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Abstract

We address the problem of robot motion planning under uncertainty where the only observations are through contact

with the environment. Such problems are typically solved by planning optimistically assuming unknown space is free,

moving along the planned path and re-planning if the robot collides. However this approach can be very inefficient,

leading to many unnecessary collisions and unproductive motion. We propose a new formulation, the Blindfolded

Traveler’s Problem (BTP), for planning on a graph containing edges with unknown validity, with true validity observed

only through attempted traversal by the robot. The solution to a BTP is a policy indicating the next edge to attempt

given previous observations and an initial belief. We prove that BTP is NP-complete and show that exact modeling

of the belief is intractable, therefore we present several approximation-based policies and beliefs. For the policy we

propose graph search with edge weights augmented by the probability of collision. For the belief representation we

propose a weighted Mixture of Experts of Collision Hypothesis Sets and a Manifold Particle Filter. Empirical evaluation

in simulation and on a real robot arm shows that our proposed approach vastly outperforms several baselines as well

as a previous approach that does not employ the BTP framework.

1 Introduction

We examine the problem of robot motion planning
in partially-known environments where obstacles are
sensed through contact. This problem occurs frequently in
manipulation tasks with sensing limitations such as a narrow
field of view, occlusions in the environment, lack of ambient
light, or insufficient sensor precision. For example, a robot
may reach into dark confined areas during maintenance and
assembly (e.g. inspecting the insides of aircraft (Siegel et al.
1998)) or during everyday household tasks (e.g. reaching
deep into a cabinet or behind a box (Park et al. 2014)). Here,
the goal is to minimize the total time it takes for the robot to
move around obstacles sensed on-the-fly and reach a target
configuration.

Consider the scenario where a robot arm is tasked
with reaching into a box whose location is uncertain
(Fig. 1). This could be framed as a POMDP, where the
belief over occupancy is obtained through noisy collision
measurements. However the possible states of the POMDP
include all possible arrangements of obstacles, and the action
space includes all possible motions. The general POMDP is
thus intractably large.

Instead, such planning problems may be solved by
constructing a PRM Kavraki et al. (1996), a graph where
vertices represent robot configurations and edges represent
potentially-valid movements of the robot between these
configurations. In a typical PRM, edges are collision-
checked using the known environment geometry, thus a
planned collision-free path is guaranteed to be executed
successfully. In our problem the environment geometry is
unknown, thus the robot may collide during execution and
be forced to replan. Existing approaches apply Optimism

in the Face of Uncertainty (OFU) (Stentz 1994) — assume
untraversed edges are valid, plan the shortest path and
execute it. If the shortest path is indeed valid, the robot
reaches the goal on the first attempt. Otherwise, it removes
the invalid edge from the graph and replans. OFU is effective
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Figure 1. Overview of the BTP framework for planning with
contact feedback. The robot is uncertain about location of the
back wall. As it attempts to traverse edges, it partially localizes
the wall and eventually finds its way to the goal.

in less-cluttered environments, where the robot finds a path to
the goal after at most few collisions. However, on problems
with narrow passages such as Fig. 1, OFU can lead the robot
down a “rabbit hole” trying many paths that are not likely to
be valid.

Our key insight is that the validity of edges in the graph is

correlated. There are two main reasons for this correlation.
First, edges overlap in swept workspace volume. Second,
objects occupy significant regions of workspace, coupling
even non-overlapping edges. Given a prior on edges, a robot
can exploit such correlations to infer edge validities from a
few measurements and reach the goal quickly. We address
the following research question:

How should a robot navigate on a graph
with unknown edge validites to minimize the
expected traversal cost?

We refer to this broader problem as the Blindfolded

Traveler’s Problem (BTP). A traveler has to optimally move
from start to goal on a graph. They are blindfolded and can
only know the validity of an edge by attempting to traverse
it. Solving a BTP involves a belief model and a policy. The
policy uses the belief to select the next edge for the traveler
to attempt. The attempt yields an observation which in turn
updates the belief. This cycle is repeated until the goal is
reached Fig. 1. In this paper we show that BTP is NP-
Complete and discuss a set of approximation-based policies.

We formulate robot arm planning with contact feedback
as a BTP. We face an additional challenge for realistic
scenarios – the initial belief is approximate and can

be misleading. With a good initialization we show a
particle filter that updates hypothesis worlds from contact
observations suffices. Without a good initialization, we show
an algorithm that starts with free-space and builds up a world
model consistent with observations is effective. Since both
scenarios occur in practice, we propose a Mixture of Experts
framework for mixing these two belief update strategies.

In summary, this paper makes the following contributions:

• Formulate the Blindfolded Traveler’s Problem. (Sec-
tion 3)

• Prove BTP is NP-complete and relate BTP to
POMDPs and other existing problems (Section 4)

• Map the planning with contact feedback problem to a
BTP. (Section 5)

• Adapt techniques for belief approximation for this
planning with contact feedback task based on a particle
filter (MPF), Collision Hypothesis Set (CHS), and a
Mixture of Experts (MoE). (Section 6)

• Develop a set of approximation strategies to solve the
BTP, and propose the Collision Measure (CM) policy.
(Section 7)

• Provide empirical evaluation of different strategies and
belief approximations on simulated and real robot arm
BTP instances. (Section 8)

We evaluate all strategies and belief representations on a
7 DOF robot arm in multiple simulated and real scenarios.
We find that the Collision Measure strategy using a Mixture
of Experts belief tends to outperform all other baselines by
planning consistently low-cost paths with consistently low
computation time. Furthermore, we find formulating and
solving the planning with contact feedback problem within
the BTP framework significantly outperforms a baseline
strategy that does not use BTP. This paper extends the
work presented in Saund et al. (2019). Specifically we
expand the BTP NP-completeness proof and connections
to other problems, add analysis of strategies including
regret analysis for the repeated version of BTP, provide
more detailed descriptions of the belief methods, add an
additional experiment, and expand the discussion on future
improvements.

2 Related Work

2.1 Contact Sensing

The information gained from sensing a contact can
vary drastically depending on the sensors and conditions
involved. The most sensitive contact sensors such as
SynTouch (Wettels et al. 2008) mimic fingers and provide
force, vibration, and temperature. GelSight (Yuan et al. 2017)
and the Soft-bubble grippers (Kuppuswamy et al. 2020)
implicitly sense surface deformation from which shear and
slip can be inferred. Such sensors provide rich feedback, but
are expensive and bulky so while they are appropriate for
an end-effector, it is currently impractical to coat an entire
arm with such detailed sensors. Tactile skin for robots has
been designed (Bhattacharjee et al. 2014), but since this
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adds cost, complexity, and more components with points of
failure, no commercially produced robot arm has such skin.
Furthermore, even if robot had such skin, the objects they
grasp would not, and thus contacts between these objects and
obstacles would be ambiguous.

It is instead appealing to infer contact from robot
proprioception and joint torques. With sufficiently accurate
torque sensing a Kuka iiwa or Franka robot can localize
the point of contact during a dynamic collision (Haddadin
et al. 2017). Such accurate localization requires robots
with expensive highly-accurate torque sensors and precisely
known masses, and that the contact torques and accelerations
are sufficiently higher than the noise of the sensors.
Furthermore, the contact point may be ambiguous when
inferred from joint torques even when assuming no
noise (Pang et al. 2021).

In this work, we assume a simple, low-information
contact model with minimal requirements applicable to many
robots. We follow the contact model from the Manifold
Particle Filter (Klingensmith et al. 2016) and previous
work on Collision Hypothesis Sets (Saund and Berenson
2018), where contact is a binary measurement with the
additional information of which links may potentially be in
contact. Note that while our problem formulation assumes
static obstacles, movable obstacles are of great interesting
in robotics. The belief over moving object poses can be
modeled with the Manifold Particle Filter (though we do
not in this work), other particle filter methods tailored to
contact (Páll et al. 2018; Wirnshofer et al. 2019), or by
scoring and selecting hypotheses over object poses with
MCTS (Mitash et al. 2018).

2.2 Graph Search

Our problem is closely related to that of real-time
motion planning on roadmaps (Kavraki et al. 1996).
Roadmaps are graphs in configuration space. In robot
motion planning, edge evaluation dominates computational
complexity (Hauser 2015), therefore the key to minimizing
search times is laziness (Bohlin and Kavraki 2000; Cohen
et al. 2015). LAZYSP (Dellin and Srinivasa 2016), shown
to be optimally lazy (Haghtalab et al. 2018), optimistically
plans the shortest path and checks edges sequentially until an
infeasible edge is encountered. Priors on edge validities can
be further exploited to minimize edge evaluation (Choudhury
et al. 2016; Mandalika et al. 2019; Narayanan and Likhachev
2017). These problems can be further mapped to Bayesian
active learning (Tong and Koller 2001; Golovin et al. 2010;
Chen et al. 2015) to compute policies that actively choose
edges to evaluate to minimize uncertainty about which path

is feasible (Choudhury et al. 2018, 2017). An alternate
formulation is online shortest path routing (Awerbuch and
Kleinberg 2004; György et al. 2007; Talebi et al. 2017),
which is a particular instance of combinatorial bandits (Cesa-
Bianchi and Lugosi 2012). However, unlike our problem,
these methods have the ability to query an oracle to evaluate
any edge. In BTP the agent must move to and then attempt
an edge to discover the validity.

2.3 Planning Under Uncertainty

Our work falls under the domain of planning under sensing
uncertainty. D* (Stentz 1994) and variants (Koenig and
Likhachev 2002; Ferguson and Stentz 2007) typically replan
optimistically and re-using the search graph. An alternative
is to cast the problem in a Bayesian paradigm using an
occupancy map (Richter et al. 2015). However, such methods
usually plan to short horizons. Since this problem arises from
the mobile robotics community, the focus is primarily robot
safety (Janson et al. 2018). For our problem, the robot is able
to collide safely and we seek to minimize the travel cost.

