = [0, 13.5]× [−2.5,−2.5]× [−π/3, π/3] and Dθ = [0.5, 1.5]× [−1.5,−0.5]×
[0.5, 1.5] × [−1, 0] × [0, 1]. We model ĥ−1 as a fully-connected neural network, with
five hidden layers of width 1024 and softplus activations. We use the method of Sec.
10.3.3 to obtain a constant CCM Mc with λ̄(Mc) = 1, λ(Mc) = 0.07, and λc = 2.5,
and a constant OCM Me with λ̄(We) = 5.44, λ(We) = 0.05, and λo = 0.6, where
Dc = (−∞,∞)2 × [−π/3, π/3] × [2, 5] = De. To compute our tubes in CORRT, we
use ǭ3(x

∗, θ), since for this example Ωc may be large. The constants are estimated to
be L∆k = 3.28, Lĥ−1 = 0.05, Lp = 0.024, and R = 0.69. In computing our tubes, we
assume ‖wx‖ ≤ 0.05, d̄c(0) = 0.2, d̄e(0) = 0.1, and wy ∈ Rny satisfies ‖wy‖ ≤ 0.25.

217

http://tinyurl.com/wafr22corrt

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3Ours (Trial 1)

B2

Ours (Trial 2)
Tracking tube Estimation tube

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3B1
Tracking tube Estimation tube

Tracking tube Estimation tube

Tracking tube Estimation tube

(A) (B)

(C) (D)

xI xI

xI
xI

G

G

G G

px

p
y

px

p
y

px

p
y

px
p
y

px

p
y

px

p
y

px

p
y

px

p
y

Figure 10.6: 4D car. Planned, executed, and estimated trajectories, overlaid with
corresponding tracking and estimation tubes Ωc(t) and Ωe(t). For eight timesteps
corresponding to the black dots on the Ωe plot, we also show RGB component of the
observations seen at runtime (bottom). A) and B): two examples of CORRT, which
safely reach the goal. C) and D): B1 and B2: both crash.

To simulate noisy depth images, By is set to be a diagonal ny × ny matrix, with 0
diagonal entries for RGB indices and 1 for the depth indices.

We plan for 150 start/goals in D; our unoptimized implementation takes 2.5
minutes on average. This is done offline; the tracking controller is computed at
real-time rates following Sec. 10.3.2.1 and Singh et al. (2019). For each trial, the
obstacle map θ is selected uniformly within Dθ. See Table 10.1 for error statistics.
Over all trials, our method ensures x(t) and x∗(t) always remain within the CORRT-
computed Ωc(t) and Ωe(t), respectively, and reduces the initial tracking/estimation
error by a factor of > 5 and 30, respectively. In contrast, B1 violates its Ωc(t) and
Ωe(t) in 90/150 and 101/150 trials, respectively, fails to reduce tracking/estimation
error, and can crash. For instance, in Fig. 10.6.C, the plan leaves Dr, causing
observation error to increase (here, ĥ is inaccurate, since it is not trained outside
of Dr), destabilizing x̂ (Fig. 10.6.C, right), in turn destabilizing x, leading to the
crash. Similarly, B2 violates its computed Ωc in 60/150 trials (no Ωe(t) is computed
for B2, as it assumes perfect state information), fails to shrink tracking/estimation
errors, leading to crashes (see Fig. 10.6). As in B1, this crash also arises from
observation error. Overall, this experiment suggests that CORRT enables safe goal-
reaching for nonholonomic systems using RGB-D data, and that it generalizes to
different environments (i.e., obstacle layouts), while baselines are unsafe.

10.4.0.2 6D quadrotor

We consider a planar quadrotor in an obstacle field (Fig. 10.1.B), governed by
(C.16). The observations are given by 48x48 RGB images taken from a front-facing
onboard camera (Fig. 10.1.B, inset); this makes y ∈ R6912. Three states can be
directly inferred from an image: px, pz, and φ. Here, we consider a single set of map
configurations, i.e., θ is a singleton. We are given Ndata = 140000 datapoints to train

218

-3 -2 -1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

-3 -2 -1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

-10 -8 -6 -4 -2 0 2 4 6
0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6
0

2

4

6

8

10

Tracking tube Estimation tube

Tracking tube Estimation tube

Tracking tube Estimation tube

Tracking tube Estimation tube

Ours (Trial 1)

B2

Ours (Trial 2)

B1

(A) (B)

(C) (D)

xI
xI

xI

xI

G

G

G

G

Figure 10.7: 6D quadrotor. Planned, executed, and estimated trajectories, overlaid
with Ωc(t) and Ωe(t). Snapshots of the runtime observations are shown (bottom). A)
and B): two examples of CORRT, which safely reach the goal. C) and D): B1 and
B2: both crash.

ĥ−1, sampled uniformly from CrDp = [−4.5, 4.5]× [0.5, 4.5]× [−π/4, π/4]. We model

ĥ−1 as a fully-connected neural network, with five hidden layers of width 1024 and
ReLU activations. Using the method of Sec. 10.3.3, we obtain a polynomial CCMMc

with λ̄Dc
(Mc) = 6.55, λDc

(Mc) = 0.22, and λc = 0.8, and a constant OCM Me with
λ̄(We) = 8.13, λ(We) = 0.1, and λe = 0.7, where Dc = (−∞,∞)2 × [−π/3, π/3] ×
[−4.5, 4.5]×[−1, 1]×[−2, 2] and De = (−∞,∞)2×[−π/4, π/4]×[−5, 5]×[−2.5, 2.5]×
[−2.5, 2.5]. To update our tracking tubes in CORRT, we found it sufficient to use the
first error bound ǭ1, which we estimate to be 0.008, and L∆k = 3.6. In computing
our tubes, we assume ‖wx‖ ≤ 0.0125, d̄c(0) = 0.15, d̄e(0) = 0.1, and noiseless images
‖wy‖ = 0.

We plan for 150 start/goals in D, taking 6 minutes on average (see Table 10.1 for
statistics). Across all trials, CORRT ensures x(t) and x̂(t) stay inside the CORRT-
computed tubes Ωc(t) and Ωe(t), respectively, and reduces the initial tracking/estimation
error by a factor of > 6 and 34. In contrast, B1 violates its computed Ωc(t) and Ωe(t)
in 61/150 and 76/150 trials, respectively, fails to reduce error, and can be unsafe (see
Fig. 10.7). Similarly, B2 violates its Ωc in 142/150 trials. We show concrete exam-
ples of this in Fig. 10.7.C-.D; the plans in both cases exit Dr, moving to px and pz
values outside of the [−4.5, 4.5] × [0.5, 4.5] training range, leading to high ĥ−1 error.
The plans also take overly-aggressive turns that bring the velocities outside of De

and Dc; this further destabilizes the system, causing crashes in both cases. Overall,
this experiment suggests the need to ensure that ĥ−1, the CCM, and the OCM are
correct, and that CORRT enables this to guarantee safety with high probability for
underactuated systems via RGB observations.

10.4.0.3 17D manipulation task

We consider an acceleration-controlled 7DOF Kuka arm, where each joint follows
double integrator dynamics (C.18), which is grasping an object (a rubber duck) with

219

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-1

0

1

t t t

0 0.5 1 1.5 2 2.5 3

-1

0

1

0 0.5 1 1.5 2 2.5 3
-1

0

1

0 0.5 1 1.5 2 2.5 3
-1

0

1

t t t

φ1(t)− φ̂1(t) φ2(t)− φ̂2(t) φ3(t)− φ̂3(t)

E
rr
or

E
rr
or

E
rr
or

E
rr
or

E
rr
or

E
rr
or

(A)

(B)

Figure 10.8: 7DOF arm. State estimate error, overlaid with Ωe(t) (in gray). Runtime
observations are shown (bottom). A): when using CORRT, the state estimate error
remains in Ωe(t) and achieves |φ̂i(T)−φi(T)| ≤ 0.1. B3 fails to meet this requirement.
B) B1 also fails the 0.1 requirement.

an unknown orientation relative to the end effector. We assume slight noise in the
dynamics (C.18), w̄x = 0.0125, due to the weight of the object. Our goal is to
estimate the unknown orientation, represented as three Euler angles {φi}3i=1, using
our observer (10.6), given 80x80 RGB images (Fig. 10.1.C) of the arm and grasped
object (see Fig. 10.1.C, inset); this makes y ∈ R19200. We may also plan motions
for the arm to improve the quality of the observations/state estimates, though in
doing so, we also need to counteract the dynamics error. Our overall goal is to
guarantee with high probability that our final estimate of the relative orientation
satisfies |φi(T)− φ̂i(T)| ≤ 0.1, i = 1, 2, 3.

We assume that the joint angles and velocities can be perfectly estimated (i.e.,
directly measured), given the accuracy of the Kuka joint encoders, focusing in-
stead on estimating the unknown {φi}3i=1 and controlling j and j̇ (the joint an-
gles and velocities) using our method. We assume the object is rigidly attached
to the gripper, such that its relative orientation is constant over time. Combin-
ing {φi}3i=1 and the 14D model, the full state of the system is 17D (C.17), i.e.,
x = [φ1, φ2, φ3, j1, . . . , j7, j̇1, . . . j̇7]

⊤. To train ĥ−1, we note that {φi}3i=1 can all be
estimated from the image. For this example, since j is known and affects the gener-
ated y, we design ĥ−1 to take as input y ∈ R19200 and j ∈ R7 (i.e., j plays the role
of θ) and to output {φi}3i=1. We are given Ndata = 62500 datapoints to train ĥ−1,
where {φi}3i=1 are sampled uniformly from [−π/3, π/3]3 and j is sampled uniformly
from [−0.05, 0]× [0, 0.05]× [0.15, 0.32]× [−1.83,−1.69]× [−0.05, 0.05]2× [−π/3, π/3].
We model ĥ−1 as a fully-connected neural network, with five hidden layers of width
1024 and softplus activations. We compute a constant CCM for the 14D subsystem:
CCM synthesis for the full 17D system fails, as the {φi}3i=1 are not controllable due
to the rigid attachment. Since the arm dynamics are linear, the CCM optimization

220

simplifies to a standard semidefinite program that can be quickly solved. We compute
a constant OCM for the full 17D system, to enable estimation of {φi}3i=1. Using the
method of Sec. 10.3.3, we obtain a CCM Mc with λ̄(Mc) = 100, λ(Mc) = 2.81, and
λc = 2.89, and a constant OCM Me with λ̄(We) = λ(We) = 0.1, and λe = 9.5. As the
dynamics are linear, a constant CCM/OCM holds globally, i.e., De = Dc = X . To
update the tubes in CORRT, we use ǭ2(x

∗, j), where we estimate Lp = 2.45. Since j
and j̇ are known, no error arises from incorrect state estimates; thus, L∆k does not
need to be estimated. We assume d̄c(0) = 10−3, d̄e(0) = 0.32, and noiseless images
‖wy‖ = 0.

We plan 100 trajectories in D from various initial j, j̇, and orientation estimates,
taking 45 seconds on average. We summarize the error statistics in Table 10.1. Across
all trials, when planning with CORRT, x and x̂ always remain within the computed
tubes Ωc(t) and Ωe(t); the CCM keeps the tracking error very small, and the OCM
shrinks the error by a factor of > 18. Crucially, if a plan is found where Ωe(T)
satisfies the estimation accuracy threshold, we can ensure our true state estimate
satisfies |φi(T) − φ̂i(T)| ≤ 0.1, i = 1, 2, 3. We are able to find plans that achieve
this threshold for 100/100 trials. We compare with two baselines in this example:
B1 (as described before), and B3, which keeps the arm stationary and runs (10.6)
for the same duration as the plan computed using CORRT. The purpose of B3 is to
show that the actions taken by the CORRT plan help to reduce estimation error. In
contrast to CORRT, B1 violates its computed Ωe(t) in 44/100 trials and can fail to
achieve the required estimation accuracy, only satisfying the 0.1 threshold in 79/100
trials (see Fig. 10.8). One failure example is shown in Fig. 10.8.B: the arm moves too
close to the camera (outside of Dr), causing the duck to fall out of frame. This causes
a sharp increase in ĥ−1 error, since φi cannot be observed; this destabilizes (10.6),
leading to a failure to satisfy the 0.1 threshold. Note that B1 does not violate Ωc; this
is because the controller is not a function of the incorrect φi estimates. Similarly, B3
often fails to satisfy the 0.1-estimation accuracy threshold, only satisfying it in 7/100
trials (see Fig. 10.8.A for a failure example). This shows that passively estimating
φi without moving the arm cannot achieve the needed estimation accuracy; instead,
the arm must be moved towards regions with smaller perception error. Overall, this
experiment suggests the applicability of our approach on high-dimensional systems,
that it can design actions that improve state estimates, and that our approach can
plan paths that with high probability, guarantee a desired level of state estimation
accuracy.

10.5 Discussion and Conclusion

We present a motion planning algorithm for control-affine systems that enables
safe tracking at runtime using an output feedback controller with image observations
as input. To achieve this, we learn a perception system and use it in an OCM
and CCM-based output feedback control loop. We derive tracking tubes for the
closed-loop system and use them within an RRT-based planner to compute plans
that theoretically guarantee, with high probability, safe goal-reaching at runtime.

221

Our results empirically validate this probabilistic safety guarantee, and show that
ignoring the effects of state estimation error and the local validity of the perception
system/estimator/controller can lead to unsafe behavior.

Our method has some weaknesses which reveal directions for future work. While
the large dataset S used to train ĥ−1 is easy to gather in simulation, sim-to-real is
then needed for ĥ−1 to transfer to the real world. Thus, in future work, we will com-
bine synthetic, domain-randomized perception data with a small real-world labeled
dataset to train generalizable perception modules that have calibrated estimates of
the sim-to-real error. Our method also assumes noiseless training data, to ensure Lp

is finite; in the future, we wish to relax this. Investigating Lipschitz constant esti-
mation methods robust to input noise Calliess (2014) may help achieve this; another
possibility is to use a different representation of the model error bound that does not
rely on the Lipschitz constant (e.g., using a learned, spatially-varying bound and a
constant buffer, as described in the conclusion of Chapter IX). Another drawback is
the conservativeness of using worst-case disturbances; to mitigate this, we will inte-
grate stochastic contraction Kawano and Hosoe (2021) into our method. Finally, we
require θ to be known; in future work, we will aim to jointly estimate θ and x with
similar convergence guarantees.

222

CHAPTER XI

Conclusion and Outlook

In this chapter, we will conclude this thesis by summarizing our key contributions
(Sec. 11.1), and by outlining plans for future work (Sec. 11.2).

11.1 Summary

We make core contributions in two primary areas: 1) learning constrained task
specifications for safe motion planning, and 2) safe planning and control with learned
dynamics and perception modules.

In the first category, we discuss how approximately globally-optimal demonstra-
tions can be used to learn the unknown safety constraints (Chapter III); we use this
global optimality assumption to synthetically generate lower-cost trajectories which
must violate the unknown constraint, and use this information to synthesize a con-
sistent constraint. In Chapter IV, we relax the global optimality assumption on the
demonstrations to one of local optimality; that is, that there exists no local pertur-
bation to the demonstration which enables a decrease in cost without the violation
of some constraint. This is formalized using the Karush-Kuhn-Tucker (KKT) condi-
tions from constrained optimization, which are necessary conditions for a candidate
solution to an optimization problem to be locally-optimal. This insight enables the
learning of constraints with weaker assumptions on the demonstrator. In Chapter V,
we address a major drawback of the method presented in Chapter IV – the require-
ment of a known constraint parameterization. We do this by instead representing the
unknown constraint as a nonparametric Gaussian Process, which enables us to avoid
prespecifying a set of features that span the set of all possible constraints that we may
encounter. In Chapter VI, we move from the time-invariant constraints considered
previously to multi-stage, temporally extended tasks. We achieve this by showing how
similar notions of optimality can be used to learn linear temporal logic (LTL) for-
mulas from suboptimal demonstrations. Temporal logic provides a means to specify
complex temporally-extended tasks with time-varying, history-dependent constraints.
Specifically, we use the KKT conditions together with a counterexample-guided fal-
sification approach to learn the atomic propositions (defining low-level state space
constraint regions) and logical structure of the unknown LTL formula (determining
the high-level flow of the task), respectively. Finally, in Chapter VII, we tackle the

223

ill-posedness of the constraint learning problem – specifically, the fact that there may
be (infinitely) many constraints which are consistent with the optimality conditions
of the demonstrations. This is done by obtaining a “belief” over constraints which is
driven by the feasible set of consistent constraints in the constraint inference problem;
then, we leverage this belief in a chance-constrained optimization framework to plan
probabilistically-safe trajectories under this belief.

In the second category, we will discuss how we can plan with complex learned
models of high-dimensional systems while guaranteeing safety and goal reachability
in execution, when controlling from high-dimensional observations (e.g., images) gen-
erated by the system at runtime. The method is first developed for the state-feedback
case for systems with the same number of control inputs as states (Chapter VIII).
The method works by defining a “trusted domain” around the training data of the
dynamics model, and estimating an upper bound on the model error that may be
experienced within this domain. Estimating this model error enables us to derive a
tracking error bound (that is, how far the system may deviate from a planned tra-
jectory at runtime due to model error), which gives us the means to guarantee safety
and robust goal reachability at runtime. This method is then extended to a class of
underactuated systems (Chapter IX) by leveraging contraction theory. Finally, the
ideas are extended to the output-feedback setting (for planning and control from im-
ages) in Chapter X, by estimating upper bounds on the perception error in a domain
around the training data.

11.2 Future work

11.2.1 Safe Planning from Pixels with Data-Driven Model Error Bounds

One interesting future direction which builds off of Chapters VIII-X is to relax the
assumption of being given a dataset of state transitions to train the dynamics model.
This is especially useful in situations where a state representation of the system is
difficult to obtain a priori, e.g., a deformable object, like a rope. More generally, it is
useful to assume only access to high-dimensional observations when collecting data,
as it can in general be difficult to collect data for each a priori engineered state in
the dynamics.

This is the setting of planning from pixels, or learning latent dynamics models for
planning Hafner et al. (2019); Ichter and Pavone (2019); Watter et al. (2015). In this
body of work, a dataset of observation-control-next observation tuples is provided
to the learner. In general, these observations are images of the system taken at a
particular state, and are high-dimensional representations of the underlying system
state. Instead of learning dynamics directly in the image space, which would require
a huge amount of data and necessitate a complex dynamics model function class, the
core idea of latent space planning is to jointly learn a mapping from the observation
space to a lower-dimensional latent space (often called an encoder), together with a
dynamics model within that latent space. A decoder (which maps from the learned
latent space back to observation space) is often also learned (by adding a loss that
aims to reconstruct the original image from the low-dimensional latent state), but is

224

not strictly necessary.
The key improvement that this approach would provide relative to our existing

safe perception-based control algorithm in Chapter X is that it eases the data col-
lection process: while the method of Chapter X explicitly requires data of the form
(x, h(x)), i.e., image observations paired directly with ground-truth states, the latent
space approach does not need any ground-truth state information, which makes it
substantially easier to implement on real systems, with real images.

Moreover, since the methods that we have developed in Chapters VIII-X have
been designed to be integrated within a deep learning pipeline, existing parts of
our pipeline should be compatible with additional deep learning components, e.g.,
an encoder which maps from the high-dimensional observation space to the low-
dimensional latent space, where the planning is to occur. Nevertheless, there are
some additional challenges that need to be addressed in this setting:

• Estimating the Lipschitz constant of the error in the learned latent space: in
Chapters VIII and IX, we could estimate the Lipschitz constant of the error
by directly sampling pairs (x, u) and evaluating the discrepancy between the
true dynamics and the learned dynamics at those points. In the latent space
setting, we cannot simply sample a (z, u) pair and evaluate the error, as each
latent state z has no meaning independent of a corresponding high-dimensional
observation y. This then necessitates the sampling of (y, u) pairs to estimate
the Lipschitz constant, which can complicate the construction of the trusted
domain D, which should remain a subset of X ×U . We have some intial results
for accomplishing this through sampling-based approaches, specifically kernel
density estimation.

• Another challenge that we will face will arise from the difficulty of jointly learn-
ing more components than in prior work. In Chapter IX, we already needed
to learn a control contraction metric, a contracting controller, and a dynamics
function, where there were multiple losses that depended on each one of these
learned components. In addition to these components, we will also need to
learn an encoder and possibly a decoder to make the learned latent space well-
posed; this will involve more losses. The joint learning of so many components
with different competing losses has the potential to make the learning problem
much more challenging. To alleviate this, we are currently utilizing a different
strategy where we search for a contraction metric and contracting controller by
solving a semidefinite program (which can be done if the contraction metric is
restricted to be flat, and the contracting controller is restricted to be linear in
the differential state). Then, by differentiating through the semidefinite pro-
gram, we can more directly search for and optimize the recovered contraction
metric and controller, which dramatically improves the learning of the other
components (e.g., the encoder/decoder).

225

11.2.2 Learning Dynamics Models from Demonstrations

In Chapters III - VI, we show that global and local notions of optimality alike
can be very useful in learning inequality constraints with a small amount of data. It
may be possible that a similar framework may be useful in learning dynamics models
from demonstrations (or equality constraints more generally). There are some key
challenges that we may face here:

• By directly utilizing the “unions of offsets” parameterization developed in Chap-
ter IV, we will be restricted to a very small, simple hypothesis space for the
dynamics. We will need to determine a way to relax these restrictions to learn
useful dynamics.

• In Chapter V, we are able to obtain the gradients of the unknown inequality
constraint by determining if only one unique gradient can make the KKT condi-
tions satisfied. For the examples we considered, most of the recovered gradients
were unique up to a scaling. It remains to be seen if the gradients for the
dynamics functions will also tend to be unique.

• As detailed in Chapter III, global optimality is currently enforced using sampled
lower-cost trajectories within a mixed integer program. This will be incompat-
ible with trying to fit higher-capacity dynamics models. To make our method
scalable to modern machine learning-based approaches for dynamics learning,
we will ideally determine a way to (approximately) enforce global optimality
within the context of a neural network training loop. In particular, it might be
possible to utilize the lower-cost trajectories by embedding them in a contrastive
loss (Yan et al., 2020) for learning the dynamics.

11.2.3 Safe Planning with Models Learned Online

A core weakness with the approaches presented in Chapters VIII and IX is the
requirement of a large, offline-collected dataset of transitions to train the dynamics
model. It is often the case that we may need to obtain data online to train the
dynamics model. In general, it may be challenging to say much about the safety of
the system without additional assumptions or some confidence on an initial dynamics
model. However, one setting that might be an interesting point of investigation is
the case where locally-linear models of the dynamics are fit online. Linear models
can be fit quickly and reliably to new data, unlike neural networks (which can suffer
from catastrophic forgetting, etc.), and have been employed in a variety of model-
based reinforcement learning applications Fu et al. (2016); Levine and Abbeel (2014).
It would be interesting to investigate if a similar approach based on estimating an
error bound in a domain around the training data can allow us to determine when
exactly a local model is “accurate enough” for planning and reliable execution, and
how this might propagate to tracking error, etc., so that we can guarantee safety for
the closed-loop system.

226

APPENDICES

227

APPENDIX A

Appendix for Chapter 3: Learning Constraints

from Globally-Optimal Demonstrations

A.1 Appendix: Chapter III: Analysis

We review the most important results in this section:

• Theorem A.2 shows that all states that can be guaranteed unsafe must lie within
some distance to the boundary of the unsafe set. Corollary A.4 shows that the
set of guaranteed unsafe states shrinks to a subset of the boundary of the unsafe
set when using a continuous demonstration directly to learn the constraint.

• Corollary A.9 shows that under assumptions on the alignment of the grid and
unsafe set for the discrete time case, the guaranteed learned unsafe set is a
guaranteed underapproximation of the true unsafe set.

• For continuous trajectories that are then discretized, Theorem A.11 shows us
that the guaranteed unsafe set can be made to contain states on the interior of
the unsafe set, but at the cost of potentially labeling states within some distance
outside of the unsafe set as unsafe as well.

• Theorem III.19 shows that for the parametric case, all states that can be guar-
anteed unsafe must be implied unsafe by the states within some distance to the
boundary of the unsafe set and the parameterization.

• Theorem A.21 shows that for the discrete time case, the guaranteed safe and
guaranteed unsafe sets are inner approximations of the true safe and unsafe
sets, respectively. For the continuous time case, the recovered sets are inner
approximations of a padded version of the true sets.

For convenience, we repeat the definitions and include some illustrations for the
sake of visualization. For clarity, the numbers of the definitions, theorems, and corol-
laries in the appendix match with those in the main body.

228

A.1.1 Learnability

In this section, we will provide analysis on the learnability of unsafe sets, given
the known constraints and cost function. Most of the analysis will be based off unsafe
sets defined over the state space, i.e. A ⊆ X , but we will extend it to the feature
space in Corollary A.15. If a state x can be learned to be guaranteed unsafe, then we
denote that x ∈ Gz¬s∗, where Gz¬s∗ is the set of all states that can be learned guaranteed
unsafe.

We begin our analysis with some notation.

Definition A.1 (Signed distance). Signed distance from point p ∈ Rm to set S ⊆ Rm,
sd(p,S) = − infy∈∂S ‖p− y‖ if p ∈ S; infy∈∂S ‖p− y‖ if p ∈ Sc.

