
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023 1

Motion Planning as Online Learning:
A Multi-Armed Bandit Approach to Kinodynamic

Sampling-Based Planning
Marco Faroni and Dmitry Berenson

Abstract—Kinodynamic motion planners allow robots to per-
form complex manipulation tasks under dynamics constraints
or with black-box models. However, they struggle to find high-
quality solutions, especially when a steering function is unavail-
able. This paper presents a novel approach that adaptively biases
the sampling distribution to improve the planner’s performance.
The key contribution is to formulate the sampling bias problem as
a non-stationary multi-armed bandit problem, where the arms of
the bandit correspond to sets of possible transitions. High-reward
regions are identified by clustering transitions from sequential
runs of kinodynamic RRT and a bandit algorithm decides what
region to sample at each timestep. The paper demonstrates the
approach on several simulated examples as well as a 7-degree-of-
freedom manipulation task with dynamics uncertainty, suggesting
that the approach finds better solutions faster and leads to a
higher success rate in execution.

Index Terms—Motion and Path Planning, Integrated Planning
and Learning, Planning under Uncertainty.

I. INTRODUCTION

PHYSICS simulators and deep-learning models allow
robots to reason about complex manipulation tasks such

as manipulation of deformable objects [1]–[3], liquid handling
[4], [5], and contact-rich manipulation [6], [7]. Kinodynamic
motion planning can find a sequence of controls that brings
such systems to a desired state. For example, consider the
tabletop scenario in Fig. 1: A compliant manipulator moves
a heavy object across the table; because of the payload and
the compliant control, the trajectory execution will deviate
from the planned path, possibly causing unexpected collisions.
Suppose we have a function that maps the robot state to an
estimate of the end-effector Cartesian error; we can avoid
unexpected collisions in execution by finding a trajectory that
minimizes such a function.

Sampling-based planners, such as rapidly exploring random
trees (RRT) [8] are widely used in robotics because of their
effectiveness in high-dimensional problems. Despite the fact
that asymptotically optimal algorithms [9], [10] ensure con-
vergence to the optimal solution for an infinite number of
iterations, their convergence rate is often slow for practical

Manuscript received: March, 24, 2023; Revised May, 22, 2023; Accepted
July, 29, 2023. This paper was recommended for publication by Editor Hanna
Kurniawati upon evaluation of the Associate Editor and Reviewers’ comments.

This work was supported in part by Toyota Research Institute, the Office
of Naval Research Grant N00014-21-1-2118, and NSF grants IIS-1750489,
IIS-2113401, and IIS-2220876.

The authors are with the Robotics Department, University of Michigan, Ann
Arbor, MI 48109, United States. {mfaroni; dmitryb}@umich.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1: A 7-degree-of-freedom manipulator carrying a weight
in a cluttered environment with uncertain tracking control.

applications. This issue holds especially if a steering function
(i.e., a function that connects two given states) is not available
or computationally expensive, which is often the case for
learned or simulated dynamics models [11].

Planning performance can be improved by biasing the
sampling distribution, e.g., to find a solution faster [12] or
to reduce the cost of the solution [13]. RRT-like planners
with biased sampling extend the tree by sampling a target
state from a non-uniform distribution. The biased distribution
can be learned offline [14]–[16] or adapted online based on
previous iterations [17], [18]. We approach the problem of
biased sampling from an online-learning perspective. That is,
we consider biased sampling as a sequential decision-making
process where each transition added to the tree is associated
with a reward (dependent on the cost function). Then, we
decide what transition to sample at the next iteration based on
the rewards estimated from previous timesteps. In particular,
this paper proposes an online learning approach to biasing
samples in a kinodynamic RRT.

We use Multi-Armed Bandit (MAB) algorithms to shape
the sampling probability distribution iteratively. The proposed
method is illustrated in Fig. 2. Our approach builds on the
asymptotically optimal framework AO-RRT [19], which runs
kinodynamic RRT multiple times. Every time a new solution
is found, transitions are clustered based on their reward and
spatial position, and a non-stationary bandit algorithm biases
samples based on the expected reward of each region.

The contributions of this paper are:
• An online learning approach to biasing samples in a

motion planner that formulates the bias problem as a non-
stationary Multi-Armed Bandit problem and trades off the

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on September 07,2023 at 19:45:01 UTC from IEEE Xplore. Restrictions apply.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

xstart

Xgoal

C1

C2
C3

C1

C2
C3

av
g

re
w

av
g

re
w

Fig. 2: Sketch of the proposed method. From left to right: (i) a randomized planner searches for a solution without bias; (ii)
each time it finds a new solution, transitions are clustered based on their reward and position; (iii) each cluster is associated
with an estimated reward; (iv) a non-stationary bandit algorithm biases sampling based on the regions’ expected reward.

exploration and exploitation of high-reward regions based
on the reward observed at previous timesteps.

• A kinodynamic planner that does not rely on a steering
function and uses the proposed MAB approach to find
better solutions faster.

• A demonstration of the proposed method on a 7-degree-
of-freedom manipulation problem (Fig. 1), showing that
the proposed approach improves the solution cost and,
in the scenario at hand, leads to a higher success rate
in execution. An empirical regret analysis of different
sampling strategies also suggests that a better solution
cost coincides with a lower cumulative regret.