Many problems involving belief space planning, including
ours, define an MDP with unknown initial state. For
tractability, we must limit the dimensionality of the belief
space (Ong et al. 2009), so while uncertainty can be caused
by unknown robot motion (Lee et al. 2013), we consider only
unknown obstacles. Given a belief, some approaches seek
to find a single path with sufficient probability of success
(Kimmel et al. 2019; Platt et al. 2010), though our BTP
considers the full cost involving the replanned cost if the
initial path fails.

The BTP problem is closely related to the Canadian
Traveler’s Problem (CTP) (Papadimitriou and Yannakakis
1991a) where neighboring edge costs are revealed when
an agent visits a vertex. CTPs that have a directed
acyclic graph structure can be solved exactly via dynamic
programming (Nikolova and Karger 2008) but the general
problem is PSPACE-complete (Fried et al. 2013). Typically
CTPs are solved using heuristics (Eyerich et al. 2010)
adopted from probabilistic planning (Yoon et al. 2008) or
using Monte-carlo Tree Search (Gelly and Silver 2007;
Guez et al. 2012). CTP can also be cast in a Bayesian
framework (Lim et al. 2017) and solved near-optimally
using informative path planning techniques (Lim et al. 2015,
2016), and which has been examined in the robotics context
of 2D terrain navigation (Guzzi et al. 2019). While we
evaluate some of these strategies for our robot arm planning
problem, others are prohibitively expensive due to expensive
collision checking and posterior updates. We therefore
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adapt the Collision Measure (Choudhury et al. 2016) as a
computationally efficient strategy for the CTP/BTP.

3 Problem Statement

We propose the Blindfolded Traveler’s Problem as a graph
traversal to model the contact feedback planning problem. In
a BTP the traveler traverses a graph attempting to reach a
goal. While traversing an edge the traveler may encounter a
blockage and be forced to retrace back to the previous node
and plan an alternate route. While the traveler only directly
senses the validity of the attempted edge, blockages may
be correlated, thus providing implicit information about the
validity of other edges in the graph.

3.1 Blindfolded Traveler’s Problem

The pure BTP is defined from a graph G with start and goal
nodes, and a belief over edge blockage (x, η).

Let G = (V, E ,W) be an explicit directed graph where
V denotes the set of vertices, E denotes the set of edges
and W : E → R≥0 denotes the weight of each edge. For
each edge e ∈ E , let x(e) = {BLOCKED, FREE} denote
if the edge is invalid or valid. Note that x(e) is latent, as
the traveler is initially unaware of the validity of edges.
Additionally, let η(e) ∈ [0, 1] be the latent blockage of an
edge. The blockage is the fraction of an edge that can be
traversed before encountering an obstruction.

A traveler located at vertex v1 may attempt to traverse any
edge e1,2 connecting a neighboring vertex v2. An attempt
(v1, e1,2) is mapped to a resultant vertex and traversal cost
specified by the following function:

Γ(v1, e1,2, x, η) = (1)(v2,W(e1,2)) x(e) = FREE

(v1, 2η(e1,2)W(e1,2)) x(e) = BLOCKED
(2)

That is to say, traversing a valid edge moves the traveler to
the new vertex v2 with a traversal cost equal to the weight
of the edge W(e1,2). Traversing an invalid edge returns
the traveler to the original vertex v1 with a traversal cost
equal to the distance travelled to the blocked point and back,
2η(e1,2)W(e1,2).

The traveler has a prior P on the joint probability over
all edge validities and blockages P (x, η). When attempting
to traverse edge e, the traveler learns the true validity as
well as the location of the blockage (if applicable) via the
observation o = (x(e), η(e)). The prior combined with the
observations can be used to inform the updated belief over
edge validities and blockages. The Blindfolded Traveler’s

(b) (c)(a)

⌘(e) : 0.8

x(e) : 0
e

start vs

goal vg

Figure 2. Blindfolded Traveler’s Problem

Problem can be fully specified by the tuple 〈G,P, vs, vg〉
where vs, vg ∈ V are the initial and goal vertices.

The solution to the BTP is a policy π that defines the next
action of the traveler, dependent on the prior and all previous
observations. π can be defined as a policy tree, where nodes
of this policy tree specify action (i.e. an edge on the BTP
graph to attempt), and edges of this policy tree correspond to
the observation the received by the traveler. In practice this
tree may be represented implicitly.

The cost of a policy for a given (x, η), c(π(x, η)) is the
sum of traversal costs until the goal node is reached. The
goal of the traveler is to minimize the expected cost

min
π

E(x,η)∼P [c(π(x, η))] (3)

4 Analysis of BTP

Before considering solutions, we first analyze the complexity
and relationships to existing problems. We show the BTP can
be mapped to a POMDP, and thus perhaps it is no surprise
that we then show BTP is NP-hard, and NP-complete under
some conditions. Finally, we place BTP within the context
of the existing Canadian Traveler’s Problem as well as the
common Shortest Path Problem

4.1 Mapping the Problem to a POMDP

The BTP problem maps to a Partially Observable
Markov Decision Process (POMDP) specified by the tuple
〈S,A, T, C,O, Z〉 defined below. This mapping connects
concepts from the POMDP literature to the BTP, however
the remaining secions of this paper follow the BTP notation
and not this POMDP notation.

The state s ∈ S is the tuple s = (v, x, η) where v ∈ V
is the current location of the traveler on the graph G, x is
the binary vector of edge validities and η is a vector of
edge blockages. The state is partially-observable, i.e. v is
observable but the x and η are latent.

Given state s ∈ S, the action a ∈ A(s) is any edge e ∈ E
that can be traversed, i.e., whose parent is v. Let the result of
the attempt be (v′, c) = Γ(v, e, x, η). The transition function
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T (s, a, s′) is deterministic, i.e. s′ = (v′, x, η). Similarly, the
one step cost is C(s, a) = c. The observation o ∈ O is
the tuple o = (x(e), η(e)). Hence the observation model
Z(s′, a, o) is deterministic.

Since the state is partially observable, the POMDP is
viewed as a MDP over belief b. A POMDP policy π(b)

maps b to actions. The optimal policy π∗ accumulates the
minimum cost in expectation. The Q-value of action a in
a belief state is the expected total cost of taking a and
subsequently following π∗, i.e.

Q(b, a) = Es∼b [C(s, a)] + Eb′∼P (.|b,a)

[
V π
∗
(b′)
]
. (4)

4.2 Computational Complexity

We show BTP is NP-hard, and NP-complete when the prior
is explicitly represented. In this analysis we examine the BTP
decision problem instead of the optimally problem.

Definition 1. The Blindfolded Traveler Problem decision

problem is the question of whether there is a policy with

expected cost less than or equal w.

We follow an analysis parallel to Lim et al. (2017) to show
that the BTP decision problem is NP-complete by showing it
is both in NP and NP-Hard.

We first prove that the BTP decision problem is in NP. For
this result we consider an explicit description of the input
P , that is we assume a finite number of possible worlds and
P enumerates the probability of each possible world. Note
that this explicit representation does not cover common cases
such as continuous beliefs over η.

Theorem 1. The decision version of BTP is in NP when the

belief P is expressed explicitly.

Proof 1. The solution of BTP can be represented as a policy

tree. Note that nodes and edges in this policy tree are distinct

from nodes and edges in the graph G of the BTP. Nodes of

this policy tree represent testing an unevaluated edge in G. A

node in the policy tree may thus represent traversing several

known edges in G to reach the unknown edge. Each edge of

the policy tree corresponds to an observation o received upon

traversing an unknown edge. A BTP is solved by traversing

the policy tree until the leaf node is reached, i.e. evaluating

unknown edges and receiving observations until the goal is

reached.

The optimal policy tree is polynomial size in the input of

BTP. Consider that each edge in the policy tree corresponds

to an action (or actions) in the BTP that will determine the

validity of one edge in G, thus the policy tree can be at most

|E| deep. Furthermore, each hypothesis world in P yields a

unique set of observations and thus a unique path through

the policy tree. Since we assume each hypothesis world is

explicitly represented in P , the size of the optimal policy tree

is polynomial in |G| and |P|.
Finally, computing the expected cost of a policy is simply

a weighted sum for all paths through the policy tree. Since

the solution policy tree can be verified in polynomial time

the BTP decision problem is in NP.

Note that if P is not represented explicitly (e.g. not by
a matrix of size |E| by the number of hypothesis worlds),
but with factored or parametric representations, then the
problem may no longer be in NP. For example, a factored
representation may generate exponentially more possible
observations than the input size, thus the policy tree could
be larger than polynomial size.

We also prove that BTP is NP-hard by reduction
from the Optimal Decision Tree (ODT) problem. The
ODT problem is as follows. We have a finite set of
hypotheses H = (h1, h2, . . . , hn) and a finite set of tests
T = (t1, t2, . . . , tm). A test ti leads to an outcome oi ∈
{0, 1} depending on the latent hypothesis h∗ ∈ H. The
objective is to find a policy that identifies h∗ with the fewest
number of tests when h∗ is uniformly randomly selected
from H. The policy is a binary decision tree where nodes
are tests, edges branch on outcomes and the terminal nodes
stores the latent object h ∈ H. The decision version of the
problem, which asks if a policy with expected cost of less
than or equal tow is NP-complete (Laurent and Rivest 1976).

Our reduction maps tests to cheap information-gathering
edges (left side Fig. 3) which inform the traveler which
one of the many expensive goal-seeking edges (right side
Fig. 3) to attempt. For this proof, consider the simplified
BTP “sBTP” with discrete b fixed at η(e) = 1 (i.e. an agent
must traverse an entire edge to learn the validity).