The following theorem describes the nature of Gz¬s∗:
Theorem A.2 (Learnability (discrete time)). For trajectories generated by a discrete
time dynamical system satisfying ‖xt+1 − xt‖ ≤ ∆x for all t, the set of learnable
guaranteed unsafe states is a subset of the outermost ∆x shell of the unsafe set:
Gz¬s∗ ⊆ {x ∈ A | −∆x ≤ sd(x,A) ≤ 0}.
Proof. Consider the case of a length T unsafe trajectory ξ = {x1, . . . , xN}, x1 ∈
A∨ . . .∨xT ∈ A. For a state to be learned guaranteed unsafe, T − 1 states in ξ must
be learned safe. This implies that regardless of where that unsafe state is located in
the trajectory, it must be reachable from some safe state within one time-step. This
is because if multiple states in ξ differ from the original safe trajectory ξ∗, to learn
that one state is unsafe with certainty means that the others should be learned safe
from some other demonstration. Say that x1, . . . , xi−1, xi+1, . . . , xT ∈ S, i.e. they are
learned safe. Since (‖xi+1 − xi‖ ≤ ∆x) ∧ (‖xi − xi−1‖ ≤ ∆x) and xi−1, xi+1 ∈ S,
xi must be within ∆x of the boundary of the unsafe set: −miny∈∂A ‖xi − y‖ ≥ ∆x,
implying −∆x ≤ sd(xi) ≤ 0.

Remark A.3. For linear dynamics, ∆x can be found via

maximize
x∈X ,u∈U

‖Ax+Bu− x‖ (A.1)

In the case of general dynamics, an upper bound on ∆x can be found via

∆x ≤ sup
x∈X ,u∈U ,t∈{t0,t0+1,...,T}

‖f(x, u, t)− x‖ (A.2)

Corollary A.4 (Learnability (continuous time)). For continuous trajectories ξ(·) :
[0, T] → X , the set of learnable guaranteed unsafe states shrinks to the boundary of
the unsafe set: Gz¬s∗ ⊆ {x ∈ A | sd(x,A) = 0}.
Proof. The output trajectory of a continuous time system can be seen as the output of
a discrete time system in the limit as the time-step is taken to 0. In this case, as long
as the dynamics are locally Lipschitz continuous, ∆x

.
= lim∆t→0 ‖x(t+∆t)−x(t)‖ → 0

(Khalil (2002)), and via Theorem A.2, the corollary is proved.

229

∆x

∆x

∆x

∂A

Figure A.1: Illustration of the outermost ∆x shell (shown in red) of the unsafe set
A. The hatched area cannot be learned guaranteed safe.

Depending on the cost function, Gz¬s∗ can become arbitrarily small: some cost
functions are not very informative for recovering a constraint. For example, the
path length cost function used in many of the experiments (which was chosen due
to its common use in the motion planning community), prevents any lower-cost sub-
trajectories from being sampled from straight sub-trajectories. The overall control
authority that we have on the system also impacts learnability: the more controllable
the system, the more of the ∆x shell is reachable. In particular, a necessary condition
for any unsafe states to be learnable from a demonstration of length T + 1 starting
from x0 and ending at xT is for there to be more than one trajectory which steers
from x0 to xT in T + 1 steps while satisfying the dynamics and control constraints.

A.1.2 Conservativeness

For the analysis in this section, we will assume that the unsafe set has a Lipschitz
boundary; informally, this means that ∂A can be locally described by the graph of a
Lipschitz continuous function. A formal definition can be found in Dacorogna (2015).
We define some notation:

Definition A.5 (Normal vectors). Denote the outward-pointing normal vector at
a point p ∈ ∂A as n̂(p). Furthermore, at non-differentiable points on ∂A, n̂(p) is
replaced by the set of normal vectors for the sub-gradient of the Lipschitz function
describing ∂A at that point (Allaire et al. (2016)).

Definition A.6 (γ-offset padding). Define the γ-offset padding ∂Aγ as: ∂Aγ = {x ∈
X | x = y + dn̂(y), d ∈ [0, γ], y ∈ ∂A}.

Definition A.7 (γ-padded set). We define the γ-padded set of the unsafe set A,
A(γ), as the union of the γ-offset padding and A: A(γ) .= ∂Aγ ∪ A.

230

γ

∂A

γ

γ

A(γ)

A

∂Aγ

Figure A.2: Illustration of the γ-padded set A(γ), which is the union of the red and
white regions. The γ-offset padding is displayed in red. The original set A is shown
in white.

Definition A.8 (Maximum grid size). Let R(zi) be the radius of the smallest ball
which contains grid cell zi: R(zi)

.
= minr minxi

r, subject to zi ⊆ Br(xi), for some
optimal center xi.

Furthermore, let R∗ be the radius of the smallest ball which contains each grid
cell zi, i = 1, . . . , G: R∗ = max(R(z1), . . . , R(zG)).

We introduce the following assumption, which is illustrated in Figure A.3 for
clarity:
Assumption 1: The unsafe set A is aligned with the grid (i.e. there does not exist
a grid cell z containing both safe and unsafe states in its interior).

Theorem A.9 (Discrete time conservative recovery of unsafe set). For a discrete-
time system, if Assumption 1 holds, Gz¬s ⊆ A. If Assumption 1 does not hold, then
Gz¬s ⊆ A(R∗).

Proof. In discrete-time, we know that each trajectory sampled using Algorithm III.1
starting from an optimal demonstration contains at least one truly unsafe state, i.e.
for all ξj, j ∈ {1, . . . , N¬s}, there exists x ∈ ξj, x ∈ A. Then, if Assumption 1 holds,
enforcing zi ∋ x to be unsafe can never also enforce that some safe state y ∈ S is
unsafe. If Assumption 1 does not hold, suppose that there exists x ∈ ∂A which is
learned guaranteed unsafe, and that x ∈ zi, where (zi ∩ A) ⊆ ∂A (i.e. the grid cell
only touches the boundary of the unsafe set). Then, Gz¬s ⊆ A(R(zi)) ⊆ A(R∗).

Note that if we deal with continuous trajectories directly, the guaranteed learnable
set shrinks to a subset of the boundary of the unsafe set, ∂A. However, if we discretize
these trajectories, we can learn unsafe states lying in the interior, at the cost of
conservativeness guarantees holding only for a padded unsafe set.

The following results hold for continuous time trajectories. We begin the discus-
sion with an intermediate result we will need for Theorem A.11:

231

A

C

z1 z2 z3 z4 z5 z6

z7

z7
z8

z9

z10

z11

z12z13

z14

z15

Figure A.3: Illustration of Assumption 1 - all grid cells are either fully contained by
A or Ac.

Lemma A.10 (Maximum distance). Consider a continuous time trajectory ξ : [0, T]→
X . Suppose it is known that in some time interval [a, b], a ≤ b, a, b ∈ [0, T], ξ is
unsafe; denote this sub-segment as ξ([a, b]). Consider any t ∈ [a, b]. Then, the
signed distance from ξ(t) to the unsafe set, sd(ξ(t),A), is bounded by Dξ([a, b])

.
=

supt1∈[a,b],t2∈[t1,b] ‖ξ(t1)− ξ(t2)‖2.
Proof. Since there exists t̃ ∈ [a, b] such that ξ(t̃) ∈ A,

sup
t∈[a,b]

sd(ξ(t),A) = sup
t∈[a,b]

sd(ξ(t), ξ(t̃)) ≤ sup
t1∈[a,b],t2∈[t1,b]

‖ξ(t1)− ξ(t2)‖2

.

We introduce another assumption, which is illustrated in Figure A.4 for clarity:
Assumption 2: The time discretization of the unsafe trajectory ξ : [0, T] → X ,
{t1, . . . , tN}, ti ∈ [0, T], for all i, is chosen such that there exists at least one dis-
cretization point in the interior of each cell that the continuous trajectory passes
through (i.e. if ∃t ∈ [0, T] such that ξ(t) ∈ z, then ∃ti ∈ {t1, . . . , tN} such that
ξ(ti) ∈ z).

We also introduce a convention for tie-breaking in Problems III.2, III.4, and III.5.
Suppose there exists an unsafe trajectory ξ for which a safe cell z is incorrectly
learned guaranteed unsafe due to time discretization. If a demonstration is added to
the optimization problem which marks cell z as safe, to avoid infeasibility, we remove
the unsafe trajectory ξ from the optimization problem.

Theorem A.11 (Continuous-to-discrete time conservativeness). The following re-
sults hold for continuous time systems:

1. Suppose that both Assumptions 1 and 2 hold. Then, the learned guaranteed
unsafe set Gz¬s, defined in Section 3.3.4.1, is contained within the true unsafe
set A.

232

A

C

z1 z2 z3 z4

z5

z6 z7

z8

Figure A.4: Illustration of Assumption 2: each cell z that the trajectory passes
through must have a time discretization point (shown as a dot).

2. Suppose that only Assumption 2 holds. Then, the learned guaranteed unsafe set
Gz¬s is contained within the R∗-padded unsafe set, A(R∗).

3. Suppose that neither Assumption 1 nor Assumption 2 holds. Furthermore, sup-
pose that Problems III.2, III.4, and III.5 are using M sub-trajectories sam-
pled with Algorithm III.1 as unsafe trajectories, and that each sub-trajectory
is defined over the time interval [ai, bi], i = 1, . . . ,M . Denote Dξ([a, b])

.
=

supt1∈[a,b],t2∈[t1,b] ‖ξ(t1)−ξ(t2)‖2, for some trajectory ξ. Denote D∗ .
= maxi∈{1,...,M}D

∗
ξi
([ai, bi]).

Then, the learned guaranteed unsafe set Gz¬s is contained within the D∗ + R∗-
padded unsafe set, A(D∗ +R∗).

Proof. Let’s prove the case where both Assumptions 1 and 2 hold. By Assumption
1, all cells z which contain unsafe states x ∈ A must be fully contained in the unsafe
set: z ∈ A. Now, suppose there exists a trajectory ξ : [0, T]→ X which is unsafe (i.e
it satisfies the known constraints and has lower cost than a demonstration). Then,
there exists at least one t ∈ [0, T] such that ξ(t) ∈ A. By Assumption 2, there exists
a discretization point ti ∈ [0, T] such that ξ(ti) lies within some cell z, and z ∈ A by
Assumption 1. Hence, we will only learn grid cells within A to be unsafe: Gz¬s ⊆ A.

If only Assumption 2 holds, Gz¬s ⊆ A(R∗) due to the gridding: suppose there
exists a cell zk containing both safe and unsafe states which is learned guaranteed
unsafe. Then, by padding the unsafe set to contain any grid cell z1, . . . , zG, zk is fully
contained, and hence the algorithm returns a conservative estimate of the D∗+Rk ≤
D∗ +R∗-padded unsafe set.

Let’s prove the case where neither assumption holds. Suppose in this case, there
exists a cell z 6⊆ A which is truly safe, but for which we have no demonstration that
says cell z is safe. Now, suppose there exists an unsafe trajectory ξj([aj, bj]) passing
through z which violates Assumption 2. Suppose that ξj(ti) ∈ z, and {t1, . . . , tN}
is chosen such that for all j ∈ {1, . . . , N} \ {i}, ξj(ti) belongs to a known safe cell.

233

Then, we may incorrectly learn that z ∈ Gz¬s, as we force at least one point in the
sampled trajectory to be unsafe. Via Lemma A.10, we know that ξj(ti) is at most
Dξj([aj, bj]) signed distance away from A. Hence, for this trajectory, any learned
guaranteed unsafe state must be contained in the Dξj([aj, bj])-padded unsafe set. For
this to hold for all unsafe trajectories sampled with Algorithm III.1, we must pad the
unsafe set by D∗. Lastly, to account for the gridding, suppose that ξj∗(ti) is contained
in cell zk, which is then marked unsafe. Then, by padding the set to contain zk, the
algorithm returns a conservative estimate of the D∗ + Rk ≤ D∗ + R∗-padded unsafe
set.

Remark A.12. In practice, we observe that the bound in Theorem A.11 when using
only Assumption 1 is quite conservative, and as more demonstrations are added to
the optimization, using the tie-breaking rule described previously removes the overap-
proximations described by Theorem A.11. Furthermore, though the experiments are
implemented using only Assumption 1, ensuring Assumption 2 also holds is straight-
forward as long as the grid cells are large enough such that finding a sufficiently fine
time-discretization is efficient.

Remark A.13. Note that for the cases where Assumption 1 does not hold, safe
states can be incorrectly forced to be unsafe; thus, the constraint recovery program can
become infeasible. In these situations, we use the tie-breaking rule described before
the statement of Theorem A.11 to keep the program feasible.

Remark A.14. If some state x on a demonstration lies directly on the boundary
between two grid cells zi and zj, neither zi nor zj is enforced to be safe unless either
of zi or zj is learned to be unsafe; then the other grid cell can be labeled safe. Further-
more, the demonstrations that appear to lie on the boundary of the unsafe set actually
lie in the interior of the safe set and very close to the boundary due to the solvers’
numerical tolerance; hence we do not actually have any demonstrations lying exactly
on the boundary of any grid cells in the experiments.

Corollary A.15 (Continuous-to-discrete feature space conservativeness). Let the fea-
ture mapping φ(x) from the state space to the constraint space be Lipschitz continuous
with Lipschitz constant L. Then, the following results hold:

1. Suppose both Assumptions 1 and 2 (used in Theorem III.16) hold. Then, our
method ensures Gz¬s ⊆ A.

2. Suppose only Assumption 2 holds. Then, our method recovers a guaranteed
subset of the LR∗-padded unsafe set, A(LR∗), in the feature space.

3. Suppose neither Assumption 1 nor Assumption 2 holds. Then, our method
recovers a guaranteed subset of the L(D∗ + R∗)-padded unsafe set, A(L(D∗ +
R∗)), where D∗ is as defined in Theorem III.16.

Proof. Under Assumptions 1 and 2, the result follows directly from the logic in Theo-
rem A.11. Now, consider the case where only Assumption 2 holds. From the definition

234

of Lipschitz continuity, ‖φ(x)−φ(y)‖ ≤ L‖x−y‖. From Theorem A.11, the unsafe set
estimate is a subset of the R∗-padded estimate in the continuous space case. Using
Lipschitz continuity, the value of the feature can at most change by LR∗ from the
boundary of the true constraint set to the boundary of the padded set; hence, the
statement holds. Analogous reasoning holds for the case where neither assumption
holds.

A.1.3 Learnability: Parametric

In this section, we develop results for learnability of the unsafe set in the para-
metric case. We begin with the following notation:

Definition A.16 (Implied unsafe set). For some set B ⊆ Θ, denote

I(B) .=
⋂

θ∈B

{x | g(x, θ) ≤ 0} (A.3)

as the set of states that are implied unsafe by restricting the parameter set to B. In
words, I(B) is the set of states for which all θ ∈ B mark as unsafe.

Lemma A.17. Suppose B ⊆ B̂, for some other set B̂. Then, I(B̂) ⊆ I(B).

Proof. By definition,

I(B̂) =
⋂

θ∈B̂

{x | g(x, θ) ≤ 0}

=
⋂

θ∈
(
B∪(B̂\B)

)
{x | g(x, θ) ≤ 0}

⊆
⋂

θ∈B

{x | g(x, θ) ≤ 0}

= I(B).

Lemma A.18. Denote the ∆x-shell of A as A∆x, where ∆x is as defined in Theorem
A.2. Then, each unsafe trajectory ξj with start and goal states in the safe set contains
at least one state in A∆x: ∀j ∈ {1, . . . , N¬s}, ∃x ∈ ξj, x ∈ A∆x.

Proof. For each unsafe trajectory ξj with start and goal states in the safe set, there
exists x ∈ ξj, x ∈ A. Further, if there exists x ∈ ξj ∈ (A \ A∆x), then there also
exists x ∈ ξj ∈ A∆x. For contradiction, suppose there exists a time t̂ ∈ {1, . . . , Tj}
for which ξj(t̂) ∈ (A \ A∆x) and ∄t ∈ {1, . . . , Tj} for which ξj(t) ∈ A∆x. But this
implies ∃t < t̂, ‖ξ(t) − ξ(t + 1)‖ > ∆x or ∃t > t̂, ‖ξ(t) − ξ(t − 1)‖ > ∆x, i.e. to skip
deeper than ∆x into the unsafe set without first entering the ∆x shell, the state must
have changed by more than ∆x in a single time-step. Contradiction. An analogous
argument holds for the continuous-time case.

235

Denote as G∗¬s the learnable set of unsafe states. Further denote as F∆x the set of
parameters that sets all states in A∆x as unsafe and all states on safe trajectories as
safe. Last, denote as I(F∆x) the set of states that are implied as unsafe by restricting
the parameter set to F∆x. The following result states that in discrete time, G∗¬s is
contained by I(F∆x). Furthermore, in continuous time, the same holds, except the
∆x shell is replaced by the boundary of the unsafe set, ∂A.

Theorem A.19 (Discrete time learnability for parametric constraints). For trajec-
tories generated by discrete time systems, G¬s ⊆ G∗¬s ⊆ I(F∆x), where

F∆x = {θ | ∀i ∈ {1, . . . , Ns}, ∀x ∈ ξ∗i , g(x, θ) > 0,

∀x ∈ A∆x, g(x, θ) ≤ 0}

Proof. Recall that G¬s .
=
⋂

θ∈F{x | g(x, θ) ≤ 0}, where F is the feasible set of Problem
III.3:

F = {θ | ∀i ∈ {1, . . . , Ns}, ∀x ∈ ξ∗i , g(x, θ) > 0,

∀j ∈ {1, . . . , N¬s}, ∃x ∈ ξj, g(x, θ) ≤ 0}

We can then show that F∆x ⊆ F , since enforcing that g(x, θ) ≤ 0 for all x ∈ A∆x

implies that there exists x ∈ ξj, for all j ∈ {1, . . . , N¬s} such that g(x, θ) ≤ 0, via
Lemma A.18. Then, via Lemma A.17, G¬s = I(F) ⊆ I(F∆x). As this holds for any
arbitrary set of trajectories, G∗¬s ⊆ I(F∆x) as well, and G¬s ⊆ G∗¬s.

Corollary A.20 (Continuous-time learnability for parametric constraints). For tra-
jectories generated by continuous time systems, G¬s ⊆ G∗¬s ⊆ I(F∂A), where

F∂A = {θ | ∀x ∈ ξ∗i , ∀i ∈ {1, . . . , Ns}, g(x, θ) > 0,

∀x ∈ ∂A, g(x, θ) ≤ 0}

Proof. Since going from discrete time to continuous time implies ∆x→ 0, A∆x → ∂A.
Then, the logic from the proof of Theorem A.19 can be similarly applied to show the
result.

A.1.4 Conservativeness: Parametric

We write conditions for conservative recovery of the unsafe set and safe set when
solving Problems III.3 and III.7 for discrete time and continuous time systems.

Theorem A.21. For a discrete-time system, if M in Problem III.7 is chosen to
be greater than max(M1,M2), where M1 = maxxi∈ξs maxθ maxj(H(θ)xi − h(θ))j and
M2 = maxxi∈ξ¬s

maxθ maxj(H(θ)xi − h(θ))j, G¬s ⊆ A and Gs ⊆ S.

Proof. We first prove that G¬s ⊆ A. Consider first the case where M =∞ and there-
fore Problem III.7 exactly enforces that at least one state in each unsafe trajectory is
unsafe and all states on demonstrations are safe.

236

Suppose for contradiction that there exists some x ∈ G¬s, x /∈ A. By definition of
G¬s, g(x, θ) ≤ 0, for all θ ∈ F , where F is the feasible set of parameters θ in Problem
III.3. However, as x /∈ A, but for all θ ∈ F , g(x, θ) ≤ 0 we know that θA /∈ F , where
θA is the parameter associated with the true unsafe set A. However, F will always
contain θA, since:

• θA satisfies g(x, θA) > 0 for all x in safe demonstrations, since all demonstrations
are safe with respect to the true θA.

• For each trajectory ξ¬s sampled using Algorithm III.1, there exists x ∈ ξ¬s such
that g(x, θA) ≤ 0.

We come to a contradiction, and hence for M =∞, G¬s ⊆ A.
Now, we consider the conditions on M such that choosing M ≥ const or M =∞

causes no changes in the solution of Problem III.7. M must be chosen such that
1) H(θ)xi − h(θ) > −M1 ⇔ H(θ)xi − h(θ) > −∞1, for all safe states xi ∈ ξs,
and 2) H(θ)xi − h(θ) ≤ M1 ⇔ H(θ)xi − h(θ) ≤ M1 for all states xi on unsafe
trajectories ξ¬s. Condition 1 is met if −M < minxi∈ξs minθ minj(H(θ)xi − h(θ))j,
where vj denotes the j-th element of vector v; denote as M1 an M which satisfies this
inequality. Condition 2 is met if M ≥ maxxi∈ξ¬s

maxθ maxj(H(θ)xi − h(θ))j; denote
as M2 an M which satisfies this inequality. Then, M should be chosen to satisfy
M > max(M1,M2).

The proof that Gs ⊆ S is analogous. If there exists x ∈ Gs, x /∈ S, g(x, θ) > 0,
for all θ ∈ F , then θA /∈ F . We follow the same reasoning from before to show
that θA ∈ F for M = ∞. Now, provided the condition on M holds, we reach a
contradiction.

Corollary A.22. For a continuous-time system, where demonstrations are time-
discretized as discussed in Section A.1.2, if M is chosen as in Theorem A.21, Gs ⊆ S
and G¬s ⊆ A(D∗), where D∗ is as defined in Theorem A.11.

Proof. The reasoning for Gs ⊆ S follows from the proof of Theorem A.21.
For proving G¬s ⊆ A(D∗), we follow the proof of Theorem A.11 until it is shown

that any learned guaranteed unsafe state must be contained in the A(D∗). However,
for the parametric case, there is no notion of a grid and hence the further padding by
R∗ is unnecessary.

Finally, we restate and prove our results on constraint conservativeness when
working with unknown constraint parameterizations.

Theorem A.23 (Conservativeness: Over-parameterization (Theorem III.23 in the
main body)). Suppose the true parameterization and over-parameterization are de-
fined as in (3.14) and (3.16). Then, G¬s ⊆ A and Gs ⊆ S.

Proof. Note that (3.14) is equivalent to
(∨N̄

i=1

(
gs(x, θi) ≤ 0

))
, where θN∗+1, . . . , θN̄

are constrained to satisfy {x | gs(x, θi) ≤ 0} = ∅, i = N∗ + 1, . . . , N̄ . Thus, the true
θ is equivalent to adding additional constraints on a loosened parameterization (the

237

b

b

(al, bl)

(au, bu)

AA

Figure A.5: Counterexample used in the proof of the first statement in Theorem A.24.

over-parameterization). Let F̂ be the feasible set of Problem III.3 with θ loosened
as above, i.e. F = F̂ ∩ {θ | {x | gs(x, θi) ≤ 0} = ∅, i = N∗ + 1, . . . , N̄}. Via
Lemma A.17, F ⊆ F̂ ; thus, I¬s(F̂) ⊆ I¬s(F) ⊆ A, where the last set containment
follows from Theorem III.21. Vice versa, Is(F̂) ⊆ Is(F) ⊆ S, where again the last
set containment follows from Theorem III.21.

Theorem A.24 (Conservativeness: Under-parameterization (Theorem III.24 in the
main body)). Suppose the true parameterization and under-parameterization are de-
fined as in (3.14) and (3.15). Furthermore, assume that we incrementally grow the
parameterization as described in Section 3.3.5.3. Then, the following are true:

1. G¬s and Gs are not guaranteed to be contained in A (unsafe set) and S (safe
set), respectively.

2. Each recovered simple unsafe set A(θi), i = 1, . . . , N , for any θ1, . . . , θN ∈ F ,
touches the true unsafe set (there are no spurious simple unsafe sets): for i =
1, . . . , N , for θ1, . . . , θN ∈ F , A(θi)∩A 6= ∅ (N is as defined in Section 3.3.5.3).

Proof. 1. We first formally prove the statement with a counterexample and then
follow up with logic related to the proof of Theorem A.23.

Consider the example in Fig. A.5, where the parameterization is chosen as a
single axis-aligned box [I2×2,−I2×2]

⊤x ≤ θ but A is only representable with at
least two boxes. Suppose demonstrations are provided which imply that (al, bl)
and (au, bu) are unsafe; then AABB({(al, bl), (au, bu)}) 6⊆ A is implied unsafe.

Note that (3.15) is equivalent to
(∨N∗

i=1

(
gs(x, θi) ≤ 0

))
, where θN+1, . . . , θN∗

are constrained to satisfy {x | gs(x, θi) ≤ 0} = ∅, i = N + 1, . . . , N∗. Thus,
restricting the parameterization is equivalent to adding additional constraints
on the true θ. Let F̂ be the feasible set of Problem III.3 with θ restricted as
above, i.e. F̂ = F∩{θ | {x | gs(x, θi) ≤ 0} = ∅, i = N+1, . . . , N∗}. Via Lemma
A.17, F̂ ⊆ F ; thus, I¬s(F) ⊆ I¬s(F̂). Since I¬s(F) can equal A, potentially
G¬s = I¬s(F̂)∩S 6= ∅. Vice versa, Is(F) ⊆ Is(F̂), and since Is(F) can equal S,
potentially Gs = Is(F̂) ∩ S 6= ∅.

2. Assume, by contradiction, that Problem III.3 outputs a simple unsafe setA(θi), i ∈
{1, . . . , N}, which does not touch the true unsafe set: ∃i ∈ {1, . . . , N},A(θi) ∩

238

5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure A.6: U-shape performance with random demonstrations. Left: Coverage of A
and S. Center: Classification accuracy. Right: A recovered feasible A(θ), overlaid with
demonstrations, and the true unsafe set A is outlined in blue.

A(θ∗) = ∅. Then, θj, j ∈ {1, . . . , N} \ {i} would be a feasible point for Problem
III.3 with a parametrization that contains only N − 1 simple sets. However, we
know Problem III.3 with N − 1 simple sets is infeasible. Contradiction.

