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the initial SDF is very poor, and sampled control sequences result
in trajectories passing directly through the obstacle. As the task
progresses, the iterative projection results in an SDF that resem-
bles the training environment more. The environment embedding
encodes obstacles that result in a trajectory that traverses the nar-
row passage. Notice however, that regions that are not relevant for
this planning task, such as the lower wall, do not need to accurately
represent the environment. . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 We evaluate our approach on control of a kinematic 7DoF manip-
ulator on four environments in simulation (a-d). Tasks consist of
a) Navigating around spherical obstacles b) Reaching into a shelf c)
Going from one side of a wall to another d) Reaching inside a fridge
e) Real world setup for the reaching into a fridge task. The voxel
grid in d) was generated from the fridge in e) using multiple views
of a Kinect v2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 a,b) iCEM baseline performing a task where the goal is to navigate to
to the inside of the fridge. The baseline fails to successfully navigate
to the goal. c,d) One of our proposed methods, FlowiCEMProject,
successfully navigating to the inside of the fridge. . . . . . . . . . . 60

3.9 Box plot of the costs for the double integrator experiments. We
evaluate on 100 trials for the training environment consisting of ran-
domly generated disc obstacles. In addition we evaluate for 100 trials
with three different cost parameterizations in three different environ-
ments consisting of 4 walls with narrow passages between them. . . 61

3.10 Box plot of the costs for the 12DoF quadrotor experiments. We
evaluate on 50 trials for the training environment consisting of ran-
domly generated disc obstacles. In addition, we evaluate 50 trials
with three different cost parameterizations in three different envi-
ronments consisting of 4 walls with narrow passages between them. 62

xi



4.1 We use CSVTO to turn a wrench in the real world with online replan-
ning; b) A human disturbs the robot, changing the grasp position of
the wrench; c) The robot readjusts the grasp position; d) The robot
achieves the desired wrench angle. . . . . . . . . . . . . . . . . . . . 71

4.2 CSVTO visualized for a 2D problem. The posterior is a mixture of
3 Gaussians, with the log posterior peaks visualized. There is an
equality constraint that the particles must lie on the circle. There is
also an inequality constraint that the particles must lie outside the
shaded region. a) The initial particles are randomly generated and
are not necessarily feasible. b) Due to the annealing discussed in sec-
tion 4.7.1.4, early on in the optimization the particles are constraint-
satisfying and diverse. c) The particles move towards the relative
peaks of the objective, however, the circled particle has become stuck
in a poor local minimum due to the constraints, where the gradient
of the log posterior is directed towards an infeasible peak. Since
the particle is isolated it is not sufficiently affected by the repulsive
gradient term that would help escape the local minimum. d) The
re-sampling step from section 4.7.1.8 re-samples the particles, ap-
plying noise in the tangent space of the constraints. This eliminates
the particle at the poor local minimum. e) The set of particles con-
verges around the local minimum of the objectives while satisfying
the constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Experimental setup for the quadrotor task. The quadrotor must
travel to the goal location, avoiding the obstacle in red while re-
maining on the blue manifold. The fading yellow shows the path
of the obstacle from previous timesteps. a-d) CSVTO maintains a
set of trajectories (dashed), with the selected trajectory shown as
a solid curve. CSVTO can keep a diverse set of trajectories and
switches between them to avoid the moving obstacle. e-f) IPOPT
generates an initial trajectory that makes good progress toward the
goal and obeys the manifold constraint. However, even after the first
timestep the obstacle has moved to render this trajectory infeasible.
As the obstacle moves further IPOPT is unable to find an alternative
trajectory and ends in a collision. . . . . . . . . . . . . . . . . . . . 99

4.4 Experimental set-up for the quadrotor with static obstacles task.
The quadrotor must travel to the goal location, avoiding the obsta-
cles in red while remaining on the blue manifold. . . . . . . . . . . . 102

xii



4.5 Comparison between CSVTO and IPOPT with multiple initializa-
tions on the quadrotor task with static obstacles. We compare
CSVTO with 8 trajectory samples vs. 8 runs of IPOPT, both from
the same initializations and record the minimum cost achieved from
the 8 trajectories over 200 iterations of both. We run 10 trials for
each method. The shaded regions show the range of the minimum
cost achieved over the 10 trials. We see that from the same initial-
izations, CSVTO finds a solution with a lower cost. . . . . . . . . . 103

4.6 Results for quadrotor experiments. The top row shows the success
rate as we increase the size of the goal region. The bottom row shows
the average surface constraint violation as a function of time. Left)
No obstacle. Middle) Static obstacles. Right) Dynamic obstacle. . . 104

4.7 Snapshots from CSVTO used for the robot manipulator on a surface
experiment. The robot must move the end-effector to a goal location
while remaining on the surface of the table and avoiding the obsta-
cles. CSVTO generates trajectories that explore different routes to
the goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.8 Results for robot manipulator on surface experiments Left column
shows success rate as we increase the size of the goal region. Right
column shows average constraint violation as a function of time for
both the height constraint and the orientation constraint. . . . . . . 107

4.9 The robot manipulator turning a wrench experimental set-up. The
goal is to turn the wrench by 90 degrees. End-effector planned path
at the first time-step visualized for three different initial trajectories
generated by CSVTO (Top) and IPOPT (Bottom). CSVTO’s end-
effector path traces an arc around the wrench center to turn the
wrench, while IPOPT paths are often poor, containing very large
steps and lacking smoothness . . . . . . . . . . . . . . . . . . . . . . 114

4.10 Results for the robot manipulator using the wrench. Left column
shows the success rate as we increase the size of the goal region. The
right column shows the average constraint violation as a function of
time time, where we compute the constraint violation at a given time
via the maximum violation among the equality constraints. . . . . 115

5.1 The average executed valve angle for the allegro valve turning task
over 10 initializations. The shaded region shows the range of exe-
cuted valve angles. The goal valve angle is shown in dotted black.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xiii



5.2 Snapshots of execution of trajectory planned by CSVTO, turning
the valve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 The average executed screwdriver angles for the allegro valve turning
task over 10 initializations. The shaded region shows the range of
executed valve angles. The goal valve angles are shown in dotted
black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Snapshots of execution of trajectory planned by CSVTO, turning
the precision screwdriver. . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1 Example trajectories for the 7DoF manipulator on a table experi-
ment. At the first timestep, the initial trajectories from CSVTO
are quite poor, and CSVTO becomes stuck unable to pass through
the narrow passage between obstacles. CSVTO with the single-
constraint diffusion models both generate initial trajectories towards
the goal but fail to make progress past the initial passage. CSVTO
with the composed diffusion generates trajectories that immediately
pass through the narrow passage and satisfy the table constraint,
and successfully traverses the passage. . . . . . . . . . . . . . . . . . 128

6.2 Experimental setup for the training and evaluation of the quadro-
tor tasks. The quadrotor must travel to the goal location. a) The
quadrotor is constrained to travel along a non-linear surface shown
in purple. b) The quadrotor must avoid the infeasible regions in
the x-y plane shown in red. c) The quadrotor must satisfy both the
previous constraints, avoiding infeasible regions while staying on the
non-linear surface. The combination of these two constraints is not
seen during training. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Results for quadrotor experiments. The left row shows the success
rate as we increase the size of the goal region. The right shows the
average constraint violation as a function of time . . . . . . . . . . . 136

6.4 Results for manipulator table experiments. The left row shows the
success rate as we increase the size of the goal region. The right
shows the average constraint violation as a function of time . . . . . 137

A.1 The architecture for both the prior flow and the control sequence
posterior flow, based on [33] and [168], showing a mapping from
arbitrary Y to Y’. Each flow consists of L chained transformation
blocks. A transformation block consists of a coupling layer and a
random permutation. There is a final conditional coupling layer
on the output. For the vae prior, there is no context thus we use
standard coupling layers and not conditional coupling layers. . . . 144

xiv



LIST OF TABLES

Table

2.1 Results over 5 random seeds for real robot experiment . . . . . . . . 24
3.1 Comparison of methods for the Planar Navigation Tasks. We eval-

uate on both in-distribution environments and OOD environments
across different cost function parameters ρ. . . . . . . . . . . . . . 56

3.2 Comparison of methods for the 12DoF quadrotor task. We evaluate
on both in-distribution environments and OOD environments across
different cost function parameters ρ. . . . . . . . . . . . . . . . . . 56

3.3 Computational times . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Comparison of methods for the 3D 12DoF quadrotor navigation task

with two environments generated from real-world data. The rooms
environment is shown in figure 3.5 (b) and the stairway environment
is shown in figure 3.5 (a). We evaluate on 100 randomly sampled
starts and goals in each environment. . . . . . . . . . . . . . . . . 58

3.5 Results for attempting task 100 times for each environment in sim-
ulation. The environments are shown in Figure 3.7. The fridge en-
vironment is generated from real-world data from the fridge shown
in Figure 3.7 (e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Hyperparameter values for the three experiments . . . . . . . . . . . 111
4.2 Mean and standard deviation of computation times for CSVTO and

all baseline methods for the 12DoF quadrotor experiments. tw and
to are the average times taken to generate the trajectories for the
warm-up phase and online phase, respectively . . . . . . . . . . . . 111

4.3 Average computation times for CSVTO and all baseline methods for
the 7DoF robot manipulator experiments. tw and to are the average
times taken to generate the trajectories for the warm-up phase and
online phase, respectively . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1 Training and architecture hyperparameters . . . . . . . . . . . . . . 145

xv



A.2 Controller agnostic parameters used for the evaluations . . . . . . . 147
A.3 Controller hyperparameters used for the experiments for both our

proposed method and the baselines . . . . . . . . . . . . . . . . . . 147

xvi



LIST OF APPENDICES

Appendix

A. Appendix for Chapter 3: Learning a Generalizable Trajectory Sam-
pling Distribution for Model Predictive Control . . . . . . . . . . . . . 143

B. Appendix for Chapter 4: Constrained Stein Variational Trajectory Op-
timization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xvii



ABSTRACT

A central challenge for developing general-purpose robot assistants is the develop-

ment of algorithms for robot manipulation that can perform a wide range of tasks

across a diverse set of environments. In this thesis, I develop planning and trajectory

optimization methods that can adapt to new and unforeseen systems. The key to

these methods is the ability of robots to learn from experience and reason about

related uncertainty. Using modern machine learning and approximate probabilistic

inference techniques, the work I present in this thesis improves the ability of planning

methods to do so.