Theorem 2. The decision version of sBTP is NP-hard.

Proof 2. ODT is polynomial time reducible to sBTP and

thus sBTP is NP-hard. Given an instance of ODT(H, T ),

we consider a specific instance of sBTP 〈G,P, vs, vg〉 as

follows. Consider the sBTP problem shown in Fig. 3.

The cluster of edges {e1, . . . , em} correspond to the tests

{t1, . . . , tm}. Note again that in sBTP the blockages for all

tests is fixed at η(e) = 1. An agent attempting to traverse

the edge ej will either be successful and reach the vertex

vj , or unsuccessful and the agent will return back to vs. The

cluster of edges {em+1, . . . , em+n} has only one valid edge

that corresponds to identifying the correct hypothesis from

(h1, h2, . . . , hn). The weight is 1 for each edge in the left
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Figure 3. Reduction from Optimal Decision Tree problem

cluster {e1, . . . , em} and is 2m for each edge in the right

cluster.

We set the prior P to be uniform over a set of candidate

vectors xi, each of which corresponds to a hi. For the

latent hypothesis hi, we set the edge validities x(ej) = oj

for j = {1, . . . ,m}, i.e. the outcome of the tests for hi. For

the other cluster, we set x(em+i) = 1 and all other edges

to 0, i.e., x(ej) = 0 for j = {m, . . . ,m+ n}, j 6= i. We now

argue that the expected cost of this ODT instance is less than

or equal to some value w iff the cost of this sBTP instance is

less than or equal to 2w + 2m.

First, if the cost of the ODT is ≤ w then the agent can

traverse the left cluster using the policy tree of ODT and

identify the correct hypothesis h∗ with cost ≤ 2w. The agent

then goes to vg using the valid edge incurring 2m. Hence the

total cost of the sBTP is ≤ 2w + 2m.

Next, we prove the converse that if the cost of the sBTP

is ≤ 2w + 2m, then the cost of the ODT is ≤ w. Note that

w > m is impossible because the ODT is clearly solved by,

at worst, evaluating all tests, which would incur costm. Thus

we consider w ≤ m which implies the cost of the sBTP is

≤ 4m. First consider that if an edge to vg is attempted before

identifying the correct hypothesis, there will be at least two

equally likely paths with cost 2m and so the expected cost of

any policy that tries to go directly to the goal is≥ 4m. Hence

the agent will try to identify the true hypothesis before going

to the target. If the agent solves the sBTP by identifying the

correct hypothesis with cost ≤ 2w + 2m then it also has a

policy to solve the ODT with cost w.

Thus ODT is reducible to sBTP in polynomial time, and

since ODT is known to be NP-hard then sBTP is also NP-

hard.

Finally, since sBTP is a BTP, the full BTP problem is NP-
hard. Since we also showed BTP is in NP (with an explicit
P), BTP is therefore NP-complete.

4.3 Relation to the Bayesian Canadian
Traveler’s Problem

The BTP is closely related to the Canadian Traveler’s
Problem (CTP) Papadimitriou and Yannakakis (1991b). The
name “Canadian Traveler” is motivated by roads that have

been randomly snowed over and a driver able to peek down
roads at intersections to see if they have been plowed. As in
BTP, CTP defines a graph with unknown edge validities with
a goal-seeking agent traversing this graph. Unlike in BTP,
the CTP agent learns the validity of each edge adjacent to
the current node.

Both BTP and CTP are part of a family of graph traversal
problems where an agent executes a policy to reach a goal
with the minimum expected cost. We call this family the
k-lookahead graph traversal problem, where an agent only
observes the true validity of edges within k steps of its
location. The Shortest Path Problem over known graphs is an
instance of∞-lookahead, as the agent can query any edge on
the graph regardless of distance. The CTP is a 1-lookahead
instance. For k ≥ 1 an agent knows the state of adjacent
edges and therefore will never attempt an invalid edge. In
BTP, with k = 0, an agent might attempt invalid edges,
which necessitates the more complicated cost formulation.

In the original CTP the probability of edge validities
x(e) are independent. In the more general Bayesian CTP
(BCTP) (Lim et al. 2017) x(e) are correlated through beliefs
of underlying worlds φ rather than beliefs directly over x. As
defined, the BTP is analogous to the Bayesian CTP, and in the
contact-feedback instance of BTP the workspace obstacles
workspace obstacles create correlations between elements of
x(e).

5 Contact-feedback Planning Problem as
an instance of BTP

For the remainder of the paper we examine the specific BTP
of a robot arm planning with unknown workspace obstacles
sensed only through contact. The key to mapping to a BTP
is that the graph G is a roadmap and the belief over edge
blockage (x, η) is generated from a belief over obstacles.

The robot operates in a workspace W containing
workspace obstacles Wobs. The robot’s configuration space
C is composed of free space Cfree and obstacles Cobs =

C \ Cfree, defined from these workspace obstacles. The links
L of the robot at configuration q ∈ C occupy a workspace
volume R(q,L) ⊂W . As an abbreviation, let R(q) =

R(q,Lall), where Lall is the set of all the robot links. We
say q is in collision ifR(q) ∩Wobs 6= ∅.

The graph G is a roadmap where vertices V are
configurations and edges E : [0, 1]→ C are paths through
C connecting vertices. In this work we consider the
straight line paths between vertices with weightingW(e) =

||e(0)− e(1)||, although other edge-weighting schemes
could be substituted with no change in the method. An edge
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represents the swept volume We = ∪d∈[0,1] R(e(d)), which
is calculated in practice by discretizing configurations along
the edge. The priorP is a probability density overWobs. This
is mapped to C via R(·) thus inducing a joint probability
P (x, η).

We consider a robot that senses obstacles indirectly though
collision using measured joint torque τmeas ∈ RJ , where J
is the number of robot joints. Using a mass model of the
robot the expected joint torque due to gravity and dynamics
τexp is calculated and used to estimate the external joint
torque τext = τmeas − τexp. A noise threshold τ th is set for
each joint and τext triggers a collision observation at qcol
whenever any joint i exceeds its threshold τ thi . A successful
edge traversal results in o = (FREE, 1), while a collision
yields o = (BLOCKED, η) where e(η) = qcol.

Furthermore, as a slight augmentation of BTP, a collision
yields additional information about which links could
possibly be in contact. Joint i exceeding τ thi implies an
external (contact) force on a link after joint i on the kinematic
chain. A set of links Lcontact that must contain a contact is
constructed by first finding the largest i where τexti > τ thi ,
then adding all links downstream from joint i to Lcontact.
Recall that R(q,L) ⊆ R(q) is the workspace occupancy for
only links L. A traveler may use the knowledge that an
object must be in contact with R(q,Lcontact), as opposed
to anywhere onR(q).

Note that this model for contact observation provides less
information than may be expected. Specifically, a contact
observation includes which links may have collided at a
specific configuration, but does not include the contact point.
This formulation models robots without touch-sensitive
“skin”, and a high collision detection sensitivity with τ th set
just above the noise in the torque measurements.

The BTP for contact planning has a few defining
characteristics that warrant attention. First, the edges of
this BTP are highly correlated, because a single workspace
obstacle can block multiple C-space edges. Hence even a
simple prior over workspace occupancy yields correlation
amongst edges. The robot can exploit this to gain information
about untraversed edges. Second, it is unclear how one
obtains priors. A uniform random distribution is certainly
not realistic. A finite dataset of worlds has realizability issues
on account of continuous observations. Designing parametric
distributions that capture all likely worlds is difficult, and
a manually-specified prior might not model the true robot’s
world. How should the robot detect and compensate for this
in a principled manner? Section 6 addresses construction
of priors with good properties and belief updates based on
contact observations.

The solution to the contact-feedback BTP is still a policy
π, yet it is impractical to represent π with an explicit policy
tree. In the solutions we consider, the traveler maintains a
belief over world occupancy which induces a belief over
edges. We consider strategies in Section 7 that can both
calculate the probability of any edge validity and sample
worlds using the traveler’s belief.

6 Belief Representations for Contact-based
Planning

With the BTP defined two challenges remain in instantiating
a solution for the robot contact-planning problem. This
section addresses beliefs: how to represent a prior over world
occupancy, and how to update this belief given a contact
measurement. In the next section we examine strategies
which use this belief to solve a BTP.

6.1 Belief and Observation framework

An agent maintains a belief over workspace occupancy
Wobs, which we refer to as a world φ ∈ Φ. In this work
we represent a world as a voxel grid. Since each voxel can
be either occupied or free, the set of worlds is Φ = {0, 1}N
whereN is the number of voxels, thus explicitly enumerating
all possible worlds is infeasible.

The belief at timestep t is represented as bt(φ), and is
updated by contact observations. As discussed in Section 5,
contact observations do not indicate the specific point in
contact, but rather that the contact occurred in a region
tangent to robot links Lcontact at a configuration q.

We follow three approaches for maintaining the belief.
The first (MPF) is a non-parametric particle filter where
a set of candidate hypotheses are maintained, updated and
possibly eliminated. The second approach (CHS) is initially
optimistic and adds the minimal new hypotheses needed to
explain the contact measurements. Finally, combine these
two approaches (MoE).

6.2 Approach 1: Manifold Particle Filter (MPF)

A particle filter is a non-parametric Bayes filter that approx-
imates the belief bt(φ) as a finite set of possible can-
didate worlds Φt = {φ1

t , φ
2
t , . . . } with associated weights

{µ1
t , µ

2
t , . . . } (Thrun et al. 2005). Robot actions update each

particle according to the process model, mapping states and
actions to next states. Each observation updates the belief
by reweighting and resampling particles. A conventional
particle filter performs measurement updates via importance
sampling: weighing each particle by observation likelihood
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µit = P (ot|φit), and resampling according to these impor-
tance weights. In this paper, the each particle models objects
with known geometry but with unknown positions. Since
in the BTP objects are stationary, the process model is
static, and particles are only updated due to the measurement
model, thus we only update the particle weights and do not
resample.