A.2 Appendix: Chapter III: Extra numerical examples

A.2.1 U-shape (random demonstrations)

In this example, we show what the performance of our method looks like with
random demonstrations on the U-shape example. On the left of Fig. A.6, we show
that our coverage grows more slowly than for the case where demonstrations are
chosen for their informativeness; furthermore, coverage for the safe set is higher and
coverage for the unsafe set is lower in the random demonstration case. This is because
by using random demonstrations, we cover a good deal of S, so Gs becomes larger;
on the other hand, many of these safe demonstrations may not come in contact with
the constraint, so there are relatively few unsafe trajectories that can be sampled,
so G¬s is not as large. In the center of Fig. A.6, we show that the accuracy of
our method doesn’t change much, though the relative performance of the NN gets
worse for classifying safe states; this is because the accuracy for the NN is now being
evaluated on a larger region since Gs is larger due to more demonstrations. As in
previous examples, the NN error bars are generated by training the NN ten times
with initializations using different random seeds. On the right of Fig. A.6, we display
a feasible A(θ) recovered by solving a multi-box variant of Problem III.7. With more
demonstrations, the gap between A(θ) and the true unsafe set A will continue to
shrink.

The main takeaways from this experiment are: 1) when demonstrations are not
informative (in the sense that they do not interact with the constraint), it can take
many demonstrations to learn the unsafe set (this holds for any constraint recovery
method), and 2) our accuracy remains just as high as for the case with specifically
chosen demonstrations and is not much affected by the coverage.

239

A.3 Appendix: Chapter III: Experimental details

For all neural network baseline results in every experiment, the network is trained
with weights initialized using ten different random seeds, and the resulting perfor-
mance range (displayed as a shaded region) and average performance over the ten
random seeds are plotted in the figures.

A.3.1 Unknown parameterizations

We emphasize that for all examples with unknown parameterization, by following
the incremental procedure detailed in Section 3.3.5.3, we are finding the minimum
number of boxes required to represent the data; in other words, we are always oper-
ating with the minimal feasible parameterization.

U-shape and infinite boxes:

• For both experiments, the system dynamics are xt+1
.
= [χt+1, yt+1]

⊤ = [χt, yt]
⊤+

[uχt , u
y
t]

⊤. The U-shape experiment uses control constraints ‖[uχt , uyt]‖2 ≤ 0.5,
while the infinite-box experiment uses control constraints ‖[uχt , uyt]‖2 ≤ 1.

• For both experiments, the cost function is c(ξx, ξu) =
∑T−1

i=1 ‖xt+1 − xt‖22.

• Since the cost function has optimal substructure, 100000 unsafe trajectories for
each sub-trajectory are sampled. The dataset is downsampled to 50 unsafe tra-
jectories for each sub-trajectory, which are to be fed into the multi-box variant
of Problem III.7.

• For both experiments, the initial parameter set is restricted to [−5,−5,−3,−3]⊤ ≤
θi ≤ [8, 8, 3, 3]⊤, for each θi (the parameter for box i). For the infinite-box ex-
periment, each box is restricted to be at least 1.25× 1.25 in width/height.

• Sampling time is around 15 seconds per demonstration (for the U-shape ex-
periment) and 10 seconds per demonstration (for the infinite-box experiment).
Computation time for solving Problem III.7 is around 40 seconds (for the U-
shape experiment) and 15-20 seconds (for the infinite-box experiment).

• The same data is used for training the neural network (7800 trajectories total
for the U-shape case, 2000 trajectories for the infinite-box case). The neural
network architecture used for this example is a fully connected (FC) layer, 2×10
→ LSTM, 10×10→ FC 10×1 (the recurrent layer is used since we have variable
length trajectories as training input). The network is trained using Adam.

U-shape with random demonstrations:

• The system dynamics are xt+1
.
= [χt+1, yt+1]

⊤ = [χt, yt]
⊤+[uχt , u

y
t]

⊤ with control
constraints ‖[uχt , uyt]‖2 ≤ 0.5.

• The cost function is c(ξx, ξu) =
∑T−1

i=1 ‖xt+1 − xt‖22.

240

• Demonstrations are generated for 35 pairs of start/goal states sampled uni-
formly at random over (χ, y) ∈ [−2, 2]× [−2, 2], rejecting any start/goal states
that lie in A.

• Since the cost function has optimal substructure, 10000 unsafe trajectories for
each sub-trajectory are sampled. The dataset is downsampled to 25 unsafe tra-
jectories for each sub-trajectory, which are to be fed into the multi-box variant
of Problem III.7.

• The initial parameter set is restricted to [−5,−5,−3,−3]⊤ ≤ θi ≤ [8, 8, 3, 3]⊤,
for each θi (the parameter for box i).

• Sampling time is around 2 minutes total. Computation time for solving the
multi-box variant of Problem III.7 is around 90 seconds.

• The same data is used for training the neural network (10100 trajectories total).
The neural network architecture used for this example is a fully connected (FC)
layer, 2 × 10 → LSTM, 10 × 10 → FC 10 × 1. The network is trained using
Adam.

A.3.2 High-dimensional examples

7-DOF arm, optimal/suboptimal demonstrations

• The system dynamics are
.
= θit+1 = θit+u

i
t, i = 1, . . . , 7, with control constraints

−2 ≤ uit ≤ 2, i = 1, . . . , 7, where the state is x = [θ1, . . . , θ7].

• The cost function is c(ξx, ξu) =
∑T−1

i=1 ‖xt+1 − xt‖22. Note that the generate
demonstrations (displayed in Fig. 3.13) push up against the position constraint,
since the trajectory minimizing joint-space path length without the position
constraint is an arc that exceeds the bounds of the position constraint; the
position constraint ends up increasing the cost by truncating that arc.

• The true safe set is (x, y, z, α, β, γ) ∈ [−0.51, 0.51]× [−0.3, 1.1]× [−0.51, 0.51]×
[−π, π]× [−π/120, π/120]× [−π/120, π/120] for the optimal case and the true
safe set is (x, y, z, α, β, γ) ∈ [−0.57, 0.47]×[−0.10, 1.17]×[−0.56, 0.56]×[−π, π]×
[−0.12, 0.12]× [−0.125, 0.125] for the suboptimal case.

• Since the cost function has optimal substructure, 250000 unsafe trajectories for
each sub-trajectory are sampled. For the suboptimal case, the continuous-time
demonstrations are time-discretized down to T = 10 time-steps. The dataset
is downsampled to 500 unsafe trajectories for each sub-trajectory, which are to
be fed into Problem III.7.

• For the optimal case, the demonstrations are obtained by solving trajectory op-
timization problems solved with the IPOPT solver Wächter and Biegler (2006).
For the suboptimal case, the demonstrations are recorded in a virtual reality
(VR) environment displayed in Fig. A.7.

241

Figure A.7: VR setup. Top: VR environment as viewed from the Vive headset. The green
box represents the position constraints on the end effector. The end effector is commanded
to move by dragging it with the HTC Vive controllers (bottom).

• The initial parameter set is restricted to [−1.5,−1.5,−1.5,−π,−π,−π]⊤ ≤
[x, y, z, α, β, γ]⊤ ≤ [1.5, 1.5, 1.5, π, π, π]⊤.

• Sampling time is 12.5 minutes total for the optimal case and 9 minutes total
for the suboptimal case. Computation time for solving Problem III.3 is around
2 seconds for both the optimal/suboptimal case.

• The same data is used for training the neural network (70000 trajectories total
for the optimal case, 49900 trajectories total for the suboptimal case). The
neural network architecture used for this example is a fully connected (FC)
layer, 3 × 20 → LSTM, 20 × 20 → FC 20 × 1. The network is trained using
Adam.

242

12D quadrotor example

• The system dynamics Sabatino (2015) are

χ̇
ẏ
ż
α̇

β̇
γ̇
χ̈
ÿ
z̈
α̈

β̈
γ̈

=

χ̇
ẏ
ż

β̇ sin(γ)
cos(β)

+ γ̇ cos(γ)
cos(β)

β cos(γ)− γ̇ sin(γ)
α̇ + β̇ sin(γ) tan(β) + γ̇ cos(γ) tan(β)

− 1
m
[sin(γ) sin(α) + cos(γ) cos(α) sin(β)]u1

− 1
m
[cos(α) sin(γ)− cos(γ) sin(α) sin(β)]u1

g − 1
m
[cos(γ) cos(β)]u1

Iy−Iz
Ix

β̇γ̇ + 1
Ix
u2

Iz−Ix
Iy

α̇γ̇ + 1
Iy
u3

Ix−Iy
Iz

α̇β̇ + 1
Iz
u4

, (A.4)

with control constraints [0,−0.02,−0.02,−0.02]⊤ ≤ ut ≤ [mg, 0.02, 0.02, 0.02]⊤.
For our purposes, we convert the dynamics to discrete time by performing for-
ward Euler integration with discretization time δt = 0.4 seconds. The state
is x = [χ, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇]⊤, and the constants are g = −9.81m/s2,
m = 1kg, Ix = 0.5kg ·m2, Iy = 0.1kg ·m2, and Iz = 0.3kg ·m2.

• The known unsafe set in (χ, y, z) is (χ, y, z) /∈ [−0.5, 0.5]×[−0.5, 0.5]×[−0.5, 0.5].

• The true safe set in (α̇, β̇, γ̇) is (α̇, β̇, γ̇) ∈ [−0.006, 0.006]3.

• The cost function is

c(ξx, ξu) =
T−1∑

i=1

‖[χi+1, yi+1, zi+1, α̇i+1, β̇i+1, γ̇i+1]
⊤ − [χi, yi, zi, α̇i, β̇i, γ̇i]

⊤‖2

(penalizing acceleration and path length).

• The demonstrations are obtained by solving trajectory optimization problems
solved with the IPOPT solver Wächter and Biegler (2006).

• Since the cost function has optimal substructure, 10000 unsafe trajectories for
each sub-trajectory are sampled. The dataset is downsampled to 500 unsafe
trajectories for each sub-trajectory, which are to be fed into Problem III.7.

• The initial parameter set is restricted to [−π/2,−π/2,−π/2]⊤ ≤ [α̇, β̇, γ̇]⊤ ≤
[π/2, π/2, π/2]⊤.

• Sampling time is 8.5 minutes total for the optimal case and 9 minutes total for
the suboptimal case. Computation time for solving Problem III.3 is 12 seconds.

243

• The same data is used for training the neural network (30000 trajectories total).
The neural network architecture used for this example is a fully connected (FC)
layer, 6 × 36 → LSTM, 36 × 42 → FC 42 × 1. The network is trained using
Adam.

A.3.3 Black-box system dynamics

Pushing example

• The cost function is c(ξx, ξu) =
∑T−1

i=1 ‖xt+1−xt‖22. The two demonstrations are
manually generated and are not exactly optimal.

• 1000 unsafe trajectories for each demonstrations are sampled.

• The initial parameter set is restricted to [−5,−5,−3,−3]⊤ ≤ θi ≤ [8, 8, 3, 3]⊤.

• Sampling time is 2 hours for each demonstration (using the simulator is slower
than using the closed form dynamics). Computation time for solving Problem
III.3 is around 1 second.

• Demonstrations are time-discretized to 40 simulator timesteps when input to
Problem III.7.

• The same data is used for training the neural network (2700 trajectories total).
The neural network architecture used for this example is a fully connected (FC)
layer, 8× 10 → FC, 10× 10→ FC 10× 1. No recurrent layer is used this time
since all trajectories are of the same length (no sub-trajectories were sampled
this time due to speed). The network is trained using Adam.

244

APPENDIX B

Appendix for Chapter 7: Uncertainty-Aware

Constraint Learning and Planning via Constraint

Beliefs

In these appendices, we will first summarize and provide more details on the
optimization problems used in our method (Appendix B.1, discuss various results
on the representability of sets of cost function and constraint parameters which are
consistent with demonstrations (Appendix B.2), provide expanded details on our
methods for extracting the set of consistent cost function and constraint parameters
(Appendix B.3), provide expanded details on our methods for planning policies for
adaptively satisfying uncertain constraint parameters (Appendix B.4), provide proofs
for the theoretical results in the main body (Appendix B.5), and provide additional
details on our experimental results (Appendix B.6).

B.1 Appendix: Chapter VII: Optimization problem glossary

In this appendix, we provide a detailed summary of the optimization problems
utilized in our approach.

Problem VII.1: This is the optimization problem that we assume the demonstra-
tor is solving to local-optimality. This problem involves a potentially task-dependent
cost function cΠ(ξxu), where a task in this chapter is simply steering the system state
from a start state x0 to a goal state xg while satisfying a set of constraints. This
problem also involves a known shared constraint φ̄(ξxu) ∈ S̄ (which embeds known
constraints which that shared across all tasks, such as the system dynamics) as well as
a known task-dependent constraint φΠ(ξxu) ∈ SΠ (which embeds known constraints
that are task-dependent, such as the start and goal state constraints). Finally, there
is the unknown shared constraint φ(ξxu) ∈ S(θ) (unknown to the learner, but known
to the demonstrator) which is parameterized by unknown parameters θ.

245

minimize
ξxu

cΠ(ξxu)

subject to φ(ξxu) ∈ S(θ) ⊆ C ⇔ g¬k(ξxu, θ) ≤ 0
φ̄(ξxu) ∈ S̄ ⊆ C̄, φΠ(ξxu) ∈ SΠ ⊆ CΠ ⇔ hk(ξxu) = 0, gk(ξxu) ≤ 0

Problem VII.2: This is the inverse optimization problem that the learner solves
to learn one possible assignment of the unknown constraints that are satisfied by
the demonstrations. Specifically, the problem searches over the unknown constraint
parameters and the Lagrange multipliers which together make the KKT conditions
of each demonstration satisfied.

find θ,L .
= {λj

k,λ
j
¬k,ν

j
k}Ns

j=1

subject to {KKT(ξlocj)}Ns

j=1

Problem VII.3: This problem returns the set of all consistent constraint pa-
rameters Fθ. Intuitively, this problem finds the largest set F̂θ, in the sense of set
containment, of constraint parameters θ, such that the KKT conditions can be made
to hold for those parameters. The problem is intractable in its most general form,
motivating simpler variants Problem VII.4 and Problem B.4.

sup
F̂θ

Vol(F̂θ)

s.t. ∀θ ∈ F̂θ, ∃{λj
k,λ

j
¬k,ν

j
k | KKT(ξlocj)}Ns

j=1

Problem VII.4: This problem returns the largest axis-aligned hyper-rectangle
contained within Fθ; this problem is a restricted, tractable version of Problem VII.3.

maximize
s,θ,L

(∏
i si
)1/d

subject to {KKTbox
rob (ξ

loc
j)}Ns

j=1

Problem VII.7: This problem solves a chance-constrained trajectory optimiza-
tion problem, minimizing a possibly task-dependent objective cΠ(ξxu) while ensuring
that the resulting trajectory satisfies the uncertain constraint with prescribed proba-
bility 1 − ε. We further consider two specific variants, Problem VII.7-εmin, which
seeks to solve Problem VII.7 to be as safe as possible, i.e with the smallest ε for which
there exists a feasible solution, and Problem VII.7-R, which directly trades off per-
formance and safety with a modified objective cΠ(ξxu)/Pr(ξxu safe). Problem VII.7
and its variants are in their most general form intractable, motivating the simpler
variant Problem VII.8.

Problem VII.7:

min
ξxu

cΠ(ξxu) (B.1a)

s.t. φ̄(ξxu) ∈ S̄ ⊆ C̄ (B.1b)

φΠ(ξxu) ∈ SΠ ⊆ CΠ (B.1c)

Pr(ξxu safe) ≥ 1− ε (B.1d)

246

Problem VII.7-εmin:

min
ξxu

min
ε

cΠ(ξxu)

s.t. φ̄(ξxu) ∈ S̄ ⊆ C̄
φΠ(ξxu) ∈ SΠ ⊆ CΠ
Pr(ξxu safe) ≥ 1− ε

Problem VII.7-R:

min
ξxu

cΠ(ξxu)/Pr(ξxu safe)

s.t. φ̄(ξxu) ∈ S̄ ⊆ C̄
φΠ(ξxu) ∈ SΠ ⊆ CΠ

Problem VII.8: This is a simplified variant of Problem VII.7, which makes the
probability constraint tractable by restricting the integration of probability mass over
a fixed number of axis-aligned boxes, where the location and extents of the boxes are
also optimized over. We consider two specific variants, Problem VII.8-εmin and
Problem VII.8-R, which are as described for Problem VII.7.

min
ξxu,Bi,ti

cΠ(ξxu) (B.4a)

s.t. φ̄(ξxu) ∈ S̄ ⊆ C̄, φΠ(ξxu) ∈ SΠ ⊆ CΠ (B.4b)

ξxu ∈ S(θ), ∀θ ∈ B1, . . . ,BNbox
(B.4c)

Bi ∩ Bj = ∅, i 6= j, Bi ⊆ Fθ, ∀i (B.4d)

0 ≤ ti ≤ (
∏

i b
scale
i)1/d, i = 1, ..., Nbox (B.4e)∑

i t
d
i ≥ (1− ε)Vol(Fθ) (B.4f)

We provide an overview of the constraints of Problem VII.8. First, note that
(B.4a)-(B.4b) exactly correspond to (B.1a)-(B.1c). The remaining constraints in
Problem VII.8 implement the box-limited integration. Specifically, (B.4c) enforces
that the planned trajectory ξxu is safe with respect to all θ belonging to B1, . . . ,BNbox

.
Recall that each Bi is meant to represent a box contained in Fθ, and that ξxu is to be
safe with respect to all θ belonging to this Bi. Thus, (B.4d) further enforces that each
Bi is contained in Fθ, and furthermore, that the Bi are disjoint; this is to avoid any
double-counting of box volumes (and thus probability mass). Next, (B.4e) introduces
the variables ti, from which the volume of the corresponding box can be recovered:
note that the volume of Bi is

∏
i b

scale
i . The last constraint, (B.4f), does exactly this:

tdi is exactly the volume of Bi, so
∑

i t
d
i =

∑
i Vol(Bi), which we ensure is at least

(1− ε)Vol(Fθ) to satisfy the probability constraint.
Problem B.4: In Appendix B.3.1, we will discuss a modification of Algorithm

VII.1 which makes it more efficient for constraint parameterizations other than the
union-of-boxes parameterization assumed in Sec. 7.3. This modification hinges upon

247

Problem B.4, which returns a zonotope contained within Fθ of approximately maxi-
mum volume; this problem is a restricted, tractable version of Problem VII.3 which
is more general than Problem VII.4.

maximize
s,θ,λj

k
,λj

¬k
,νj

k
,Qi

∑Ngen

i=1 ‖ℓi‖1
subject to {KKTzon

rob(ξ
loc
j)}Ns

j=1, |ℓ⊤mℓn| ≤ δ, ∀m 6= n

B.2 Appendix: Chapter VII: A geometric analysis of con-
strained inverse optimal control

We describe how the constraint learning problem can be extended to also learn
unknown cost function parameters γ (Appendix B.2.1), the shape of the resulting
feasible sets for unknown cost function parameters for various parameterizations (Ap-
pendix B.2.2), and the shape of the resulting feasible sets for consistent constraint
parameters (Appendix B.2.3), for various parameterizations.

B.2.1 Modifying Problem VII.2 to handle unknown cost function param-
eters

As in Chapter IV, we note that the KKT conditions in Problem VII.2 can be
modified to handle unknown cost function parameters, where the cost function can be
written as cΠ(ξxu, γ) for unknown cost function parameters γ ∈ Γ, with few changes:
the only KKT condition that changes is stationarity (7.3d), where the term involving
the gradient of the cost now also involves the unknown cost function parameters γ:

∇ξxucΠ(ξ
loc
j , γ)+λ

j
k
⊤∇ξxugk(ξ

loc
j)+λ

j
¬k
⊤∇ξxug¬k(ξ

loc
j , θ)+ν

j
k
⊤∇ξxuhk(ξ

loc
j) = 0 (B.5)

B.2.2 Unknown cost function, known constraint

Let us denote the feasible set of Problem VII.2, modified to handle unknown cost
function parameters, again be F , and let us denote the projection of F onto Γ as Fγ:

Fγ
.
= {γ | ∃(θ,L) : (θ, γ,L) ∈ F} (B.6)

In the following, we will analyze the shape of Fγ for various parameterizations
the unknown cost function. In this subsection, we will assume that the constraint
parameters θ are known, and focus only on analyzing the case of unknown γ.

B.2.2.1 Linear cost function parameterization

Consider the case where the cost function c(ξxu, γ) is linear in the unknown pa-

rameters γ, i.e. c(ξxu, γ) =
∑|γ|

i=1 γici(ξxu)
.
= γ⊤c(ξxu), and the constraints are fully

known. The following result shows that in this setting, the set of cost function param-
eters consistent with the KKT conditions (7.3) is convex and closed under nonnegative
scaling:

248

Theorem B.1 (Geometry of Fγ (linear in γ, known θ)). If the cost function takes

the form c(ξxu, γ) =
∑|γ|

i=1 γici(ξxu), then Fγ = Γ∩ C, where C ∈ R|γ| is a convex cone
in γ-space.

Proof. From Boyd and Vandenberghe (2004), a set C is a convex cone if for all γ1,
γ2 in C, α1γ1 + α2γ2 ∈ C, for all nonnegative scalars α1, α2 ≥ 0. For now, assume
that other than the KKT constraints, γ is unconstrained, i.e. Γ = R|γ|. Suppose
we have γ1 ∈ Fγ and γ2 ∈ Fγ. In (7.3), as the constraint parameters θ are known,

we drop (7.3a), merge (7.3b)-(7.3c), and absorb λ
j⊤
¬k∇ξxug¬k(ξ

loc
j , θ) into the previous

term. Then, if γi ∈ Fγ for i ∈ {1, 2}, we know that λ
j
k,i ≥ 0, λj

k,i ⊙ gk(ξ
dem
j) = 0,

and γ⊤i ∇ξxuc(ξ
loc
j) + λ

j⊤
k,i∇ξxugk(ξ

loc
j) + ν

j⊤
k,i∇ξxuhk(ξ

loc
j) = 0, for i ∈ {1, 2}. Then if

γ = α1γ1+α2γ2, for nonnegative scalars α1 and α2, we can select λj
k = α1λ

j
k,1+α2λ

j
k,2

and ν
j
k = α1ν

j
k,1 + α2ν

j
k,2 to satisfy (7.3d); it can also be verified algebraically that

this choice of λj
k satisfies the nonnegativity and complementary slackness constraints.

This implies the conic hull C of any feasible γ is feasible for Problem VII.2. Finally,
if Γ ⊂ R|γ|, we can write Fγ as the intersection of Γ and the previously constructed
cone C.

Furthermore, as Problem VII.2 simplifies to a linear program when θ is known, F
is a polytope, and thus Fγ can be directly computed via a polytopic projection of F
onto its γ coordinates Herceg et al. (2013).

B.2.2.2 Nonlinear cost function parameterization

For general nonlinear parameterizations of γ, the set of γ which satisfy (7.3) is
much more challenging to represent explicitly, as checking if a γ satisfies (7.3) will
involve satisfying a set of nonlinear, non-convex equality constraints (7.3d). However,
if the parameterization is a polynomial function of γ, i.e. c(ξxu, γ) is a polynomial in
γ for fixed ξxu, Fγ can be represented as a semi-algebraic set; that is, a set described
by a finite union of intersections of polynomial inequalities:

Theorem B.2. For cost functions which are polynomial in γ for fixed ξxu, Fγ = Γ∩P,
where P ∈ R|γ| is a semi-algebraic set in γ-space.

Proof. In this setting, λj
k ≥ 0, λj

k⊙gk(ξ
dem
j) = 0, and∇ξxuc(ξ

loc
j , γ)+λ

j⊤
k ∇ξxugk(ξ

loc
j)+

ν
j⊤
k ∇ξxuhk(ξ

loc
j) = 0 define an intersection of polynomial inequalities in γ, that is, a

basic semi-algebraic set. Fγ is then the projection of this set onto the γ coordinates;
however, the projection of a basic semi-algebraic set may not be basic semi-algebraic
in general; they are guaranteed to be semi-algebraic via the Tarski-Seidenberg theo-
rem Bochnak et al. (1998).

While explicitly representing a semi-algebraic set can be expensive, there exist
well-established methods for doing so, including exact methods like cylindrical alge-
braic decomposition Collins (1975) and approximate methods involving semidefinite
relaxations Magron et al. (2015).

249

B.2.3 Unknown constraints

In this section, we discuss details on the shape of Fθ for unions of offset-parameterized
constraints (Sec. B.2.3.1) and for unions of affine and higher-order parameterized con-
straints (Sec. B.2.3.2).

B.2.3.1 Unions of offset-parameterized constraints

Coordinate-independent parameterization:
We first analyze the case where the unknown constraint can be described as a

union of offset-parameterized constraints:

Theorem B.3. Consider the case when the unknown constraint can be described as
a union of intersection of inequalities which are offset-parameterized, i.e.:

S(θ) =
{
κ ∈ C |

Nineq∨

m=1

N i
ineq∧

n=1

(
gmn(κ) ≤ θmn

)}
(B.7)

Then, the corresponding Fθ can be described as a union of boxes as well:

Fθ =

{
θ ∈ Θ |

Nbox⋃

m=1

[Id×d,−Id×d]
⊤θ ≤ sm

}
(B.8)

Proof. In this setting, note that Problem VII.2 can be represented as a MILP, imply-
ing that F can be described as a finite union of polyhedra in the space of all decision
variables. As polyhedra are closed under projection, Fθ can also be represented as
a finite union of polyhedra. Note that in the KKT conditions for parameterization
(B.7), θ only appears in (7.3a) and (7.3c) (as the gradient term in (7.3d) drops out).
Now, suppose we fix all of the boolean variables in Problem VII.2 (needed to imple-
ment (7.3a) and (7.3c)). Then, depending on those boolean variables for some t, j,
(7.3c) either enforces θmn = gmn(κ

j
t) or leaves θmn unconstrained, and (7.3a) imposes

θmn ≥ gmn(κ) or leaves θmn unconstrained. Then, for fixed boolean variables, for any
m and n, we obtain linear constraints on θmn, independent of other θm′n′ for m′ 6= m,
n′ 6= n; that is, θmn is constrained to lie in an interval. Then, unioning over all
feasible boolean assignments, we obtain that θm′n′ can be described as a finite union
of intervals. As a result, Fθ can be described as a union of boxes in θ space, as in
(B.8).