Probabilistic inference is useful in two ways. First, by using a probabilistic fram-

ing, probabilities can be used as a way of expressing confidence in our current models.

I develop a method that learns to predict the uncertainty of a given dynamics model

with a small amount of data collected online and avoids areas where the model is

uncertain. I also propose an approach that learns a generative model of control

sequences to complete a given task. I demonstrate that we can detect and adapt

this generative model to situations where the environment differs from the training

environments.

Second, I incorporate probabilistic inference into the proposed methods by view-

ing planning itself as an inference problem. By framing planning as inference, we

construct probability distributions over trajectories. This framework allows me to

develop a method that views constrained trajectory optimization as inference, gen-

erating diverse sets of constraint-satisfying trajectories for completing manipulation

tasks. This allows improved adaptation to online disturbances, since at any given

time, there is a set of trajectories to select from. I demonstrate the effectiveness

xviii



of this method on several different tasks, including a 7DoF manipulator turning a

wrench and a 16DoF multi-fingered hand turning a precision screwdriver.

The methods I present in this thesis contribute to the development of adaptable

algorithms for robotic manipulation for the next generation of general-purpose robot

assistants.
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CHAPTER I

Introduction

To realize the transformative potential of robotics we need to develop autonomous

systems with broad capabilities that can be reliably deployed across diverse domains

such as manufacturing, logistics, healthcare, and people’s homes. Fundamental to de-

veloping general robot agents is manipulation - how robots interact with and change

the physical world. A central challenge is developing algorithms for robot manipu-

lation that can perform a wide range of manipulation tasks across a diverse set of

real-world environments.

Motion planning and trajectory optimization have been widely used to construct

plans for completing non-trivial long-horizon manipulation tasks. These methods are

popular because they provide general algorithmic frameworks that can be used to

describe and complete a wide variety of different tasks, such as pick-and-place [107],

opening doors [14] and rope manipulation [103].

While planning offers a very general way of framing different manipulation tasks,

there are many practical challenges in applying these techniques broadly. Planning

methods typically require knowledge of the environment, current system configura-

tion, and system dynamics. These requirements may not be met in practice due

to imperfect perception, noise, and modeling errors. Here, the generality of the

planning framework belies practical difficulties. Although planning can solve an ex-

tremely broad range of tasks in principle, building perception systems and models

that encompass all of these tasks becomes extremely difficult. My position in this
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thesis is that even if perception and system identification techniques continue to im-

prove, a deployed robot will always find itself in situations for which it has not been

adequately prepared. This is due to the sheer variety of tasks and environments in

which we expect robots to operate. In this thesis, I propose planning methods that

have the ability to adapt to new and unforeseen environments and systems.

A common and effective strategy for improving the adaptability of planners is to

re-plan trajectories during execution. Global sample-based motion planning methods

[79, 69, 71, 14, 105, 58, 120] are very effective at generating feasible paths. However,

they are typically too computationally intensive to perform online re-planning. While

existing local trajectory optimization methods [101, 90, 17, 101, 56, 45, 171] are often

much faster and aim to find a single locally-optimal trajectory, they may fail to find

feasible solutions based on the initialization. This is particularly problematic when

re-solving the optimization problem online under limited computation time when

disturbances can lead to the previous solution becoming a poor initialization for

the current optimization problem. There have been many methods that incorporate

learning to accelerate planning and trajectory optimization [66, 178, 57, 128, 89, 81,

21], but none of these methods include strategies for when the planner is out-of-

distribution of the learned components.

The methods presented in this thesis use modern machine learning and approx-

imate probabilistic inference techniques to improve the ability of planning methods

to adapt to new and unforeseen environments and systems. Given that the goal is

to build adaptable planning systems, it is natural to leverage techniques that learn

from experience. Probabilistic inference is useful in two ways. Firstly, by using a

probabilistic framing, probabilities can be used to express confidence in the current

models. This idea is used in both Chapter II, where the method avoids areas where

there is low confidence in the models, and in Chapter III where we use it to deter-

mine if an environment is outside of the training distribution. The second way I will

incorporate probabilistic inference into the proposed methods is by viewing planning

itself as an inference problem. Framing planning as inference results in constructing

probability distributions over trajectories. By computing probability distributions

over trajectories, there is a set of trajectories to select from in the face of disturbances
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or unseen situations. I use the ideas of framing planning as inference in Chapters

III, IV, VI and V.

I will now give a summary of the structure of this thesis. Each chapter begins with

an introduction to the relevant related work. In Chapter II I introduce a method for

planning for manipulation with a highly miss-specified model from image observa-

tions, which relies on learning a Gaussian Process to estimate the model uncertainty.

In Chapter III I present a method that learns a generative model of control sequences

to complete a given task. I also present a method for adapting this generative model

to Out-of-Distribution (OOD) environments. In Chapter IV I present a method that

views constrained trajectory optimization as inference and generates diverse sets of

constraint-satisfying trajectories for completing manipulation tasks. In Chapter V,

I demonstrate the application of this method to challenging dexterous manipulation

tasks with a multi-fingered hand. Finally, in Chapter VI, I propose learning a gener-

ative model of constraint-satisfying trajectories for manipulation planning which is

used to initialize the trajectory optimization method introduced in Chapter IV.

This thesis makes the following contributions:

• A method that uses a simple miss-specified model and learns where this model

is accurate for image-based control of a system with complex dynamics

• A method that learns a generative model of control sequences, and can adapt

to OOD environments

• A method that generates diverse constraint-satisfying trajectories for manip-

ulation, and the application of this method to challenging, highly constrained

dexterous manipulation tasks

• A method for learning a generative model of constraint-satisfying trajectories,

from which trajectories can be sampled and used to initialize a constrained

trajectory optimization algorithm
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CHAPTER II

Data-efficient Learning for Controlling Complex

Systems with Simple Models

When manipulating a novel object with complex dynamics, a state representation

is not always available, for example for deformable objects. Learning both a represen-

tation and dynamics from observations requires large amounts of data. We propose

Learned Visual Similarity Predictive Control (LVSPC), a novel method for data-

efficient learning to control systems with complex dynamics and high-dimensional

state spaces from images. LVSPC leverages a given simple model approximation

from which image observations can be generated. We use these images to train a

perception model that estimates the simple model state from observations of the

complex system online. We then use data from the complex system to fit the pa-

rameters of the simple model and learn where this model is inaccurate, also online.

Finally, we use Model Predictive Control and bias the controller away from regions

where the simple model is inaccurate and thus where the controller is less reliable.

We evaluate LVSPC on two tasks; manipulating a tethered mass and a rope. We

find that our method performs comparably to state-of-the-art reinforcement learn-

ing methods with an order of magnitude less data. LVSPC also completes the rope

manipulation task on a real robot with 80% success rate after only 10 trials, despite

using a perception system trained only on images from simulation. 1

1The work in this chapter was published in [122].
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2.1 Introduction

Figure 2.1: (a-c): LVSPC controlling a tethered mass to a desired position (blue)
from images by treating it as a cart-pole; (d-g): LVSPC brings a rope to a target
location in a narrow passage between two obstacles while avoiding protrusions by
treating the rope as a rigid object. The robot starts with the rope slack but pulls it
taut to keep the approximation more accurate, allowing it to complete the task.

While recent machine learning methods have been effective for many manipula-

tion tasks, they rely on access to large datasets of the system being manipulated

[170, 160, 1]. Yet in many scenarios we do not have time to gather extensive training

data with an object before performing a task. Sim-to-real transfer has been used

to fine-tune parameters on limited real-world data when the real object is similar

to those used in simulation [59, 22], but these methods struggle if the objects are

significantly different. We would like to use prior knowledge about the object to

reduce the data required for learning, but the question of how to effectively use prior

knowledge when encountering a novel object remains open.

This chapter addresses how to leverage dynamics models of simple systems when

learning to control much more complex, but related, systems online. While it is

possible to learn dynamics using only online data (e.g. [49]), we wish to use our

knowledge of a simple model to make the learning much more data-efficient, and

thus practical for real-world application. For example, consider a tethered mass

being swung by a gripper (Figure 2.1). The dynamics of the system are complex and

require a great deal of data to learn. However, if we treat the system as a cart with a

rigid pendulum, we can predict the dynamics fairly accurately for some subset of the

state-action space. We can exploit this subset to perform tasks such as bringing the

mass to a target, even without a globally-accurate dynamics model. Simple models

are often used in this way, for example in deformable object manipulation [104, 103]
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and control for humanoids [127].

To use knowledge of the dynamics of the simple model to control the more com-

plex true system, we must know which states of the complex system correspond to

which states of the simple system. What makes this problem especially difficult is

that, while we can design a useful state representation for the simple system offline,

we do not know what state representation to use for the complex system, so we

cannot explicitly define a correspondence between states.

Our key insight for overcoming this problem is that the simple system (and its

state representation) is a good approximation of the complex system when it gives

rise to similar image observations to the complex system. By using a metric for

observation similarity that reasons about uncertainty we can build a controller for

the complex system and also learn where our approximation is inaccurate (to avoid

visiting those parts of the state space). By utilizing domain randomization during

training, we enable a single simple system state to elicit a wide variety of image

observations; i.e. shapes, colors, and obstacles can vary while still producing an

image we consider to be visually-similar. We use online system identification to

estimate the parameters of the simple model, however, deciding which class of simple

model to use for a given task is not within the scope of this chapter. Here we made

this decision manually but seek to automate selecting the class of simple model in

future work.