A known issue with particle filters is poor performance
when the proposal distribution does not match the target
distribution. This issue is directly caused by the conventional
importance sampling measurement update. In the case of a
highly discriminative measurement such as a contact, the
target distribution represents a thin manifold of possible
object configurations which does not match the proposal
bt−1. This leads to situations where the measurement
likelihood is near 0 for all particles and also nearly all of
the weight is given to a few particles. Resampling repeatedly
samples these few particles, causing the particle filter belief
to lose variety and become a bad approximation of the true
belief. This is known as particle starvation.

We therefore adopt the strategy used in the Manifold
Particle Filter (MPF) (Klingensmith et al. 2016), depicted in
Fig. 4 and detailed in Algorithm 1. For robot motions through
free space where no collision is observed the MPF updates
using importance sampling as in a conventional particle filter
(Line 6). With our static process model this is equivalent to
eliminating particles inconsistent with the new known free
space.

When a collision is observed the MPF instead uses
the contact manifold as the proposal distribution, sampling
particles from obstacle configurations in contact with the
robot arm. The importance weights are then calculated
using P (φit|bit−1) (Line 10). bit−1 is approximated by
applying a Gaussian kernel to Φt−1, called a Kernel Density
Estimate. We implement the Implicit Manifold Particle Filter
(Klingensmith et al. 2016) which approximates the proposal
distribution by projecting the prior particles onto the contact
manifold (Line 9). Though computationally efficient, this
projection does introduce significant bias, as the previous
estimate appears both in the sampling and the re-weighting.
In our implementation of projection we translate each
particle the minimum distance so that it overlaps with the
robot in the collision configuration. This choice of projection
can generate new particles that are inconsistent with past
contact observations. While a more sophisticated projection
operation is of interest, it is beyond the scope of this work.

MPF performs well when given an accurate initialization
b0, but for robots in the real world it is often unrealistic to
assume the distribution over obstacles is known accurately.

Algorithm 1: Manifold Particle Filter
input : Prior particles: Φt−1

Edge traversed: e
Observation: ot = (xt, ηt)
Links possibly in contact: Lcontact

output: Posterior particles: Φt
1 Φt ← ∅
2 for φit−1 ∈ Φt−1 do
3 for d ∈ [0, ηt) do // discretized
4 q = e(d)
5 φit ← φit−1

6 µit ← P (R(q) ∩Wobs = ∅|φt)µit−1

7 if xt = BLOCKED then
8 WCM ← R(e(ηt),Lcontact))
9 φit ← PROJECT (φit−1,WCM )

10 µit ← KERNELDENSITYESTIMATE
(Φt−1, φ

i
t)

Figure 4. Manifold Particle Filter: The initial particles Φ0 model
configurations of the true obstacle before the robot moves (top).
A collision during a motion causes particles to be resampled on
the contact manifold (middle). Subsequent free space motions
sweep through and eliminate some particles (bottom).

Consider the case where the MPF models the correct object
but with a low probability of the correct location. Another
common and more difficult instance occurs when the MPF
model the incorrect object geometry, so no particle is capable
of representing the true world. We address these limitations
in our second approach.

6.3 Approach 2: Collision Hypothesis Sets
(CHS)

To overcome the reliance on an accurate prior we can
adopt the Collision Hypothesis Set (CHS) belief (Saund and
Berenson 2018). The CHS method is composed of an initial
assumption of free space, retaining the exact information
gained from contact (under the model describe in Section 5),
and assumptions on calculating the probability of occupancy.

A single CHS κi ∈W is the complete set of voxels that
could explain observed collision i. The CHS belief builds up
a set K = {κ1, κ2, . . . } to explain all measurements.

Fig. 5 depicts the CHS update described in Algorithm 2.
As the robot moves without collision, the swept volume
of the motion is marked as known free space in the voxel
grid (Line 3). When a collision is encountered during robot
motion a CHS is added containing voxels of the links
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Algorithm 2: Collision Hypothesis Set
input : CHSs: K

Known Freespace: WF

Edge traversed: e
Observation: ot = (xt, ηt)
Links possibly in contact: Lcontact

output: K,WF

1 for d ∈ [0, ηt) do // discretized
2 q = e(d)
3 WF ←WF ∪R(q)

4 if xt = BLOCKED then
5 K.append(R(e(η),Lcontact))

6 for κi ∈ K do
7 κi ← κi \WF

Figure 5. CHS: The robot initially plans a motion optimistic
about unknown space (top). A motion sweeps out free space
(blue) and a collision generates a CHS (middle). Future free
space motion sweeps out more free space, potentially shrinking
CHSs (bottom).

possibly in collision (Line 5). The known free space is then
removed from all CHSs (Line 7).

With two assumptions,K induces a belief of validity for an
edge P (x(e)). First, the optimistic assumption that each κi
contains exactly one occupied voxel chosen uniformly yields
that for a single CHS κi the probability of blockage is the
fraction of κi in the swept volume of the edge We:

P (x(e) is BLOCKED|κi) =
|We ∩ κi|
|κi|

(5)

The second assumption that each κi is independent of
other κj means the probability of edge validity for an entire
K can be easily computed:

P (x(e) is FREE|K) =∏
i

1− P (x(e) is BLOCKED|κi) (6)

Note that CHS method never marks a valid edge as invalid.
Additionally note that an attempt of an invalid edge e

generates κi ⊂We, thus the CHS belief correctly marks the
edge as invalid: P (x(e) = FREE|κ) = 0.

The optimistic (5) and independence (6) assumptions
mean that the CHS method is optimistic about free space.
Sampling a world φ ∼ K yields only a few occupied voxels
(one for each CHS), not representative of realistic scenarios,
though as a single voxel still blocks an edge, the edge

validities x may still match realistic scenarios. However,
unlike a particle filter with good initialization, it may take
many collisions to build up a sufficient K.

6.4 Approach 3: Mixture of Experts (MoE)

We would like to benefit from an MPF prior, but also recover
in the case of a bad initialization. In real world examples, it
is unknown if an initial b0 for the MPF is accurate a priori.
Intuitively, online adaptation can be achieved by comparing
particles Φt to Φ0. If measurement updates cause particles in
the MPF to congregate in regions predicted by prior Φ0 then
the prior likely provides a reasonable model of the world. If
instead particles update to regions that were unlikely under
the prior, or if particles disappear entirely, then the prior was
likely a poor guess about the underlying world, and we would
like to fall back to the CHS belief.

To achieve this behavior we mix the CHS belief bCHSt

and MPF belief bMPF
t using weights βt = (βMPF

t , βCHSt )

to get the following:

bt(φ) =
βMPF
t bMPF

t (φ) + βCHSt bCHSt (φ)

βMPF
t + βCHSt

(7)

To set βMPF
t , we consider three terms of interest: Φt is the

current set of particles in the MPF, bMPF
0 is the initial MPF

belief before any observations, and bU is a uniform belief
over a support set of volume V . The weights are set as:

βCHSt = 1 (8)

βMPF
t = Eφ∼bMPF

t

[P (φ|bMPF
0 )

P (φ|bU )

]
(9)

=
∑
φi
t∈Φt

µit
P (φit|bMPF

0 )

P (φit|bU )
(10)

=
∑
φi
t∈Φt

µit
bMPF
0 (φit)

1/V
(11)

= V
∑
φi
t∈Φt

µitb
MPF
0 (φit) (12)

In other words, we set the weight of the MPF belief βMPF
t

by iterating over all particles and doing a weighted sum of
the likelihood of the particle under the original MPF belief

bMPF
0 . The weight βCHSt is set to be constant.

The rationale for setting βMPF
t in this way is to measure

how much the current MPF belief bMPF
t has deviated from

the original belief bMPF
0 . A large deviation indicates that

the prior was not a good estimate and we should instead
trust CHS. When the MPF prior bMPF

0 is a good model of
the world, there are at least some particles that have both a
high weight after updating from measurements µit and high

Prepared using sagej.cls



10 Journal Title XX(X)

probability under the original prior bMPF
0 (φit). Hence βMPF

t

is high. The deviation w.r.t bMPF
0 is measured relative to a

uniform distribution with volume V , thus CHS and MPF are
equally weighted when the current MPF particles are equally
probably under the initial bMPF

0 as a uniform prior.

Consider MoE applied to the scenario of Fig. 4 and
Fig. 5. Initially, MPF particles are sampled from bMPF

0 ,
thus βMPF

0 > 1. After the two robot motions the updated
particles Φ2 (Fig. 4 right pane) still are more likely under
bMPF
0 than under a uniform prior, thus βMPF

2 > 1, and
the particle filter continues to dominate the MoE belief. If,
however, the updated particles Φ2 were, say, on the lower left
portion of the pane then Φ2 would be far more likely under a
uniform prior, and the MoE belief would “fall back” to using
the CHS belief.

7 Strategies for Solving the BTP

Since BTP is NP-complete (Section 4.2), there is no efficient
optimal solution to an arbitrary Blindfolded Traveler’s
Problem. Instead we seek to understand the conditions of
the contact planning instance of BTP to suggest practical
approximate solutions.

We explore a number of computationally efficient
approximation strategies to solve the problem, by drawing
from heuristics used in the related Canadian Traveler’s
Problem (CTP) (Eyerich et al. 2010) (Section 7.2). We
also propose the heuristic of Collision Measure (CM)
(Section 7.1) that (to the best of our knowledge) has not
been applied to a CTP. Detailed analysis and guarantees
of these strategies applied to BTP is provided in Appendix
A. Broadly, each strategy employs one or more of the
ideas: approximating the cost-to-go, simulating actions in
sampled worlds, policy rollouts, and exploration-exploitation
tradeoffs.