II. RELATED WORK

In the last decade, sampling-based motion planning has
seen a focus shift from finding feasible solutions to finding
high-quality ones, especially after [9] provided conditions for
asymptotic optimality for planners such as RRT∗ and PRM∗.
These conditions include the availability of a steering function,
making these planners unsuitable for black-box dynamics
models. To overcome this issue, variants of RRT∗ have been
proposed by approximating the steering function [10], [20],
[21], but these approaches are only suitable for a limited
class of systems. Other works researched how to guarantee
asymptotic optimality without a steering function [11], [19].
In particular, [19] proposed an asymptotically optimal meta-
planning algorithm based on multiple runs of RRT in an
augmented state-cost space, whereas [11] combined biased
node expansion with pruning to refine an initial solution.
Attempts to improve the convergence rate of these methods
include using a heuristic to bias node expansion [22], [23],
pruning and re-usage of previous edges [24], and building a
PRM-like roadmap of edges offline [25].

In this work, we focus on improving the solution quality of
kinodynamic planners via adaptive sampling. Most sampling-
based planners use a uniform sampling distribution; however,
biasing the sampling has been a common strategy to improve
the solution cost [14]–[16], [26]–[29]. The sampling bias is
often tailored to the specific problem manually [30] or using
machine learning techniques [14]–[16]. Other works leverage
the knowledge gathered at the previous iterations to bias the
sampling at the current one. For example, they use local bias
to overcome narrow passages [31], switch between global and

local sampling to find a solution faster [32], or quickly refine
the current solution [17], [33]. The works above are designed
for holonomic motion planners. Informed sampling is another
biased sampling technique that uses cost heuristics to discard
regions with a null probability of improving previous solutions
[13]. How to derive or approximate such heuristics for non-
trivial cost functions is an open research question [33], [34].

Our approach leverages MAB algorithms to choose the
sampling bias online. MAB is an online learning technique
used for repeated decision-making under uncertainty. An MAB
problem is defined by a set of actions (arms) associated with
a belief of their reward function. At each iteration, an agent
chooses an arm and updates the reward estimates according
to its realized reward. MAB algorithms are typically charac-
terized by their regret, i.e., how much worse they perform
compared to a strategy that picks the best arm at each iteration.
Different approaches (and regret bounds) have been derived
based on different assumptions on the reward distribution.
Common algorithms are UCB-1 [35] and Thompson Sampling
[36] for constant reward distributions and their variants for
non-stationary rewards [37]. A comprehensive overview of the
topic can be found in [38], [39].

Recent works applied the MAB framework to motion plan-
ning, aiming to automatically balance the trade-off between
exploration and exploitation [40]–[42]. To the best of our
knowledge, MAB was applied to sampling-based planning
only to overcome narrow passages in bi-directional search
[31], [43]. They consider trees as bandits’ arms and decide
which tree to expand depending on the estimated probability
of a successful expansion. However, this technique is specific
to narrow passages and works only with multiple trees and the
availability of a steering function.

III. PROBLEM STATEMENT

Consider a dynamics model ẋ = f(x, u), x ∈ X , u ∈
U , where X and U are the state and the control spaces and
Xfree ⊆ X is the set of valid states. Solving a kinodynamic
motion planning problem means finding a control function γ :
[0, T] ∈ U that induces a trajectory σ : [0, T] → X such
that σ(0) = xstart and σ(T) ∈ Xgoal, and σ(t) ∈ Xfree ∀t ∈
[0, T]. In optimal motion planning, we also aim to minimize
a Lipschitz continuous cost function c(σ). In this work, we
restrict γ to be a staircase function defined by a sequence of

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on September 07,2023 at 19:45:01 UTC from IEEE Xplore. Restrictions apply.

FARONI et al.: MOTION PLANNING AS ONLINE LEARNING: A MULTI-ARMED BANDIT APPROACH 3

controls and control durations, {(ui, di)}, so that
∑

i di = T

and γ(t) = uj with j ∈ Z+|
∑j

i=0 di ≤ tj <
∑j+1

i=0 di.
Sampling-based planners such as kinodynamic RRT solve

this problem by randomly sampling a target state, xtrg, retriev-
ing the closest node on the tree, xp, and expanding this node
by forward propagation. We denote by τ = (xp, u, d, xc, xtrg)
the transition from xp to xc induced by u and d; note that τ
also stores the target xtrg from which τ originated.

The search strategy above is a sequential decision-making
process, where the planner has to choose which node to expand
next and in what direction. We consider this process from
an online-learning perspective, where each new transition is
associated with a reward r = ρ(τ), where 0 ≤ ρ ≤ 11.
The planner observes the reward of a transition after each
iteration and chooses the next transition to maximize the
total reward over K, possibly infinite, timesteps. MAB is a
framework to address this kind of problems. In the MAB
settings, an agent can choose among M actions (the arms)
for K, possibly infinite, rounds. The goal is to maximize the
cumulative reward, assuming each action yields a reward from
an unknown distribution and the agent can only observe the
reward of the selected action.

We frame the problem of choosing the next transition in
a kinodynamic RRT as an MAB problem where the arms
are sets of transitions. Selecting an arm then corresponds to
sampling a transition τ from a certain set and using it to extend
the tree. Our goal is to use MAB to improve the path cost
over iterative runs of kinodynamic RRT by trading off the
exploitation of high-reward regions (according to the reward
obtained at previous runs) and the exploration of transitions
with a highly uncertain reward (i.e., less-explored regions).

IV. METHOD

Our approach can be summarized as follows: (a) we itera-
tively re-plan with kinodynamic RRT, using MAB to select
regions for sampling transitions; (b) every time we find a
new solution trajectory, we identify high-reward regions by
clustering previous transitions; (c) our MAB method estimates
the non-stationary reward distribution as we plan during a
run of kinodynamic RRT. This section describes the planning
framework and methods for clustering and biased sampling.