This chapter makes the following contributions: 1) Learned Visual Similarity

Predictive Control (LVSPC ), a novel framework for learning how to perform ma-

nipulation tasks with a complex system given only a simple model and images from

a small number of trials online; 2) Evaluation of LVSPC on manipulating a teth-

ered mass (using a cart-pole as a simple model) and a rope (using a rigid body as

a simple model) (See Fig. 2.1) in simulation, showing large improvements in data-

efficiency over baselines (PlaNet [49] and CURL [86]). LVSPC also completes the

rope manipulation task on a real robot with 80% success rate after only 10 trials.

LVSPC consists of two phases: 1) Offline, we train an ensemble Convolutional

Neural Network (CNN) perception system on image observations of the simple sys-

tem, outputting an estimate of the simple system’s state. 2) Online, given image
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observations of the complex system, we do system identification to estimate parame-

ters of the simple system dynamics and learn a Gaussian Process (GP) that predicts

where the simple model is accurate. We use the simple model and the GP to track

the object via a Gaussian Process Unscented Kalman Filter (GPUKF) [76] and per-

form control via Model Predictive Path Integral Control (MPPI) [167], biasing the

system away from inaccurate transitions.

2.2 Related Work

2.2.1 Dynamics from Images

Learning-based approaches using dynamics models for control with images obser-

vations have included learning dynamics models directly in image space [170, 1, 41].

Dynamics in image space are highly complex, and these methods require large

amounts of data. Other methods learn dynamics in a lower-dimensional latent space

[11, 160, 49, 50]. None of these methods incorporate prior knowledge. SE3-PoseNets

[19] learn dynamics in pose-space from point cloud data. [174] use the positions of a

set of ordered points as the representation of a rope and pre-trains a state estimator

on ground truth in a simulator. Unlike LVSPC, neither of these methods use a given

model approximation nor do they reason about model uncertainty.

2.2.2 Using simplified models

Simplified models have been widely explored in the legged robotics literature, in

particular using spring-mass damper models [37, 127]. Simplified models have been

used to generate trajectories for a lower-level controller to track with guarantees [78].

However, these guarantees require access to a high-fidelity model. Other work [102]

has used a set of simple models and a selection mechanism to choose between them.

[103] use a given simplified dynamics model and learns a classifier on whether a given

transition is reliable. We use GP uncertainty to model transition reliability rather

than a classifier. We also use image observations and perform tracking concurrently.
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2.2.3 Incorporating model uncertainty

Previous work has shown that reasoning about model uncertainty can improve

data efficiency [31, 29]. PILCO [31] uses a Gaussian Process dynamics model for

model uncertainty and achieves high data efficiency on learning control policies.

Gaussian Processes dynamics have also been used for the purpose of both avoiding

uncertainty [36], or explicitly seeking it [13]. PETS [29] uses a probabilistic ensemble

of neural networks to model uncertainty and is able to outperform PILCO on control

tasks with high state dimension. These methods have only been demonstrated on

tasks for which state is available, and not on image domains where parameterizing

uncertainty can be difficult. LVSPC aims to combine modeling of uncertainty in

the dynamics with strong priors to maintain high data efficiency when learning from

images.

2.3 Problem Statement

We consider a nonlinear discrete-time system with state x ∈ X and controls

u ∈ U . The system has unknown true dynamics given by xt+1 = f(xt, ut). We

assume X may be arbitrarily high-dimensional and unobserved. Instead we may

only have access to observations o ∈ O via an observation function at the current

state ot = g(xt).

We define a trial as a time-limited attempt to find a sequence of controls {u1, ..., uT}
such that the final state xT ∈ Xgoal where Xgoal is the trial’s goal region. We assume

that we can fully observe when the system has reached the goal i.e. o ∈ Ogoal ⇐⇒
x ∈ Xgoal. The goal in observation space is defined as Ogoal = {g(x) : x ∈ Xgoal}. We

assume that data collection on the true system is expensive. The unknown dynam-

ics and high-dimensional state make this problem intractable to solve with a small

dataset. Instead we seek to model the system in a latent state of lower dimensional-

ity z ∈ Z with simple dynamics f̂ρ parameterized by ρ with input-dependent noise.

The transition distribution, which we will denote as pz for shorthand is given by

p(zt+1|zt, ut) = N (f̂ρ(zt, ut), Q(zt, ut)) (2.1)
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We assume that f̂ρ is given and is differentiable with respect to (z, u, ρ). Q is an

input-dependent uncertainty term. We also assume that the simple dynamics are

Markovian. The simple system has the same observation space O and has a given

observation function ot = ĝ(zt). We assume that we can a priori specify some subset

of the goal region in Z as Zgoal, i.e that {ĝ(z) : z ∈ Zgoal} ⊂ Ogoal. This could

also be done by specifying Ogoal directly (as is common in learning to control from

images, e.g. [35]) and using this to infer zgoal. We then seek to design a feedback

policy ut = π(zt) such that zT ∈ Zgoal for some time T . Our goal is to design π using

f̂ρ so that it achieves high success rate after a small number of trials.

2.4 Methods

Our approach to this problem requires input in the form of a simple model ap-

proximation that is believed to accurately represent the dynamics over some subset

of the complex system (X ,U). By using this simple model in simulation we can

generate large amounts of data. The key to our approach is to leverage this data and

our knowledge of the simple system. We then reduce the problem of unsupervised

representation and dynamics learning to that of supervised learning of a perception

system for the simple model representation (offline), and then learning when this

representation and the dynamics are accurate (online).

Our full method is shown in Algorithm 1 and Figure 2.2. The overall procedure

is to first generate a dataset of images with corresponding simple model configura-

tions and then to train a perception system to estimate these configurations from

images. Once this perception system is trained offline, we move to the online ex-

ecution/learning phase, where we must manipulate the never-before-seen complex

system.

The goal of the online execution is to reach a given goal region. However, because

the perception system and the simple model dynamics can only account for some

complex model states, we must try to avoid states where the perception/dynamics

are inaccurate. To this end, we collect data as we attempt the task and use that

data to train a GP that captures the error in the simple model predictions. This
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error distribution is input into a Kalman Filter variant to better estimate the state

and into a trajectory optimizer, which attempts to avoid regions of state space where

the simple model predictions are inaccurate. The process of planning trajectories,

executing one action, estimating the resulting state, and replanning a trajectory

(Alg. 2) repeats until the goal (or a timeout) is reached.

Figure 2.2: Method overview. Left : Training the CNN ensemble on image observa-
tions generated from the simple system offline. ϕ is a CNN ensemble with variance
used as a measure of uncertainty; Center : Online execution using the simple model
CNN with GPUKF filtering and MPPI for control; Right : Procedure for fitting pa-
rameterized simple model and GP from observations of the complex system. The
transition probability (red) is trained to predict the future uncertainty of ϕ, allowing
us to avoid avoid areas where ϕ is not confident.

2.4.1 Simple Model

The simple system state may contain elements which cannot be estimated from

a single image, e.g. velocities. Thus we define the components of the simple state

that can be noisily observed from a single image as latent observations y. We then

have the non-linear discrete-time state space model with dynamics described in Eq.

(2.1). In general there will be a non-linear mapping from z to y. In this chapter we

consider only a linear mapping, which is sufficient for our models:

yt = Czt + ϵ, (2.2)
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Algorithm 1 LVSPC

Inputs: Simple model dynamics: f̂ρ; Simple model cost: c; Simple model renderer
ĝ; Initial data size N ; # Episodes K

Offline Training with simple system data

1: {yi, oi}Ni=1 ← CollectData(f̂ρ, ĝ, N);
2: ϕ← TrainStateEstimator({yi, oi}Ni=1);

Online Training with complex system data

3: D ← ∅; ρ,Q← Initialize;
4: for k ∈ {1, ..., K} do
5: pz ← N (f̂ρ(zt, ut), Q(zt, ut));
6: D ← D ∪; Rollout(pz, c, ϕ);
7: ρ←; FitSimpleSystem(D, f̂ρ);
8: Q← FitGP(D, f̂ρ, Q, ρ);

For an n-dimensional simple model system (z ∈ Rn) with m-dimensional (m ≤ n)

observations (y ∈ Rm), C = [Im×m,, 0m×n−m] selects the latent observations from z.

For example, if z is the position and velocity of a point, then y is only the position,

which is all that can be observed from a single image. In the case where ϵ ∼ N (0, R)

for positive-definite R we can use noisy measurements y to estimate z by filtering

using non-linear techniques such as the Unscented Kalman Filter (UKF) [159]. We

will show how to use a GP to learn Q(zt, ut) in Eq. (2.1) from data in Sec. 2.4.4.

2.4.2 Probabilistic CNN Ensemble for Perception

In order to use the simple model for the complex system, we need a perception

system ϕ that maps images to simple model states (even if the image is generated

from the complex system). We would also like a way to estimate how well a simple

model state approximates the complex system at a given state, as this gives us an

estimate of confidence in the simple system dynamics at this state. We use the

uncertainty in the perception estimate as a proxy for correspondence between the
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Algorithm 2 Rollout

Inputs: Transition distribution pz; Simple model cost: c; CNN Ensemble ϕ

1: D ← ∅; µz1,Σz
1 ← Initialize;

2: for t ∈ {1, ..., T} do
3: µyt ,Σ

y
t ← ϕ(ot);

4: yt ∼ N (µyt ,Σ
y
t );

5: µzt ,Σ
z
t ←GPUKF(µzt−1,Σ

z
t−1, ut−1, pz, yt);

6: ut ← MPPI(µzt , c, pz);
7: D ← D ∪ (µyt ,Σ

y
t , ut);

8: ExecuteAction(ut);
9: if AtGoal then break;

10: return D
simple state and the unknown complex state. The perception output is

µyt ,Σ
y
t = ϕ(ot) (2.3)

yt ∼ p(yt|ot) = N (µyt ,Σ
y
t ), (2.4)

where the variance Σy
t estimates the uncertainty, and ϕ is the perception system. We

assume an isotropic Gaussian in Eq. 2.3, thus Σy
t can be described by a vector σyt ∈

Rm. Ensembles have been empirically shown to give useful estimates of prediction

uncertainty, which can be used to evaluate if a given input is out-of-distribution w.r.t

the training data [82]. Thus using ensembles avoids manually defining a similarity

between the complex system observations and observations generated from the simple

system. Instead we can input observation ot from the complex system into our

perception system, and if it produces a high-certainty estimate of yt (i.e. where ||σyt ||
is small), this implies that yt is a good approximation for the complex system at time

t.