Each strategy defines a policy at time t for an agent at
vertex vt and must decide which edge et from the set of
outgoing edgesN (vt) to traverse. Naturally, the edge chosen
will depend on the current belief bt, which is determined by
the initial belief b0 (i.e. prior P), the history of observations
ψt, and the update procedures of the previous section.

7.1 Collision Measure (CM)

The CM heuristic balances exploration (assuming unex-
plored edges are free) with exploitation (penalizing edges
with low validity likelihoods). The agent chooses the next
edge to traverse as follows:

Ĝ = (V, E , w(e)− α logP (x(e) = FREE|bt))

et =
{
e ∈ N (vt)

∣∣∣ e ∈ SHORTESTPATH(Ĝ, vt, vg))
}
(13)

Ĝ is an optimistic graph containing all the edges of G, with
weights are penalized by log-probability. Log-probability is
chosen because for a path ξ, the log-probability is additive
over edges assuming independence, i.e., logP (x(ξ)) =∑
e∈ξ logP (x(e)). A known blocked edge (P (x(e) =

FREE|b) = 0) yields a weight of∞, and a known free edge
(P (x(e) = FREE|b) = 1) yields w(e). At each iteration the
CM strategy finds the shortest path over Ĝ and attempts the
first edge.

CM is complete - If a path to the goal exists, CM will reach
the goal. CM will never traverse a known-blocked edge so
each edge traversed along any SHORTESTPATH will either
be known free, or unknown. By traversing an unknown edge,
the agent learns if it is blocked or free. If the edge traversed is
known free, traversing the edge provides no information and
does not update the belief nor Ĝ, thus the agent will continue
along the same SHORTESTPATH during the next iteration. If
all edges in SHORTESTPATH are known free, the agent will
reach the goal. If not, the agent will learn about a new edge.
There are a finite number of edges, thus if a path exists the
agent will eventually reach the goal.

7.2 Baselines

To benchmark our proposed Collision Measure strategy
we consider three categories of strategies commonly used
in POMDPs – approaches that approximate the optimal
expected cost-to-go of an action, also referred to as Q-value,
with heuristics, approaches that use simulation to evaluate
actions, and approaches that plan to gather information.
These strategies are discussed in detail in Section A.

Optimism in the Face of Uncertainty (OFU) (Brafman
and Tennenholtz 2002): Find the shortest path on the
optimistic graph and move along the edge on it.

Thompson Sampling (TS) (Littman et al. 1995): Sample
a world from the current belief, find the shortest path in that
world, and move along the edge on it.

QMDP (Littman et al. 1995): Given current belief, move
along the edge with the least expected cost-to-go assuming
the world is revealed at the next timestep.

Most Common Best Edge (MCBE): Given the current
belief, move along the edge that has the highest probability
of belonging to a shortest path.

Optimistic Rollout (ORO) (Eyerich et al. 2010): Sample
a world from the current belief, simulate moving along an
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edge and rollout with an optimistic policy. Repeat to build a
Q-value estimate. Move along the edge with best Q-value.

Upper Confidence Tree (UCT) (Gelly and Silver 2007):
Conduct a Monte-Carlo Tree Search (Kocsis and Szepesvári
2006) where nodes are belief states and actions are edges
to move along. The value of each belief is averaged over
successors. To select actions for expansion during search,
Upper Confidence Bound (UCB) is used.

Interleaving Planning and Control (Saund and Beren-
son 2018): Alternate between a global RRT planner and
greedy local controller to plan a path to the goal through C
with the least probability of collision. Note this is a strategy
for the planning with contact feedback problem, but does not
directly map to a BTP.

7.3 Pitfalls for Strategies

Since all strategies considered are heuristics, it is important
to recognize the pitfalls that they face. We illustrate these in
Fig. 6. OFU is easily tricked into exploring cul-de-sacs that
do not lead to the goal (Fig. 6(a)). A Bayes-aware heuristic
would be able to predict the cul-de-saac and backtrack
earlier. ORO offers significant improvement over OFU as
it simulates executing OFU. However simply increasing the
density of the grid yields a BTP where all neighbors of vs
fall into a cul-de-sac (Fig. 6(b)). ORO is not able to discover
the non-myopic sequence of actions.

QMDP and MCBE avoid such optimistic pitfalls. However
they rely on uncertainty disappearing after performing the
first action. This can lead to infinite loops as shown in
Fig. 6(c). The initial belief is that the solid edge is known
to be feasible while only one of dotted edges is feasible.
When the agent is at v1 it wishes to move to v2 and vice-versa
because of the (incorrect) assumption that the validity of all
dashed-red edges will become known and thus the optimal
path to the goal will become clear.

CM is also susceptible to pitfalls because it treats
the probability of collision for each edge independently.
Fig. 6(d) shows an example where the solid edge is feasible
while only one of the dotted edges is feasible. The only
feasible path is the longer path with weight w2. CM will first
attempt the lower (invalid) path as long as 2w1 − α log 0.5 <

w2.

However, of the four traps, the CM trap is the least
concerning. In Fig. 6(d), the suboptimality of CM is at
most 4w1+w2

w2
which is small as w2 � w1. Moreover, an

appropriate α would lead to the optimal answer. This suggest
a sweep over α parameter in practice would help prevent
such pitfalls.

8 Experiments

We performed experiments on simulated and real worlds for
the “Victor” robot’s right arm, a KUKA iiwa 7DOF arm that
provides joint torque feedback. Each experiment involves
defining a scenario with various known and unknown
obstacles, then selecting a belief model and a strategy. The
strategy uses the belief to select the next edge for the traveler
to attempt. The attempt yields an observation which in turn
updates the belief. This cycle is repeated until the goal is
reached (Fig. 1).

8.1 Implementation Details:

The workspace W is represented by a 200x200x200 voxel
grid implemented on the GPU using GPUVoxels (Hermann
et al. 2014). Computing P (x(e)|ψ) involves the expensive
computation of swept volumes We, approximated by
discretizing the configurations with a distance of 0.02 rad.
For efficiency we lazily compute and cache We.

We constructed G in the R7 configuration space
corresponding to the right arm of the Victor robot with
10000 vertices generated from the 7D Halton sequence
and with edges connecting vertices within 1.8 rad, yielding
|E| = 259146. All strategies considered in Section 7 involve
repeated shortest path queries over subgraphs of G with
modified edge weights. Although any best-first search
method is sufficient, we performed all shortest path queries
using LazySP (Dellin and Srinivasa 2016) to minimize the
number of expensive edge-evaluation operations. All trials
were conducted on an i7-7700K with a NVidia-1080Ti GPU.

Joint torque feedback provided the blockage observation
for each edge traversed, as described in Section 5. The
Kuka iiwa controller calculated the expected torque τexp and
the observed torque for each joint τmeas. We manually set
thresholds for each joint to be above the noise we observed
to avoid false triggers. As the robot moved a controller
monitored these torques and issues a “Stop” command to the
arm if the threshold of any joint was exceeded. The blockage
η was calculated based on the fraction of the edge traversed
before contact, though in practice the blockage does not need
to be computed explicitly. The position of the arm when
contact is observed is used to update the beliefs.

8.2 Scenarios

We considered 2 real robot scenarios - Refrigerator and
RealTable. In Refrigerator, Victor must reach into
a refrigerator from behind (Fig. 7). In RealTable, Victor
must move from below the table to above (Fig. 8). We also
consider 3 simulated robot scenarios (Fig. 9) - Bookshelf,
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(a) OFU trap (b) ORO trap (c) QMDP/MCBE trap (d) CM trap
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goal
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goal
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w2 � w1

Figure 6. Pitfalls for various strategies for a 2D BTP problems. In (a) and (b) the only paths to the goal lie to the lower right of the
red obstacles, but because of the uncertainty over obstacle location (shown with transparency) OFU and ORO first attempt to
traverse the upper left (blue edges). In (c) and (d) exactly one of the dashed red edges is feasible.

Figure 7. Refrigerator - Victor moving to place an object
inside a refrigerator.

Box, and cul-de-sac. In Box, Victor must reach into a
box on a table where the back of the box unknown (which is
a typical scenario due to sensor occlusion). In Bookshelf,

Victor must reach into a bookshelf at a height above it. In
cul-de-sac Victor can entered an unseen U-shaped trap.

We consider CHS, MPF with 100 particles, and MoE
models of the belief. The MPF requires an initial belief
bMPF
0 , which can have drastic effects on the behavior of

strategies.
We consider three levels of difficulties based on how the

prior bMPF
0 is chosen.

• Easy: true unknown obstacles with offset ∼
N (0, 0.1)

• Medium: true unknown obstacles with offset ∼
N (0.1, 0.4)

• Hard: a chair in the corner, with no knowledge of the
relevant obstacles

In the Easy and Medium scenarios the true obstacles are
within a reasonable likelihood of the initial belief. In the
Hard scenarios the true unknown obstacles are not only
a large distance away from the belief obstacles, but the
true obstacles are of a different physical shape. From a
Bayesian perspective we should not expect methods that
rely on the Hard prior to perform well, however from
the perspective of roboticists we desire algorithms that can
recover from incorrect perception. The motivation for the
Hard scenarios is a robot that has correctly identified a
chair in the corner, but did not assume the existence of the
true unknown obstacles. These Hard scenarios illustrate the
pitfalls of relying entirely on a bad prior.

In the real robot scenarios the Easy and Medium particle
priors were manually generated, approximating the shape of
the true obstacle. In the Refrigerator scenario Wobs is
populated using a Kinect sensor mounted on Victor’s head.
In the RealTable scenario Victor is wearing a blindfold.