Coordinate-dependent parameterization: If instead the constraint is param-
eterized such that any single constraint can depend on multiple parameters:

S(θ) =
{
κ ∈ C |

Nineq∨

m=1

N i
ineq∧

n=1

(
gmn(κ) ≤ ω⊤

mnθ
)}

(B.9)

for some fixed mixing coefficients ωmn, Fθ can only be represented as the more general

250

union of polytopes, as for some m, n, the constraints on θmn will in general depend
on θm′n′ , for m′ 6= m, n′ 6= n.

B.2.3.2 Unions of affine and higher-degree parameterized constraints

Consider the case where the constraint can be represented as:

S(θ) =
{
κ ∈ C |

Nineq∨

m=1

N i
ineq∧

n=1

(
gmn(κ, θmn) ≤ 0

)}
(B.10)

where gmn(κ, θmn) is affine or higher-degree in θmn. In this case, the gradient term does
not drop out in (7.3d), meaning the set of consistent θ will depend on the projection
of a set defined by polynomial equality constraints, which in general is a semialgebraic
set described by polynomials of degree 2O(|decision variables|), where “decision variables”
denotes the Lagrange multipliers L and unknown constraint parameters θ in Problem
VII.2.

B.3 Appendix: Chapter VII: Obtaining a belief over con-
straints (expanded)

In this section, we first discuss details on zonotope extraction (Appendix B.3.1),
how extraction can be done for the case of jointly unknown cost function and con-
straints (Appendix B.3.2), how extraction can be sped up with parallelization (Ap-
pendix B.3.3), and conclude with a summary of complexity and representability for
the extraction problems induced by various cost and constraint parameterizations
(Appendix B.3.4).

B.3.1 Other constraint parameterizations: extracting with zonotopes

While filling Fθ with boxes may be efficient for a union-of-boxes constraint pa-
rameterization, infinitely many boxes may be needed to cover Fθ in more general
cases where Fθ may only be representable as a union of polytopes or semialgebraic
sets (see Appendix B.3 for more details). To address this, we describe how to extract
Fθ with shapes more general than boxes while retaining efficiency. Covering Fθ with
polytopes instead is expensive, as polytope volume computation in high dimensions
is hard. Instead, we cover Fθ with zonotopes Beck and Robins (2015), which are be-
tween boxes and polytopes in representational power. A zonotope Z is a Minkowski
sum of Ngen line segments: Z = {∑Ngen

i=1 ℓiui | ui ∈ [−1, 1]}, where ℓi ∈ Rd is the ith
segment.

Problem B.4 (Zonotope robustification).

maximize
s,θ,λj

k
,λj

¬k
,νj

k
,Qi

∑Ngen

i=1 ‖ℓi‖1
subject to {KKTzon

rob(ξ
loc
j)}Ns

j=1

|ℓ⊤mℓn| ≤ δ, ∀m 6= n

251

Robustifying KKT to a zonotope uncertainty is done similarly to boxes: the robust
constraint can be simplified with these equivalences: a⊤(x +

∑Ngen

i=1 ℓiui) ≤ b, ∀ui ∈
[−1, 1] ⇔ maxu1∈[−1,1],...,uNgen∈[−1,1] a

⊤(x +
∑

i ℓiui) ≤ b ⇔ a⊤x +
∑

i |a⊤ℓi| ≤ b. De-

note (7.3b) and the robustified (7.3a), (7.3c), (7.3d) as KKTzon
rob(ξ

dem
j). Optimizing

zonotope volume is challenging, as it requires determinant computations Beck and
Robins (2015) that render the overall problem a mixed integer semidefinite program,
which lack reliable solvers. Instead, we optimize a surrogate,

∑
i ‖ℓi‖1, and add bilin-

ear optimization constraints to make the lines approximately orthogonal: |ℓ⊤mℓn| ≤ δ
for some small predetermined δ; these constraints are compatible with off-the-shelf
solvers Gurobi Optimization (2020). Finally, we cannot ignore the existential quan-
tifiers for this parameterization, so we introduce “feedback” Lagrange multipliers.
Inspired from adjustable robust optimization Ben-Tal et al. (2004), we modify each
Lagrange multiplier to take the form λi+Qiu, where Qiu is a feedback term adjusting
the value of the Lagrange multiplier as a linear function of the uncertainty u. The
Qi are jointly optimized to maximize the volume. The overall problem (Prob. B.4)
is a mixed integer bilinear program (MIBLP).

Discussion on volume maximization: Recall from the statement of Problem
B.4 that we are enforcing the approximate orthogonality |ℓ⊤mℓn| ≤ δ of the line segment
generators together with maximizing the line segment norms as a surrogate for volume
maximization; this is to avoid the degenerate case where any two generators are
parallel; this leads to the extracted volume being zero. Furthermore, we elect to use a
prespecified δ instead of enforcing mutual orthogonality ℓ⊤mℓn = 0 to avoid restricting
the search to rotated boxes (which is what occurs if all the generators are perfectly
orthogonal).

B.3.2 Discussion on extracting with mixed cost function and constraint
uncertainty

Extraction with mixed cost function and constraint uncertainty can be done in a
similar way to Alg. VII.1. Specifically, we can robustify the stationarity condition to
uncertainties in γ and θ jointly:

∇ξxu
cΠ(ξ

loc
j , γ + sc ⊙ uc)+λ

j
k
⊤∇ξxu

gk(ξ
loc
j)+λ

j
¬k
⊤∇ξxu

g¬k(ξ
loc
j , θ + s⊙ u)+ν

j
k
⊤∇ξxu

hk(ξ
loc
j) = 0
(B.11)

The remaining KKT conditions are unchanged, as γ does not factor into the other
constraints. The modified stationarity condition can be robustified in a similar way.
We denote (7.3b), the robustified (7.3a) and (7.3c), and the joint cost/constraint-
robustified (7.3d) together as KKTbox

rob,cost(ξ
dem
j). We can then modify Problem VII.4

to account for the additional scaling variables as such:

maximize
s,sc,θ,γ,L

(∏
i si
∏

i sci
)1/d

subject to {KKTbox
rob,cost(ξ

loc
j)}Ns

j=1

This new optimization problem can be integrated into Algorithm VII.1, repeatedly
carving out subsets of Fθ ×Fγ.

252

B.3.3 Speeding up extraction with parallelization

We sketch one possible way that Alg. VII.1 can be sped up with parallelization
on M cores:

• Partition the parameter space Θ into M disjoint boxes.

• Run Alg. VII.1 on each partition separately.

• Reconstruct Fθ by unioning the extracted parameters from each partition.

B.3.4 Summary on problem complexity

In the following table, we organize the representability of particular constraint
learning and feasible set extraction problems, for various constraint parameteriza-
tions. To summarize, the case of unknown constraints induces a set of integer variables
due to the complementary slackness condition. The remaining complexity depends
on the complexity of the constraint and cost function parameterizations. Further-
more, the extraction problems are only conic-representable due to our formulation of
volume maximization.

Constraint param. Cost param. Problem VII.2, class Class (extraction)

Known Linear LP Direct projection
Union of offsets Known MILP MISOCP
Union of offsets Linear MILP MISOCP
Union of affine Known MIBLP MIBLP
Union of affine Linear MIBLP MIBLP

Nonlinear Nonlinear MINLP MINLP

B.4 Appendix: Chapter VII: Policies for adaptive constraint
satisfaction (expanded)

In this appendix, we first discuss fast reformulations for the chance-constrained
planning problem (Appendix B.4.1), expanded details on the sampling-based planners
that we use when the optimization constraints are not MICP-representable (Appendix
B.4.2), discussion on extending Problem VII.8 to handle priors other than the uniform
distribution (Appendix B.4.3), and discussion on how to perform belief updates for
various constraint sensing modalities (Appendix B.4.4).

B.4.1 Fast reformulations of Problem VII.8

As written, Problem VII.8 can be expensive to solve due to the many possible
assignments of the box decision variables bceni and bscalei , for each i, and the combina-
torial coupling between boxes i 6= j. Furthermore, the non-convex norm constraint
(7.11f) causes Problem VII.8 to be an MIBLP, which are in general more challenging
to solve than mixed integer convex programs. This can cause solving Problem VII.8
to be slow. To address this, we propose two reformulations:

253

• In the first, we still optimize over the Nbox boxes simultaneously, and simply
replace the non-convex constraint (7.11f) with a linear approximation:

∑
i ti ≥

1−ε. However, by doing this, the original chance-constraint Pr(ξxu safe) ≥ 1−ε
may not hold exactly. One can get around this by instead enforcing

∑
i ti ≥ 1−ε̃,

incrementally shrinking ε̃ until the resulting trajectory satisfies the original
chance constraint, but this can be cumbersome.

• The second reformulation, which is what we use in practice to solve Problem
VII.8-εmin, instead optimizes over the boxes one at a time. That is, if we are
given a budget of Nbox boxes, we solve Problem VII.8-εmin for Nbox = 1, then at
the next iteration, solve for Nbox = 2, where the first box is fixed. This continues
until we reach the box budget. If Nbox is chosen to be large enough that the
covered probability mass is the same when solving Problem VII.8 for Nbox and
Nbox+1, this sequential strategy is lossless, i.e. will return the same solution as
Problem VII.8 without relaxations, for the case where choosing to satisfy one
possible constraint can never cause the trajectory to not be able to satisfy a
different constraint. In other cases, this strategy may lead to convergence to a
local optimum in the amount of probability mass covered, but we observe that
this strategy works well in practice.

B.4.2 Sampling-based planners

We utilize two sampling-based planners to compute open-loop plans in the case
where the constraints of Problem VII.8 are not representable in a mixed integer con-
vex program: Minimum Constraint Removal (MCR) and the Blindfolded Traveler’s
Problem (BTP).

Minimum Constraint Removal (MCR) Hauser (2014): MCR takes a finite
set of constraints and a start/goal state. At each step of the algorithm, MCR keeps
track of the path from the start to the goal that violates the least number of con-
straints so far. The algorithm initializes this with the straight-line edge between the
start and goal states, and sets k, the minimum number of constraints that must be
violated as the number of constraints that the start/goal state violate. Then, MCR
incrementally grows a roadmap, where candidate expansions are limited based on the
number of constraints the candidate edge will violate, and at each growth iteration,
finds the path from the start to each vertex which violates the minimum number of
constraints and updates the path to the goal which violates the least constraints. Ev-
ery so often, we increase k to allow for more constraints to be violated when expanding
the roadmap. This is summarized in Section 4.2 of Hauser (2014).

To use MCR to approximate Problem VII.8-εmax, we sample Nsample constraints
from the belief {θi ∼ b(θ)}Nsam

i=1 as input to MCR, then run MCR as just described.
The output of MCR will then be a path on the roadmap connecting the start and
goal which violates the minimal number of sampled constraints.

The Blindfolded Traveler’s Problem (BTP) Saund et al. (2019): The Blind-
folded Traveler’s Problem (BTP) can be modeled as a graph search problem. It is
defined by a graph G = (V,E,W, x0, xg) with vertices V , edges E, weights C, and

254

start/goal state x0 and xg. Furthermore, each edge e is invalid with probability
p(e) ∈ [0, 1]. If an edge euv from u to v is traversed, either the traversal is successful,
and the agent ends up at vertex v, or the agent discovers that the edge is invalid
ηuv ∈ [0, 1] fraction of the way through, at which point the agent needs to turn back
and return to vertex u; such a traversal attempt costs 2ηuvCuv, where cΠ(euv) is the
cost of traversing edge uv. The agent has a prior over the probability of edge valid-
ity and blockage, which can be updated based on the observations gained through
traversing the graph. A solution to BTP is a policy which takes the start state,
history of observations, and outputs an edge to traverse.

While computing an optimal policy for the BTP is NP-complete, it is possible
to compute high-quality approximations, for example using the Collision Measure
strategy (Section 5.1 of Saund et al. (2019)). This strategy approximates BTP by
modifying the graph edge weights to penalize the log probability of the edges being
unsafe, that is, edge weights are modified such that c̃uv = cuv − β log(p(euv safe),
for some weights β. We then compute paths on the graph by running A* with the
modified edge weights.

Specifically, to approximate Problem VII.8-R with BTP, we sample constraints
{θi ∼ b(θ)}Nsam

i=1 from the belief b(θ) to approximate the probabilities p(euv safe);
specifically, for each edge, we estimate p(euv safe) as the fraction of sampled con-
straints which are violated.

B.4.3 Priors p(θ) other than the uniform distribution

In Section 7.4.1, we discuss how to integrate over a uniform prior to optimize
boxes over the probability density which can be embedded in an MISOCP for plan-
ning probabilistically safe trajectories. Here, we discuss a different prior which also
satisfies the closed-form integrability and log-concave assumptions detailed in Sec.
7.4.1: p(θ) ∝ ∏|κ|

i=1(κ̄i(θ) − κi(θ)), where κ̄i, κi denote the upper and lower bounds
of the box in dimension i of the constraint space. This prior places more probability
mass on larger box constraints; hence, the behavior generated using this prior is more
conservative. As a concrete example, see Fig. B.1 for trajectories solving Problem
VII.8 for the different priors, solved over a range of different start/goal states. Observe
that the trajectories that use the weighted prior are more conservative. Generally,
an investigation of other useful priors which satisfy our assumption of closed-form
integrability is the subject of future work.

B.4.4 Belief updates

Given an initial set of consistent constraint parameters Fθ, we are interested in
updating Fθ to be consistent with constraint information gathered in execution. We
specifically write belief updates for the following constraint sensing modalities:

Direct, exact measurements: Consider a measurement that κsafe is safe, given
an initial set of consistent constraints Fθ. We want to find the maximum volume
subset of Fθ which satisfies g(κ, θ) ≤ 0. To accomplish this, we simply modify
Problem VII.4 to:

255

-2 -1 0 1 2

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2

-2

-1

0

1

2

3

4

5

Figure B.1: Trajectories generated for different priors. We are provided one demon-
stration (left), which reveals the left, right, and bottom extents of a box obstacle
constraint, but not the upper extent. Dashed lines correspond to the uniform prior
p(θ) ∝ 1, while dotted lines correspond to the prior p(θ) ∝∏|κ|

i=1(κ̄i(θ)− κi(θ)).

maximize
s

(∏
i si
)1/d

subject to g(κsafe, θ + s⊙ u) ≤ 0

where we can eliminate the uncertain variable u with the identity used in Section
7.3.1, and use this modified problem in Algorithm VII.1. Note that as the local
optimality of the demonstrations is already embedded in the initial Fθ, we do not
need to add them as additional constraints in this modified problem, improving the
computation time.

The same modification can be done an unsafe measurement κunsafe, except with a
constraint g(κunsafe, θ + s⊙ u) > 0.

Ranged, exact measurements: This case can come up when given LiDAR
scans of the environment obtained in execution. For this setting, we assume that
we are given a finite set of states which are all sensed to be safe, or all sensed to be
unsafe. In our examples, we obtain this finite set of points by discretizing the possibly
continuous ranged LiDAR measurement using a grid of measurement locations. This
is a simple extension of the previously discussed modification for a single observed

256

state; we simply have to add constraints corresponding to each state, and use this
modified problem in Algorithm VII.1:

maximize
s

(∏
i si
)1/d

subject to g(κisafe, θ + s⊙ u) ≤ 0, i = 1, . . . , Nsafe

g(κiunsafe, θ + s⊙ u) > 0, i = 1, . . . , Nunsafe

Direct, uncertain measurements: In this case, suppose that we are given an
initial set of consistent constraints Fθ as well as a finite set of states which may
be possibly unsafe (the same ideas extend to the case where a set of states may be
possibly safe); that is, we are given C¬s, where we learn in execution that at least
one element of C¬s is unsafe: ∃Ci

¬s ∈ A(θ∗). In our examples for the 7-DOF arm, we
obtain this finite set of points by discretizing the continuous set of points which could
be in contact by sampling points on the surface of the arm on the links downstream
from where a torque limit is violated. Again, a similar modification can be made to
Problem VII.4:

maximize
s

(∏
i si
)1/d

subject to

|C¬s|∨

i=1

g(Ci
¬s, θ + s⊙ u) ≤ 0

Specifically, the logical constraints over which state is unsafe can be modeled with
binary variables, so the overall problem is still an MISOCP. The modified problem
can be used in Algorithm VII.1.

B.5 Appendix: Chapter VII: Theory

In this appendix, we provide proofs for the theorems in the main body of the
chapter.

Theorem B.5. If Alg. VII.1 terminates for any parameterization, its output is
guaranteed to cover Fθ.

Proof. Suppose for contradiction that Algorithm VII.1 terminates such that Fθ \
(
⋃Ninfeas

i=1 F̂ i
θ) = F remain

θ 6= ∅. However, by construction, Alg. VII.1 only terminates if

there does not exist any θ ∈ Θ for which {KKT(ξdemj)}Ndem

j=1 can be satisfied; otherwise,
Prob. VII.4 remains feasible. For all θ ∈ F remain

θ , by definition of being an element
of Fθ, there exist L to satisfy {KKT(ξdemj)}Ndem

j=1 . Contradiction.

Theorem B.6. Alg. VII.1 is guaranteed to terminate in finite time for union-of-boxes
parameterizations.

Proof. From Theorem B.3, Fθ can be described as a union of a finite number of axis-
aligned rectangles: Fθ =

⋃Nbox

i=1 Bi}. Extend each hyperplane defining the boundary

of a box Bi to infinity to obtain an irregular grid {Gi}Ngrid

i=1 over Θ (see Figure B.2 for

257

Fθ

Figure B.2: Grid used in the proof of Theorem B.6.

the case in 2D). As Fθ is composed of a finite number of boxes and hence there are a
finite number of extended hyperplanes, there will be a finite number of grid cells, i.e.
Ngrid is finite.

We now prove that the solution of Problem VII.4 at any iteration i, F̂ i
θ, can

be exactly represented by some subset of grid cells: F̂ i
θ = {κ | [Id×d,−Id×d]

⊤κ ≤
[θ̄,−θ]⊤} =

⋃Nrep

j=1 Gj. Suppose for contradiction that there exists some grid cell Gk
that F̂ i

θ only partially contains: (Gk ∩ F̂ i
θ 6= ∅) ∧ (Gk ∩ F̂ i

θ 6= Gk). Formally, this
means that in some coordinate of θ, say the mth coordinate, the upper bound of
F̂ i

θ, θ̄
i
m satisfies θ̄im ∈ [θkm, θ̄

k
m], where these denote the lower and upper bounds of

grid k in dimension m; similar logic holds for analyzing the lower bound. For θ̄im
to be the upper bound of F̂ i

θ in the mth coordinate, by the optimality of Problem
VII.4, there must exist some constraint state κ contained in the expanded box {κ |
[Id×d,−Id×d]

⊤κ ≤ [θ̄1, . . . , θ̄m−1, θ̄
k
m, θ̄m+1, . . . , θ̄d,−θ]⊤} such that κ /∈ Fθ. However,

this is not possible, as by the grid partition, there exists no hyperplane defining Fθ

that can be crossed in the mth coordinate between θkm and θ̄km. Contradiction.
Finally, as each iteration in Alg. VII.1 removes a finite number of grid cells, Alg.

VII.1 will terminate in a finite number of iterations.

Theorem B.7. A solution to Prob. VII.8 is a guaranteed feasible, possibly suboptimal
solution to Prob. VII.7.

Proof. Feasibility follows by construction of Problem VII.8, as constraint (7.11f) di-
rectly models the probability constraint (7.10d):

∫
Bi
dθ = tdi , so

∑
i t

d
i =

∑
i

∫
Bi
dθ =∫

Θs
dθ for Θs =

⋃Nbox

i=1 Bi, which is exactly Pr(ξxu safe) when integrated over Θs, for
the uniform prior bdem(θ).

Suboptimality arises from the optimal partition of probability possibly not being
representable as a union of boxes: in general, there exists Θs under which cΠ(ξxu) is
minimized, such that there does not exist Nbox boxes where Θs =

⋃Nbox

i=1 Bi.

258

B.6 Appendix: Chapter VII: Further experimental details

In this section, we provide additional details on our experimental results. We first
discuss in detail the baseline algorithms that we compare to in the results (Appendix
B.6.1). We then demonstrate closed-loop planning with an uncertain nonlinear con-
straint using a sampled approximation of Problem VII.8 (Appendix B.6.2), and then
discuss additional details and visualize example runs of our method and baseline ap-
proaches for the mixed quadrotor uncertainty example (Appendix B.6.3), the 7-DOF
arm example (Appendix B.6.4), and the quadrotor maze example (Appendix B.6.5).

B.6.1 Planning baselines

B.6.1.1 Mixed quadrotor example

Scenario approach: The scenario approach Grammatico et al. (2016) satisfies
uncertain constraints by sampling Nsam possible constraint parameters {θi}Nsam

i=1 and
finds a solution that satisfies all of the sampled constraints. For this example, we
may not be able to satisfy all of the sampled constraints, and hence the scenario
approach may render the problem infeasible. To get around this to use the method
as a baseline, we iteratively sample additional constraints, and solve the following
open-loop planning problem:

min
ξxu

cΠ(ξxu)

s.t. φ̄(ξxu) ∈ S̄ ⊆ C̄, φΠ(ξxu) ∈ SΠ ⊆ CΠ
ξxu ∈ S(θ), ∀θ ∈ {θi}Nsam

i=1

We stop sampling constraints when the problem becomes infeasible and return
the feasible trajectory generated at the previous iteration.

Optimistic approach: In this approach, we are optimistic about the true con-
straint, only avoiding the set of guaranteed-unsafe states, buffering the extents by 0.5
in the uncertain constraint dimensions.

B.6.1.2 7-DOF arm example

BTP without constraint parameterization or demonstrations: In this
version of BTP, we provide neither a union-of-boxes constraint parameterization nor
a set of demonstrations. Instead, collision probabilities are measured with “Collision
Hypothesis Sets” (CHS) Saund and Berenson (2018), which use a voxelization of the
environment, with probabilities of particular voxels being occupied updated based on
the occupancy of the robot volume during collision.

Optimistic approach: In this approach, we use the same graph provided to
BTP and do not provide the information provided by the demonstrations, and we
iteratively solve an optimistic problem. At the first iteration, we find run A* with
all edges on the graph assumed valid, and attempt to execute the path. If the robot

259

collides when traversing some edge euv from vertex u to v, the robot backtracks to
vertex u, removes edge euv from the graph, and replans on the modified graph. The
procedure continues until the robot is at the goal.

B.6.1.3 Quadrotor maze example

Guaranteed-safe planning: In this approach Chou et al. (2020b), we compute
paths which are guaranteed-safe with respect to the constraint uncertainty. Under
the assumption that the constraint parameterization is correct, this guarantees that
we will never need to replan upon discovering a constraint, but at the cost of possibly
high-cost, conservative trajectories.

Optimistic approach: This approach Janson et al. (2018) is optimistic with
respect to the uncertain space, and constructs high-level plans that plan to interme-
diate goals on the frontier of unknown space, between the current state and the goal,
and executes the best high-level plan. In more detail, we replicate the approxima-
tions used in Section IV.B of Janson et al. (2018). In particular, we assume that
the unknown space is free, but buffer known obstacles by 0.1 meters in the uncertain
dimensions. We discretize the unknown frontier in 2 meter intervals to construct our
subgoals.

B.6.2 Nonlinear constraint

We show that our method can plan with constraint beliefs for non-union-of-boxes
constraint parameterizations. Specifically, we are given a demonstration on a 2D
kinematic system [χt+1, yt+1]

⊤ = [χt, yt]
⊤ + [uχt , u

y
t]

⊤ which minimizes path length
c(ξ) =

∑T−1
t=1 ‖xt+1 − xt‖2 (Figure B.3.A) while satisfying the constraint g(x, θ) =

θ1(x
4
1 + x42) + θ2(x

3
1 + x32) + θ3(x1 − 1)3 + θ4(x2 + 1)3 > 2 for θ = [2,−5, 5, 5]⊤. As

the demonstration is rather uninformative, many θ make it locally-optimal. As the
constraint is affine in θ, we extract Fθ with zonotopes (running Algorithm VII.1 with
Problem B.4); see Figure B.3.B-C for projX (Fθ) and a corresponding probability
heatmap. We now want to solve Prob. MCV, planning from x0 = [0, 0.75]⊤ to
xg = [0,−1.5]⊤. As g(x, θ) is not MICP-representable, we solve an approximation of
Prob. MCV with samples, sampling 100 constraints from bdem(θ) as input to MCR
(cf. Section 7.4.2). The resulting path, Plan 1, (Figure B.3.C) violates one possible
constraint at x¬s = [0.49, 0.8]⊤. Though this path is safe for the true constraint,
this is unknown to the learner, so we also precompute a contingency. Updating
the belief bex(θ) with C¬s = {x¬s} and previously visited states as Cs reduces the
constraint uncertainty (Figure B.3.D-E). In particular, we note that the measurement
at [0.49, 0.8]⊤ also removes the constraint uncertainty on the left-hand side of the
space; this is due to the nonlinearity of the constraint parameterization, and as we
can see in the belief (Figure B.3.C), only some of the the convex obstacles that cover
the right side of the space can explain the possible collision at [0.49, 0.8]⊤. Hence, this
measurement will update the belief to eliminate the non-convex obstacles, removing
the left-side uncertainty. For this updated belief, Contingency 1 can be planned with
no constraint violations (Figure B.3.E). Extracting Fθ with Algorithm VII.1 and

260

planning with MCR takes 30 min. (can be sped up with a parallel implementation,
cf. Appendix B.3) and 30 sec., respectively.