We parameterize ϕ as a CNN ensemble which is trained with data generated from

the simple system. Each CNN in the ensemble is a probabilistic CNN which outputs

the parameters of a Gaussian, these are then combined into one Gaussian estimate.

We train the CNN via supervised learning on observations of the simple system which

we collect from simulation, along with correspond simple system states. Importantly,

we assume that we can generate observations from the simple system which are
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similar to the complex system observations. To avoid requiring precise knowledge of

the complex system before generating the simple model data, we generate a diverse

training set of observations from the simple model. For example, we generate cart-

poles with varying pendulum length for the tethered mass scenario. By generating

diverse observations via domain randomization, our notion of visual similarity means

that there is a simple system with some appearance and system parameters that looks

similar to the complex system. See in Fig. 2.3 for examples.

Given an ot of the complex system online, we sample yt from the output of the ϕ

and use this along with the learned GP transition distribution (Sec. 2.4.4) to track

a Gaussian distribution over the simple model state (p(zt|u1:t−1, y1:t) = N (µzt , σ
z
t ))

with a GPUKF [76]—an extension to the UKF for GP dynamics. When predicting

p(zt+1|u1:t, y1:t) in the GPUKF we use the posterior mean of the GP (Sec. 2.4.4) to

perform the unscented transform, while the process noise is the posterior covariance

of the GP, Q(zt, ut), evaluated at (µzt , ut).

2.4.3 System Identification

The simple model dynamics may be parameterized by ρ (for example mass, length,

etc.) and in order to use it, we must estimate the ρ which best approximates the

complex system. One approach is using the Kalman filter to jointly estimate ρ and

the latent state z, but we found that this was not numerically stable. Instead we use

maximum-likelihood estimation on observed trajectories from the complex system.

Given an observed trajectory of the complex system consisting of {ot, ut}Tt=1 we

encode the observations into {µyt , σ
y
t , ut}Tt=1. Since our trajectory may contain transi-

tions which the simple model cannot accurately predict, we split the trajectory into

N trajectories of length K < T , and discard trajectories with average uncertain-

ties above threshold α so we are left with high-certainty sub-trajectories. For each

sub-trajectory we rollout the actions u1:T using Eq. (2.1) and (2.2) to get estimated

observations ŷ1:T and perform gradient ascent on the parameters ρ and the trajectory

initial states {zi1}Ni=1 by maximizing the log likelihood of ŷ1:T in the distribution out-

put by the CNN ensemble N (µy1:T , σ
y
1:T ). The CNN weights are held constant. This
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process optimizes ρ to match the observed dynamics for high-certainty transitions in

(Z,U).

Figure 2.3: Examples of data generated from the simple system for training the
CNN ensemble. (a) Tethered mass experiment, showing different geometries of the
cart-pole. (b) Simulated rope manipulation experiment, showing different geometries
of rigid link, and differing number and geometries of objects. (c) Real robot rope
manipulation experiment. We randomize textures, lighting, obstacle configuration,
camera pose, and rigid link geometry and add noise.
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2.4.4 Predicting Future Uncertainty with GP Regression

From ϕ we have a confidence in our simple model approximation at a given y

(the uncertainty σy). To keep the system in regimes where the approximation is

accurate we also need to predict the future uncertainty conditioned on actions. Our

uncertainty expresses uncertainty over the validity of the state as a description of

the complex system, rather than the value of the state. Since we are using state

uncertainty as a measure of confidence in the simple model approximation we model

this uncertainty as state and action-dependent and use a GP with mean function f̂ρ

and kernel function K to model the transition distribution. The GP posterior is

p(zt+1|zt, ut) = N (f̂ρ(zt, ut, ρ) + µf (zt, ut), Q(zt, ut)), (2.5)

where µf and Q are typically found via conditioning on some training set. However in

our case this is a Gaussian Process State Space Model (GPSSM) [43] with transition

probability above and emission probability defined in Eq. (2.2). Training this GP is

non-trivial as we do not have access to z directly. Instead we must jointly infer both

the transition probability and z during training.

We use a Parametric Predictive GP (PPGP)[60] in order to train a GP with state-

dependent aleatoric uncertainty via stochastic gradient descent. The uncertainty

of the GP σz is used to predict the uncertainty of the CNN ensemble σy via Eq.

(2.2). The PPGP is a sparse GP method which fits psuedo-inputs (ζ) and psuedo-

ouputs (γ ∼ N (m,S)) such that conditioning the GP on (γ, ζ) approximates the

true GP posterior. The GP parameters are thus (m,S, ζ) as well as the kernel hyper-

parameters. The GP posterior contains an additional µf term compared with Eq.

(2.1). This allows the GP posterior mean to deviate from that of the simple model,

attempting to fit transitions which do not conform to the simple model dynamics.

Since our representation is known to be insufficient to model the true dynamics of

the system, we are conservative and do not allow the GP to fit such transitions by

constraining m = 0 and thus µf = 0. We compare to a variant of our method where

we do not enforce µf = 0 in our experiments.

We now describe how to train this GP using trajectories from the complex system
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of the form {µyt , σ
y
t , ut}Tt=1. We would like Eq. (2.2, 2.5) and an initial p(z1) to be able

to reproduce the trajectory and uncertainties from the CNN. The learning objective

to be minimized is then

L = KL(p(y1:T |o1:T )||p(y1:T |u1:T )), (2.6)

where KL is the Kullback–Leibler divergence, p(y1:T ) represents the joint distribution

p(y1, ..., yT ), p(y1:T |o1:T ) is the output of the CNN, and p(y1:T |u1:T ) is the prediction

from the dynamics and Eq. (2.2). The GP predicted uncertainty σzt is used with Eq.

(2.2) to predict a latent observation uncertainty σ̂yt . This objective aims to make the

predicted uncertainty σ̂yt and the observed uncertainties σyt consistent, i.e. the GP

will predict the future uncertainty.

p(y1:T |o1:T ) is fixed (i.e. we are not retraining the CNN online). Given this, we

can rewrite the objective in terms of expectations over p(y1:T |o1:T )

L = −Ep(y1:T |o1:T ) [log p(y1:T |u1:T )] +H [p(y1:T |o1:T )] , (2.7)

where H is the entropy and this entropy term can be dropped as it only depends on

the pre-trained CNN. We can then optimize by maximizing the conditional expec-

tation in Eq. (2.7) of y1:T . To do this we construct a variational lower bound on

p(y1:T |u1:T ). This lower bound is given by

ELBO =
T∑
t=1

Eq(zt) [log p(yt|zt)]−KL(q(z1)||p(z1))−

T∑
t=2

Eq(zt−1) [KL (q(zt) || p(zt|zt−1, ut−1))] ,

(2.8)

where the prior on the initial state is p(z1) ∼ N (0, I) and q(zt) = p(zt|y1:t, u1:t−1) is

the GPUKF filtering distribution [76]. The final objective to minimize is given by

L1

L1 = −Ep(y1:T |o1:T )[ELBO] ≥ L (2.9)
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To evaluate this objective we use the reparameterization trick to sample from the

CNN and estimate gradients for L1. After performing this training procedure we

obtain the transition distribution pz, which is used by the GPUKF to perform filtering

and by the MPC to predict future uncertainty.

2.4.5 Model Predictive Control

For MPC we use MPPI [167] with a cost c for the given task. To encourage the

controller to keep the system in the domain of the simple model we add a cost to

penalize the predicted uncertainty. Thus the cost function has the form c(z, σz, u)

(examples are shown in the experiments). Note that typically in this setting the

expected cost is computed, but as mentioned in the previous section, our uncertainty

does not express uncertainty over the value of the state. When rolling out a predicted

trajectory with the model we propagate the expectation through the dynamics and

record the one-step uncertainty for each step resulting in a trajectory (µzt , σ
z
t , ut)

T
t=1

with which to calculate the cost. If we do not penalize this uncertainty, it will be

ignored, which is equivalent to assuming the simple model is always accurate (we

compare to this method in our experiments). Also, because we manually design the

simple model state representation, we can incorporate additional information, such as

avoiding collision, into the cost, which would have to be learned for an unsupervised

learned representation.

2.5 Results

We evaluate LVSPC on 1) manipulating a tethered mass, and 2) placing a rope in

a narrow opening vs. baselines in the low-data regime. An episode is a time-limited

attempt to reach the goal (terminating early when the goal is reached). See the

accompanying video for example task executions.
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2.5.1 Environments

Figure 2.4: (a) Tethered mass input image (64x64 grayscale) with the target (left)
and the single prismatic joint (blue); (b) output from CNN ensemble and GPUKF
estimation (red); (c) planned trajectory from MPPI (green). Only the first action
from this trajectory is executed before replanning; (d) The rope manipulation en-
vironment. The goal is to bring the centre of the rope to the centre of the narrow
gap. The sides of the gap have protrusions which can catch the rope; (e, f) Example
RGB and D observations from overhead Kinect.

Tethered Mass This task involves controlling a tethered mass by applying force

to the base of the tether. The goal is to bring the mass to a target without the

tether contacting the target (tether contact results in failure). We implement this

system in MuJoCo [149]. There is a single actuated horizontal joint at the top of the

tether (see Figure 2.4). Goals are randomly assigned at the start of each trial. This

example demonstrates the applicability of LVSPC to highly-dynamic systems where

velocity must be considered.

The simple system we choose here is the pendulum on a cart (i.e. a cart-pole);

we choose this because we observed that when the tether is taut the system will

behave like a pendulum. We use an analytical dynamics function for f̂ρ. We define

z = [pxcart , pxmass , pymass , ṗxcart , θ̇], where θ is the angle of the pendulum. We define

the latent observations as y = [pxcart , pxmass , pymass ] and thus C = [I3×3 03×2]. The

parameters ρ are [mass cart, mass pole, angular damping].