We compare across the three beliefs proposed in Section 6
and all strategies from Section 7, except UCT which was not
tested due to excessive computational time. For the stochastic
TS strategy we average across 10 trials. We test our proposed
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Figure 8. RealTable - Victor moving from below to above a
table.

CM with α = 1 and α = 10, labeled CM 1 and CM 10.
Increasing α increases the cost of potential collisions and
causes CM to prefer longer more conservative paths. We also
compare against the (non-BTP) baseline proposed in (Saund
and Berenson 2018) which interleaves an RRT with a local
controller to find low cost paths through C.

Figure 9. Simulation scenarios using the CM strategy, showing
known objects (black), unknown objects (grey), swept known
freespace (blue), and the belief of occupancy (red). Panes show
the initial (left), first contact (middle), and completion (right)
Row 1: Box using CHS belief
Row 2: Easy setting of Box using MPF belief
Row 3: Hard setting of Box using MoE belief (the prior is far
from the true unknown obstacles)
Row 4: Bookshelf using CHS belief.

8.3 Results:

Selected results for the Bookshelf scenario are shown in
Fig. 10 with full results for all scenarios shown in Table 1.
Many of the strategies are deterministic under a given belief.
QMDP and MCBE are stochastic, but internally average over
many samples and so each entry represents a single trial.
Each non-BTP baseline result is averaged over 20 trials and
each TS result is averaged over 10 trials. From these results
we draw conclusions on the effectiveness of the applicability
of BTP, the choice of belief model, and the choice of strategy.

BTP is effective at modeling the contact-feedback
planning problem. For the non-BTP baseline (Saund and
Berenson 2018) applied to the Bookshelf scenario we
observe only 2 out of 20 trials succeeded within a 15
minute time limit. Compared to the previous baseline (Saund
and Berenson 2018), we observe a significant improvement
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Figure 10. Results of applying various belief strategies and policies to the Bookshelf BTP. Our proposed MoE+CM is
consistently fast and solves the BTP with low cost.

using the BTP framework. The baseline replans using an
RRT after each collision, and therefore does not reuse
planning efforts. BTP constrains the motion to a roadmap,
yielding a manageable action space and depth for the search
for the strategies proposed. The roadmap allows reuse of
the computationally expensive quantity P (x(e)|ψ) within a
single SHORTESTPATH query, and reuse of the edge swept
volumeWe between queries. Furthermore, in BTP a collision
eliminates an edge, reducing the number of possible paths,
which does not happen in the baseline.

The Mixture of Experts belief representation gains the
benefits of MPF and the robustness of CHS. We find all
strategies across all scenarios perform better using the Easy
MPF belief than CHS (with one exception in the RealTable).
This is unsurprising, since the true obstacles are likely given
the Easy MPF prior. Under the Hard MPF prior the true
obstacles are not representable by the prior, and we find the
strategies often have high costs or fail entirely. The CHS
belief is agnostic to the prior so performs identically under
Easy, Medium and Hard.

In our experiments for a given strategy and scenario the
MoE belief yields policy costs that are approximately the
minimum of using either the CHS or MPF belief alone. When
using the Easy MPF prior MoE gains the benefits from the
accurate knowledge of obstacles. When using the HardMPF
prior MoE down-weights the incorrect particle prior after
the first contact, and achieves the robustness of the CHS
prior. For example, in the Bookshelf scenario using CM

1 and the Easy prior MoE achieves policy cost of 7.0 which

is only slightly worse than MPF’s 6.1. Under the Medium
prior MoE achieves the MPF’s cost of 8.4. Under the Hard
prior MPF performs poorly with a cost of 117.2, while MoE
achieves the CHS cost of 11.7.

Both the Thompson sampling and the proposed
Collision Measure strategies perform similarly well in
our experiments. First note some strategies perform poorly
on BTP. Optimism in the Face of Uncertainty performs
decently under the Easy MPF prior, but is significantly
worse than other strategies on all other beliefs. This is
because OFU will attempt edges that the belief correctly
reasons are almost certainly in collision. Optimistic ROllout,
QMDP, and MCBE in principle can achieve low policy
cost, but as these strategies involve simulations of motions,
contacts, and belief updates (for ORO) in many sampled
worlds the planning time is prohibitively large.

Both Thompson Sampling and Collision Measure perform
similarly, with CM achieving slightly lower policy costs.

9 Discussion

Better Belief Model: We examined two belief models, each
with limitations. The CHS belief performs no reasoning
over object shapes, and the MPF belief model assumes the
object geometry is known perfectly and only the position is
unknown. In simulation it is possible to draw worlds exactly
from this MPF prior, but to better model the real world we
would like a prior over object shape and pose conditioned
on the other robot observations, such as the kinect images.
Clearly humans have learned a similar prior, as when you
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MoE CHS MPF
Easy Med Hard CHS Easy Med Hard

CM 1 7.3 11.6 11.6 11.6 7.3 10.1 fail
CM 10 5.0 7.3 7.3 7.3 5.0 11.6 fail
OFU 25.5 25.5 25.5 25.5 7.3 14.2 fail
ORO - - - 13.7 5.0 10.1 -

MCBE 5.0 12.2 12.2 12.2 5.0 13.2 fail
QMDP 5.0 11.9 13.4 11.9 5.0 10.1 fail

TS 7.8 7.3 11.6 21.1 5.0 13.5 fail

(a) Box Policy Cost

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard
8.5 8.9 8.3 4.1 11.7 15.1 fail

14.3 14.3 11.4 6.5 14.8 15.1 fail
2.5 2.6 3.4 2.3 4.7 3.1 fail
- - - 1779.9 1648.0 3446.8 -

46.1 186.9 224.9 173.5 47.1 38.2 fail
716.6 1782.2 3040.5 663.3 579.0 1150.9 fail
14.8 6.9 38.7 68.1 3.9 8.0 fail

(b) Box Planning Times

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard

CM 1 7.0 8.4 11.7 11.7 6.1 8.4 117.2
CM 10 10.0 12.3 10.1 10.1 10.0 12.1 117.2
OFU 117.4 100.4 100.4 51.8 9.1 14.5 117.2
ORO - - - 11.1 7.4 - -

MCBE 6.1 8.4 13.9 14.9 6.1 8.4 69.1
QMDP - - - 12.7 6.1 - -

TS 10.9 9.4 14.3 15.5 11.5 8.4 117.2

(c) Bookshelf Policy Cost

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard
31.2 7.8 4.0 3.0 35.9 7.8 23.7

265.2 43.3 3.8 2.7 221.8 595.5 24.1
675.9 95.6 95.0 15.0 14.8 42.4 23.9

- - - 1152.3 4333.4 - -
994.7 293.3 121.2 131.9 1080.6 280.2 1025.7

- - - 475.0 1600.5 - -
98.8 4.1 4.4 5.3 163.3 10.4 376.7

(d) Bookshelf Planning Times

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard

CM 1 6.8 25.0 25.0 25.0 6.8 52.2 52.2
CM 10 6.8 7.0 19.6 19.6 6.8 7.0 52.2
OFU 46.2 46.2 46.2 46.2 58.0 52.2 52.2
ORO - - - 38.1 6.9 - -

MCBE 6.8 35.7 61.1 38.9 6.8 51.6 51.6
QMDP - - - 31.6 7.2 10.3 -

TS 11.3 14.9 30.4 38.4 13.5 35.5 52.2

(e) cul-de-sac Policy Cost

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard

CM 1 24.1 12.3 11.2 11.1 14.3 3.3 2.4
CM 10 87.6 1454.3 2.4 2.5 53.2 1401.0 2.4
OFU 12.6 14.0 13.4 17.4 3.3 2.5 2.5
ORO - - - 37287.5 2703.6 - -

MCBE 582.5 4077.8 779.7 313.5 514.9 2760.9 112.8
QMDP - - - 7489.6 1933.5 21870.3 -

TS 14.8 1298.7 3.2 4.5 21.5 640.7 5.0

(f) cul-de-sac Planning Times

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard

CM 1 7.6 7.1 9.3 9.3 8.2 7.6 14.7
OFU 15.1 15.1 15.3 15.2 6.7 8.2 14.7

MCBE 8.2 11.3 9.3 10.5 fail 15.4 14.7
TS 7.6 7.2 9.7 9.0 5.9 6.7 14.6

(g) RealTable Policy Cost

MoE CHS MPF
Easy Med Hard CHS Easy Med Hard

CM 1 34.7 16.2 3.3 2.9 55.4 59.2 2.8
OFU 4.0 6.5 3.4 3.2 3.4 12.7 2.9

MCBE 63.4 158.7 68.5 78.4 fail 138.5 61.1
TS 7.7 2.8 2.0 1.7 22.0 33.7 3.5

(h) RealTable Planning Times

MoE CHS MPF
Easy Hard CHS Easy Hard

CM 1 8.1 6.9 8.1 7.5 fail
OFU 14.8 14.8 14.8 7.5 fail

MCBE 6.9 6.9 8.3 7.5 fail
TS 8.5 12.7 12.7 7.5 fail

(i) Refrigerator Policy Cost

MoE CHS MPF
Easy Hard CHS Easy Hard

CM 1 13.2 11.2 11.6 1.8 fail
OFU 3.3 5.0 2.8 1.7 fail

MCBE 54.6 85.8 88.7 25.0 fail
TS 11.4 5.5 3.9 1.7 fail

(j) Refrigerator Planning Times

Table 1. Results for simulated and real robot arm experiments using different belief models and strategies. “-” indicates the GPU
memory was exceeded during the trial. Policy costs are in radians, times are in seconds. “fail” indicates the policy incorrectly
believed there was no path to the goal.

see a new table for the first time, your brain completes the
occluded region. Open challenges are how to learn such a
prior given sufficient examples, and how to update such a
belief model from contact measurements.