A B C

D EContingency 1

Possible
collision

x0

xg

Figure B.3: Example demonstrating MCR on planning with a nonlinear constraint.
A: Demonstration, overlaid with the true constraint (red). B: Initial constraint un-
certainty, visualized as a normalized probability heatmap.C. The initial plan (blue)
generated by MCR, overlaid by a subsampling of 20 of the sampled constraint param-
eters θ provided to MCR. A possible collision occurs at the cyan “x”. D. The updated
constraint uncertainty probability heatmap were the cyan state to be in collision. E.
The new plan for the updated constraint uncertainty reaches the goal without violat-
ing any possible sampled constraints.

B.6.3 Mixed state-control constraint uncertainty on a quadrotor

The system dynamics for the quadrotor Sabatino (2015) are:

χ̇
ẏ
ż
α̇

β̇
γ̇
χ̈
ÿ
z̈
α̈

β̈
γ̈

=

χ̇
ẏ
ż

β̇ sin(γ)
cos(β)

+ γ̇ cos(γ)
cos(β)

β cos(γ)− γ̇ sin(γ)
α̇ + β̇ sin(γ) tan(β) + γ̇ cos(γ) tan(β)

− 1
m
[sin(γ) sin(α) + cos(γ) cos(α) sin(β)]u1

− 1
m
[cos(α) sin(γ)− cos(γ) sin(α) sin(β)]u1

g − 1
m
[cos(γ) cos(β)]u1

Iy−Iz
Ix

β̇γ̇ + 1
Ix
u2

Iz−Ix
Iy

α̇γ̇ + 1
Iy
u3

Ix−Iy
Iz

α̇β̇ + 1
Iz
u4

, (B.13)

261

We time-discretize the dynamics by performing forward Euler integration with dis-
cretization time δt = 0.7. The 12D state is x = [χ, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇]⊤, and
the relevant constants are g = −9.81m/s2, m = 1kg, Ix = 0.5kg ·m2, Iy = 0.1kg ·m2,
and Iz = 0.3kg ·m2.

The simplified double integrator model that we use to plan in Problem VII.8 is as
follows:

χ̇
ẏ
ż
ẍ
ÿ
z̈

=

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

χ
y
z
ẋ
ẏ
ż

+

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

u1
u2
u3

+

0
0
0
0
0
g

(B.14)

which is then time discretized with δt = 0.5, with g = −9.81m/s2.
Ours Scenario approach Optimistic approach

Figure B.4: Example run 1 (mixed quadrotor example).

Ours Scenario approach Optimistic approach

Figure B.5: Example run 2 (mixed quadrotor example).

Visualizing example runs: For two different sampled ground-truth constraints,
we visualize the trajectories executed by our policy, the scenario approach policy
Grammatico et al. (2016), and the optimistic policy to compare their properties.

In Figure B.4, we display the sampled state constraint in red, and the sampled
control constraint is ‖u‖22 ≤ 98.27. Our policy, which attempts to satisfy all of the
state constraints by trying to move above all of the possible obstacles (see Sec. 7.5 for
more discussion), violates the control constraint at the first time-step by attempting to
do so. Our policy then switches to the first contingency plan and successfully reaches
the goal with 1 constraint violation. On the other hand, the scenario approach suffers
6 constraint violations (due to sampling constraints), while the optimistic approach

262

suffers 25 constraint violations (because it does not try to avoid any states other than
those which are known to be unsafe).

In Figure B.5, we display the sampled state constraint in red, and the sampled
control constraint is ‖u‖22 ≤ 98.55. Our policy reaches the goal in one try (0 constraint
violations), as we do not end up violating the control constraint. On the other hand,
the scenario approach suffers 4 constraint violations, while the optimistic approach
suffers 15 constraint violations.

Histogram: In computing Plan 1 (the initial executed trajectory) and Con-
tingencies 1-4 (the trajectories we switched to upon observing 1, 2, 3, and 4 con-
straint violations), we can calculate the volumes of the covered Bi which are op-
timized by Problem VII.8 at each iteration. When computing Plan 1, we cover
p0 = 69.10% of the possible constraints; when computing Contingency 1, we cover
p1 = 54.90% of the possible constraints under the updated belief, p2 = 56.33%
for Contingency 2, p3 = 73.91% for Contingency 3, and p4 = 98.00% for Con-
tingency 4. Using these percentages, we can calculate the theoretical frequency
of overrides as p(0 overrides) = p0, p(1 override) = (1 − p0)p1, and so on, until
p(4 overrides) =

∏3
i=1(1 − pi)p4. Using these formulae, we compute the theoretical

probability of suffering i constraint violations before reaching the goal, which we com-
pare with the empirical histograms (normalized over 500000 trials) (Fig. B.6), and
we see the statistics match quite closely.

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
m

p
ir

ic
a
l:
 6

9
.0

5
%

T
h
eo

re
ti

ca
l:
 6

9
.1

0
%

E
m

p
ir

ic
a
l:
 1

7
.0

5
%

T
h
eo

re
ti

ca
l:
 1

6
.9

6
%

E
m

p
ir

ic
a
l:
 7

.8
6
%

T
h
eo

re
ti

ca
l:
 7

.8
5
%

E
m

p
ir

ic
a
l:
 4

.5
0
%

T
h
eo

re
ti

ca
l:
 4

.5
0
%

E
m

p
ir

ic
a
l:
 1

.5
4
%

T
h
eo

re
ti

ca
l:
 1

.5
6
%

Figure B.6: Constraint violation histogram for the mixed quadrotor uncertainty ex-
ample.

263

B.6.4 7-DOF arm with contact sensing uncertainty

We use a kinematic model of the arm: xit+1 = xit + uit, for i = 1, . . . , 7. Here,
x ∈ R7, where coordinate i of the state denotes the angle of the ith joint. For
planning, we use a BTP graph with 5000 vertices (cf. Section 7.4.2). In the following,
we discuss more details on the performance of different policies on the task discussed
in Section 7.5.

BTP with CHS: We present a time-lapse of the trajectory executed by running
BTP with CHS (as described in Appendix B.6.1.2) in Figure B.7. Since this approach
is not given demonstrations, it requires several bumps in order to sufficiently localize
the shelf. Furthermore, this approach does not leverage a union-of-boxes constraint
parameterization as a prior on the world, as the CHS does not extrapolate about the
constraint beyond the sensed collision, making it so that more bumps occur before
reaching the goal.

Figure B.7: BTP with CHS. Voxels are colored red if they are possibly unsafe accord-
ing to the CHS. Red edges are attempted edges which are discovered to be blocked
in execution. The attempted edges which were unblocked are colored blue.

Optimistic approach: We present the trajectory executed by running the op-
timistic strategy described in Appendix B.6.1.2 in Figure B.8. Since this strategy
entirely ignores the correlation in validity between edges which are close to each
other, it explores many edges, yielding a trajectory cost which is much higher than
the other approaches.

Suboptimal human demonstrations: Finally, we present a time-lapse of our
policy when initialized with suboptimal human demonstrations in Figure B.10. The
demonstrations are captured using an HTC Vive in a virtual reality simulation envi-
ronment (Figure B.9). Overall, the behavior of our policy when initialized with these
human demonstrations is similar to the the case of synthetic demonstrations (which
is discussed in Sec. 7.5): it plans to move around the shelf, and in doing so, collides

264

Figure B.8: Trajectory executed by the optimistic policy.

with the unmodeled obstacle. This triggers a constraint parameterization update,
and the replanned path (which avoids the shelf and the uncertain region induced by
the collision) steers the arm to the goal without further collision. For this case, the
executed trajectory cost is 7.78 rad.

Figure B.9: Suboptimal human demonstrations. Top row: time-lapse of the first
demonstration. Bottom row: time-lapse of the second demonstration.

Figure B.10: Policy when initialized with suboptimal demonstrations. Left: plans
an initial trajectory that bumps into the unmodeled obstacle. Center: constraint
parameterization is updated to two boxes. Right: replanned trajectory successfully
avoids all collisions, steering the arm to the goal.

265

B.6.5 Quadrotor maze

Inevitable collision states: We integrate the inevitable collision state Fraichard
and Asama (2004) avoidance constraints into our approach. We first enforce that on
a planned trajectory, each state which may be possibly unsafe must be observable
(within 2 meters) from a previous state on the trajectory. Furthermore, the line of
sight between this previous state and the possible unsafe state cannot be occluded by
any obstacle other than the obstacle which is making the state possibly unsafe. For
these possibly unsafe states, we enforce that we can brake in time to avoid collision
(and together with the line-of-sight constraint, enforces that we can also sense if
we need to brake). This is done by explicitly optimizing “brake trajectories” in
conjunction with the planned trajectory, which are rooted two time-steps on the plan
before a possible collision and which bring the system to a stop without violating any
possible constraints. We further enforce the line of sight constraint by discretizing
the line segment between xt and xt+2 (if xt+2 is possibly unsafe) into 10 points, and
enforcing that each discretized state is guaranteed to satisfy all constraints other than
the uncertain constraint which can make xt+2 possibly unsafe.

Figure B.11: Example run, our policy (quadrotor maze). Initial plan (green), contin-
gency plan (blue), actually executed plan (yellow). The sphere around the quadrotor
indicates the sensing radius.

Figure B.12: Example run, guaranteed-safe policy (quadrotor maze). Initial/actually
executed plan (yellow).

266

Figure B.13: Example run, optimistic policy (quadrotor maze). Initial plan (green),
contingency plan 1 (blue), contingency plan 2 (cyan), actually executed plan (yellow).

Visualizing an example run: For one sampled possible environment (displayed
in red in Figures B.11-B.13), we visualize the trajectories executed by our policy, a
policy which seeks to plan guaranteed-safe trajectories Chou et al. (2020b), and an
optimistic policy Janson et al. (2018). Our policy moves to the right and seeks to
cut through the possibly unsafe region in the top right (Figure B.11); when observing
that the region is blocked, our policy switches to the blue contingency trajectory. On
the other hand, the guaranteed-safe policy (Figure B.12) seeks to avoid all possible
constraints; as a result, while this policy never needs to switch to a contingency
plan, it also ends up deterministically executing a higher-cost trajectory. Finally, the
optimistic policy in Janson et al. (2018) explores the dead end between the brown
obstacles and is forced to backtrack, yielding a higher cost compared to our policy.

B.6.6 Computation times

One challenge that our method faces when applied to real-time replanning is the
computational intensity of online belief updates and online replanning of open-loop
trajectories. First, we emphasize that if the assumptions in Section 7.4.4 hold, we
can precompute the possible belief updates and contingency plans to avoid comput-
ing them online. If the assumptions are not satisfied, we will need to perform the
computation online.

For belief updates, the computation time and number of measurements that can
be updated depends heavily on the measurement type. For instance, updating the
belief on the quadrotor maze example for a LiDAR scan with 30000 discretized points
takes 1.4 seconds; LiDAR-type measurements are fast as each point is known safe
or unsafe. However, contact measurements (as seen in the 7-DOF arm examples)
are expensive as an unknown combination of the discretized points can be unsafe;
modeling this requires the addition of many binary decision variables; it takes 30
minutes to incorporate a contact measurement with 300 discretized points. In this
case, a further investigation of the tradeoff between accuracy and computation time
based on the number of sampled possible contact measurements may lead to further
computational gains.

The integer optimization variables are the key reason for slow Fθ extraction in

267

Algorithm VII.1. Thus, we are optimistic that we can speed up computation with
parallelization (see Appendix B.3.3) and recent advances in fast mixed integer pro-
gramming Bertsimas and Stellato (2019), which enjoy orders of magnitude speedup
by learning efficient branching heuristics.

For open-loop planning, we note that the aforementioned fast mixed integer pro-
gramming methods, as well as other work in warm-starting mixed integer programs,
can be useful in reducing planning times for solving Problem VII.8 and other vari-
ants, as all of these variants are mixed integer programs, and the previous open-loop
plan can serve as a good initalization for replanning. We also emphasize that we can
reduce BTP planning times for the 7-DOF arm examples to around 15 seconds (as
in the original BTP paper Saund et al. (2019)) by precomputing arm swept volumes
along roadmap edges and by employing lazy collision checking.

268

APPENDIX C

Appendix for Chapter 10: Safe Output Feedback

Motion Planning from Images via Learned

Perception Modules and Contraction Theory

C.1 Appendix: Chapter X: Trusted domain visualizations

<latexit sha1_base64="9FTlIlg41xZsg0Ysb3kpReDWAOM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNRDx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4baX9MoVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVb2L6vn9eaV2ncdRhCM4hlPw4BJqcAd1aACDATzDK7w5wnlx3p2PeWvByWcO4Q+czx8e4o20</latexit>

Dp

<latexit sha1_base64="2bVj0D+XbV3y80TZa/0sGNdvtQs=">AAACGnicbVDLSgMxFM3UV62vUZdugkVxVWakqBuh2I3LCvYBnaFk0ts2NJMZkoxYhn6HG3/FjQtF3Ikb/8a0HURbDyQczrmXe+8JYs6UdpwvK7e0vLK6ll8vbGxube/Yu3sNFSWSQp1GPJKtgCjgTEBdM82hFUsgYcChGQyrE795B1KxSNzqUQx+SPqC9Rgl2kgd2612JL7EXgB9JtIgJFqy+zF28TF2sOeZzxAPRPfH69hFp+RMgReJm5EiylDr2B9eN6JJCEJTTpRqu06s/ZRIzSiHccFLFMSEDkkf2oYKEoLy0+lpY3xklC7uRdI8ofFU/d2RklCpURiYSrPfQM17E/E/r53o3oWfMhEnGgSdDeolHOsIT3LCXSaBaj4yhFDJzK6YDogkVJs0CyYEd/7kRdI4LblnpfJNuVi5yuLIowN0iE6Qi85RBV2jGqojih7QE3pBr9aj9Wy9We+z0pyV9eyjP7A+vwFoZp6m</latexit>

Cr =

[

1 0

0 0

]

<latexit sha1_base64="FG30Rbqpc02UpW7KLzWPESK1TEU=">AAACCnicbVC7TsMwFHV4lvIKMLIYKqSyVAmqgAWpoh0YC6IPqYkix3Vaq44T2Q5SFXVm4VdYGECIlS9g429w2gzQciTLR+fcq3vv8WNGpbKsb2NpeWV1bb2wUdzc2t7ZNff22zJKBCYtHLFIdH0kCaOctBRVjHRjQVDoM9LxR/XM7zwQIWnE79U4Jm6IBpwGFCOlJc88angCXsFyXX8NLz6FjqIhkdAJkRr6fno38cySVbGmgIvEzkkJ5Gh65pfTj3ASEq4wQ1L2bCtWboqEopiRSdFJJIkRHqEB6WnKkZ7nptNTJvBEK30YREI/ruBU/d2RolDKcejrymxDOe9l4n9eL1HBpZtSHieKcDwbFCQMqghmucA+FQQrNtYEYUH1rhAPkUBY6fSKOgR7/uRF0j6r2OeV6m21VLvO4yiAQ3AMysAGF6AGbkATtAAGj+AZvII348l4Md6Nj1npkpH3HIA/MD5/AJNhmPo=</latexit>

Dr = (CrDp)× R

states in perception dataset

<latexit sha1_base64="AR8bw1iLV+h/TJ1WtHIGvCZC5c0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AECKNqg==</latexit>

x2

<latexit sha1_base64="QRlFKTdZFTH2TZmCLuq5ispBsxg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcOno2p</latexit>

x1

Figure C.1: An example of how Dr ⊆ X is constructed.

In Fig. C.1, we visualize for a toy example how we construct Dr, which is a critical
set upon which we define the trusted domain Dx.

C.2 Appendix: Chapter X: Bounding estimation error (ex-
panded)

How can we bound the learned perception module error ǫ(x, θ)
.
= ‖ĥ−1

(
h(x, θ), θ

)
−

Crx‖ overDr×Dθ? We describe three options, each with their own strengths/drawbacks.

269

The first and simplest option is to estimate a uniform bound ǭ1 on the error:

ǫ(x, θ) ≤ ǭ1, ∀(x, θ) ∈ Dr ×Dθ. (C.1)

This works well if the error is consistent acrossDr×Dθ; however, it will be conservative
if there are any error spikes. A second option is to derive a spatially-varying bound
on ǫ(x, θ). To do so, we first estimate the Lipschitz constant of ǫ, Lp, over Dr ×Dθ:

‖ǫ(x̃, θ̃)− ǫ(x̌, θ̌)‖ ≤ Lp‖(x̃, θ̃)− (x̌, θ̌)‖, ∀(x̃, θ̃), (x̌, θ̌) ∈ Dr ×Dθ. (C.2)

Denote Sxθ = {(xi, θi)}Ndata

i=1 . We can then write this bound ǭ2(x
∗, θ) (cf. Fig. 10.4.B

for visuals), which crucially is an explicit function of the plan x∗, and can thus directly
guide our planner Alg. X.1:

Theorem C.1 (ǭ2(x
∗, θ)). : Recall that dc(t) = dc(x

∗(t), x(t)) is the Riemannian
distance between the nominal and true state at some time t. An upper bound on the
perception error ǫ(x, θ) that scales linearly with dc(t) can be written as:

ǫ(x, θ) ≤ Lpdc/
√

λDc
(Mc) + min1≤i≤Ndata

{Lp(‖(x∗, θ)− (xi, θi)‖) + ǫi} .
= ǭ2(x

∗, θ) (C.3)

Proof. For some training point (xi, θi) ∈ (Sxθ), we can calculate ǫi
.
= ‖ĥ−1(h(xi, θi), θi)−

Crxi‖ as its training error. Using ǫi and Lp, we can bound the error at a query
(x, θ) ∈ Dr × Dθ, as ǫ(x, θ) ≤ Lp‖(x, θ) − (xi, θi)‖ + ǫi. This holds for all data, so
we can tighten the bound by taking the pointwise minimum of the bounds over all
datapoints:

ǫ(x, θ) ≤ min1≤i≤Ndata
{Lp‖(x, θ)− (xi, θi)‖+ ǫi} (C.4)

As written, (C.4) is only implicitly a function of the plan, via the relationship between
x and x∗, and cannot directly guide planning, since x is unknown at planning time.
We can make this bound an explicit function of the plan x∗ by rewriting it as follows:

ǫ(x, θ) ≤ min1≤i≤Ndata
{Lp‖(x, θ)− (xi, θi)‖+ ǫi}

≤ min1≤i≤Ndata
{Lp(‖(x, θ)− (x∗, θ)‖+ ‖(x∗, θ)− (xi, θi)‖) + ǫi}

≤ Lpdc√
λDc

(Mc)
+min1≤i≤Ndata

{Lp(‖(x∗, θ)− (xi, θi)‖) + ǫi} .
= ǭ2(x

∗, θ)
(C.5)

The second inequality follows from the triangle inequality, and the third inequality
by applying

√
λDc

(Mc)‖x1 − x2‖ ≤ dc(x1, x2) ≤
√
λ̄Dc

(Mc)‖x1 − x2‖.

Instead of bounding the error over the whole domain (as in ǭ1), ǭ2(x
∗, θ) is tighter

as it only bounds the error over the tube, Ωc(t). However, due to the leading term
in (C.3), ǭ2(x

∗, θ) scales linearly with dc, even if the true error ǫ(x, θ) is relatively
constant, making it loose for large dc. Thus, we derive a third error bound to mitigate
this, ǭ3(x

∗, θ) (cf. Fig. 10.4.C). Overall, this third error bound ǭ3(x
∗, θ) is useful for

large dc, as there is no direct scaling with dc; however, it can be conservative if the
data has high dispersion. We describe this in more detail in the following, after some
definitions and proving a property of the dispersion. We provide a more detailed
visualization of our bound in Fig. C.2.

270

X

Θ Dr ×Dθ

r

e(x1, θ1)
e(x2, θ2)

e(x3, θ3)

Upper bound: max
i∈{1,2,3}

e(xi, θi) + Lpr

X

Θ Dr ×Dθ

Ωc(x
∗
(t), x(t))

x
∗
(t)Ω

B

c

η
∗

(xi, θi)(A) (B)

Figure C.2: (A) Visualization of the dispersion; together with the Lipschitz constant,
it can bound the error within the blue set. (B) A visualization of our set construction
in ǭ3(x

∗, θ).

Define Br(x) = {x̃ | ‖x̃ − x‖ < r}. and the dispersion of a finite set A contained
in a set B, R(A,B):

R(A,B)
.
= sup

r≥0,x∈B
r

s.t. Br(x) ∩ A = ∅, Br(x) ⊆ B
(C.6)

i.e., the radius of the largest open ball inside B that does not intersect with A. The
following property of the dispersion will be useful to us in deriving ǭ3(x

∗, θ).

Lemma C.2 (Dispersion of a subset). Consider a finite set X, a compact set Y ,
where X ⊆ Y , and a compact subset Z ⊆ Y . Then, R(X ∩ Z, Y ∩ Z) ≤ R(X, Y).

Proof. Consider a “sub-problem” of (C.6), which finds the largest open ball satisfying
the constraints of (C.6) when the ball center is fixed to x ∈ Z:

Rx(A,B)
.
= sup

r≥0
r

s.t. Br(x) ∩ B = ∅, Br(x) ⊆ A
(C.7)

Compare the value of Rx(X, Y) and Rx(X ∩ Z, Y ∩ Z) for any fixed x ∈ Z. Note
that the feasible set of (C.7) when A = X ∩Z and B = Y ∩Z is contained within the
feasible set of (C.7) when A = X and B = Y : any ball which is contained in Y ∩ Z
and does not intersect X ∩Z is also contained in Y , and does not intersect X. Thus,
Rx(X ∩ Z, Y ∩ Z) ≤ Rx(X,Z).

Now, consider the original problem (C.6), which can be rewritten as R(A,B) =
supx∈BRx(A,B). We have that R(X, Y) ≥ R(X ∩ Z, Y ∩ Z), since Y is a superset
of Y ∩ Z and thus the feasible set when B = Y is larger than when B = Y ∩ Z.

As an abuse of notation, we refer to R without any arguments as shorthand for
R(Sxθ, Dr ×Dθ). Let η

∗(t) = minη≥0,Sxθ∩(Ωc(t)×Bη(θ)) 6=∅ η be the radius of the smallest
ball around θ, Bη∗(t)(θ), such that (Ωc × Bη∗(t)(θ)) ∩ (Dr ×Dθ)

.
= ΩB

c contains some
datapoint. Then, we write our third error bound ǭ3(x

∗, θ):

271

Theorem C.3 (ǭ3(x
∗, θ)). An upper bound on the perception error ǫ(x, θ) can be

written based on buffering the local training errors:

ǫ(x, θ) ≤ LpR+max(xi,θi)∈Sxθ∩ΩB
c
ǫ(xi, θi)

.
= ǭ3(x

∗, θ) (C.8)

Proof. Finally, with an abuse of notation, denote Lp(A) as the local Lipschitz constant
of ǫ(x, θ) in x and θ, valid for all (x, θ) ∈ A.

ǫ(x, θ) ≤ supx̃∈Ωc
ǫ(x̃, θ) ≤ sup(x̃,θ̃)∈ΩB

c
ǫ(x̃, θ̃)

≤ Lp(Ω
B
c)R(Sxθ ∩ ΩB

c ,Ω
B
c) + max(xi,θi)∈Sxθ∩ΩB

c
ǫ(xi, θi)

≤ Lp(Dr ×Dθ)R(Sxθ, Dr ×Dθ) + max(xi,θi)∈Sxθ∩ΩB
c
ǫ(xi, θi)

.
= ǭ3(x

∗, θ),

(C.9)

where the second inequality follows from the definition of dispersion and the fourth
follows from a property of dispersion shown in Lem. C.2.

Intuitively, ǭ3(x, θ) uses the training errors ei for points inside Ωc(t) and buffers
them with the Lipschitz constant of the error and the data density to upper bound the
error inside Ωc(t) (see Fig. 10.4). For this to make sense, there must be at least one
datapoint in the considered set; however, in general, the external parameter θ ∈ Dθ

given as input to the OFMP may not be precisely in the dataset (as the dataset is
just a finite sampling of Dθ). There will, however, be datapoints with θi close by θ.
Thus, for the maxima and suprema terms to be well-defined, we must buffer Ωc(t) in
the θ coordinates until at least one datapoint lies in Ωc(t) × Bη(θ), for some buffer
radius η ≥ 0. In the proof, we make the relaxation in the last inequality so that we
only have to estimate one Lipschitz constant and one dispersion, instead of needing to
calculate them for each Ωc(t); this simplifies the estimation of the constants discussed
in Rem. X.4.

Each of these three bounds on ǫ(x, θ) can be plugged into (10.17) to upper bound
the integral in (10.9). As we use constant Me and ρ in the results, this simplifies the
integral to ‖Rewq(t)‖; we prove a bound on ‖Rewq(t)‖ in Lemma X.2.

C.3 Appendix: Chapter X: Proofs

In this appendix, we present the proofs of the theoretical results in the main body
of the chapter; for convenience, we have copied the theorem statements here.