Rope Manipulation This task consists of two KUKA iiwa 7-DOF arms holding

the ends of a rope. The goal to bring the center of the rope to the center of a narrow

gap between two obstacles. These obstacles have small protrusions on which the

rope can become caught. We implement this environment in Gazebo with the ode45

back-end (Figure 2.4). The action space of the robot is [∆pL,∆pR] ∈ R6 where pL, pR
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are the left and right end-effector positions, respectively. We use a Jacobian-based

method for inverse kinematics so that transitions in the robot’s configuration space

are smooth. The observations consists of RGBD data from an overheard Kinect. The

goal and obstacle configuration for the task remain fixed across trials, but the starting

locations of the end-effectors vary. We choose this example because it mimics cable

installation, which is necessary for manufacturing and repair applications, where

there are often narrow gaps and protrusions.

The simple system we choose here is to treat the rope as if it is a rigid link. The

simple dynamics are then specified by adding a constraint that the gripper distances

remain fixed. This approximation will be accurate so long as the rope is kept taut

for the duration of the task. We define z = y = [pL, pR] and C = [I6×6]. Since this

model does not require dynamic parameters we forego the sysid step of our method.

2.5.2 Baselines

We compare LVSPC to two recent methods from the literature. The first method

is PlaNet [49], a model-based reinforcement learning algorithm. PlaNet learns a

low-dimensional state representation along with dynamics and cost functions. The

second is CURL [86], which uses a contrastive loss to learn a representation in which

to learn a policy and has shown state-of-the-art sample-efficiency. For each of these

baselines we test them by training them directly on the task with the complex system.

We also show results for when the baselines are pre-trained on the simple system and

fine-tuned on the complex system to investigate if these methods can take advantage

of the data from the simple system. Both baselines were originally proposed with

RGB observations, and we extend them to use RGBD for the rope experiment.

We also test with three variants of LVSPC: 1) The full method which does both

system identification and GP learning; 2) LVSPC without the GP, this is equivalent

to only using the simple model for control, and assuming it will be sufficiently accu-

rate for all transitions. We choose this variant to investigate whether learning and

avoiding inaccurate areas of the simple model state space is helpful for task perfor-

mance; and 3) LVSPC without constraining the GP posterior to be zero-mean, hence
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attempting to learn a better approximation of the dynamics in the simple system

state space, rather than only where the simple model is accurate.

2.5.3 Simple Model Data

Tethered Mass For pre-training the state estimator we generate 5000 trajectories

of 20 time-steps from the cart-pole using random actions and render the cart-pole

configurations to produce images. This corresponds to 100000 64 × 64 grayscale

frames. For domain randomization, we vary the dimensions and parameters of the

system (see Figure 2.3(a)).

Rope Manipulation For pre-training the state estimator we generate 800 trajec-

tories of 50 time-steps length using random actions from the rigid body system and

render the configuration. This corresponds to 80000 128×128×4 RGBD frames. For

domain randomization, we vary the dimensions of the rigid link and the obstacles,

as well as the obstacle locations (examples shown in Figure 2.3(b)).

2.5.4 Cost Functions

For both LVSPC and PlaNet we use an MPC horizon of 40 and sample 1000

trajectories per timestep. We do not have a cost on control. CURL and PlaNet

use the true environmental cost i.e. cenv(xt), whereas LVSPC and variants use an

equivalent cost based on the simple model state with an uncertainty penalty c(zt, σ
z
t ).

The environmental costs use the true state from the simulator to calculate the cost

(because CURL and PlaNet have no knowledge of the simple model), whereas LVSPC

uses the simple model state to approximate this cost, effectively giving CURL and

PlaNet an advantage.

Tethered Mass The environmental cost consists of three parts; a euclidean dis-

tance to goal, a collision penalty for the tether and mass, and a penalty when

the system goes out of view of the camera. The cost functions are c(zt, σ
z
t ) =

δgdistToGoalZ+OffScreen(zt)+10checkCollision(zt)+βσzt and cenv(xt) =
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δgdistToGoalX + OffScreen(xt) + 10checkCollision(xt), where β is a pa-

rameter on how heavily to weigh uncertainty, and δg is 0 if the goal is reached before

time t and 1 otherwise. To balance exploiting vs. exploring we increase β from 0 to

2.0 in the first 10 episodes. This cost is not memoryless; δg depends on the state for

times t′ < t. This is because we only wish to hit the target, we do not have to reach

the target and stay there.

Rope Manipulation The environmental cost is the distance to the goal, computed

by considering the centre of the rope to be a floating point, discretizing the 3D

environment into a 8-connected graph and solve for the shortest path to the goal

for every point in the graph. We do not penalize contact for the baselines, as we

found that they could exploit contact to help complete the task. The cost for LVSPC

penalizes contact (because the simple model is rigid), where we do a collision-check

for the rigid-link approximation. The cost functions are c(zt, σ
z
t ) = distToGoalZ+

βσzt + 100checkCollision(zt) and cenv(xt) = distToGoalX .

To balance exploiting vs. exploring we increase β from 0 to 1000 in the first 10

episodes.

2.5.5 Network Architectures

Networks are implemented in PyTorch [115], and the GPs are implemented in

GPytorch [44], which allows us to exploit parallelism on the GPU for GP inference

when performing MPPI. Thus, for the rope manipulation experiment, an iteration of

MPPI takes only 0.89s on average using an Intel i7-8700K CPU and an Nvidia 1080Ti

GPU. For both experiments we use a CNN ensemble consisting of 10 networks. All

convolutional filters have filter size 3 × 3 and stride 2 for downsampling, all layers

other than the output layers use ReLU activations. We use the Adam optimizer with

a learning rate of 10−3, except when fine-tuning the pretrained CURL and PlaNet

models where we use 10−4.

For the GP dynamics model, we use 200 inducing points. We train an indepen-

dent GP for each output dimension using the RBF kernel with automatic-relevance

determination [110]. We use a learning rate of 10−2 to train the GP and perform
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sysid. For each experiment CURL and PlaNet use encoders with the same archi-

tecture as our CNN. The transition and reward models for PlaNet are the same

architecture as [49]. The actor-critic architecture for CURL is the same as in [86].

Both CURL and PlaNet are trained end-to-end.

Tethered Mass Each CNN consists first of 4 convolutional layers. There is then

a fully connected layer with 2048 hidden units, followed by an output layer.

Rope manipulation Each CNN seperately processes depth and RGB, consisting

of an RGB module and a depth module which are combined downstream. Each

module consists first of 4 convolutional layers. There is then a fully-connected layer

with 512 hidden units. After passing the RGB image through both the RGB module,

and the depth image through the depth module, the output from each module is

combined and passed through a final hidden layer of 1024 units, followed by an

output layer.

2.5.6 Results

Figure 2.5: Average Success over 10 test tasks vs number of episodes for both ex-
periments. Shaded region shows minimum and maximum success rate over 5 runs
for LVSPC and ablations and 3 runs for the baselines for a total of 50 and 30 test
tasks for LVSPC and the baselines, respectively. a) LVSPC and ablations for teth-
ered mass, dotted lines show baseline performance after 500 episodes. b) Baselines
for tethered mass. c) LVSPC and ablations for rope, dotted lines show baseline
performance after 500 episodes. d) Baselines for rope.

Tethered Mass An example of the system tracking and MPC is demonstrated in

Figure 2.4. Our statistical results are shown in Figure 2.5(a, b). PlaNet achieves it’s
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maximum performance at 200-300 episodes and has a success rate of approximately

26% with large variation. We see that CURL shows the highest asymptotic perfor-

mance, with 97% after 400 episodes. Higher asymptotic performance is typical of

model-free learning methods. Pre-training both PlaNet and CURL on data from the

simple system results in improved initial performance, but lower final performance.

In contrast, LVSPC achieves approximately 90% after 20 episodes, outperforming

PlaNet and matching CURL’s performance after 200 episodes, demonstrating 10x

improved data efficiency. We also see that seeking to learn the dynamics in the

simple state space with the GP results in substantially worse performance. This is

likely because the simple state representation is insufficient to model the full complex

dynamics.

Simulated rope manipulation Our statistical results are shown in Figure 2.5(c,

d). PlaNet’s performance after 500 episodes is approximately 30%, while CURL

solves the task with almost 100% success rate after 250 episodes. Pre-training CURL

on data from the simple system results in improved initial performance, but lower

final performance, however pretraining PlaNet led to poor performance which it

could not recover from, getting caught on the obstacles in every episode. Our full

method achieves 80% success rate after 20 episodes, again equivalent to CURL’s

performance after 200 episodes (thus we have 10x better data-efficiency) and out-

performing PlaNet’s final performance. We see that naively treating the rope as a

rigid object results in approximately 46% success and almost all failures result from

the rope snagging on the protrusions on the side of the gap. As in the tethered mass

experiment, attempting to fit the complex dynamics in the simple mode space is

ineffective, causing frequent snagging on obstacles.

2.5.7 Rope Manipulation on a Real Robot

Our simulation experiments show that LVSPC is effective at transferring within

the same simulation environment. To validate that we can still use LVSPC when

the simple model and complex environments are very different, we perform the rope

manipulation experiment described above on a real robot using a perception system
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Episode 0 5 10 15 20

Success rate 0.3 0.7 0.8 0.78 0.82

Table 2.1: Results over 5 random seeds for real robot experiment

trained only in simulation. We use domain randomization to improve the transfer

of the CNN ensemble to real data [146] (see Figure 2.3(c)). We observed better

generalization when we randomized the pose of the camera and trained the CNN

ensemble to produce an estimate in the camera frame instead of the world frame.

We perform the experiment on the real robot over 5 random seeds. For each

seed, after every 5 episodes we record the success rate on 10 test episodes. The

results are shown in Table 2.1. Using LVSPC we can complete this task with 80%

success using only 10 episodes of data collected on the real robot. This experiment

demonstrates that using LVSPC is promising for real-world tasks, as we only need

data from simulation to train an effective perception system.