A. Planning framework
We propose a kinodynamic planner based on the AO-

RRT meta-planning paradigm [19], which runs instances
of RRT sequentially and keeps the best solution so far.
Alg. 1 summarizes the proposed algorithm (the differences
with respect to AO-RRT are in red). At each iteration,
sampleAndPropagate (line 5) samples a transition. The
new transition is added to the tree (line 7). If the goal condition
is satisfied, the solution is retrieved by retracePath (lines
8–9) and RRT is reset (line 15). After K iterations, Alg. 1
returns the best solution so far, σbest, and its cost, cbest. We
embed our adaptive sampling strategy in AO-RRT in two steps:
(a) clustering and (b) bandit-based sampling.

1Note that ρ(τ) should be inversely proportional to the cost of τ ; however,
its definition may be problem-specific. We propose examples of the reward
function in Sec. V and VI.

Algorithm 1: MAB-RRT
Input: xstart, Xgoal, c(·), ρ(·), K > 0
Output: σbest, cbest

1 σbest ← ∅, cbest ← +∞, T ← ∅
2 G ← ∅, G.add(xstart)
3 initializeBandits(0, 0)
4 for k in 1, . . . ,K do
5 τ ← sampleAndPropagate(C,G)
6 updateBanditArms(ρ(τ))
7 G.add(τ)
8 if xnext ∈ Xgoal then
9 σ ← retracePath(τ)

10 if c(σ) < cbest then
11 σbest ← σ, cbest ← c(σ)

12 T ← T ∪ G
13 C,R ← clustering(T)
14 initializeBandits(R1, . . . ,RM)
15 G ← ∅, G.add(xstart)

16 return σbest, cbest

1) Clustering: At the end of each RRT run, we add all
the transitions to the set of all previous transitions, T , and
cluster them into a set of clusters C (lines 12 and 13) by using
HDBSCAN [44]. Then, we associate each cluster Ci with a
bandit’s arm and use each cluster’s average reward, Ri, to
initialize the bandit’s expected rewards (line 14).

2) Bandit-based sampling: An MAB algorithm in
sampleAndPropagate decides whether to sample the
next transition τ from a cluster, the uniform distribution, or
the goal set. Then, we extend the tree from τ.xp by forward
propagation. After the extension, the MAB updates the arms’
rewards according to the reward realized by the new transition
(line 6). Note that the reward function is non-stationary with
respect to the tree, as detailed in Sec.IV-C and IV-D, because
the transition reward depends on the current state of the tree.

The next sections detail the clustering and sampling phases.
Tuning guidelines are given in Appendix A.

B. Online learning of high-reward regions

We aim to find groups of transitions that constitute high-
reward regions. Because full state-space coverage is often in-
tractable, we do not try to create a partition of the entire space
of possible transitions, instead focusing on the transitions
obtained from previous iterations. Given a set of transitions
T , we cluster them according to their reward and spatial
distribution through the distance function:

d(τ1, τ2) = ||τ1.xp−τ2.xp||+||τ1.xc−τ2.xc||+λ||ρ(τ1)−ρ(τ2)||
(1)

where λ > 0, and ρ(τj) is the reward of τj . Although
any clustering techniques could be used, we use HDBSCAN
because of its effectiveness at identifying irregular clusters and
ease of tuning (see also Appendix A). Hence, we obtain a set
of clusters {C1, . . . , CN} and each cluster is associated with an
average reward Ri = 1/|Ci|

∑
τj∈Ci

ρ(τj). These clusters are
subsets of transitions, which will be used to bias sampling.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on September 07,2023 at 19:45:01 UTC from IEEE Xplore. Restrictions apply.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

Algorithm 2: sampleAndPropagate
Input: C, G
Output: (xp, u, d, xc, xtrg)

1 xp ← NULL, xtrg ← NULL
2 while xp = NULL or xtrg = NULL do
3 i←selectNextBanditArm ()
4 if i = 1 then
5 xtrg ← unif(X)
6 xp ← G.nearest(xtrg)

7 else if i = 2 then
8 xtrg ← unif(Xgoal)
9 xp ← G.nearest(xtrg)

10 else
11 xp, xtrg ← sampleCluster (Ci, G)
12 if xp = NULL or xtrg = NULL then
13 updateBanditArms(0)

14 xc, u, d← sampleTo(xp, xtrg, i)
15 return (xp, u, d, xc, xtrg)

C. Adaptive sampling of high-reward regions

We bias the probability of sampling cluster Ci according
to its expected reward. We model the problem of finding the
optimal sampling bias as an MAB problem, where each Ci is
an arm and Ri is its initial reward. We also consider uniform
and goal sampling as arms of the MAB problem. Therefore,
we define a set of M arms, {a1, . . . , aM}, with M = N + 2:

ai =

uniform sampling over X if i = 1

uniform sampling over Xgoal if i = 2

sampling Ci−2 if i ≥ 3

(2)

MAB selects where to sample the next transition from (line 3
of Alg. 2). If the MAB selects the first or second arm, τ.xtrg

is a random state or a goal state, respectively, while τ.xp is
the node of the tree closest to τ.xtrg (lines 4–9 of Alg. 2). For
all other arms, the algorithm tries to sample a transition from
the selected cluster (Alg. 3). Cluster sampling depends on the
search tree because:

i We want to avoid over-sampling regions that the current
tree has already explored; thus, we discard a candidate
τc if τc.xtrg is too close to the current tree;

ii We select τc only if its pre-conditions are met; i.e., if
τc.xp is close enough to the current search tree;

iii If it is impossible to sample a transition whose pre-
conditions are met, we try to extend the tree in such a
way as to meet the pre-conditions in future timesteps; i.e.,
we set τc.xp as the target of the new sample τ .