Lemma C.4 (ḋc(t)). The integral term in (10.8) can be bounded as

∫ 1

0
‖Rc(γ

t
c(s))wc(t)‖ds ≤

√
λ̄Dc

(Mc)w̄x + L∆kde. (C.10)

Proof. Recall the form of wc from (10.14). First consider the third term in (10.14) (the

dynamics error). By using ‖wx‖ ≤ w̄x and ‖Rc(·)‖ ≤
√
λ̄Dc

(Mc), we can pull wx and
Rc(·) out of the integral to form the first term in the lemma statement. The second
term follows by performing a max over geodesic parameters s ∈ [0, 1] and substituting

272

the appropriate arguments into (10.15). Specifically, we have the following chain of
relations:

∫ 1

0
‖Rc(γ

t
c(s))B(u(x̂, x∗, u∗)− uclosest)‖ds

≤
∫ 1

0
maxs∈[0,1] ‖Rc(γ

t
c(s))B(u(x̂, x∗, u∗)− uclosest)‖ds

=
∫ 1

0
∆k(x̂, x, x∗, u∗)ds = ∆k(x̂, x, x∗, u∗)

= |∆k(x̂, x, x∗, u∗)−∆k(x, x, x∗, u∗)| ≤ L∆kde(x̂, x) = L∆kde

The first inequality holds via upper-bounding the norm over the geodesic parameters,
the first equality holds by substituting the definition of ∆k, the second equality holds
as ∆k is not a function of s, the third equality holds since ∆k(x, x, x

∗, u∗) = 0, and
the final inequality holds from the definition of our Lipschitz constant.

Lemma C.5 (ḋe(t)). Let σ̄(By) denote the maximum singular value of By. For
constant ρ and Me, the integral in (10.9) simplifies to ‖Rewq(t)‖ and can be bounded
as:

‖Rewq(t)‖ ≤
√
λ̄(We)w̄x +

1
2ρλ̄(Me)

1/2
(
Lĥ−1

√
σ̄(By)w̄y + ǭ{1,2,3}(x

∗, θ)
)

(C.11)

Proof. The first term of the bound,
√
λ̄(We)w̄x, follows the same logic from Lemma

X.1, except this time ‖Re(·)‖ ≤
√
λ̄(We). The second term follows from first combin-

ing the final line of (10.17) with one of the three error bounds ǭ{1,2,3}, and substituting
that combination into the integrand of (10.9) (which here simplifies to ‖Rewq(t)‖).
Specifically, we have the following:

‖Re
1
2
ρMeC

⊤
r (ĥ

−1(y, θ)− Crx)‖ = ρ
2
‖ReMeC

⊤
r (ĥ

−1(y, θ)− Crx)‖
= ρ

2
‖R−⊤

e C⊤
r (ĥ

−1(y, θ)− Crx)‖
≤ ρ

2
‖R−⊤

e C⊤
r ‖‖ĥ−1(y, θ)− Crx‖

≤ ρ
2
λ̄(Me)

1/2
(
Lĥ−1

√
σ̄(By)w̄y + ǭ{1,2,3}(x, θ)

)

The simplification in the second equality is done via properties of the Cholesky
decomposition: i.e., ReMe = Re(R

⊤
e Re)

−1 = ReR
−1
e R−⊤

e = R−⊤
e . The final inequality

follows from ‖R−⊤
e ‖ ≤

√
λ̄(Me), ‖Cr‖ ≤ 1, and applying the triangle inequality.

Theorem C.6 (From derivative to value). Let RHS denote the right hand side of
(10.19). Given bounds on the Riemannian distances at t = 0: dc(0) ≤ d̄c(0) and
de(0) ≤ d̄e(0), upper bounds d̄c(t) ≥ dc(t) and d̄e(t) ≥ de(t) for all t ∈ [0, T] can be
written as

[
dc(t)
de(t)

]
≤

t∫

τ=0

RHS
(
τ,

[
dc
de

])
dτ

.
=

[
d̄c(t)
d̄e(t)

]
, dc(0) = d̄c(0), de(0) = d̄e(0).

Proof. Using a vector-valued comparison theorem (Lakshiliikantham and Leela, 1969,
Corollary 1.7.1), we have that dc(t) and de(t) can be upper bounded on [0, T] by the so-
lution to the upper bound of (10.19), i.e., [ḋc, ḋe]

⊤ = RHS, provided that the solution

273

t

ē 3
(x

∗
(t
),
θ) anticipatory smoothing

Figure C.3: An example of anticipatory smoothing: the red curve is a continuous
upper bound to the potentially discontinuous ǭ3(x

∗, θ).

to RHS exists until at least t = T . Further prerequisites for applying (Lakshiliikan-
tham and Leela, 1969, Corollary 1.7.1) are that RHS is quasi-monotone nondecreasing
in [dc, de]

⊤ and that RHS is continuous in t and [dc, de]
⊤. In the following, we show

that these requirements hold when using ǭ1, ǭ2, and a modified, continuous version of
ǭ3.

First, we describe this modification to ǭ3(x
∗(t), θ), which we note is not continuous

in t, in general. This is because as t changes, the max term in (C.9) can discontinu-
ously change, based on the datapoints that fall inside Ωc(t). However, we can obtain
a smooth upper bound to ǭ3(x

∗, θ) by anticipating these discontinuous changes during
planning (we can do this since we know the nominal dynamics and the dataset), and
smoothing out these discontinuities, e.g., as in red in Fig. C.3.

We can see that RHS is continuous for all [dc, de]
⊤ (since it is just a linear system).

Furthermore, it is continuous in t, since all terms in RHS are constant, apart from
the error bounds ǭi, which are continuous functions of t (using smoothing for ǭ3).
Moreover, using continuity of RHS over t ∈ [0, T], the solution to RHS exists over
[0, T]. A vector-valued function g(t, r) : R × RN → RN is quasi-monotone nonde-

creasing in r if ∂gi(t,r)
∂rj

≥ 0, for all r and for all j 6= i, i = 1, . . . , N . We can see that

RHS precisely satisfies these conditions, as the matrix in (10.19) is Metzler, i.e., all of
its off-diagonal components are nonnegative: L∆k, Lp, λDc

(Mc), λ̄(Me), ρ ≥ 0. More

precisely, ∂RHS1(t,[dc,de]⊤)
∂de

= L∆k ≥ 0 and ∂RHS2(t,[dc,de]⊤)
∂dc

= (∗) ≥ 0.

Theorem C.7 (CORRT correctness). Assume that L∆k, Lĥ−1, and the estimated con-
stants in ǭ{1,2,3} are valid over their computed domains. Then Alg. X.1 returns a tra-
jectory (x∗(t), u∗(t)), which when tracked on the true system (10.1a) using u(x̂, x∗, u∗)
with state estimates x̂ generated by (10.6), reaches G while satisfying x(t) ∈ Xsafe, for
all t ∈ [0, T].

Proof. By construction, Alg. X.1 returns a plan (x∗(t), u∗(t)) which ensures that
Ωc(t) ∩ Xunsafe = ∅, for all t ∈ [0, T], where Ωc(t) = {x | dc(x∗(t), x(t)) ≤ d̄c(t)}, and
x(T) ∈ G. Thus, x(t) ∩ Xunsafe = ∅, provided that x(t) ∈ Ωc(t), for all t ∈ [0, T], i.e.,
the tubes are valid. Using Theorem X.3 and the assumption that all estimated con-
stants are valid over their computed domains (from the theorem statement), the tubes
are valid if x(t) remains in the corresponding domains of validity for all constants in

274

(10.19). In the following, we exhaustively prove that the additional constraints intro-
duced by Alg. X.1 enforce this domain invariance.

First, we list all constants in (10.20) with a non-trivial domain of validity.

1. CCM-related constants: the minimum and maximum eigenvalues ofMc: λDc
(Mc),

λ̄Dc
(Mc), and the CCM contraction rate λc.

2. OCM-related constants: the minimum and maximum eigenvalues ofMe: λ(Me),
λ̄(Me), the OCM contraction rate λe, and the multiplier ρ.

3. Constants estimated with probabilistic correctness guarantees using the Fisher-
Tippett-Gnedenko (FTG) theorem Chou et al. (2021c); Knuth et al. (2021a);
Weng et al. (2018): L∆k, Lĥ−1 , and all constants involved in the perception
error bounds ǭi(x

∗, θ), i = 1, 2, 3: ǭ1, Lp, and R.

Now, we prove why each group of constants is valid under the constraints of Alg.
X.1:

1. Suppose Mc is constant; then, its maximum and minimum eigenvalues trivially
extend for all of X . If Mc is polynomial and is generated via the SoS pro-
gram in (C.12), its eigenvalues are by construction bounded by 1/β and 1/β̄;
these provide globally-valid eigenvalue bounds over X . Moreover, the CCM-
based controller contracts the nominal dynamics at rate λc if 1) for all time
t ∈ [0, T], the geodesic connecting x∗(t) and x(t) (denoted as γtc(s), s ∈ [0, 1])
is contained within the contraction domain Dc, and 2) there exists a feasible
control input which achieves the λc contraction rate. Alg. X.1 enforces both of
these conditions: 1) line 9 of Alg. X.1 ensures Ωc(t) ⊆ Dc, since Ωc is defined
as a sublevel set with respect to the Riemannian metric induced by Mc, i.e.,
γtc(s) ⊆ Ωc(t) ⊆ Dc; 2) by (10.2), the feedback controller u(x̂, x∗, u∗) is always
feasible (i.e., (10.13) is nonempty) as long as x̂ ∈ Dc; this is enforced by line 10
of Alg. X.1.

2. In this work, we use constant Me, so its maximum and minimum eigenvalues
trivially extend for all of X . The OCM-based observer contracts at rate λe for
its nominal dynamics if for all time t ∈ [0, T], the geodesic connecting x(t) and
x̂(t) (denoted as γte(s), s ∈ [0, 1]) is contained within the contraction domain
De. In Alg. X.1, line 10 ensures Ωe(t) ⊆ De, since Ωe is defined as a sublevel
set with respect to the Riemannian metric induced by We, γ

t
e(s) ⊆ Ωe(t) ⊆ De.

3. From its definition in the paragraph before (10.15), L∆k is valid if dc(t) ≤ c̄ and
de(t) ≤ ē, and x∗ ∈ Dx, u

∗ ∈ U . We ensure this via the check in Alg. X.1, line
8. Lĥ−1 , and the error bound constants ǭ1, Lp, and R are valid if x ∈ Dr; this
is checked in line 9 of Alg. X.1.

Remark C.8 (Overall correctness probability). If all FTG-estimated constants are ob-
tained according to Rem. X.4 with probability ρ of correctness, using samples which

275

are mutually independent, then the overall probability of the correctness of CORRT
can be bounded by the product of each constant being estimated correctly; for ex-
ample, if L∆k, Lĥ−1 , and ǭ1 are estimated, then CORRT returns a safely-trackable
trajectory with probability at least ρ3.

C.4 Appendix: Chapter X: Optimizing CCMs and OCMs
for output feedback

In this section, we describe in more detail our method for synthesizing optimized
CCMs and OCMs (described briefly in Sec 10.3.3. To implement the tracking feed-
back controller and observers needed at runtime, we need to obtain the CCMs and
OCMs that define them. Two popular ways for synthesizing contraction metrics are
convex optimization (SoS programming) Manchester and Slotine (2017) and learning
Chou et al. (2021c). While the optimization-based methods are more efficient and
easier to analyze than the learning-based approaches, the learning-based methods
can be applied to higher-dimensional, non-polynomial systems. Since we focus on
(approximately) polynomial systems in the results, we obtain CCMs and OCMs via
SoS programming; however, our method is agnostic to how the CCMs/OCMs are
generated, as long as all the associated constants (e.g., λ̄De

(Me), λ̄Dc
(Mc), etc.) can

be accurately bounded.
To minimize conservativeness in planning (cf. Sec. 10.3.4), it is important that

the contraction metrics induce small tubes. However, exactly optimizing the tubes in
(10.20) is challenging, as they are coupled and depend on plan-dependent constants.
For tractability, we optimize a surrogate objective and design the CCM and OCM
separately.

Denote−Gc(x) as the LHS of (10.2a), v as a vector of indeterminates of compatible
dimension with Gc(x), and β̄ ≥ β > 0. Let In be the n× n identity matrix. For the
CCM, we minimize the steady-state tracking tube width for a uniform disturbance
bound as in Singh et al. (2019) by solving the following:

minimize
Wc(x),W̄c,λc,µc

i (x)

1
λc

√
λ̄Dc (Wc)

λDc
(Wc)

subject to (10.2b)
v⊤Gc(x)v −

∑
i µ

e
i (x)ci(x) ∈ SoS

βInx
� Wc(x) � W̄c � β̄Inx

(C.12)

We motivate (C.12) in the following. For polynomial dynamics and CCMs, the CCM
condition (10.2) is equivalent to enforcing the nonnegativity of a polynomial function
p(x) over a domain. A sufficient condition for proving p(x) ≥ 0 over a domain is
to enforce that p(x) can be written as a sum of squares; this can be enforced via a
semidefinite constraint, which is convex and is referred to in (C.12) as p(x) ∈ SoS.
As it may not be possible to enforce (10.2a) globally for all x ∈ X , we further
introduce nonnegative Lagrange multipliers µe

i (x) to only enforce (10.2a) over the
subset Dc ⊆ X . Specifically, we rewrite x ∈ Dc ⇔

∧ncon

i=1 {ci(x) ≤ 0}, where ci(·)
are constraint functions that together define the boundary of Dc; then, for some x

276

where ci(x) > 0, µc
i(x) can take some positive value to satisfy the SoS condition

even if v⊤G(x)v < 0. We handle condition (10.2b) by restricting Wc(x) to be only a
function of a subset of state variables (cf. Singh et al. (2019)), and we add additional
constraints on the eigenvalues of Wc to ensure that its inverse is well-defined. As in
Singh et al. (2019), while (C.12) is not convex as written, it can be solved to global
optimality by solving a sequence of convex SoS feasibility programs, where a subset
of the decision variables are fixed at each iteration. Specifically, we perform a line
search over λc and a bisection search over the condition number λ̄Dc

(Wc)/λDc
(Wc).

We take a similar approach for optimizing OCMs. First, we found it sufficient
to use constant OCMs and multipliers ρ for the systems in this chapter due to the
simplifications enabled by the inverse perception map. This simplifies the condition
(10.4) to

WeA(x̂) + A(x̂)⊤We − ρC⊤
r Cr + 2λeWe ≤ 0. (C.13)

Let −Ge(x) be the LHS of (C.13). We then obtain our OCM by solving the following:

minimize
We,λo,µe

i (x)

1
λc

λ̄Dc (Wc)√
λDc

(Wc)
ρ

subject to v⊤Ge(x)v −
∑

i µ
e
i (x)c

e
i (x) ∈ SoS

βInx
� We � β̄Inx

(C.14)

We change the objective function here to account for the known components of the
disturbance bound; specifically, from (10.16) we know that any disturbance from the
innovation term in the observer will be pre-multiplied by 1

2
ρMe; this accounts for the

extra factors in the objective. As before, we introduce Lagrange multipliers µe(x) to
only enforce (C.13) over the subset De ⊆ X , and restrict the eigenvalues of We to
ensure its inverse is well-defined. To solve (C.14) approximately, we drop the extra
square root factor, and do the same line search on λe and bisection search on the
condition number as for the CCM, but instead minimizing ρ instead of solving a
feasibility problem in each SoS program. We note that for both CCM and OCM
synthesis, if the system is linear, i.e., ẋ = Ax + Bu, then Wc and We can be chosen
as constant, simplifying both (C.12) and (C.14) to a standard semidefinite program
(SDP), since all constraints which were previously polynomial functions of x simplify
to constant linear matrix inequalities (LMIs).

C.5 Appendix: Chapter X: System models

In this appendix, we provide an overview of the system models that we use in the
results Sec. 10.4.

277

C.5.0.1 4D nonholonomic car:

ṗx
ṗy
φ̇
v̇

 =

v cos(φ)
v sin(φ)

0
0

+

0 0
0 0
1 0
0 1

[
ω
a

]
+

0 0
0 0
1 0
0 1

wx (C.15)

where px and py are the x and y translations of the car, φ is its orientation, and v is its
linear velocity. where u = [ω, a]⊤. To make (C.15) compatible with SoS programming,
when searching for the CCM and OCM, we polynomialize the dynamics by fitting a
degree 5 polynomial to sin(·) and cos(·) over [−π/2, π/2].

C.5.0.2 6D planar quadrotor:

We use the dynamics from (Singh et al., 2019, p.20) with six states and two inputs:

ṗx
ṗy
φ̇
v̇x
v̇z
φ̈

=

vx cos(φ)− vz sin(φ)
vx sin(φ) + vz cos(φ)

φ̇

vzφ̇− g sin(φ)
−vxφ̇− g cos(φ)

0

+

0 0
0 0
0 0
0 0

1/m 1/m
l/J −l/J

[
u1
u2

]
+

0 0
0 0
0 0
0 0
1 0
0 1

wx, (C.16)

where x = [px, pz, φ, vx, vz, φ̇] models the linear/angular position and velocity, and
u = [u1, u2] models thrust. We use the parameters m = 0.486, l = 0.25, and J = 0.07.
To make (C.16) compatible with SoS programming, when searching for the CCM and
OCM, we polynomialize the dynamics by fitting a degree 5 polynomial to sin(·) and
cos(·) over [−π/2, π/2].

C.5.0.3 17D manipulation task:

Let the m × n zero matrix be denoted 0m×n. We define φ = [φ1, φ2, φ3]
⊤, j =

[j1, j2, . . . , j7]
⊤, and j̇ = [j̇1, j̇2, . . . , j̇7]

⊤. We model the full 17D system as:

φ̇

j̇

j̈

 =

03×3 03×7 03×7

07×3 07×7 I7×7

07×3 07×7 07×7

φ

j

j̇

+

03×7

07×7

I7×7

 u+

03×7

07×7

I7×7

wx (C.17)

Here, the φi are the Euler angles of the object relative to the end effector, the ji are
the Kuka joint angles, the j̇i are the Kuka joint velocities, and u are the commanded
joint accelerations.

The 14D subsystem referred to in the text is:

[
j̇

j̈

]
=

[
07×7 I7×7

07×7 07×7

] [
j

j̇

]
+

[
07×7

I7×7

]
u (C.18)

278

BIBLIOGRAPHY

279

BIBLIOGRAPHY

Abbasi-Yadkori, Y., P. L. Bartlett, V. Gabillon, and A. Malek (2017), Hit-and-run
for sampling and planning in non-convex spaces, in AISTATS 2017.

Abbeel, P., and A. Y. Ng (2004), Apprenticeship learning via inverse reinforcement
learning, in International Conference on Machine Learning (ICML).

Abbeel, P., A. Coates, and A. Y. Ng (2010), Autonomous helicopter aerobatics
through apprenticeship learning, Int. J. Robotics Res., 29 (13), 1608–1639.

Agha-mohammadi, A., S. Chakravorty, and N. M. Amato (2014), FIRM: sampling-
based feedback motion-planning under motion uncertainty and imperfect measure-
ments, Int. J. Robotics Res., 33 (2), 268–304.

Akametalu, A. K., J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger, and C. J.
Tomlin (2014), Reachability-based safe learning with gaussian processes, in IEEE
Conference on Decision and Control (CDC), pp. 1424–1431.

Alizadeh, F., and D. Goldfarb (2003), Second-order cone programming, Math. Pro-
gram., 95 (1).

Allaire, G., F. Jouve, and G. Michailidis (2016), Thickness control in structural op-
timization via a level set method, Struct. and Multidisciplinary Optimization.

Altman, E. (1999), Constrained markov decision processes.

Amin, K., N. Jiang, and S. P. Singh (2017), Repeated inverse reinforcement learning,
in Neural Information Processing Systems, pp. 1813–1822.

Andersson, J. A. E., J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl (2018), CasADi –
A software framework for nonlinear optimization and optimal control, Mathematical
Programming Computation.

Annpureddy, Y., C. Liu, G. E. Fainekos, and S. Sankaranarayanan (2011), S-taliro: A
tool for temporal logic falsification for hybrid systems, in Tools and Algorithms for
the Construction and Analysis of Systems - 17th International Conference, TACAS,
pp. 254–257.

Aoude, G. S., B. D. Luders, J. M. Joseph, N. Roy, and J. P. How (2013), Proba-
bilistically safe motion planning to avoid dynamic obstacles with uncertain motion
patterns, Autonomous Robots, 35 (1), 51–76, doi:10.1007/s10514-013-9334-3.

280

Araki, B., K. Vodrahalli, T. Leech, C. I. Vasile, M. Donahue, and D. Rus (2019),
Learning to plan with logical automata, in Robotics: Science and Systems XV.

Argall, B. D., S. Chernova, M. Veloso, and B. Browning (2009), A survey of robot
learning from demonstration, Robotics and Autonomous Systems, 57 (5), 469–483.

Armesto, L., J. Bosga, V. Ivan, and S. Vijayakumar (2017), Efficient learning of
constraints and generic null space policies, in IEEE International Conference on
Robotics and Automation, ICRA.

Axelrod, B., L. P. Kaelbling, and T. Lozano-Pérez (2017), Provably safe robot navi-
gation with obstacle uncertainty, in Robotics: Science and Systems.

Babes, M., V. Marivate, K. Subramanian, and M. L. Littman (2011), Apprenticeship
learning about multiple intentions, in Proceedings of the 28th International Con-
ference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 -
July 2, 2011, pp. 897–904, Omnipress.

Bagnoli, M., and T. Bergstrom (2005), Log-concave probability and its applications,
Economic Theory, 26 (2), 445–469.

Bahreinian, M., M. Mitjans, and R. Tron (2021), Robust sample-based output-
feedback path planning, in IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, pp. 5780–5787, IEEE.

Baier, C., and J. Katoen (2008), Principles of model checking, MIT Press.

Bakhirkin, A., T. Ferrère, and O. Maler (2018), Efficient parametric identification
for STL, in Proceedings of the 21st International Conference on Hybrid Systems:
Computation and Control, pp. 177–186.

Banijamali, E., R. Shu, M. Ghavamzadeh, H. H. Bui, and A. Ghodsi (2018), Ro-
bust locally-linear controllable embedding, in International Conference on Artificial
Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lan-
zarote, Canary Islands, Spain, Proceedings of Machine Learning Research, vol. 84,
pp. 1751–1759, PMLR.

Beck, M., and S. Robins (2015), Computing the Continuous Discretely: Integer-Point
Enumeration in Polyhedra, pp. 167–182, Springer New York, New York, NY.

Ben-Tal, A., A. P. Goryashko, E. Guslitzer, and A. Nemirovski (2004), Adjustable
robust solutions of uncertain linear programs, Math. Program., 99 (2), 351–376.

Ben-Tal, A., L. E. Ghaoui, and A. Nemirovski (2009), Robust Optimization, Princeton
Series in Applied Mathematics, vol. 28, Princeton University Press.

Berenson, D. (2011), Constrained manipulation planning, Ph.D. thesis, Carnegie Mel-
lon University, Pittsburgh, PA.

281

Berenson, D., S. S. Srinivasa, and J. J. Kuffner (2011), Task space regions: A frame-
work for pose-constrained manipulation planning, International Journal of Robotics
Research (IJRR), 30 (12), 1435–1460.

Berkenkamp, F., R. Moriconi, A. P. Schoellig, and A. Krause (2016), Safe learning of
regions of attraction for uncertain, nonlinear systems with gaussian processes, in
IEEE Conference on Decision and Control (CDC), pp. 4661–4666.

Berkenkamp, F., M. Turchetta, A. Schoellig, and A. Krause (2017), Safe model-based
reinforcement learning with stability guarantees, in Neural Information Processing
Systems, pp. 908–918.

Bertsekas, D. (1972), Infinite time reachability of state-space regions by using feed-
back control, IEEE Transactions on Automatic Control, 17 (5), 604–613, doi:
10.1109/TAC.1972.1100085.

Bertsimas, D., and B. Stellato (2019), Online mixed-integer optimization in millisec-
onds, CoRR, abs/1907.02206.

Bertsimas, D., and J. Tsitsiklis (1997), Introduction to Linear Optimization, 1st ed.,
Athena Scientific.

Biere, A., K. Heljanko, T. A. Junttila, T. Latvala, and V. Schuppan (2006), Linear
encodings of bounded LTL model checking, Logical Methods in Computer Science,
2 (5).

Blackmore, L., H. Li, and B. Williams (2006), A probabilistic approach to optimal
robust path planning with obstacles, in American Control Conference (ACC).

Bochnak, J., M. Coste, and M.-F. Roy (1998), Real Algebraic Geometry, Springer.

Boffi, N. M., S. Tu, N. Matni, J. E. Slotine, and V. Sindhwani (2020), Learning
stability certificates from data, Conference on Robot Learning.

Bombara, G., C. I. Vasile, F. Penedo, H. Yasuoka, and C. Belta (2016), A decision
tree approach to data classification using signal temporal logic, in Proceedings of
the 19th International Conference on Hybrid Systems: Computation and Control,
HSCC 2016, pp. 1–10.

Bonet, B., and H. Geffner (2000), Planning with incomplete information as heuristic
search in belief space, in Proceedings of the Fifth International Conference on Ar-
tificial Intelligence Planning Systems, Breckenridge, CO, USA, April 14-17, 2000,
edited by S. A. Chien, S. Kambhampati, and C. A. Knoblock, pp. 52–61, AAAI.

Bonnabel, S., and J. E. Slotine (2015), A contraction theory-based analysis of the
stability of the deterministic extended kalman filter, TAC, 60 (2), 565–569.