2.6 Conclusion

We have presented LVSPC for leveraging a given simple model approximation to

improve data efficiency for control tasks on systems with complex dynamics from im-

age observations. We demonstrated this method on two tasks, showing substantially

improved performance in the low-data regime over recent reinforcement learning

methods. We have also demonstrated that we can apply our framework to a real

robot while only using simulated data for pre-training. We assumed that the user

specifies a type of simple model, but choosing a simple model which can approximate

the complex system is an open problem, made difficult by the requirement that it

must be possible to complete the task while operating only in the regime where the

simple model is accurate. In future work we intend to incorporate multiple simple

models and create a way to decide which is most appropriate.
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CHAPTER III

Learning a Generalizable Trajectory Sampling

Distribution for Model Predictive Control

In this chapter we propose a sample-based Model Predictive Control (MPC)

method for collision-free navigation that uses a normalizing flow as a sampling dis-

tribution, conditioned on the start, goal and environment. This representation al-

lows us to learn a distribution that accounts for both the dynamics of the robot and

complex obstacle geometries. We propose a way to incorporate this sampling dis-

tribution into two sampling-based MPC methods, MPPI and iCEM. However, when

deploying these methods, the robot may encounter an out-of-distribution (OOD)

environment. To generalize our method to OOD environments we also present an

approach that performs projection on the representation of the environment. This

projection changes the environment representation to be more in-distribution while

also optimizing trajectory quality in the true environment. Our simulation results

on a 2D double-integrator, a 12DoF quadrotor and a 7DoF kinematic manipulator

suggest that using a learned sampling distribution with projection outperforms MPC

baselines on both in-distribution and OOD environments, including OOD environ-

ments generated from real-world data. 1

1The work in this chapter was published in [123] and [125].
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Figure 3.1: a) The training environment for our learned control sequence posterior.
b,c) Point clouds of two real-world environments taken from the 2D-3D-S dataset [8].
d) One of our proposed methods, FlowMPPIProject, controlling a dynamic quadrotor
in the training environment. e,f) FlowMPPIProject controlling a dynamic quadrotor
to successfully traverse the two real-world environments. The executed trajectory
is shown in blue, and the planned trajectory is shown in orange at an intermediate
point in the execution.

3.1 Introduction

Model predictive control (MPC) methods have been widely used in robotics for

applications such as autonomous driving [166, 167], bipedal locomotion [18] and

manipulation of deformable objects [122]. For nonlinear systems, sampling-based

approaches for MPC such as the Cross Entropy Method (CEM) and Model Predictive

Path Integral Control (MPPI) [77, 167] have proven popular due to their ability to

handle uncertainty, their minimal assumptions on the dynamics and cost function,

and their parallelizable sampling. However, these methods struggle when randomly

sampling low-cost control sequences is unlikely and can become stuck in local minima,

for example when a robot must find a path through a cluttered environment. This

problem arises because the sampling distributions used by these methods are not

informed by the geometry of the environment.

Previous work has investigated the duality between control and inference [148,
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144] and considered both planning and control as inference problems [9, 151, 131].

Several recent papers have considered the finite-horizon stochastic optimal con-

trol problem as Bayesian inference, and proposed methods of performing varia-

tional inference to approximate the distribution used to sample control sequences

[84, 162, 112, 12]. To perform variational inference, we must specify a parameterized

distribution that is tractable to optimize and sample while also being flexible enough

to provide a good approximation of the true distribution over low-cost trajectories,

which may exhibit strong environment dependencies and multimodalities. While

more complex representations have been used to represent this distribution [84, 112],

these distributions are initially uninformed and must be iteratively improved during

deployment. In this paper, we present a method that uses a Normalizing Flow to

represent this distribution and we learn the parameters for this model from data.

The advantage of this approach is that it will learn to sample control sequences

which are likely to be both goal-directed and collision-free (i.e. low-cost) for the

given system. We also demonstrate how this learned distribution can be integrated

with two sample-based MPC algorithms, iCEM [119] and MPPI [167].

However, as is common in machine learning, a learned model cannot be expected

to produce reliable results when its input is radically different from the training

data. Because the space of possible environments is very high-dimensional, we cannot

hope to generate enough training data to cover the set of possible environments a

robot could encounter. This problem compounds when we generate training data

in simulation, but the method must be deployed in the real-world (i.e. the sim2real

problem). Thus, when deploying this method, the robot may encounter an out-of-

distribution (OOD) environment, i.e. one which is radically different from those used

in training. In such cases, the learned distribution is unlikely to produce low-cost

control sequences.

To generalize the learned distribution to OOD environments we propose perform-

ing a projection on the representation of the environment as part of the MPC process.

This projection changes the environment representation to be more in-distribution

while also optimizing trajectory quality in the true environment. In essence, this

method “hallucinates” an environment that is more familiar to the normalizing flow
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so that the flow produces reliable results. However, the key insight behind our pro-

jection method is that the “hallucinated” environment cannot be arbitrary, it should

be constrained to preserve important features of the true environment for the MPC

problem at hand. For example, consider a navigation problem for a 2D point robot.

If the normalizing flow is trained only on environments consisting of disc-shaped

obstacles, an environment with a corridor would be OOD and the flow would be

unlikely to produce low-cost trajectories. However, if we morph the environment to

approximate the corridor near the robot with disc-shaped obstacles (producing an

in-distribution environment), the flow will then produce low-cost samples for MPC.

In this chapter we extend our previous conference paper [123] on this topic by

incorporating the learned sampling distribution with another sampling-based MPC

algorithm, iCEM [119]. We show that we can use the same learned sampling distri-

bution with either iCEM or MPPI without retraining, which speaks to the generality

of our method. In addition, we extend our method by learning a sampling distribu-

tion over a set of parameterized cost functions and show that we can achieve high

performance across different parameter settings. Further, for the experiments where

smooth control sequences are important, we have removed the addition of noise to

the control sequence samples during training. This noise, while aiding exploration,

resulted in noisy sampled control sequences. We also extend our methods to mo-

tion planning problems for manipulators and present new experiments on a 7DoF

manipulator in several simulated and one real environment. Finally, we expand the

discussion of related work and add a Discussion section that presents the limitations

of our method.

Our simulation results on a 2D double-integrator, a 3D 12DoF underactuated

quadrotor, and a 7DoF manipulator suggest that our flow-based MPC methods with

projection outperform state-of-the-art MPC baselines on both in-distribution and

OOD environments, including OOD environments generated from real-world data

(Figure 3.1). In addition we validate our methods on a 7DoF manipulator in the real

world.
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3.2 Related Work

3.2.1 Planning & Control as Inference

The connection between control and inference was established many years ago,

with Kalman first establishing the duality between inference in linear Gaussian sys-

tems and the Linear Quadratic Regulator (LQR) [65]. This duality was later ex-

tended further by Todorov to non-linear and deterministic systems subject to some

restrictions, such as quadratic control cost and control-affine dynamics [148].

Early work by Attias framed planning for discrete state and action spaces as an

inference problem over a a Hidden Markov Model and proposed a message-passing

algorithm for planning [9]. Since then, many message-passing methods have been

proposed for planning in continuous action spaces [151], for solving Stochastic Op-

timal Control (SOC) problems [151, 131, 164] and for policy learning [132]. For

situations in which exact inference is intractable, such as for non-linear dynamics

models, these methods perform approximate inference by using linearized Gaussian

messages.

Another body of work has exploited the relationship between SOC problems and

inference in diffusion processes [42], leading to the Path-Integral approach for control

[67, 147, 68, 145, 144], which solves the SOC problem by performing approximate in-

ference with Monte-Carlo expectations over trajectories. Model-predictive Path Inte-

gral (MPPI) [166, 167] control is one of these algorithms and has enjoyed widespread

use for robot control problems. Another widely-used sampling-based MPC algo-

rithm is the Cross Entropy Method (CEM) [77], with a recent variant, improved-

CEM (iCEM) [119], showing state-of-the-art performance on several benchmarks.

Recently, Watson and Peters proposed using a Gaussian Process to represent the

sampling distribution of control sequences [163], resulting in much smoother sam-

pled control sequences. However, the resulting sampling distribution is still Gaussian,

and thus cannot capture multi-modal trajectories.

Recently, several approaches to control-as-inference have been developed that rely

on Variational Inference (VI) to perform approximate inference [84, 162, 112, 12].

Variational inference techniques rely on approximating the distribution of interest
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with a simpler, parameterized distribution. Inference is then performed by opti-

mizing the parameters of this distribution (the variational posterior) to minimize

the Kullback-Leibler divergence between the approximation and the desired distri-

bution [16]. The choice of parameterized distribution is thus very important for the

tractability of the approximate inference procedure and the quality of the approx-

imation. VI methods often use an independent Gaussian posterior, known as the

mean-field approximation [16]. Okada and Taniguchi represent the variational pos-

terior as a Gaussian mixture [112], and show how this posterior can be used with

both MPPI and CEM. Lambert et al. propose using a particle representation [84].

This method uses Stein Variational Gradient Descent (SVGD) [96], which performs

gradient descent on the particles to maximize their posterior likelihood while also en-

suring particle diversity, where diversity is determined by the choice of an appropriate

kernel function. The authors use a Monte-Carlo estimate of the posterior gradient

for non-differentiable costs and dynamics. This method has also been extended to

handle parameter uncertainty [12]. These representations allow for greater flexibility

in representing complex and multi-modal posteriors. We will similarly use a flexible

class of distributions to represent the posterior, but will further make the posterior

dependent on the start, goal, and environment. To our knowledge our approach is

the first to amortize the cost of computing this posterior by learning a conditional

control sequence posterior from a dataset.

3.2.2 Learning sampling distributions for planning

Our work is related to work on learning sampling distributions from data for mo-

tion planning. Previous work [178] has proposed learning a rejection sampling policy

via Reinforcement Learning (RL). This policy is learned across multiple different

environments, but does not take any environment information as input and thus its

output is independent of the environment. Others have proposed learning a sampling

distribution which is dependent on the environment, start and goal [57, 128]. These

methods were restricted to geometric planning, but recent work [89] proposed an ap-

proach for kinodynamic planning which learns a generator and discriminator which
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are used to sample states that are consistent with the dynamics. Recent work by Lai

et al. [81] uses a diffeomorphism to learn the sampling distribution; a model that

is similar to a normalizing flow. The model we propose will also learn to generate

samples conditioned on the start, goal and environment, though in this work we are

considering online MPC and not offline planning.