Leaving the graph: Modeling the Contact Planning
Problem as a BTP restricts the robot motion to a graph. This
simplifies the analysis and the decision of the next robot
action to attempt, but relaxing this restriction could likely
improve robot performance. For example one might desire a
policy that stays in contact with an object, sliding along the
edges while progressing towards the goal. To approximate
this in the BTP framework, after a collision a node could be
added to the graph at the contact configuration. This would
allow the robot more opportunities to shortcut rather than
forcing it to backtrack. Taken to the extreme, a robot could
follow the surface of an object through repeated contact and

node addition. A challenge would then be to avoid a endless
cycle of node addition. Similarly, restricting the motion to a
graph limits the contact sensing. After a contact we might
desire the robot to wiggle as a cheap motion to gather
information, as previously applied to robot hands (Koonjul
et al. 2011).

10 Conclusion

We proposed the Blindfolded Traveler’s Problem as a class
of problems in planning under uncertainty and proved that it
is NP-complete. We showed that contact-feedback planning
is an instance of BTP. We examined various strategies for
approximating the belief over the workspace obstacles based
on contact feedback and argue for a Mixture of Experts
that work well with and without correct initialization. We
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also examined various policies for approximately solving the
BTP and propose a new policy, Collision Measure, that is
both efficient and has theoretical guarantees.
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Appendix for

“The Blindfolded Traveler’s

Problem: A Search Framework for

Motion Planning with Contact

Estimates”

A Analysis of BTP strategies

We map each strategy previously discussed onto the BTP
definition, and when applicable provide analysis. Since we
established that BTP is a hard problem (Section 4.2), we
explore a number of efficient approximation strategies to
solve it. We organize these approaches into three categories
– approaches that approximate the Q-value with heuristics,
approaches that use simulation to evaluate actions and
approaches that plan to gather information. Note that while
the latter approaches have theoretical guarantees, they come
at the cost of computational complexity.

For all of these strategies, we assume that the agent is
currently at a vertex vt and must decide which edge et from
the set of outgoing edges N (vt) to traverse. Each strategy
considers an agent at vertex vt and must decide which edge et
from the set of outgoing edges N (vt) to traverse. Naturally,
the edge chosen will depend on the current belief bt, which
is determined by the initial b0, the history of observations ψt,
and the update procedures of the previous section.

A.1 Heuristic Estimates of Q-values

One class of approaches approximates optimal Q-value
Q∗(b, a) with an estimate Q̂(b, a). These approximations are
motivated by different relaxations of the original problem.
Since these approximations are myopic, and only consider
the instantaneous belief, they do not offer any performance
guarantees in general. However, they are efficient to compute
and perform quite well in practice. Strategies within this
class are Optimisim in the Face of Uncertainty (OFU),
Thompson Sampling (TS), QMDP, MCBE, and our proposed
Collision Measure (CM).

A.1.1 Optimism in the Face of Uncertainty (OFU) A
common approach for planning under uncertainty is to be
optimistic (Brafman and Tennenholtz 2002), and pick a
world from the plausible set of worlds that leads to the
lowest cumulative cost to reaching a goal. The rationale
is that either the assumption is correct and the agent does
the best it can do, or the possibility is eliminated and the

search space is reduced. This heuristic is commonly used
in navigation (Stentz 1994; Koenig and Likhachev 2002) as
well as for solving CTP (Bnaya et al. 2009).

Formally, the approximation is Q̂(b, a) ≈
mins,b(s)>0Q(s, a). An optimistic policy selects the
best action πOFU = arg min

a
Q̂(b, a). Mapping this back to

the BTP, the agent chooses edge et as follows:

Ĝ = (V, E \ {e | P (x(e) = BLOCKED|bt) = 1} ,W)

et =
{
e ∈ N (vt)

∣∣∣ e ∈ SHORTESTPATH(Ĝ, vt, vg))
}

(14)
Here Ĝ is the optimistic graph created by removing all

edges that are known with certainty to be invalid under the
current belief generated from history ψ. The agent invokes
a search subroutine SHORTESTPATH(Ĝ, vt, vg) to compute
the shortest path from current vertex vt to goal vg . It then
attempts the outgoing edge belonging to the shortest path.

We can bound the sub-optimality of a variant of the
optimistic policy which backtracks to the start whenever the
shortest path is in collision. Let this policy be πOFU2. This
results in the following iterative policy

1. At iteration i, the agent computes the shortest path
from start to goal on the optimistic graph, i.e. ξi =

SHORTESTPATH(Ĝi, vs, vg).
2. It moves along ξt till it either reaches the goal or hits a

blocked edge x(e) = BLOCKED.
3. If it hits a blocked edge, it back tracks to start vs and

repeats.

Then the following theorem is true

Theorem 3. Given a configuration (x, η), let w∗ be the

length of the shortest feasible path between vs and vg , and

K be the number of shorter paths that are infeasible. For all

such configurations, the cost of the optimistic backtracking

policy πOFU2 is upper bounded by

c(πOFU2(x, η)) ≤ 2Kw∗ (15)

Proof 3. The optimistic backtracking policy will attempt the

shortest path from vs on Ĝ, which must be no longer than the

shortest path on G. Each attempted path therefore incurs at

most a cost of 2w∗. Since each attempt either reaches the

goal or invalidates a path shorter than w∗, there will be at

most K attempts.

Consider access to an oracle that could query the validity
of any edge. BTP is then equivalent to the shortest path
planning problem on expensive graphs (Dellin and Srinivasa
2016). πOFU2 tests unknown edges in the equivalent order to
LAZYSP (Dellin and Srinivasa 2016) (with a forward edge
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selector) which has been shown to be optimal (Mandalika
et al. 2018). Compared to the shortest path planning problem,
BTP is challenging because without an oracle the cost
of querying an edge is dependent on the agent’s current
location, which itself depends on the previous edges queried.
A natural question that we do not address in this work is then,
how much cost would an agent be willing to incur for access
to an oracle?

A.1.2 Thompson Sampling (TS) This is a commonly
used heuristic for the Bayesian Multi-armed Bandit (MAB)
problem based on the idea of randomized probability
matching (Thompson 1933). At every decision step, TS
samples a world from the current belief and selects the
optimal action given that world. Hence action selection
probability is matched to the posterior of actions being
optimal. In recent literature, Thompson Sampling has
shown to be empirically successful (Chapelle and Li
2011), theoretically sound (Agrawal and Goyal 2013) and
applicable beyond MAB to RL (Osband et al. 2013).

Formally, the TS policy is πTS = arg min
a

Q∗(s, a) where

s ∼ b. Mapping this back to BTP, the agent chooses edge et
as follows:

x̂ ∼ P (x|bt),
Ĝ = (V, E \ {e | x̂(e) = BLOCKED} ,W)

et =
{
e ∈ N (vt)

∣∣∣ e ∈ SHORTESTPATH(Ĝ, vt, vg))
}
(16)

Here Ĝ is the sampled valid graph from the posterior on
which the agent plans the shortest path and takes a step
along it. Thompson sampling can provide a bound for MAB
w.r.t Bayesian regret, i.e., the expected regret under the
prior (Russo and Roy 2018). These bounds are meaningful
for repeated trials on the same world, which is not the case
for BTP.

However, if we consider a repeated instance of BTP such
regret bounds apply. Consider the repeated variation of a
BTP where

1. At each iteration i the robot is tasked with solving a
BTP, moving to the goal and then back to the start,
receiving reward −∑ej∈ξW(ej) where ξ is the path
traversed. If the goal is not reached the robot receives
some large negative reward.

2. Observations ψ are shared and the obstacles remain
fixed between iterations.

This Repeated BTP is analogous to the Experienced Lazy
Path Search problem, for which Thompson sampling (within
an algorithm called PSMP) has bounded regret compared

to the optimal policy always taking the shortest path (Hou
et al. 2020). Consider the strategy that attempts the path from
Thompson sampling, and if a collision occurs backtracks to
the start and executes the shortest path found so far. This
strategy accumulates at most 2 times the cost of the PSMP
strategy (which is able to query edges arbitrarily), and thus
has the same bounded regret.

A.1.3 QMDP This is one of the most commonly used
heuristics for POMDPs (Littman et al. 1995). It assumes that
all uncertainty will disappear at the next timestep. Hence the
optimal action is the one with the least expected value based
on the current uncertainty.

Formally, the approximation is Q̂(b, a) ≈ Es∼b [Q∗(s, a)]

and the policy is πQMDP = arg min
a

Q̂(b, a). Mapping this

back to BTP, the agent chooses edge et as follows:

et = arg min
e∈N (vt)

E(x,η)∼P (·|bt) [c+ w(SHORTESTPATH(G(x), v′, vg))]

(17)

where (v′, c) = Γ(vt, e, x, η) (18)

and G(x) = (V, E \ {e | x(e) = 0} ,W) (19)

Here we sample a set of worlds (x, η) ∼ P (·|bt). For
each candidate edge e ∈ N (vt), we simulate moving along
the edge (which may or may not result in a collision) and
subsequently plan the shortest path on the revealed world.

It’s straightforward to see QMDP lowerbounds the optimal
value Q̂(b, a) ≤ Q∗(b, a). There are two known drawbacks.
Firstly, the policy never acts to gain information because it
ignores potential observations. Secondly, and perhaps more
relevant to BTP, it’s susceptible to a clairvoyance trap.

A.1.4 Most Common Best Edge (MCBE) This is a further
relaxation of the QMDP heuristic. Note that QMDP calls
SHORTESTPATH(·) a total of kN times, where k is the
degree of the graph and N is the number of samples. We
can reduce this to N if the agent chooses action based on the
current belief, without first simulating an action.