Alg. 3 implements these considerations. It randomly draws
candidate transitions, τc, from a cluster and perturbs them
until τc.xtrg is further than δ1 from G and τc.xp is closer
than δ2 to G (lines 6–11). If it is impossible to satisfy the
second condition (i.e., G is too far from the selected cluster),
we try to expand the tree toward that cluster by looking for a
transition whose parent is closer than δ3 > δ2 to G (line 12)
by selecting its parent as the new target. If we could not draw

Algorithm 3: sampleCluster
Input: Ci, G
Output: xp, xtrg

Parameters: K > 0, δ1, δ2 > 0, δ3 > δ2, w > 0
1 xp ← NULL, xtrg ← NULL
2 for k in 1, ...,K do
3 τc ← unif(Ci)
4 τc.xp = τc.xp + unif([−w,w])
5 τc.xtrg = τc.xtrg + unif([−w,w])
6 if ||τc.xtrg− G.nearest(τc.xtrg)|| < δ1 then
7 continue
8 if ||τc.xp− G.nearest(τc.xp)||<δ2 then
9 xp ← G.nearest(τc.xp)

10 xtrg ← τc.xtrg

11 break
12 if ||τc.xp− G.nearest(τc.xp)||<δ3 then
13 xp ← G.nearest(τc.xp)
14 xtrg ← τc.xp

15 return xp, xtrg

a valid transition from the selected cluster, we discourage its
future selection by assigning a reward equal to zero (line 13).
Finally, sampleTo (line 14 of Alg. 2) generates a transition
by propagating a random action for a random duration if i ≤ 2.
If i > 2, sampleTo tries to extend toward xtrg by sampling
Np random controls, u ∈ U , and durations, d ∈ [0, Tp], with
Tp > 0, and selecting the closest transition to xtrg.

D. Non-stationary rewards

We update the estimated reward distributions when we add
a transition to the tree (line 6 of Alg. 1) and if we could not
sample a valid candidate transition from the selected cluster
Ci (line 13 of Alg. 2). In the first case, we use the reward ρ(τ)
realized by the transition; in the second case, we use a reward
equal to zero to discourage sampling Ci if it does not satisfy
conditions i, ii, or iii from Sec. IV-C. In both cases, the reward
realized by a transition depends on the tree state. We model the
variability of the reward with respect to the tree state as a non-
stationary MAB problem, where the reward distribution can
vary over iterations. Standard MAB algorithms such as UCB-
1 [35] perform poorly under these conditions because they
adapt too slowly to the reward changes [37]. We therefore use
a non-stationary bandit algorithm, which accounts for shifts
in the reward distribution. Specifically, we use the Kalman
Filter-Based solution for Non-stationary Multi-Arm Bandit
(KF-MANB) algorithm [37]. KF-MANB models each arm’s
reward as a normal distribution. At each iteration, it selects the
next arm via Thompson Sampling [36]. When it observes the
reward, KF-MANB updates the estimated distributions using
a Kalman Filter update rule, which allows for tracking non-
stationary rewards over time.

E. Completeness and optimality

Note that not all variants of RRT are probabilistically
complete [45]. Assumed that (i) the dynamics system is

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on September 07,2023 at 19:45:01 UTC from IEEE Xplore. Restrictions apply.

FARONI et al.: MOTION PLANNING AS ONLINE LEARNING: A MULTI-ARMED BANDIT APPROACH 5

Lipschitz continuous, and (ii) there exists a robust solution
with clearance δ > 0, kinodynamic RRT is probabilistically
complete if it extends the tree by forward propagating random
controls u ∈ U for a random duration d ∈ [0, Tp], with Tp > 0
[24]. This is true for our method because sampleTo in Alg.
2 chooses random controls and durations when the first two
arms (i.e., uniform and goal sampling) are chosen by the MAB
algorithm. Note that these arms have a non-zero probability
of being selected at each iteration (like any other arm of the
MAB). Therefore, under the assumptions that f(x, u) from
Sec. III is Lipschitz continuous and there exists a solution
with clearance δ > 0, each run of RRT in MAB-RRT is
probabilistically complete.

As for asymptotic optimality, [19] proved that AO-RRT is
asymptotically optimal if the underlying RRT is well-behaved
in the augmented state-cost space. In a refined version of the
proof, [46] argues that well-behavedness holds if the dynamics
system and the cost function derivative are Lipschitz continu-
ous, and the optimal trajectory is robust with clearance δ > 0,
proving the asymptotic optimality of a single-tree version of
AO-RRT. Because Alg. 1 uses a multi-tree implementation
and runs RRT in the state space, we cannot derive asymptotic
optimality directly from [46]. Nonetheless, results in Sec. V
and VI suggest that the solution cost decreases consistently
with iterations. We therefore leave the formal analysis of
MAB-RRT asymptotic optimality as future work.