Loew et al. [98] uses probabilistic movement primitives (ProMPs) learned from

data as the sampling distribution for sample-based trajectory optimization, however

the representation of these ProMPs only allows for uni-modal distributions and the

sampling distribution is not dependent on the environment.

Adaptive and learned importance samplers have been used for path integral con-

trollers [66, 21]. These methods learn a feedback policy. Sampling control sequences

then consists of sampling perturbations to the output of a feedback policy rather

than open-loop controls, thus modifying the trajectory sampling distribution. These

methods only consider a single control problem and the learned samplers do not

generalize to different goals and environments.

Parallel work by Sacks and Boots has also proposed using a Normalizing Flow

to learn the sampling distribution for MPC [137]. Their approach uses a bi-level

optimization to learn the sampling distribution and demonstrates impressive results

in the low-sample regime. However, the resulting sampling distribution is specific to a

given MPC controller, and they do not train over multiple environments. In contrast,

we demonstrate that our learned sampling distribution can be used with different

sample-based MPC controllers without retraining, train over multiple environments,

and adapt to novel environments.

3.3 Preliminaries

3.3.1 Variational Inference for Stochastic Optimal Control

We can reformulate SOC as an inference problem (as in [131, 150, 112, 84]). First,

we introduce a binary ‘optimality’ random variable o for a trajectory such that
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p(o = 1|τ) ∝ exp (−c(τ)). (3.1)

We place a prior p(U) on U , resulting in a prior on τ , p(τ) = p(X|U)p(U) and

aim to find posterior distribution p(τ |o = 1) ∝ p(o = 1|τ)p(τ). In general, this

posterior is intractable, so we use variational inference to approximate it with a

tractable distribution q(τ) which minimizes the KL-divergence KL(q(τ)||p(τ |o = 1))

[16]. Since we define the trajectory by selecting the controls, the variational posterior

factorizes as p(X|U)q(U). Thus, we must compute an approximate posterior over

control sequences. The quantity to be minimized is

KL (q(τ)||p(τ |o = 1)) =

∫
q(τ) log

q(τ)

p(τ |o = 1)
dτ

=

∫
q(X,U) log

p(X|U)q(U)p(o = 1)

p(o = 1|X,U)p(X|U)p(U)
dXdU.

(3.2)

Since p(o = 1) on the numerator does not depend on U, when we minimize the

above divergence it can be dropped. The result is minimizing the below quantity,

the variational free energy F

F =

∫
q(X,U) log

q(U)

p(o = 1|X,U)p(U)
dXdU (3.3)

= −Eq(τ)[log p(o|τ) + log p(U)]−H(q(U)) (3.4)

= Eq(τ)[log Ĵ(X,U)]−H(q(U)), (3.5)

where H(q(U) is the entropy of q(U). For the last expressions we have used our

formulation that the p(o = 1|X,U) = exp(−J(X,U)) and we have incorporated the

deviation from the prior into a modified cost function Ĵ . For example, a zero-mean

Gaussian prior on the controls can be equivalently expressed as a squared cost on

the magnitude of the controls.

Intuitively, we can understand that the first term promotes low-cost trajectories,

the second is a regularization on the control, and the entropy term prevents the

variational posterior collapsing to a maximum a posteriori (MAP) solution.
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3.3.2 Variational Inference with Normalizing flows

Normalizing flows are bijective transformations that can be used to transform a

random variable from some base distribution (i.e. a Gaussian) to a more complex

distribution [133, 33, 73]. Consider a random variable z ∈ Rd and with known pdf

p(z). Let us define a bijective function f : Rd → Rd and a random variable y such

that y = f(z) and z = f−1(y). According to the change of variable formula, we can

define p(y) in terms of p(z) as follows:

p(x) = p(z)

∣∣∣∣det ∂f∂z
∣∣∣∣−1

(3.6)

log p(y) = log p(z)− log

∣∣∣∣det ∂f∂z
∣∣∣∣ . (3.7)

Normalizing flows can be used as a parameterization of the variational posterior

[133]. By selecting a base PDF p(z) and a family of parameterized functions fθ, we

specify a potentially complex set of possible densities qθ(y). Suppose that we want

to approximate some distribution p(y) with some distribution qθ(y). The variational

objective is to minimize KL(qθ(y)||p(y)). This is equivalent to

KL (qθ(y)||p(y)) =
∫
qθ(y) log

qθ(y)

p(y)
dx

= Eqθ(y)[log qθ(y)− log p(y)]

= Ep(z)
[
log p(z)− log

∣∣∣∣det ∂fθ∂z
∣∣∣∣− log p(y)

]
.

(3.8)

Thus we can optimize the parameters θ of the bijective transform fθ to minimize

the variational objective. We will use a normalizing flow to represent the control

sequence posterior in our method.

3.4 Problem Statement

This chapter focuses on the problem of Finite-horizon Stochastic Optimal Control.

We consider a discrete-time system with state x ∈ Rdx and control u ∈ Rdu and
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known transition probability p(xt+1|xt, ut). We define finite horizon trajectories with

horizon T as τ = (X,U), where X = {x0, x1, ...xT} and U = {u0, u1, ...uT−1}.
Given an initial state x0, a goal state xG, and a signed-distance field (SDF) of

the the environment E, our objective is to find U which minimizes the expected cost

Ep(X|U)[c(τ)] for a given cost function c, where p(X|U) =
∏T−1

t=0 p(xt+1|xt, ut). Note

that we will use c to mean both the cost on the total trajectory c(τ) and the cost of an

individual state action pair c(x, u). This chapter focuses on the problem of collision-

free navigation, where c is parameterized by (xG, E, ρ), where ρ is a set of parameters

specifying the cost. In our experiments, ρ consists of parameters penalizing the

magnitude of the controls, non-smooth controls, and where appropriate, velocities.

This problem is difficult to solve in the general case because the mapping from

environments to collision-free U can be very complex and depends on the dynamics of

the system. To aid in finding U , we assume access to a dataset D = {E, x0, xG, ρ}N ,
which will be used to train our method for a given system. We will evaluate our

method in terms of its ability to reach the goal without colliding and the cost of

the executed trajectory. Moreover, we wish to solve this problem very quickly (i.e.

inside a control loop), which limits the amount of computation that can be used.

Our proposed architecture for learning an MPC sampling distribution is shown in

Figure 3.2. In this section we first introduce how we represent and learn the control

sequence posterior as a Normalizing Flow, and train over a dataset consisting of

starts, goals, cost function parameters, and environments to produce a sampling

distribution for control sequences. Next, we show how this sampling distribution can

be used to improve two different sampling-based MPC methods, MPPI and iCEM.

Finally, we describe an approach for adapting the learned sampling distribution to

novel environments which are outside the training distribution.

3.4.1 Overview of Learning the Control Sequence Posterior

The control sequence posterior introduced in section 3.3.1 is specific to each MPC

problem. Our approach is to use dataset D to learn a conditional control sequence

posterior q(U |x0, xG, ρ, E). We will use a Conditional Normalizing Flow (CNF) [168]
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Figure 3.2: The architecture of our method for sampling control sequences. We take
as input initial and goal states x0, xG, and the environment, converted to a signed
distance field E. E is input into a VAE to produce a latent distribution qθ(h|E),
which we sample to get the environment embedding h. This h is used, along with x0,
xG and ρ as input to the network gω to produce a context vector C. C, along with
a sample from a Gaussian distribution Z, is input into the conditional normalizing
flow fζ to produce a control sequence U . During training only, we use a decoder to
reconstruct the SDF from h as part of the loss. We also use a normalizing flow prior
for the VAE to compute an OOD score for a given h, which is necessary to perform
projection.
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to represent this conditional posterior. We use a CNF as this allows us tractably

perform exact likelihood calculations and generate samples. The CNF takes the

form of qζ(U |C), where C is the context vector which we compute as follows: First,

we input E into the encoder of a Variational Autoencoder (VAE) [74] to produce a

distribution over environment embeddings h. We then sample from this distribution

to produce an h. A neural network gω then produces C from (x0, xG, ρ, h) (Figure

3.2). Essentially C is a representation of what is important about the start, goal,

cost parameters, and environment for generating low-cost trajectories.

The above models are trained on the dataset D, which consists of randomly

sampled starts, goals and simulated environments. To train the system we iteratively

generate samples from the control sequence posterior, weigh them by their cost, and

perform a gradient step on the parameters of our models to maximize the likelihood

of low-cost trajectories.

At inference time, we simply compute C and generate control sequence samples

from qζ(U |C). Below we describe each component of the method to learn qζ(U |C)
in detail.

3.4.2 Representing the start, goal and environment as C

As discussed, our dataset D consists of environments, starts and goals. The

details of the dataset generation for each task can be found in section 3.5.1. Since

the environment is a high dimensional SDF, we must first compress it to make it

computationally tractable to train the control sequence posterior. To encode the

environment, we use a VAE with environment embedding h. The VAE consists of

an encoder ϕ, which is a Convolutional Neural Network (CNN) that outputs the

parameters of a Gaussian. The decoder is a transposed CNN which produces the

reconstructed SDF Ê from h. The decoder log-likelihood pψ(E|h) is ||Ê − E||2,
where ψ are the parameters of the decoder CNN. [24] showed that learning a latent

prior can improve VAE performance, so we parameterize the latent prior pϕ(h) as a
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normalizing flow and learn the prior during training. The loss for the VAE is

LV AE = Eϕ [− log pψ(E|h)] +KL(ϕ||pϕ(h))

= Eϕ [− log pψ(E|h) + log ϕ− log pϕ(h))] .
(3.9)

We then use a Multilayer Perceptron (MLP) network gω to generate a context vector

C to use in the normalizing flow, via C = gω(x0, xG, ρ, h), which has parameters ω.

3.4.3 Learning qζ(U |C)

We use a conditional normalizing flow parameterized by ζ to define the conditional

variational posterior, i.e. qζ(U |C) is defined by U = fζ(Z,C) for Z ∼ p(Z) = N (0, I).