Boyd, S., and L. Vandenberghe (2004), Convex Optimization, Cambridge University
Press, New York, NY, USA.

282

Brown, D. S., R. Coleman, R. Srinivasan, and S. Niekum (2020), Safe imitation learn-
ing via fast bayesian reward inference from preferences, International Conference
on Machine Learning.

Bry, A., and N. Roy (2011), Rapidly-exploring random belief trees for motion planning
under uncertainty, in IEEE International Conference on Robotics and Automation,
ICRA.

Bufo, S., E. Bartocci, G. Sanguinetti, M. Borelli, U. Lucangelo, and L. Bortolussi
(2014), Temporal logic based monitoring of assisted ventilation in intensive care
patients, in Leveraging Applications of Formal Methods, Verification and Vali-
dation. Specialized Techniques and Applications - 6th International Symposium,
ISoLA 2014, pp. 391–403.

Burns, B., and O. Brock (2007), Sampling-based motion planning with sensing un-
certainty, in IEEE International Conference on Robotics and Automation, ICRA.

Calinon, S., and A. Billard (2007), Incremental learning of gestures by imitation
in a humanoid robot, in ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pp. 255–262.

Calinon, S., and A. Billard (2008), A probabilistic programming by demonstration
framework handling constraints in joint space and task space, in International
Conference on Intelligent Robots and Systems (IROS).

Çalli, B., A. Singh, J. Bruce, A. Walsman, K. Konolige, S. S. Srinivasa, P. Abbeel, and
A. M. Dollar (2017), Yale-cmu-berkeley dataset for robotic manipulation research,
Int. J. Robotics Res., 36 (3), 261–268.

Calliess, J. (2014), Conservative decision-making&inference in uncertain dynamical
systems.

Camacho, A., and S. A. McIlraith (2019), Learning interpretable models expressed in
linear temporal logic, in Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling, ICAPS 2018, pp. 621–630.

Choi, J., and K. Kim (2012), Nonparametric bayesian inverse reinforcement learning
for multiple reward functions, in Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States, pp. 314–322.

Choi, S., K. Lee, S. Lim, and S. Oh (2018), Uncertainty-aware learning from demon-
stration using mixture density networks with sampling-free variance modeling, in
IEEE International Conference on Robotics and Automation, ICRA.

Chou, G., D. Berenson, and N. Ozay (2018a), Learning constraints from demonstra-
tions, Workshop on the Algorithmic Foundations of Robotics (WAFR).

283

Chou, G., N. Ozay, and D. Berenson (2018b), Incremental segmentation of arx models,
IFAC-PapersOnLine, 51 (15), 587–592, 18th IFAC Symposium on System Identifi-
cation SYSID 2018.

Chou, G., Y. E. Sahin, L. Yang, K. J. Rutledge, P. Nilsson, and N. Ozay (2018c),
Using control synthesis to generate corner cases: A case study on autonomous
driving, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 37 (11), 2906–
2917.

Chou, G., N. Ozay, and D. Berenson (2019), Learning parametric constraints in high
dimensions from demonstrations, 3rd Conference on Robot Learning (CoRL).

Chou, G., N. Ozay, and D. Berenson (2020a), Uncertainty-aware constraint learning
for adaptive safe motion planning from demonstrations, in CoRL 2020, Cambridge,
MA, USA.

Chou, G., N. Ozay, and D. Berenson (2020b), Learning constraints from locally-
optimal demonstrations under cost function uncertainty, Robotics and Automation
Letters (RA-L).

Chou, G., N. Ozay, and D. Berenson (2020c), Explaining Multi-stage Tasks by Learn-
ing Temporal Logic Formulas from Suboptimal Demonstrations, in Robotics: Sci-
ence and Systems, Corvalis, Oregon, USA, doi:10.15607/RSS.2020.XVI.097.

Chou, G., D. Berenson, and N. Ozay (2021a), Learning constraints from demonstra-
tions with grid and parametric representations, Int. J. Robotics Res., 40 (10-11).

Chou, G., N. Ozay, and D. Berenson (2021b), Learning temporal logic formulas from
suboptimal demonstrations: theory and experiments, Autonomous Robots.

Chou, G., N. Ozay, and D. Berenson (2021c), Model error propagation via learned
contraction metrics for safe feedback motion planning of unknown systems, Con-
ference on Decision and Control.

Chou, G., N. Ozay, and D. Berenson (2022a), Safe output feedback motion planning
from images via learned perception modules and contraction theory, in Workshop
on the Algorithmic Foundations of Robotics (WAFR).

Chou, G., H. Wang, and D. Berenson (2022b), Gaussian process constraint learn-
ing for scalable chance-constrained motion planning from demonstrations, IEEE
Robotics and Automation Letters (RA-L).

Chow, Y., O. Nachum, E. A. Duéñez-Guzmán, and M. Ghavamzadeh (2018), A
lyapunov-based approach to safe reinforcement learning, in Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
edited by S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, pp. 8103–8112.

284

Chow, Y., O. Nachum, A. Faust, M. Ghavamzadeh, and E. A. Duéñez-Guzmán
(2019), Lyapunov-based safe policy optimization for continuous control, CoRR,
abs/1901.10031.

Chua, K., R. Calandra, R. McAllister, and S. Levine (2018), Deep reinforcement
learning in a handful of trials using probabilistic dynamics models, in Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pp. 4759–4770.

Collins, G. E. (1975), Hauptvortrag: Quantifier elimination for real closed fields by
cylindrical algebraic decomposition, in Automata Theory and Formal Languages,
pp. 134–183.

Cosner, R., A. Singletary, A. Taylor, T. Molnár, K. Bouman, and A. Ames (2021),
Measurement-robust control barrier functions: Certainty in safety with uncertainty
in state, in IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS.

Cui, Y., D. Isele, S. Niekum, and K. Fujimura (2019), Uncertainty-aware data aggre-
gation for deep imitation learning, in IEEE International Conference on Robotics
and Automation, ICRA, pp. 761–767.

Dacorogna, B. (2015), Introduction to the calculus of variations, Imp. College Press.

Dani, A. P., S. Chung, and S. Hutchinson (2015), Observer design for stochastic
nonlinear systems via contraction-based incremental stability, TAC, 60 (3), 700–
714.

Dawson, C., B. Lowenkamp, D. Goff, and C. Fan (2022), Learning safe, generalizable
perception-based hybrid control with certificates, Robotics and Automation Letters.

De Haan, L., and A. Ferreira (2007), Extreme value theory: an introduction, Springer
Science & Business Media.

Dean, S., N. Matni, B. Recht, and V. Ye (2020a), Robust guarantees for perception-
based control, in L4DC, vol. 120, pp. 350–360, PMLR.

Dean, S., A. J. Taylor, R. K. Cosner, B. Recht, and A. D. Ames (2020b), Guarantee-
ing safety of learned perception modules via measurement-robust control barrier
functions, in Conference on Robot Learning.

Deglurkar, S., M. H. Lim, J. Tucker, Z. N. Sunberg, A. Faust, and C. J. Tomlin
(2021), Visual learning-based planning for continuous high-dimensional pomdps,
CoRR, abs/2112.09456.

DeGroot, M., and M. Schervish (2013), Probability & Statistics,Pearson.

285

Deisenroth, M. P., and C. E. Rasmussen (2011), PILCO: A model-based and data-
efficient approach to policy search, in Proceedings of the 28th International Con-
ference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 -
July 2, 2011, edited by L. Getoor and T. Scheffer, pp. 465–472, Omnipress.

Deits, R., and R. Tedrake (2014), Computing large convex regions of obstacle-free
space through semidefinite programming, in Algorithmic Foundations of Robotics
XI - Selected Contributions of the Eleventh International Workshop on the Algo-
rithmic Foundations of Robotics, WAFR 2014, 3-5 August 2014, Boğaziçi Univer-
sity, İstanbul, Turkey, Springer Tracts in Advanced Robotics, vol. 107, pp. 109–124,
Springer.

Demri, S., and P. Schnoebelen (2002), The complexity of propositional linear temporal
logics in simple cases, Inf. Comput., 174 (1), 84–103.

Deng, X., A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox (2019), Poserbpf: A
rao-blackwellized particle filter for 6d object pose estimation, in Robotics: Science
and Systems XV.

Dor, A., E. Greenshtein, and E. Korach (1998), Optimal and myopic search in a
binary random vector, Journal of Applied Probability, 35 (2).

Englert, P., N. A. Vien, and M. Toussaint (2017), Inverse kkt: Learning cost func-
tions of manipulation tasks from demonstrations, International Journal of Robotics
Research (IJRR), 36 (13-14), 1474–1488.

Fan, D. D., A. Agha-mohammadi, and E. A. Theodorou (2020), Deep learning tubes
for tube MPC, Robotics: Science and Systems.

Fazlyab, M., A. Robey, H. Hassani, M. Morari, and G. Pappas (2019), Efficient
and accurate estimation of lipschitz constants for deep neural networks, in Neural
Information Processing Systems, pp. 11,427–11,438.

Findeisen, R., L. Imsland, and F. Allgöwer (2003), State and output feedback non-
linear model predictive control: An overview, Eur. J. Control, 9 (2-3), 190–206.

Finn, C., S. Levine, and P. Abbeel (2016), Guided cost learning: Deep inverse optimal
control via policy optimization, in International Conference on Machine Learning,
vol. 48, pp. 49–58.

Fraichard, T., and H. Asama (2004), Inevitable collision states - a step towards safer
robots?, Adv. Robotics, 18 (10), 1001–1024.

Fu, J., S. Levine, and P. Abbeel (2016), One-shot learning of manipulation skills
with online dynamics adaptation and neural network priors, in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2016, Daejeon,
South Korea, October 9-14, 2016, pp. 4019–4026, IEEE.

286

Fu, J., I. Papusha, and U. Topcu (2017), Sampling-based approximate optimal control
under temporal logic constraints, in Proceedings of the 20th International Confer-
ence on Hybrid Systems: Computation and Control, HSCC 2017, pp. 227–235.

Genz, A., and G. Trinh (2014), Numerical computation of multivariate normal prob-
abilities using bivariate conditioning, in MCQMC.

Golub, G. H., and C. F. Van Loan (1996), Matrix Computations (3rd Ed.).

Grammatico, S., X. Zhang, K. Margellos, P. J. Goulart, and J. Lygeros (2016), A
scenario approach for non-convex control design, IEEE Trans. Autom. Control.,
61 (2), 334–345.

Gurobi Optimization, L. (2020), Gurobi optimizer reference manual.

Guzzi, J., R. Chavez-Garcia, M. Nava, L. Gambardella, and A. Giusti (2020), Path
planning with local motion estimations, Robotics and Automation Letters,5 (2).

gym-kuka mujoco (2019), Harvardagileroboticslab/gym-kuka-mujoco.

Haarnoja, T., A. Ajay, S. Levine, and P. Abbeel (2016), Backprop KF: learning dis-
criminative deterministic state estimators, in Neural Information Processing Sys-
tems, edited by D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett,
pp. 4376–4384.

Hafner, D., T. P. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson
(2019), Learning latent dynamics for planning from pixels, in Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, Proceedings of Machine Learning Research, vol. 97,
edited by K. Chaudhuri and R. Salakhutdinov, pp. 2555–2565, PMLR.

Hart, P. E., N. J. Nilsson, and B. Raphael (1968), A formal basis for the heuristic
determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern., 4 (2), 100–
107.

Hauser, K. K. (2014), The minimum constraint removal problem with three robotics
applications, International Journal of Robotics Research (IJRR), 33 (1), 5–17.

Herbert, S. L., M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin (2017),
Fastrack: A modular framework for fast and guaranteed safe motion planning, in
56th IEEE Annual Conference on Decision and Control, CDC 2017, Melbourne,
Australia, December 12-15, 2017, pp. 1517–1522, IEEE.

Herceg, M., M. Kvasnica, C. Jones, and M. Morari (2013), Multi-Parametric Toolbox
3.0, in European Control Conference.

Huang, Y., H. Zhang, Y. Shi, J. Z. Kolter, and A. Anandkumar (2021), Training
certifiably robust neural networks with efficient local lipschitz bounds, in Advances

287

in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 22,745–22,757.

Ichter, B., and M. Pavone (2019), Robot motion planning in learned latent spaces,
IEEE Robotics and Automation Letters, 4 (3), 2407–2414.

Igl, M., L. Zintgraf, T. A. Le, F. Wood, and S. Whiteson (2018), Deep variational
reinforcement learning for POMDPs, in Proceedings of the 35th International Con-
ference on Machine Learning, Proceedings of Machine Learning Research, vol. 80,
edited by J. Dy and A. Krause, pp. 2117–2126, PMLR.

Janson, L., T. Hu, and M. Pavone (2018), Safe motion planning in unknown envi-
ronments: Optimality benchmarks and tractable policies, in Robotics: Science and
Systems.

Jha, S. (2017), susmitjha/telex.

Jha, S., A. Tiwari, S. A. Seshia, T. Sahai, and N. Shankar (2019), Telex: learning sig-
nal temporal logic from positive examples using tightness metric, Formal Methods
in System Design, 54 (3), 364–387.

Jha, S. K., E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer, and P. Zuliani
(2009), A bayesian approach to model checking biological systems, in Computa-
tional Methods in Systems Biology, 7th International Conference, CMSB 2009, pp.
218–234.

Johnson, M., N. Aghasadeghi, and T. Bretl (2013), Inverse optimal control for deter-
ministic continuous-time nonlinear systems, in IEEE Conference on Decision and
Control (CDC).

Jonschkowski, R., D. Rastogi, and O. Brock (2018), Differentiable particle filters:
End-to-end learning with algorithmic priors, in Robotics: Science and Systems XIV,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, June 26-30, 2018,
edited by H. Kress-Gazit, S. S. Srinivasa, T. Howard, and N. Atanasov.

Jordan, M., and A. G. Dimakis (2020), Exactly computing the local lipschitz constant
of relu networks, in Neural Information Processing Systems.

Joseph, D. P., and T. J. Tou (1961), On linear control theory, Transactions of the
American Institute of Electrical Engineers, Part II: Applications and Industry,
80 (4), 193–196.

Jr., R. P., R. Tedrake, L. P. Kaelbling, and T. Lozano-Pérez (2010), Belief space
planning assuming maximum likelihood observations, in Robotics: Science and Sys-
tems VI, Universidad de Zaragoza, Zaragoza, Spain, June 27-30, 2010, edited by
Y. Matsuoka, H. F. Durrant-Whyte, and J. Neira, The MIT Press.

288

Kaelbling, L. P., M. L. Littman, and A. R. Cassandra (1998), Planning and acting in
partially observable stochastic domains, Artif. Intell., 101 (1-2), 99–134.

Kalakrishnan, M., S. Chitta, E. A. Theodorou, P. Pastor, and S. Schaal (2011),
STOMP: stochastic trajectory optimization for motion planning, in IEEE Interna-
tional Conference on Robotics and Automation, ICRA.

Kalman, R. (1960), On the general theory of control systems, IFAC Proceedings Vol-
umes, 1 (1), 491–502, 1st International IFAC Congress on Automatic and Remote
Control, Moscow, USSR, 1960.

Kalman, R. E. (1964), When is a linear control system optimal?, Journal of Basic
Engineering, 86 (1), 51–60.

Karaman, S., and E. Frazzoli (2010), Incremental sampling-based algorithms for op-
timal motion planning, in Robotics: Science and Systems.

Karkus, P., D. Hsu, and W. S. Lee (2017), Qmdp-net: Deep learning for planning
under partial observability, in Neural Information Processing Systems, pp. 4694–
4704.

Karkus, P., D. Hsu, and W. S. Lee (2018), Particle filter networks with application
to visual localization, in Proceedings of The 2nd Conference on Robot Learning,
Proceedings of Machine Learning Research, vol. 87, edited by A. Billard, A. Dragan,
J. Peters, and J. Morimoto, pp. 169–178, PMLR.

Kavraki, L. E., P. Svestka, J. Latombe, and M. H. Overmars (1996), Probabilistic
roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans.
Robotics Autom., 12 (4), 566–580.

Kawano, Y., and Y. Hosoe (2021), Contraction analysis of discrete-time stochastic
systems.

Keshavarz, A., Y. Wang, and S. P. Boyd (2011), Imputing a convex objective function,
in IEEE International Symposium on Intelligent Control (ISIC), pp. 613–619,
IEEE.

Khalil, H. K. (2002), Nonlinear systems, Prentice-Hall, Upper Saddle River, NJ.

Kiatsupaibul, S., R. L. Smith, and Z. B. Zabinsky (2011), An analysis of a variation
of hit-and-run for uniform sampling from general regions, TOMACS.

Kloss, A., G. Martius, and J. Bohg (2021), How to train your differentiable filter,
Autonomous Robots.

Knuth, C., G. Chou, N. Ozay, and D. Berenson (2021a), Planning with learned dy-
namics: Probabilistic guarantees on safety and reachability via lipschitz constants,
IEEE Robotics and Automation Letters (RA-L).

289

Knuth, C., G. Chou, N. Ozay, and D. Berenson (2021b), Inferring obstacles and
path validity from visibility-constrained demonstrations, in Algorithmic Founda-
tions of Robotics XIV, Proceedings of the Fourteenth Workshop on the Algorithmic
Foundations of Robotics, WAFR 2021, Oulu, Finland, June 21-23, 2021, Springer
Proceedings in Advanced Robotics, vol. 17, pp. 18–36, Springer.

Köhler, J., R. Soloperto, M. A. Müller, and F. Allgöwer (2021), A computationally
efficient robust model predictive control framework for uncertain nonlinear systems,
IEEE Trans. Autom. Control., 66 (2), 794–801.

Koller, T., F. Berkenkamp, M. Turchetta, and A. Krause (2018), Learning-based
model predictive control for safe exploration, in IEEE Conference on Decision and
Control (CDC).

Kong, Z., A. Jones, A. M. Ayala, E. A. Gol, and C. Belta (2014), Temporal logic
inference for classification and prediction from data, in 17th International Confer-
ence on Hybrid Systems: Computation and Control (part of CPS Week), HSCC’14,
pp. 273–282.

Kong, Z., A. Jones, and C. Belta (2017), Temporal logics for learning and detection of
anomalous behavior, IEEE Transactions on Automatic Control, 62 (3), 1210–1222.

Kousik, S., S. Vaskov, M. Johnson-Roberson, and R. Vasudevan (2017), Safe tra-
jectory synthesis for autonomous driving in unforeseen environments, CoRR,
abs/1705.00091.

Kress-Gazit, H., G. E. Fainekos, and G. J. Pappas (2009), Temporal-logic-based re-
active mission and motion planning, IEEE Trans. Robotics, 25 (6), 1370–1381.

Krishnan, S., A. Garg, R. Liaw, B. Thananjeyan, L. Miller, F. T. Pokorny, and
K. Goldberg (2019), SWIRL: A sequential windowed inverse reinforcement learning
algorithm for robot tasks with delayed rewards, International Journal of Robotics
Research (IJRR), 38 (2-3).

Kurniawati, H., D. Hsu, and W. S. Lee (2008), SARSOP: efficient point-based
POMDP planning by approximating optimally reachable belief spaces, in Robotics:
Science and Systems IV, Eidgenössische Technische Hochschule Zürich, Zurich,
Switzerland, June 25-28, 2008, The MIT Press.

Lakshiliikantham, V., and S. Leela (1969), in Differential and Integral Inequalities -
Theory and Applications: Ordinary Differential Equations, vol. 55, pp. 3–44.

Lakshmanan, A., A. Gahlawat, and N. Hovakimyan (2020), Safe feedback motion
planning: A contraction theory and l1-adaptive control based approach, IEEE
Conference on Decision and Control (CDC).

LaValle, S. (2006), Planning algorithms, Cambridge university press.

290

LaValle, S. M., and J. James J. Kuffner (2001), Randomized kinodynamic planning,
International Journal of Robotics Research (IJRR), 20 (5), 378–400.

Leung, K., and I. R. Manchester (2017), Nonlinear stabilization via control contrac-
tion metrics: A pseudospectral approach for computing geodesics, in American
Control Conference (ACC), pp. 1284–1289, IEEE.

Leung, K., N. Aréchiga, and M. Pavone (2019), Backpropagation for parametric STL,
in 2019 IEEE Intelligent Vehicles Symposium, IV, pp. 185–192.

Levine, S., and P. Abbeel (2014), Learning neural network policies with guided policy
search under unknown dynamics, in Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada, pp. 1071–1079.

Levine, S., Z. Popovic, and V. Koltun (2011), Nonlinear inverse reinforcement learning
with gaussian processes, in Neural Information Processing Systems, pp. 19–27.

Levine, S., C. Finn, T. Darrell, and P. Abbeel (2016), End-to-end training of deep
visuomotor policies, J. Mach. Learn. Res., 17, 39:1–39:40.

Lew, T., R. Bonalli, and M. Pavone (2020), Chance-constrained sequential convex
programming for robust trajectory optimization, in 18th European Control Confer-
ence, ECC 2020, Virtual Event, Russia, May 12-15, 2020, pp. 1871–1878, IEEE.

Li, C., and D. Berenson (2016), Learning object orientation constraints and guiding
constraints for narrow passages from one demonstration, in International Sympo-
sium of Experimental Robotics (ISER).

Li, C.-K., and F. Zhang (2019), Eigenvalue continuity and gersgorin's theorem, Elec-
tronic Journal of Linear Algebra, 35 (1), 619–625, doi:10.13001/1081-3810.4123.

Li, L., and J. Fu (2017), Sampling-based approximate optimal temporal logic plan-
ning, in 2017 IEEE International Conference on Robotics and Automation, ICRA,
pp. 1328–1335.

Li, L., X. Qi, T. Xie, and B. Li (2020), Sok: Certified robustness for deep neural
networks, arXiv preprint arXiv:2009.04131.

Liberti, L., and C. C. Pantelides (2006), An exact reformulation algorithm for large
nonconvex nlps involving bilinear terms, J. Global Optimization, 36 (2), 161–189.

Lin, H., M. Howard, and S. Vijayakumar (2015), Learning null space projections, in
IEEE International Conference on Robotics and Automation, ICRA 2015, Seattle,
WA, USA, 26-30 May, 2015, pp. 2613–2619.

Lin, H., P. Ray, and M. Howard (2017), Learning task constraints in operational space
formulation, in 2017 IEEE International Conference on Robotics and Automation,
ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017, pp. 309–315.

291

Liu, C., T. Arnon, C. Lazarus, C. A. Strong, C. W. Barrett, and M. J. Kochenderfer
(2021), Algorithms for verifying deep neural networks, Found. Trends Optim., 4 (3-
4), 244–404, doi:10.1561/2400000035.

Lohmiller, W., and J. E. Slotine (1998), On contraction analysis for non-linear sys-
tems, Autom., 34 (6), 683–696.

Lopez, B. T., J. E. Slotine, and J. P. How (2021), Robust adaptive control barrier
functions: An adaptive & data-driven approach to safety, IEEE Control. Syst. Lett.,
5 (3), 1031–1036.

Lötstedt, P. (1983), Perturbation bounds for the linear least squares problem subject
to linear inequality constraints, BIT Numerical Mathematics, 23 (4), 500–519.

Luders, B., M. Kothari, and J. How (2010), Chance constrained rrt for probabilistic
robustness to environmental uncertainty, in AIAA Guidance, Navigation, Control
Conference.

Luders, B., S. Karaman, and J. How (2013), Robust sampling-based motion planning
with asymptotic optimality guarantees, in AIAA Guidance, Navigation, Control
Conference.

Luenberger, D. (1971), An introduction to observers, IEEE Transactions on Auto-
matic Control, 16 (6), 596–602.

Magron, V., D. Henrion, and J. Lasserre (2015), Semidefinite approximations of pro-
jections and polynomial images of semialgebraic sets, SIAM Journal on Optimiza-
tion, 25 (4), 2143–2164.

Majumdar, A., and R. Tedrake (2017), Funnel libraries for real-time robust feedback
motion planning, International Journal of Robotics Research (IJRR), 36 (8), 947–
982.

Manchester, I. R., and J. E. Slotine (2014), Output-feedback control of nonlinear
systems using control contraction metrics and convex optimization, in Australian
Control Conference.

Manchester, I. R., and J. E. Slotine (2017), Control contraction metrics: Convex
and intrinsic criteria for nonlinear feedback design, IEEE Trans. Autom. Control.,
62 (6), 3046–3053.

Manchester, I. R., J. Z. Tang, and J. E. Slotine (2015), Unifying robot trajectory
tracking with control contraction metrics, in International Symposium of Robotics
Research (ISRR), vol. 3, pp. 403–418, Springer.

Manek, G., and J. Z. Kolter (2019), Learning stable deep dynamics models, in Neural
Information Processing Systems, pp. 11,126–11,134.

Maybeck, P. S. (1979), Stochastic models, estimation, and control.

292

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert (2000), Constrained
model predictive control: Stability and optimality, Autom., 36 (6), 789–814, doi:
10.1016/S0005-1098(99)00214-9.

Mayne, D. Q., M. M. Seron, and S. V. Rakovic (2005), Robust model predictive
control of constrained linear systems with bounded disturbances, Autom., 41 (2),
219–224.

McConachie, D., T. Power, P. Mitrano, and D. Berenson (2020), Learning when to
trust a dynamics model for planning in reduced state spaces, IEEE Robotics and
Automation Letters, 5 (2), 3540–3547.

Mehr, N., R. Horowitz, and A. D. Dragan (2016), Inferring and assisting with con-
straints in shared autonomy, in IEEE Conference on Decision and Control (CDC),
pp. 6689–6696.

Menda, K., K. R. Driggs-Campbell, and M. J. Kochenderfer (2019), Ensembledag-
ger: A bayesian approach to safe imitation learning, in IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, pp. 5041–5048.