V. SIMULATION RESULTS

This section shows that our approach improves the solution
cost faster than AO-RRT and yields smaller cumulative regret
with 2D problems. We consider a single integrator ẋ = u,
X = [0, 1]2, U ∈ [0.5, 0.5]2, and the five scenarios in Fig.
3. We consider the reward function ρ(τ) = 0.5(ρx(τ.xp) +
ρx(τ.xc)) where ρx ∈ [0, 1] as in Fig. 3 and the cost function
c(σ) =

∑
τ∈σ(1− ρ(τ))||τ.xp − τ.xc||.

The scenarios serve as illustrative examples of problems
with different features. For example, in Scenario A, the opti-
mal solution should take a long path through a narrow passage,
while Scenarios C and D are examples of “trap” problems,
where the high-reward region leads to a dead end. Scenario E
combines these issues into a more complex problem.

A. Cost analysis

We compare our MAB-RRT-KFMANB with AO-RRT [19]
and other variants of MAB-RRT using UCB-1 [35] and
Thompson Sampling [36]. Fig. 4 shows the average cost
trends for 30 repetitions. Except for Scenario C, MAB-RRT-
KFMANB improves the solution significantly faster than AO-
RRT, suggesting that the online bias learning drives the
search to more promising regions. In Scenario C, MAB-RRT-
KFMANB has a slightly worse convergence rate because the
high-reward region (yellow in Fig. 3) leads to a dead end
(notice that the optimal path mainly lies in the low-reward
region). MAB-RRT-KFMANB outperforms AO-RRT even in
Scenario D, where the high-reward region leads to a dead end:
after an initial exploration of the high-reward, MAB-RRT spots
the medium-reward region and quickly improve the solution

Algorithm 4: Regret computation
Input: tree G, iteration k
Output: expected regret E[Rstrategy] for all strategies

1 strategies = {kfmanb,ucb1,TS,random,astar}
2 for strategy in strategies do
3 if strategy in {kfmanb,ucb1,TS} then
4 draw a batch of points for each arm of the

MAB and a batch of points using Alg. 2

5 if strategy = random then
6 draw a batch of points using the random

sampling strategy

7 if strategy = astar then
8 draw a batch of points using the astar

sampling strategy

9 For all batches of points, generate the
corresponding transitions with respect to G;

10 For all batches of transitions, compute the expected
reward (r̄rnd, r̄A∗ , r̄kfmanb,i, r̄ucb1,i, r̄TS,i ∀i=1...M)

11 Compute the best expected reward E[r∗(k)] as the
maximum of the average rewards of all batches;

12 for strategy in strategies do
13 regret E[Rstrategy] = E[r∗(k)]− r̄strategy;

cost. As expected, MAB-RRT-KFMANB outperforms the sta-
tionary variants. Overall, MAB-RRT-UCB1 and MAB-RRT-
TS perform comparably to AO-RRT, showing the importance
of the non-stationary MAB to account for the changing reward.

B. Regret analysis

A standard metric to evaluate MAB is regret, i.e., the
difference between the reward one would have obtained by
sampling the best action and the reward realized by the chosen
action at iteration k. We can define the expected regret of a
sampling strategy over a (possibly infinite) horizon K as

E[R(K)] =

K∑
k=1

E[r∗k]− E[rk] (3)

where r∗k and rk are the rewards of the best sampling strategy
and the chosen sampling strategy at iteration k, respectively.
We evaluate the regret of the following sampling strategies:

• kf-manb, ucb1, TS: our method as described in Alg.
2 using KF-MANB, UCB-1, and Thompson Sampling;

• random: uniform sampling over X , as in standard RRT;
• astar: it mimics the A∗ search strategy; the control

space is discretized as Ū = {−0.5,−0.25, 0, 0.25, 0.5}2
and, at each iteration, the node with the lower estimated
cost and with unexplored children is expanded. We use
h(x1, x2) = (1 − maxx ρx(x))||x1 − x2|| as admissible
heuristic, where maxx ρx(x) = 0.99 according to Fig. 3.

The regret computation is described in Alg. 4, which runs at
the beginning of each iteration k in Alg. 1. It samples a batch
of points from each arm of each sampling strategy (lines 2–9)
and computes the average reward of each one (line 10). The
best arm reward is the maximum average reward across all

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on September 07,2023 at 19:45:01 UTC from IEEE Xplore. Restrictions apply.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

batches (line 11) and is used to compute the regret of each
strategy (line 13). Note that the regret comparison requires the
sampling strategies to be evaluated at each iteration given the
same tree. For this reason, we grow the tree by using samples
from kfmanb to obtain the tree at the next timestep.

Results are in Fig. 5. Interestingly, astar yields very small
regret in four out of five scenarios; kfmanb yields signifi-
cantly lower regret than random, ucb1 and TS, suggesting
a correlation between the cost and the regret for all scenarios.

C. Discussion

The results confirm that the proposed sampling technique
reduces the cumulative regret compared to uniform sampling.
The regret reduction coincides with smaller trajectory costs
compared to AO-RRT. Interestingly, A∗ accumulates the low-
est regret because its heuristic search tends to expand nodes
with low cost-to-come, focusing more on high-reward regions.
Unfortunately, A∗ is inefficient for high-dimensional problems,
making the proposed method attractive from the perspective
of high-dimensional kinodynamic planning.