Formally, the policy is

πMCBE = arg max
a

Es∼b
[
I(a ∈ arg min

a′
Q∗(s, a′))

]
Mapping this back to BTP, the agent chooses edge et as
follows:
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G(x) = (V, E \ {e | x(e) = 0} ,W) (20)

et = arg max
e∈N (vt)

E(x,η)∼P (·|bt) [I(e ∈ SHORTESTPATH(G(x), vt, vg))]

(21)

Here we sample a set of worlds (x, η) ∼ P (·|bt), find the
shortest path for each world and store the first edge along the
path. The agent moves along the most common edge.

MCBE and QMDP do not necessarily agree on the same
actions. One can construct examples where MCBE has a very
high QMDP value because the action maybe quite suboptimal
for worlds for which it is not on the shortest path. MCBE too
is susceptible to the clairvoyance trap.

A.1.5 Collision Measure (CM) A drawback of the OFU
policy is that it does not reason about the likelihood of a
path to be valid. This can lead to excessive exploration of
implausible paths. Augmenting the original W with a term
penalizing small P (x) retains the graph substructure needed
for efficient search while hedging against likely blocked
edges. We examine weight augmentation using the collision
measure proposed in Choudhury et al. (2016) for fast motion
planning with C-space beliefs.

This heuristic balances exploration (assuming unexplored
edges are free) with exploitation (penalizing edges with low
validity likelihoods). The agent is at a vertex vt and decides
which edge et from the set of outgoing edges N (vt) to
traverse as follows:

Ĝ = (V, E , w(e)− α logP (x(e) = 1|bt))

et =
{
e ∈ N (vt)

∣∣∣ e ∈ SHORTESTPATH(Ĝ, vt, vg))
}
(22)

Here Ĝ is an optimistic graph created by removing all edges
that are invalid with probability 1 under the current belief
bt. Further, the weights are penalized by log-probability.
Log-probability is chosen because for a path ξ, the log-
probability is additive over edges assuming independence,
i.e., logP (x(ξ)) =

∑
e∈ξ logP (x(e)). A known blocked

edge (P (x(e) = 1|b) = 0) yields a weight of ∞, and a
known free edge (P (x(e) = 1|b) = 1) yields w(e).

We provide theoertical justification behind such a
heuristic. We begin by mapping BTP to a Bayesian
Search (Ross 2014) problem. Let Ξ = (ξ1, ξ2, . . . , ξn) be the
set of simple paths from vs to vg . The probability of edge
validity P (x) maps to a joint probability P ((ξ1, ξ2, . . . , ξn))

of paths being valid. For each path ξk, we assign a cost
twice the length of the path ci = 2w(ξi). We now describe a

sequential game of at most n rounds. In each round the agent
attempts to traverse a path ξk. If the path is valid, it reaches
the goal and receives a cost of ck and the game terminates.
Else, it receives a cost of ck, remains at the start and the game
continues.

Let σ be a sequence of attempting paths, i.e. a particular
permutation of {1, · · · , n}. Let E [c(σ)] be the expected
cost of a sequence. The optimal sequence σ∗ has minimal
expected cost, i.e. E [c(σ∗)] ≤ E [c(σ)] for all sequences σ∗.

Let σg be a sequence corresponding to a greedy policy that
selects the path with the maximum posterior to cost ratio.
Formally, this rule is defined as follows.

σg(i+ 1) =

arg max
j

P (ξj = 1|ξσg(1) = 0, ξσg(2) = 0, · · · , ξσg(i) = 0)

c(ξj)

(23)

where the numerator is the posterior probability of a path
given the observations seen thus far and the denominator is
cost of the path.

Dor et al. (1998)(Theorem 4.1) proved that greedy has an
optimality bound of 4

Theorem 4. Given the following conditions on the game:

1. There exists at least one valid path

2. Ratio of costs are bounded supi,j
ci
cj
<∞

The performance of the greedy sequence σg is bounded

E [c(σg)] ≤ 4E [c(σ∗)] (24)

Proof 4. We refer the reader to Theorem 4.1 in Dor et al.

(1998).

We now map this result back to BTP. Note that BTP
has an asymmetric cost of attempting a path. If traversal is
successful, the agent pays half price of 0.5ci, else in the worst
case pays the full price of ci for going all the way to goal and
returning. Let c̄(σ) be the cost of a sequence under these new
rules. Note that the greedy policy σg remains the same with
these new rules. We can transfer the bound from Theorem 4

Corollary 1. The performance of the greedy sequence σg is

bounded

E [c̄(σg)] ≤ 8E [c̄(σ̄∗)] (25)

Proof 5. Let σ̄∗ be the optimal policy for the new

game. Then c̄(σ̄∗) ≥ 0.5c(σ̄∗) where the bound is tight if

the optimal policy never encounters a blocked path. It’s

straightforward to see that

c̄(σg) ≤ c(σg) ≤ 4c(σ∗) ≤ 4c(σ̄∗) ≤ 8c̄(σ̄∗) (26)
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The greedy sequence is equivalent to a more general
notion of the collision measure policy that can solve the
following optimization

πCM2 ≡
{
e ∈ N (vt)

∣∣∣∣∣ e ∈ arg min
ξ

w(ξ)

P (x(ξ) = 1|bt)

}
(27)

The optimization in (27) is intractable as 1
P (x(ξ)=1) is not

additive. We choose to approximate this with log-probability.
We utilize the following inequality for p ∈ (pmin, 1] and

α ≥
1

pmin
−1

log 1
pmin

(1− log p) ≤ 1

p
≤ (1− α log p) (28)

Hence (1− α log p) is a good family of approximators to
1
p which justifies (22) is an approximation.

A.2 Simulation-based Policies

This class of approaches employ simulation to estimate
action values. We refer to the policy being simulated as
the rollout policy π(b). Let V π(b)(s) be the cumulative
cost of the rollout policy initialized with belief b and
simulated on the underlying MDP from state s. Note that
unlike Section A.1, the simulator only has access to s and
not the policy π. The simulator is thus able to provide
observations o to the policy which updates the belief used
in the rollout. We can then approximate action value as
Q̂(b, a) ≈ Es∼b

[
c(s, a) + V π(b′)(s′)

]
, where s′, b′ is the

next state and belief.

The attractive aspect of these approaches is that any policy
from Section A.1 can be used as a rollout policy. For any such
policy, we have the following upper bound

Q̂(b, a) ≥ Es∼b
[
c(s, a) + V π

∗
(s′)
]
≥ Q∗(b, a) (29)

If this is close to matching lower bounds from Section A.1,
the value can be known exactly. However, the simulator
invokes these policies O(NTk) where N is the number of
samples and T is the maximum horizon length, and k is the
degree of the graph. Each invocation requires at least one
belief update and perhaps several calls to SHORTESTPATH.
Even with parallelization this is memory and computation
heavy.

While both the QMDP and MCBE strategies from
Section A.1 involve one step of simulation, we limit this
section to policies that require longer rollouts. We consider
the simulation-based policies of Optimistic Rollout (ORO)
and Upper Confidence Tree (UCT).

A.2.1 Optimistic Rollout (ORO) One of the simplest
rollout policies is the OFU policy because it involves only
one invocation of SHORTESTPATH. Let πOFU be the OFU
policy. Let V π

OFU(v,b)(x, η) be the evaluation of the policy
starting from vertex v with belief b on an underlying graph
(x, η). The agent chooses edge et as follows:

et = arg min
e∈N (vt)

E(x,η)∼P (·|bt)
[
c+ V π

OFU(v′,b′)(x, η)
]

where (v′, c) = Γ(vt, e, x, η) and b′ = bt ∪ (x(e), η(e))
(30)

A.2.2 Upper Confidence Tree (UCT) This is a state of the
art algorithm from planning under uncertainty (Kocsis and
Szepesvári 2006) which combines the framework Monte-
Carlo Tree Search with Upper Confidence Bound (UCB)
for action selection. It has successfully been used for
solving games (Gelly and Silver 2007; Silver et al. 2016),
POMDPs (Silver and Veness 2010) and Bayesian RL (Guez
et al. 2012). The idea builds on top of simulation based
evaluation but differs on how actions are selected and how
estimates are backed up.

Each UCT rollout begins with a belief sate b0 and grows
a tree where each node is a successor b. The value of each
action Q̂(b, a) is an average over successors. To expand a
given node, the search has to select one of k actions that
according to the following rule:

arg max
ai

B

√
logN(b, ai)

N(b, ai)
− Q̂(b, a) (31)

Once the search goes off the tree, it uses a roll out
policy (such as πOFU) to finish the episode. UCT has
been proved to converge to the exact Q-values Eyerich
et al. (2010) asymptotically, i.e. Q̂(b, a)→ Q(b, a). However
there is no such guarantee on the rate of convergence.
Hence, in practice, UCT might have to do a large number
of simulations.

A.3 Planning to gather information

The final class of approach we consider is where an
agent plans to explicitly gather information. One such
approach is the Hedged Shortest Path under Determinization
(HSPD) (Lim et al. 2017) algorithm which was original
defined for the Bayesian Canadian Traveler Problem. HSPD
determinizes the graph according to the most likely edge
(MLE) assumption - each edge is set to valid if the marginal
posterior probability is 0.5. The agent at every timestep plans
two paths - exploitation and exploration. The exploitation is
simply the shortest path to goal. The exploration path is the
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shortest path that reduces the version space to less than 0.5
fraction. The agent then takes the shorter of these paths and
travels till it encounters a blocked edge, following which it
returns to the start. This happens only a logarithmic number
of times till it finds a path to goal.

This method for the BCTP has a near-optimality guarantee
of 4(log δ + 1) where δ is the minimum prior probability
of an underlying world. However, there are two concerns
with the approach. Planning in belief space requires several
invocations to the Bayes filter which can be expensive.
Secondly, for the case of BTP the value of δ can be quite
small as the observations are continuous. For these reasons,
we chose not to proceed with this method although an
efficient implementation for BTP would be of great interest.
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