Menner, M., P. Worsnop, and M. N. Zeilinger (2019), Constrained inverse optimal
control with application to a human manipulation task, IEEE Transactions on
Control Systems Technology.

Mitchell, I. M., A. M. Bayen, and C. J. Tomlin (2005), A time-dependent hamilton-
jacobi formulation of reachable sets for continuous dynamic games, TAC, 50 (7),
947–957.

Mitrano, P., D. McConachie, and D. Berenson (2021), Learning where to trust unreli-
able models in an unstructured world for deformable object manipulation, Science
Robotics, 6 (54).

Mode, G. R., and K. A. Hoque (2020), Adversarial examples in deep learning for
multivariate time series regression.

Moerland, T. M., J. Broekens, and C. M. Jonker (2020), Model-based reinforcement
learning: A survey, CoRR, abs/2006.16712.

Morin, T. L. (1982), Monotonicity and the principle of optimality, Journal of Mathe-
matical Analysis and Applications, 88 (2), 665 – 674, doi:https://doi.org/10.1016/
0022-247X(82)90223-2.

Neider, D., and I. Gavran (2018), Learning linear temporal properties, in 2018 Formal
Methods in Computer Aided Design, FMCAD 2018, pp. 1–10.

Ng, A. Y., and S. J. Russell (2000), Algorithms for inverse reinforcement learning,
in International Conference on Machine Learning (ICML), pp. 663–670, San Fran-
cisco, CA, USA.

293

Nguyen, Q. P., K. H. Low, and P. Jaillet (2015), Inverse reinforcement learning with
locally consistent reward functions, in Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pp. 1747–1755.

Osa, T., J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters (2018),
An algorithmic perspective on imitation learning, Found. Trends Robotics, 7 (1-2),
1–179.

Pais, A. L., K. Umezawa, Y. Nakamura, and A. Billard (2013), Learning robot skills
through motion segmentation and constraints extraction, ACM/IEEE International
Conference on Human-Robot Interaction (HRI).

Papadimitriou, C. H., and K. Steiglitz (1982), Combinatorial Optimization: Algo-
rithms and Complexity, Prentice Hall, Englewood Cliffs, NJ.

Papusha, I., M. Wen, and U. Topcu (2018), Inverse optimal control with regular
language specifications, in 2018 Annual American Control Conference, ACC 2018,
pp. 770–777.

Park, J. J., P. Florence, J. Straub, R. Newcombe, and S. Lovegrove (2019), Deepsdf:
Learning continuous signed distance functions for shape representation, in CVPR,
pp. 165–174.

Pauli, P., A. Koch, J. Berberich, P. Kohler, and F. Allgöwer (2022), Training robust
neural networks using lipschitz bounds, IEEE Control. Syst. Lett., 6, 121–126.

Pérez-D’Arpino, C., and J. A. Shah (2017), C-LEARN: learning geometric constraints
from demonstrations for multi-step manipulation in shared autonomy, in IEEE
International Conference on Robotics and Automation, ICRA.

Plappert, M., et al. (2018), Multi-goal reinforcement learning: Challenging robotics
environments and request for research, CoRR, abs/1802.09464.

Potter, J. (1964), A guidance-navigation separation theorem.

Prentice, S., and N. Roy (2009), The belief roadmap: Efficient planning in belief
space by factoring the covariance, The International Journal of Robotics Research,
28 (11-12), 1448–1465.

Quinlan, S. (1994), Real-time modification of collision-free paths, 1537, Stanford.

Rahimi, A., and B. Recht (2007), Random features for large-scale kernel machines,
in Neural Information Processing Systems, pp. 1177–1184.

Rakovic, S. V., B. Kouvaritakis, M. Cannon, C. Panos, and R. Findeisen (2012), Pa-
rameterized tube model predictive control, IEEE Trans. Autom. Control., 57 (11),
2746–2761.

294

Ramachandran, D., and E. Amir (2007), Bayesian inverse reinforcement learning, in
IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, edited by M. M. Veloso, pp.
2586–2591.

Ranchod, P., B. Rosman, and G. D. Konidaris (2015), Nonparametric bayesian
reward segmentation for skill discovery using inverse reinforcement learning, in
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2015, pp. 471–477.

Rasmussen, C. E., and C. K. I. Williams (2005), Gaussian Processes for Machine
Learning, The MIT Press.

Ratliff, N. D., J. A. Bagnell, and M. Zinkevich (2006), Maximum margin planning,
in Proceedings of the Twenty-Third International Conference on Machine Learning
(ICML 2006), pp. 729–736.

Ren, A. Z., S. Veer, and A. Majumdar (2020), Generalization guarantees for imitation
learning, arXiv:2008.01913.

Renganathan, V., I. Shames, and T. H. Summers (2020), Towards integrated per-
ception and motion planning with distributionally robust risk constraints, IFAC
World Congress.

Richards, S. M., F. Berkenkamp, and A. Krause (2018), The lyapunov neural net-
work: Adaptive stability certification for safe learning of dynamical systems, in
2nd Annual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-
31 October 2018, Proceedings, Proceedings of Machine Learning Research, vol. 87,
pp. 466–476, PMLR.

Richter, C., W. Vega-Brown, and N. Roy (2015), Bayesian learning for safe high-
speed navigation in unknown environments, in International Symposium of Robotics
Research (ISRR), pp. 325–341.

Robey, A., H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni
(2020), Learning control barrier functions from expert demonstrations.

Ross, S., G. J. Gordon, and D. Bagnell (2011), A reduction of imitation learning and
structured prediction to no-regret online learning, in AISTATS, pp. 627–635.

Russell, S. J., and P. Norvig (2003), Artificial Intelligence: A Modern Approach.

Rusu, R. B., and S. Cousins (2011), 3d is here: Point cloud library (PCL), in IEEE
International Conference on Robotics and Automation, ICRA 2011, IEEE.

Rutledge, K. J., G. Chou, and N. Ozay (2021), Compositional safety rules for inter-
triggering hybrid automata, in HSCC ’21: 24th ACM International Conference
on Hybrid Systems: Computation and Control, Nashville, Tennessee, May 19-21,
2021, pp. 4:1–4:11, ACM.

295

Sabatino, F. (2015), Quadrotor control: modeling, nonlinearcontrol design, and sim-
ulation.

Sadigh, D., A. D. Dragan, S. Sastry, and S. A. Seshia (2017), Active preference-based
learning of reward functions, in Robotics: Science and Systems XIII.

Sadraddini, S., and R. Tedrake (2020), Robust output feedback control with guaran-
teed constraint satisfaction, in HSCC ’20: 23rd ACM International Conference on
Hybrid Systems: Computation and Control, Sydney, New South Wales, Australia,
April 21-24, 2020, pp. 24:1–24:10, ACM.

Saund, B., and D. Berenson (2018), Motion planning for manipulators in unknown
environments with contact sensing uncertainty, in International Symposium of Ex-
perimental Robotics (ISER), pp. 461–474.

Saund, B., S. Choudhury, S. Srinivasa, and D. Berenson (2019), The blindfolded
robot: A bayesian approach to planning with contact feedback, in International
Symposium of Robotics Research (ISRR).

Schreiter, J., D. Nguyen-Tuong, M. Eberts, B. Bischoff, H. Markert, and M. Toussaint
(2015), Safe exploration for active learning with gaussian processes, in European
Conference on Machine Learning.

Schulman, J., et al. (2014), Motion planning with sequential convex optimization and
convex collision checking, Int. J. Robotics Res., 33 (9), 1251–1270.

Scobee, D. R. R., and S. S. Sastry (2020), Maximum likelihood constraint inference
for inverse reinforcement learning, in 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenRe-
view.net.

Shah, A., P. Kamath, J. A. Shah, and S. Li (2018), Bayesian inference of temporal task
specifications from demonstrations, in Advances in Neural Information Processing
Systems (NeurIPS) 2018, pp. 3808–3817.

Shah, A., S. Li, and J. Shah (2020), Planning with uncertain specifications (puns),
IEEE Robotics Autom. Lett., 5 (2), 3414–3421.

Sharma, A., N. Azizan, and M. Pavone (2021), Sketching curvature for efficient out-
of-distribution detection for deep neural networks, in Uncertainty in Artificial In-
telligence (UAI), pp. 1958–1967, PMLR.

Shen, Z., J. Liu, Y. He, X. Zhang, R. Xu, H. Yu, and P. Cui (2021), Towards out-of-
distribution generalization: A survey, CoRR, abs/2108.13624.

Shoukry, Y., P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia, G. J. Pappas, and
P. Tabuada (2018), SMC: satisfiability modulo convex programming, Proceedings
of the IEEE, 106 (9), 1655–1679.

296

Singh, S., M. Chen, S. L. Herbert, C. J. Tomlin, and M. Pavone (2018), Robust
tracking with model mismatch for fast and safe planning: An SOS optimization ap-
proach, in Algorithmic Foundations of Robotics XIII, Proceedings of the 13th Work-
shop on the Algorithmic Foundations of Robotics, WAFR 2018, Mérida, Mexico,
December 9-11, 2018, Springer Proceedings in Advanced Robotics, vol. 14, edited by
M. Morales, L. Tapia, G. Sánchez-Ante, and S. Hutchinson, pp. 545–564, Springer.

Singh, S., B. Landry, A. Majumdar, J. E. Slotine, and M. Pavone (2019), Robust
feedback motion planning via contraction theory.

Singh, S., S. M. Richards, V. Sindhwani, J. E. Slotine, and M. Pavone (2020), Learn-
ing stabilizable nonlinear dynamics with contraction-based regularization, Interna-
tional Journal of Robotics Research (IJRR).

Solak, E., R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E. Rasmussen (2002),
Derivative observations in gaussian process models of dynamic systems, in Neural
Information Processing Systems, pp. 1033–1040.

Somani, A., N. Ye, D. Hsu, and W. S. Lee (2013), DESPOT: online POMDP planning
with regularization, in Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceedings of
a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, edited by
C. J. C. Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, pp. 1772–1780.

Stachowiak, T., and T. Okada (2006), A numerical analysis of chaos in the double
pendulum, Chaos, Solitons & Fractals, 29 (2), 417–422.

Sun, D., S. Jha, and C. Fan (2020), Learning certified control using contraction metric,
Conference on Robot Learning.

Sunberg, Z. N., and M. J. Kochenderfer (2018), Online algorithms for pomdps with
continuous state, action, and observation spaces, in ICAPS, pp. 259–263, AAAI
Press.

Sutanto, G., I. M. R. Fernández, P. Englert, R. K. Ramachandran, and G. S.
Sukhatme (2020), Learning equality constraints for motion planning on manifolds,
in Conference on Robot Learning.

Tao, T. (2016), Analysis II, 3rd ed., Springer.

Tedrake, R. (2009), Lqr-trees: Feedback motion planning on sparse randomized trees,
Robotics: Science and Systems V.

Thakur, S., H. van Hoof, J. C. G. Higuera, D. Precup, and D. Meger (2019), Un-
certainty aware learning from demonstrations in multiple contexts using bayesian
neural networks, in IEEE International Conference on Robotics and Automation,
ICRA.

297

Todorov, E., T. Erez, and Y. Tassa (2012), Mujoco: A physics engine for model-based
control, in IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS, pp. 5026–5033.

Tsukamoto, H., and S. Chung (2021), Neural contraction metrics for robust estimation
and control: A convex optimization approach, IEEE Control. Syst. Lett., 5 (1), 211–
216.

Tumova, J., L. I. R. Castro, S. Karaman, E. Frazzoli, and D. Rus (2013), Minimum-
violation LTL planning with conflicting specifications, in American Control Con-
ference, ACC 2013, Washington, DC, USA, June 17-19, 2013, pp. 200–205, IEEE.

Turchetta, M., F. Berkenkamp, and A. Krause (2016), Safe exploration in finite
markov decision processes with gaussian processes, in Neural Information Pro-
cessing Systems, pp. 4305–4313.

Vaidyanathan, P., R. Ivison, G. Bombara, N. A. DeLateur, R. Weiss, D. Densmore,
and C. Belta (2017), Grid-based temporal logic inference, in 56th IEEE Annual
Conference on Decision and Control, CDC 2017, pp. 5354–5359.

van den Berg, J., P. Abbeel, and K. Goldberg (2011), Lqg-mp: Optimized path
planning for robots with motion uncertainty and imperfect state information, In-
ternational Journal of Robotics Research (IJRR), 30 (7), 895–913.

van Willigenburg, L. G., and W. L. D. Koning (1999), Optimal reduced-order com-
pensation of time-varying discrete-time systems with deterministic and white pa-
rameters, Autom., 35 (1), 129–138.

Vazquez-Chanlatte, M., S. Jha, A. Tiwari, M. K. Ho, and S. A. Seshia (2018), Learn-
ing task specifications from demonstrations, in Neural Information Processing Sys-
tems 2018, NeurIPS 2018, pp. 5372–5382.

Veer, S., and A. Majumdar (2020), Probably approximately correct vision-based plan-
ning using motion primitives, in Conference on Robot Learning, vol. 155, pp. 1001–
1014, PMLR.

Vitus, M. P., Z. Zhou, and C. J. Tomlin (2016), Stochastic control with uncertain pa-
rameters via chance constrained control, IEEE Transactions on Automatic Control,
61 (10), 2892–2905.

Wächter, A., and L. T. Biegler (2006), On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming, Math. Program.,
106 (1), 25–57.

Wang, A., A. Jasour, and B. C. Williams (2020), Moment state dynamical systems
for nonlinear chance-constrained motion planning, CoRR, abs/2003.10379.

298

Watter, M., J. T. Springenberg, J. Boedecker, and M. A. Riedmiller (2015), Embed
to control: A locally linear latent dynamics model for control from raw images,
in Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pp. 2746–2754.

Weng, T.-W., H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and L. Daniel
(2018), Evaluating the robustness of neural networks: An extreme value theory
approach, International Conference on Learning Representations (ICLR).

Williams, G., P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou (2016), Ag-
gressive driving with model predictive path integral control, in 2016 IEEE Inter-
national Conference on Robotics and Automation, ICRA 2016, Stockholm, Sweden,
May 16-21, 2016, edited by D. Kragic, A. Bicchi, and A. D. Luca, pp. 1433–1440,
IEEE.

Wolff, E. M., U. Topcu, and R. M. Murray (2014), Optimization-based trajectory
generation with linear temporal logic specifications, in 2014 IEEE International
Conference on Robotics and Automation, ICRA, pp. 5319–5325.

Wood, G. R., and B. P. Zhang (1996), Estimation of the lipschitz constant of a
function, J. Glob. Optim., 8 (1), 91–103.

Wu, A., M. C. Aoi, and J. W. Pillow (2018), Exploiting gradients and hessians in
bayesian optimization and bayesian quadrature.

Wulfmeier, M., P. Ondruska, and I. Posner (2016), Maximum entropy deep inverse
reinforcement learning, CoRR, abs/1507.04888.

Wulfmeier, M., D. Rao, D. Z. Wang, P. Ondruska, and I. Posner (2017), Large-scale
cost function learning for path planning using deep inverse reinforcement learning,
International Journal of Robotics Research (IJRR), 36, 1073–1087.

Xu, Z., A. J. Nettekoven, A. A. Julius, and U. Topcu (2019), Graph temporal logic
inference for classification and identification, in 58th IEEE Conference on Decision
and Control, CDC 2019, pp. 4761–4768, IEEE.

Yan, W., A. Vangipuram, P. Abbeel, and L. Pinto (2020), Learning predictive repre-
sentations for deformable objects using contrastive estimation, in 4th Conference
on Robot Learning, CoRL 2020, 16-18 November 2020, Virtual Event / Cambridge,
MA, USA, Proceedings of Machine Learning Research, vol. 155, edited by J. Kober,
F. Ramos, and C. J. Tomlin, pp. 564–574, PMLR.

Yang, H., and L. Carlone (2022), Certifiably optimal outlier-robust geometric percep-
tion: Semidefinite relaxations and scalable global optimization, TPAMI.

Yang, H., J. Shi, and L. Carlone (2021), TEASER: fast and certifiable point cloud
registration, T-RO, 37 (2), 314–333.

299

Ye, G., and R. Alterovitz (2011), Demonstration-guided motion planning, in Inter-
national Symposium of Robotics Research (ISRR).

Zhang, A., R. T. McAllister, R. Calandra, Y. Gal, and S. Levine (2021), Learning
invariant representations for reinforcement learning without reconstruction, in 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, OpenReview.net.

Zhang, J., and K. Cho (2016), Query-efficient imitation learning for end-to-end au-
tonomous driving, CoRR, abs/1605.06450.

Zhang, M., S. Vikram, L. M. Smith, P. Abbeel, M. J. Johnson, and S. Levine (2019),
SOLAR: deep structured representations for model-based reinforcement learning,
in Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, Proceedings of Machine Learn-
ing Research, vol. 97, edited by K. Chaudhuri and R. Salakhutdinov, pp. 7444–7453,
PMLR.

Zhou, B., H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba (2019),
Semantic understanding of scenes through the ADE20K dataset, Int. J. Comput.
Vis., 127 (3), 302–321.

Zhou, K., and J. C. Doyle (1998), Essentials of robust control.

Zhou, W., and W. Li (2018), Safety-aware apprenticeship learning, in Computer Aided
Verification - 30th International Conference, CAV 2018, pp. 662–680.

Ziebart, B. D., A. L. Maas, J. A. Bagnell, and A. K. Dey (2008), Maximum entropy
inverse reinforcement learning, in Proceedings of the Twenty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008, edited by D. Fox and C. P. Gomes, pp. 1433–1438, AAAI Press.

Zucker, M., N. D. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.
Dellin, J. A. Bagnell, and S. S. Srinivasa (2013), CHOMP: covariant hamiltonian
optimization for motion planning, Int. J. Robotics Res., 32 (9-10), 1164–1193.

Åström, K. J., and R. M. Murray (2004), Feedback systems: An introduction for
scientists and engineers, Tech. rep.

300

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Thesis Overview
	Summary of Contributions
	Additional Contributions

	Related Work
	Learning from Demonstration
	Inverse optimal control
	Safe imitation learning
	Constraint learning
	Learning temporal logic formulas from data

	Motion Planning
	Feedback motion planning
	Planning under uncertainty
	Learning-based planning

	Perception-based control

	Learning Constraints from Globally-Optimal Demonstrations
	Introduction
	Preliminaries and Problem Statement
	Forward optimal control problem
	Inverse constraint learning problem
	Recovering a gridded constraint
	Recovering a parametric constraint

	Method
	Trajectories satisfying known constraints
	Sampling trajectories satisfying known constraints
	Ellipsoid hit-and-run
	Convex hit-and-run
	Non-convex hit-and-run

	Improving learnability using cost function structure
	Gridded integer program formulation
	Conservative estimate
	A prior on the constraint
	Probabilistic setting and continuous relaxation

	Parameter space integer program
	Conservative estimate
	Choice of parameterization
	Unknown parameterizations
	Remarks on parameter space problem

	Bounded suboptimality of demonstrations

	Analysis
	Learnability
	Conservativeness
	Parametric learnability
	Parametric conservativeness

	Evaluations: Gridded formulation
	Version space example
	Comparison with inverse reinforcement learning
	Gridded example
	Parametric example

	Dynamics and discretization
	Suboptimal human demonstrations
	Feature space constraint

	Evaluations: Parametric
	Comparison to gridded formulation
	Unknown parameterization
	High-dimensional examples
	Planar pushing example

	Discussion
	Conclusion

	Learning Constraints from Locally-Optimal Demonstrations
	Introduction
	Preliminaries and Problem Setup
	Method
	Constraint recovery via the KKT conditions
	Unions of offset-parameterized constraints
	Extraction of safe and unsafe states
	KKT relaxation for unions of affine constraints
	Unknown constraint parameterization
	Handling cost function uncertainty
	Applications to safe planning

	Theoretical Analysis
	Conservativeness
	Global vs local learnability

	Results
	2D examples
	7-DOF arm
	Quadrotor

	Discussion and Conclusion

	Gaussian Process Constraint Learning for Chance-Constrained Planning from Demonstrations
	Introduction
	Related Work
	Preliminaries and Problem Statement
	Demonstrator's problem and KKT optimality conditions
	Overview of Gaussian processes
	Problem statement

	Method
	Obtaining constraint value and gradient information
	Constraint value information
	Gradient value information

	Embedding KKT-based information in a Gaussian process
	Planning with the learned constraint

	Results
	Discussion and Conclusion

	Learning Temporal Logic Formulas from Suboptimal Demonstrations
	Introduction
	Preliminaries and Problem Statement
	Learning Atomic Proposition Parameters (p)
	Learning time-invariant constraints via KKT
	Modifying KKT for multiple atomic propositions
	Extraction of guaranteed learned AP

	Learning Temporal Logic Structure (p , s)
	Representing LTL structure
	A detour on learnability
	Counterexample-guided framework

	Learning Cost Function Parameters (p , s , c)
	Method extensions, variants, and discussion
	Encoding prior knowledge
	Faster reformulations for the falsification loop
	Prioritized variants on the falsification loop
	Demonstration suboptimality

	Theoretical Analysis
	Simulation Experiments
	Baseline comparison
	-estimation for suboptimal demonstrations
	Learning shared task structure
	Multi-stage manipulation task
	Multi-stage quadrotor surveillance

	Physical experiments
	Environment and task description
	LTL formula learning
	Real-world planning and execution

	Conclusion

	Uncertainty-Aware Constraint Learning and Planning via Constraint Beliefs
	Introduction
	Preliminaries and Problem Setup
	Obtaining a belief over constraints
	Obtaining the set of demonstration-consistent constraints F
	Obtaining the constraint belief b()

	Policies for adaptive constraint satisfaction
	Planning open-loop trajectories with an infinite set of possible constraints
	Planning open-loop trajectories with a finite set of sampled possible constraints
	Updates to b() in online execution
	Closed-loop policies for adaptive constraint satisfaction

	Experiments
	Conclusion

	Safe Planning and Execution with Learned Dynamics via Data-Driven Model Error Bounds
	Introduction
	Preliminaries
	Method
	The trusted domain
	Estimating the Lipschitz constant
	Planning
	Staying inside D
	One step feedback law
	Ensuring safety and invariance about the goal

	Algorithm

	Results
	2D Sinusoidal Model
	6D Quadrotor Model
	7DOF Kuka Arm in Mujoco

	Discussion and Conclusion

	Safe Planning and Execution with Learned Underactuated Dynamics via Contraction Theory
	Introduction
	Preliminaries and Problem Statement
	System models, notation, and differential geometry
	Control contraction metrics (CCMs)
	Problem statement

	Method
	CCM-based tracking tubes under Lipschitz model error
	Optimizing CCMs and controllers for the learned model
	Using (9.2a) and (9.2b)
	Using (9.3)

	Designing and probabilistically verifying the trusted domain
	Planning with the learned model and metric

	Results
	Limitations and Future Directions
	Conclusion

	Safe Output Feedback Motion Planning from Images via Learned Perception Modules and Contraction Theory
	Introduction
	Preliminaries and Problem Statement
	Problem statement
	Control/observer contraction metrics (CCMs/OCMs)

	Method
	Learning a perception module for contraction-based estimation
	Bounding tracking error and state estimation error for planning
	Bounding tracking error:
	Bounding estimation error:
	Integrating the differential inequalities:

	Optimizing CCMs and OCMs for output feedback
	Solving the OFMP

	Results
	4D nonholonomic car
	6D quadrotor
	17D manipulation task

	Discussion and Conclusion

	Conclusion and Outlook
	Summary
	Future work
	Safe Planning from Pixels with Data-Driven Model Error Bounds
	Learning Dynamics Models from Demonstrations
	Safe Planning with Models Learned Online
	APPENDICES
	Appendix: Chapter III: Analysis
	Learnability
	Conservativeness
	Learnability: Parametric
	Conservativeness: Parametric

	Appendix: Chapter III: Extra numerical examples
	U-shape (random demonstrations)

	Appendix: Chapter III: Experimental details
	Unknown parameterizations
	High-dimensional examples
	Black-box system dynamics

	Appendix: Chapter VII: Optimization problem glossary
	Appendix: Chapter VII: A geometric analysis of constrained inverse optimal control
	Modifying Problem VII.2 to handle unknown cost function parameters
	Unknown cost function, known constraint
	Linear cost function parameterization
	Nonlinear cost function parameterization

	Unknown constraints
	Unions of offset-parameterized constraints
	Unions of affine and higher-degree parameterized constraints

	Appendix: Chapter VII: Obtaining a belief over constraints (expanded)
	Other constraint parameterizations: extracting with zonotopes
	Discussion on extracting with mixed cost function and constraint uncertainty
	Speeding up extraction with parallelization
	Summary on problem complexity

	Appendix: Chapter VII: Policies for adaptive constraint satisfaction (expanded)
	Fast reformulations of Problem VII.8
	Sampling-based planners
	Priors p() other than the uniform distribution
	Belief updates

	Appendix: Chapter VII: Theory
	Appendix: Chapter VII: Further experimental details
	Planning baselines
	Mixed quadrotor example
	7-DOF arm example
	Quadrotor maze example

	Nonlinear constraint
	Mixed state-control constraint uncertainty on a quadrotor
	7-DOF arm with contact sensing uncertainty
	Quadrotor maze
	Computation times

	Appendix: Chapter X: Trusted domain visualizations
	Appendix: Chapter X: Bounding estimation error (expanded)
	Appendix: Chapter X: Proofs
	Appendix: Chapter X: Optimizing CCMs and OCMs for output feedback
	Appendix: Chapter X: System models
	4D nonholonomic car:
	6D planar quadrotor:
	17D manipulation task:

	BIBLIOGRAPHY