Computationally, MAB-RRT differs from AO-RRT in the
MAB-based sampling and the clustering. Given the same
number of control propagations, Np, in the sampleTo func-
tion, AO-RRT and MAB-RRT perform the same number of
collision checks and forward dynamics propagations, leading
to similar average iteration time (0.26 ms and 0.29 ms,
respectively, with Np = 100). Clustering time grows with the
number of transitions and the state-space dimensionality. With
an off-the-shelf Python implementation of HDBSCAN [47] we
observed an almost-linear clustering time between 2 and 80
ms for 100 and 5000 transitions. Because of clustering and
computational overheads, the average total planning time was
0.60 s for MAB-RRT and 0.43 s for AO-RRT. Note that such
difference is expected to become thinner for more complex
scenarios, where the iteration time is predominant compared
to the clustering time.

VI. EXPERIMENTS

We demonstrate our approach on a manipulation task with
uncertain dynamics and show that it finds trajectories with a
lower cost and a higher success rate in execution. We consider
a tabletop application where a Kuka IIWA 7 arm moves a
dumbbell (6 kg) across the table, as in Fig. 1. Note that
the payload (gripper + dumbbell) is around 9 kg, exceeding
the maximum payload of the robot. We implemented all the
planners with OMPL [48] in a ROS/Gazebo [49] simulation
environment. The robot is controlled in joint-space impedance
mode, which makes it compliant with the environment, yet
causes large tracking errors with large payloads. The state and
control spaces are joint position and velocity, respectively. We
devise a cost function proportional to the robot Cartesian-space
tracking error and dependent on the robot joint states:

c(σ) =
∑
τ∈σ

ê(τ)||τ.xp − τ.xc|| and ρ(τ) = 1− ê(τ) (4)

where ê ∈ [0, 1] is proportional to the end-effector Cartesian-
space error (see Appendix B for its derivation). By minimizing

c, the planner is expected to find trajectories that avoid large
tracking errors, thus reducing the risk of unexpected collisions.

We compare MAB-RRT (with KF-MANB) and AO-RRT
over three queries repeated 30 times. Fig. 6a and 6b show
the path cost and the execution success rate on the real robot
(i.e., the percentage of runs that reached the goal without col-
lisions). To compare different queries, costs were normalized
with respect to the best cost found for the corresponding query.
Fig. 6a shows that MAB-RRT’s cost after 1500 iterations is
significantly smaller than that of AO-RRT (-25%). Intuitively,
a good solution avoids configurations where the payload
causes a large deviation from the path. This translates into
a higher success rate when the trajectory is executed in the
real-world (+65%). As shown in Fig. 7 and in the attached
video, the paths found by MAB-RRT are more likely to avoid
obstacles by retracting the arm (top images). On the contrary,
the path computed by AO-RRT (bottom images) passes above
the obstacle while stretching the arm. In this configuration,
the high payload causes a large path deviation, resulting in an
unexpected collision. Fig. 6c also shows the cumulative regret
of kfmanb and random for a single experiment. The trend
qualitatively confirms the regret results discussed in Sec. V-B.

VII. CONCLUSIONS

We presented an online learning approach to biased sam-
pling for kinodynamic motion planning. The approach runs
RRT multiple times and uses MAB to choose between uniform
sampling and sampling regions identified during the previous
runs. We showed that the proposed approach finds better
solutions faster than an unbiased planner. The experiments also
suggested a correlation between low regret and cost in different
scenarios. Future works will investigate how to improve the
performance of the approach, e.g., via pruning and a single-
tree implementation as in [46] and [11].

APPENDIX

A. Parameter tuning

We tune the parameters of MAB-RRT planner almost inde-
pendently for each main module of the method.

1) Clustering: HDBSCAN requires the minimum number
Nmin of points in a cluster. Small values of Nmin favor the
identification of small clusters with sparse data (which is likely
the case for high-dimensional planning problems). Because
small values of Nmin allow for spotting small high-reward
clusters, we empirically set Nmin at random between 2 and 5 at
each clustering. Moreover, the reward weight λ in (1) is needed
to define the clustering distance function. Large values of λ
tend to favor clusters with similar rewards; small values favor
state-space proximity. We observed a low sensitivity to λ in all
our experiments; λ ∈ [1, 10] yielded satisfactory performance.

2) Bandit algorithm: KF-MANB requires initializing the
expected rewards µ̄i(0), their variance σ2

i (0), and the Kalman
filter’s noise factors σ2

obs, σ2
tr and η. σ2

obs controls how
much we believe the new observed reward (the larger σ2

obs,
the faster the Kalman Filter adapts the arm’s distribution
mean). σ2

tr increases the variance of non-selected arms to
favor their exploration. η is a tuning parameter to scale the

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on September 07,2023 at 19:45:01 UTC from IEEE Xplore. Restrictions apply.

FARONI et al.: MOTION PLANNING AS ONLINE LEARNING: A MULTI-ARMED BANDIT APPROACH 7

xstart

Xgoal

xstart

Xgoal

xstart

Xgoal

xstart

Xgoal
Xgoal

ρx = 0.99
ρx = 0.8
ρx = 0.2
ρx = 0.1

Scenario A Scenario B Scenario C Scenario D Scenario E

Fig. 3: Scenarios used for the numerical analysis in Sec. V. Dashed red lines are the optimal paths.

(a) Scenario A (b) Scenario B (c) Scenario C (d) Scenario D (e) Scenario E

Fig. 4: Cost trends for the scenarios of Fig. 3 (30 repetitions; solid lines: mean values; shadow: 95% confidence interval).

(a) Scenario A (b) Scenario B (c) Scenario C (d) Scenario D (e) Scenario E

Fig. 5: Cumulative regret for the scenarios of Fig. 3 (mean values of 30 repetitions).

covariance to match the reward scale. While performance on
individual experiments could be marginally improved by using
different values, we found that σi(0) = 0.2 ∀i ∈ 1, . . . ,M ,
σ2
obs = 10−4 and σ2

tr = 10−4 gave satisfactory results for all
of our planning tasks. Concerning the initial rewards, we set
µ̄i(0) = Ri ∀i ∈ 1, . . . ,M . Finally, we set η dynamically to
η(k + 1) = max(10−10, 0.9η(k) + 0.1|r(k + 1)|) as in [50].

3) Cluster sampling: Alg. 3 requires thresholds δ1, δ2, and
δ3. We relate their values to the dispersion of each cluster so
that, for all clusters, δ1 = δ2 = median({d1, ..., d|Ti|}), where
dj = minz ||z − τ || ∀τ ∈ Ti}, and δ3 = 2 δ2.

B. Cost function proportional to Cartesian error

Assuming we do not know the actual controller parameters,
we consider a simplified proportional joint-space controller
ξmot = Ĥ(q)Kpep + Ĉ(q, q̇)q̇+ ĝ(q), where ξmot ∈ R7 is the
torque required to the joint motors, Kp > 0, and Ĥ , Ĉ, ĝ are
the estimated inertia, Coriolis, and gravity matrices. Assuming
quasi-static conditions and perfect knowledge of robot inverse
dynamics, we can write Ĥ(q)Kpep − J(q)T fext = 0, where
fext ∈ R6 is the external wrench (owed to the payload), and
J is the robot Jacobian. By approximating ∆x ≈ J∆q for
small ∆q, the estimated maximum Cartesian-space position
error is exyz = K−1

p [I3 03×3] J(q)H(q)J(q)T fext. Because
Kp is a constant scalar, we can set Kp = 1 and scale exyz
between 0 and 1 to obtain êq = min (max(|exyz|)/emax, 1)
and ê(τ) = 0.5(êq(τ.xp) + êq(τ.xc)), where emax is an
empirical estimate of the maximum value of max(|exyz|).
In our experiments, we set emax = 70 by computing the

(a) Path cost (b) Execution success (c) Cumulative regret

Fig. 6: Experimental results of the manipulation scenario.

maximum value of max(|exyz|) from 105 random q. Ĥ and J
are from the URDF model provided by the robot manufacturer.

REFERENCES

[1] P. Mitrano, D. McConachie, and D. Berenson, “Learning where to
trust unreliable models in an unstructured world for deformable object
manipulation,” Science Robotics, vol. 6, no. 54, p. eabd8170, 2021.

[2] X. Lin, C. Qi, Y. Zhang, Z. Huang, K. Fragkiadaki, Y. Li, C. Gan, and
D. Held, “Planning with spatial-temporal abstraction from point clouds
for deformable object manipulation,” in CoRL, 2022.

[3] M. Lippi, P. Poklukar, M. C. Welle, A. Varava, H. Yin, A. Marino, and
D. Kragic, “Enabling visual action planning for object manipulation
through latent space roadmap,” IEEE T-RO, vol. 39, pp. 57–75, 2023.

[4] P. Mitrano, A. LaGrassa, O. Kroemer, and D. Berenson, “Focused
adaptation of dynamics models for deformable object manipulation,”
Robotics: Science and Systems, 2022.

[5] J. Liu, Y. Chen, Z. Dong, S. Wang, S. Calinon, M. Li, and F. Chen,
“Robot cooking with stir-fry: Bimanual non-prehensile manipulation of
semi-fluid objects,” IEEE RAL, vol. 7, no. 2, pp. 5159–5166, 2022.

[6] J. Liang, X. Cheng, and O. Kroemer, “Learning preconditions of hybrid
force-velocity controllers for contact-rich manipulation,” 2022.

[7] M.-T. Khoury, A. Orthey, and M. Toussaint, “Efficient sampling of
transition constraints for motion planning under sliding contacts,” in
IEEE CASE, 2021, pp. 1547–1553.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on September 07,2023 at 19:45:01 UTC from IEEE Xplore. Restrictions apply.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

Fig. 7: Examples of executions of two trajectories planned with MAB-RRT (top) and AO-RRT (bottom).

[8] S. M. LaValle and J. James J. Kuffner, “Randomized kinodynamic
planning,” Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.

[9] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011.

[10] D. J. Webb and J. Van Den Berg, “Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics,” in ICRA,
2013, pp. 5054–5061.

[11] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-
based kinodynamic planning,” IJRR, vol. 35, no. 5, pp. 528–564, 2016.

[12] C. Urmson and R. Simmons, “Approaches for heuristically biasing RRT
growth,” in IROS, vol. 2, 2003, pp. 1178–1183.

[13] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Informed sampling
for asymptotically optimal path planning,” IEEE T-RO, vol. 34, 2018.

[14] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in ICRA, 2018, pp. 7087–7094.

[15] C. Chamzas, Z. Kingston, C. Quintero-Peña, A. Shrivastava, and L. E.
Kavraki, “Learning sampling distributions using local 3d workspace
decompositions for motion planning in high dimensions,” in ICRA, 2021.

[16] R. Cheng, K. Shankar, and J. W. Burdick, “Learning an optimal sampling
distribution for efficient motion planning,” in IROS, 2020.

[17] S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and
S. Scherer, “Regionally accelerated batch informed trees (rabit): A
framework to integrate local information into optimal path planning,”
in ICRA, 2016.

[18] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch Informed Trees
(BIT*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs,” in ICRA, 2015.

[19] K. Hauser and Y. Zhou, “Asymptotically optimal planning by feasible
kinodynamic planning in a state–cost space,” IEEE T-RO, vol. 32, 2016.

[20] D. S. Yershov and E. Frazzoli, “Asymptotically optimal feedback plan-
ning using a numerical hamilton-jacobi-bellman solver and an adaptive
mesh refinement,” Int. J. Robot. Res., vol. 35, no. 5, pp. 565–584, 2016.

[21] J.-S. Ha, J.-J. Lee, and H.-L. Choi, “A successive approximation-based
approach for optimal kinodynamic motion planning with nonlinear
differential constraints,” in IEEE CDC, 2013, pp. 3623–3628.

[22] Z. Littlefield and K. E. Bekris, “Efficient and asymptotically optimal
kinodynamic motion planning via dominance-informed regions,” in
IROS, 2018, pp. 1–9.

[23] M. G. Westbrook and W. Ruml, “Anytime kinodynamic motion planning
using region-guided search,” in IROS, 2020, pp. 6789–6796.

[24] M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin,
“Probabilistic completeness of rrt for geometric and kinodynamic plan-
ning with forward propagation,” IEEE RAL, vol. 4, pp. 277–283, 2019.

[25] R. Shome and L. E. Kavraki, “Asymptotically optimal kinodynamic
planning using bundles of edges,” in ICRA, 2021, pp. 9988–9994.

[26] J. D. Gammell and M. P. Strub, “Asymptotically optimal sampling-based
motion planning methods,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, pp. 295–318, 2021.

[27] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“Obprm: An obstacle-based prm for 3d workspaces,” in Int. Workshop
on Algorithmic Foundations of Robotics, 1998, pp. 155–168.

[28] A. Attali, S. Ashur, I. B. Love, C. McBeth, J. Motes, D. Uwacu,
M. Morales, and N. M. Amato, “Evaluating guiding spaces for motion
planning,” 2022.

[29] S. Dalibard and J.-P. Laumond, “Linear dimensionality reduction in
random motion planning,” IJRR, vol. 30, pp. 1461–1476, 2011.

[30] F. U. González, J. Rosell, and R. Suárez, “Task space vector field guiding
for motion planning,” in IEEE ETFA, 2022, pp. 1–7.

[31] T. Lai and F. Ramos, “Adaptively exploits local structure with gener-
alised multi-trees motion planning,” IEEE RAL, vol. 7, no. 2, pp. 1111–
1117, 2021.

[32] T. Lai, P. Morere, F. Ramos, and G. Francis, “Bayesian local sampling-
based planning,” IEEE RAL, vol. 5, no. 2, pp. 1954–1961, 2020.

[33] M. P. Strub and J. D. Gammell, “Advanced BIT* (ABIT*)- sampling-
based planning with advanced graph-search techniques,” in ICRA, 2020.

[34] ——, “Adaptively informed trees (AIT*): Fast asymptotically optimal
path planning through adaptive heuristics,” in ICRA, 2020.

[35] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, pp. 235–256, 2002.

[36] S. Agrawal and N. Goyal, “Analysis of thompson sampling for the multi-
armed bandit problem,” in Conf. on learning theory, 2012, pp. 39–1.

[37] O.-C. Granmo and S. Berg, “Solving non-stationary bandit problems
by random sampling from sibling kalman filters,” in Trends in Applied
Intelligent Systems, 2010, pp. 199–208.

[38] A. Slivkins et al., “Introduction to multi-armed bandits,” Foundations
and Trends® in Machine Learning, vol. 12, no. 1-2, pp. 1–286, 2019.

[39] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Uni-
versity Press, 2020.

[40] M. Phillips, V. Narayanan, S. Aine, and M. Likhachev, “Efficient search
with an ensemble of heuristics,” in Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[41] J. Lee, D. Yi, and S. S. Srinivasa, “Sampling of pareto-optimal trajec-
tories using progressive objective evaluation in multi-objective motion
planning,” in IROS, 2018, pp. 1–9.

[42] M. C. Koval, J. E. King, N. S. Pollard, and S. Srinivasa, “Robust
trajectory selection for rearrangement planning as a multi-armed bandit
problem,” in IROS, 2015, pp. 2678–2685.

[43] W. Wang, L. Zuo, and X. Xu, “A learning-based multi-rrt approach
for robot path planning in narrow passages,” Journal of Intelligent &
Robotic Systems, vol. 90, pp. 81–100, 2018.

[44] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based
clustering based on hierarchical density estimates,” in Advances in
Knowledge Discovery and Data Mining, 2013, pp. 160–172.

[45] T. Kunz and M. Stilman, “Kinodynamic rrts with fixed time step and
best-input extension are not probabilistically complete,” in WAFR, 2015,
pp. 233–244.

[46] M. Kleinbort, E. Granados, K. Solovey, R. Bonalli, K. E. Bekris, and
D. Halperin, “Refined analysis of asymptotically-optimal kinodynamic
planning in the state-cost space,” in IEEE ICRA, 2020, pp. 6344–6350.

[47] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density
based clustering,” J. Open Source Softw., vol. 2, no. 11, 2017.

[48] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robot. Autom. Mag., vol. 19, no. 4, pp. 72–82, 2012.

[49] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IROS, 2004.

[50] D. Mcconachie and D. Berenson, “Estimating model utility for de-
formable object manipulation using multiarmed bandit methods,” IEEE
Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 967–979, 2018.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on September 07,2023 at 19:45:01 UTC from IEEE Xplore. Restrictions apply.