The variational free energy (Equation (3.4)) then becomes

F = −Eq(τ) [log p(o|τ)] +

Ep(Z)
[
log p(Z)− log

∣∣∣∣det ∂fζ(Z,C)∂Z

∣∣∣∣] . (3.10)

We can then optimize ζ to minimize the free energy.

By using a conditional normalizing flow, we are amortizing the cost of computing

the posterior across environments. The conditional normalizing flow U = fζ(Z,C)

is invertible with respect to Z, i.e. Z = f−1(U,C). For our conditional Normalizing

Flow we use an architecture based on Real-NVP [33] architecture with conditional

coupling layers [168], the structure is specified in section 3.5.3. Since U is a con-

trol sequence, the proposed normalizing flow is a joint distribution over the entire

control sequence, meaning that the control sequence posterior is able to represent

dependencies across time.

Minimizing eq. (3.10) via gradient descent requires the cost and dynamics to

be differentiable. To avoid this, we estimate gradients, using the method in [112]:

At each iteration, we sample R control sequences U1..R from qζ(U |C) and compute

weights

wi =
qζ(Ui|C)−βp(o|τi)

1
α

1
R

∑R
j=1 qζ(Uj|C)−βp(o|τj)

1
α

, (3.11)
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where p(o|τ) = exp(−c(τ)). These weights represent a trade-off between low-cost and

high entropy control sequences controlled by hyperparameters α and β. The weights

and particles {U1..R, w1..R} effectively approximate a posterior which is closer to the

optimal q(U |C). At each iteration of training, we take one gradient step to maximize

the likelihood of U1..R weighted by w1..R, then resample a new set U1..R. The flow

training loss for this iteration is

Lflow = −
R∑
i=1

wi log qζ(Ui|C). (3.12)

This process is equivalent to performing mirror descent on the variational free energy,

see [112] for a full derivation. In practice, when sampling U1..R from qζ(U |C) we can
optionally add a Gaussian perturbation to the samples, decaying the magnitude of

the perturbation during training. While this means we are no longer performing

gradient descent on F exactly, we found that this empirically improved exploration

during training. Doing this however, results in less smooth trajectories. We use

both options in our method; for experiments in which smoothness is particularly

important, we do not include this noise. To train the parameters of our system we

perform the following optimization via stochastic gradient descent:

min
θ,ϕ,ψ,ω,ζ

Lflow + aLV AE, (3.13)

for scalar a ≥ 0. We use a combined loss and train end-to-end so that h is explicitly

trained to be used to condition the control sequence posterior. We then continue

training the control sequence posterior with a fixed VAE with the optimization

min
ω,ζ
Lflow. (3.14)

3.4.4 Using the control sequence posterior for sample-based MPC

In this section we introduce two approaches for using the learned control sequence

posterior with sample-based MPC controllers, FlowMPPI and FlowiCEM, based on
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Figure 3.3: Two examples in which we run 50 iterations of MPPI, FlowMPPI and
MPPI in the latent space of the flow in a 2D navigation task with double-integrator
dynamics. Top: Initial samples from the Flow are goal directed, but do not yet fully
reach the goal, in contrast the initial samples for MPPI perform poorly. We see
that while MPPI can improve with successive iterations, running MPPI in the latent
space of the flow fails to improve the trajectory. In contrast FlowMPPI starts with
a better initialization and is able to improve faster than MPPI. Bottom: Here the
initial samples form the control sequence posterior have already reached the goal,
and so no improvement is necessary. In contrast, since MPPI is only performing
local improvements to the control sequence it becomes stuck in a local minima.

MPPI [167] and iCEM [119] respectively. Given a C computed from (x0, xG, ρ, E),

the control sequence posterior qζ(U |C) can be used as a sampling distribution. For

each of these methods, we use the same qζ(U |C) learned via the procedure outlined

in the previous section.

3.4.4.1 FlowMPPI

MPPI iteratively perturbs a nominal control sequence with Gaussian noise and

performs a weighted sum of the perturbations to find a new control sequence. It

is thus a method for local optimization, and the connection between MPPI and

mirror descent was noted in [158]. As a local optimization method it is susceptible to

becoming stuck in local minima given improper initialization. By sampling Gaussian

perturbations the algorithm is uninformed about the perturbation direction expected
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to lower cost.

In contrast, qζ(U |C) is able to directly sample collision-free goal-directed trajec-

tories and produces highly informed samples. One way in which we might think to

use qζ(U |C) in an MPC framework is to run MPPI in the latent space of the flow.

This is appealing because qζ(U |C) generates low-cost control sequence. This means

we would be searching directly in the space of low-cost control sequences and we

would not waste many samples exploring high-cost control sequences. Unfortunately

this method does not work well in practice, as visualized in (Figure 3.3). We note

that when performing MPPI in the latent space Z of qζ(U |C), while the initial sam-

ples are usually relatively low-cost we fail to locally improve the control sequence

with successive iterations.

One challenge of performing MPPI in the latent space of the flow is that small

changes in Z often lead to large differences in the resulting control sequence. Another

additional challenge is that by performing MPPI in Z we can only ever generate

control sequences that are produced by qζ(U |C). While in principle, given a highly

expressive model that is trained to minimize eq. (3.4), all low-cost control sequences

should have high density under qζ(U |C), there will inevitably be an approximation

gap, i.e. KL (qζ(U |C)||p(τ |o = 1)) > 0. This approximation gap is likely to increase

in OOD situations.

To avoid this, our first proposed MPC algorithm, FlowMPPI, uses samples from

qζ(U |C) while also allowing the control sequences to improve further beyond what

can be sampled from qζ(U |C). FlowMPPI combines sampling in the latent space Z,

and sampling perturbations to trajectories to get the advantages of both. For a given

sampling budget K, we generate half of the samples from perturbing the nominal

trajectory as in MPPI, and the other half from sampling from the control sequence

posterior. These samples will be combined as in standard MPPI.

The algorithm for a single step of FlowMPPI is shown in Algorithm (3). For a

step of FlowMPPI we first perform a shift operation on the previous nominal control

sequence, replacing the final control in the sequence with Gaussian noise, shown on

lines 3-5. We generate half of the samples and compute their respective costs via

the standard MPPI approach using a Gaussian perturbation to the nominal control
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sequence, shown lines 6-13. We generate the samples from the flow by first sampling

from a standard Normal distribution and then mapping these samples through the

control sequence posterior flow to generate control sequences. We then evaluate

the costs of these sequences, including a perturbation cost on the distance of the

sampled control sequence from the nominal. This cost is given in the algorithm

by the cost Snominal. This cost can be computed either in the flow latent space

with SZnominal = λϵTZ(f
−1
ψ (U,C) − ϵZ). This mirrors the similar cost in the original

MPPI algorithm. However, this requires querying the inverse of the control sequence

normalizing flow. An alternative is SUnominal = λ||Uk −U)||2Σ−1 . We make use of both

of these in our methods. Finally, we compute the new nominal control sequence via

a weighted sum of the sampled control sequences, where the weights are determined

by the exponentiated negative costs.

3.4.4.2 FlowiCEM

CEM [77] is an iterative sample-based MPC algorithm which uses a Gaussian

sampling distribution. It samples control sequences, selecting the Nelites elites with

the lowest cost, and refitting the Gaussian sampling distribution to those elites.

iCEM [119] is a recent method that builds on CEM; where CEM uses a Gaussian as

the sampling distribution, iCEM uses colored Gaussian noise. iCEM also maintains

low-cost control sequences between iterations, rather than discarding sampled control

sequences after an iteration is complete.

As with FlowMPPI, to incorporate qζ(U |C) into iCEM, we do not perform iCEM

exclusively in the latent space Z (for the reasons discussed in Section 3.4.4.1). Sim-

ilar to MPPI, we found that iCEM is very good at locally optimizing a control

sequence, and that performing iCEM in Z results in a failure to improve further

on the initial samples. We take a similar approach as with FlowMPPI, proposing

an algorithm, FlowiCEM, that uses some samples from qζ(U |C) while still allowing

further improvement.

In FlowiCEM, we add samples from the control sequence posterior by adding

to the initial population at the beginning of every time-step. These samples can
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Algorithm 3 A single step of FlowMPPI, this will run every timestep.

Inputs: Cost function J , previous nominal trajectory U , Context vector C =
gω(x0, xG, ρ, h), control sequence posterior flow fζ , MPPI hyperparameters (λ,Σ),
Horizon T, Samples K

1: function FlowMPPIStep
2: ▷ Perform shift operation on nominal U
3: for t ∈ {1, ..., T − 1} do
4: Ut−1 ← Ut

5: UT−1 ∼ N (0,Σ)
6: ▷ Generate samples by perturbing nominal U
7: for k ∈ {1, ..., K

2
} do

8: ϵU ∼ N (0,Σ)
9: Uk ← U + ϵU
10: τk ∼ p(τ |Uk) ▷ Sample trajectory
11: Sk ← J(τk) + λUkΣ

−1ϵU ▷ Compute cost

12: ▷ Generate samples from control sequence posterior
13: for k ∈ {K

2
+ 1, ..., K} do

14: ϵZ ∼ N (0, I)
15: Uk ← fζ(ϵZ , C)
16: τk ∼ p(τ |Uk) ▷ Sample trajectory
17: Sk ← J(τk) + Snominal ▷ Compute cost

18: ▷ Compute new nominal U
19: β ← mink Sk
20: η =

∑K
k=1 exp(−

1
λ
(Sk − β))

21: for k ∈ {1, ..., K} do
22: wk ← 1

η
exp(− 1

λ
(Sk − β))

23: U ←
∑K

k=1wkUk
24: return U
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be thought of as an initial set of ‘elites‘, i.e. low-cost control sequences. Further

iterations proceed as normal with iCEM.

A single step of the FlowiCEM algorithm is shown in Algorithm 4. For a sin-

gle step of FlowiCEM, we first shift the control sequence mean, replacing the final

mean Gaussian with noise. If this is not the first step, we also perform the shift

operation on the elites kept from the previous step. We sample a set of elites from

the control-sequence posterior in lines 8-9. We then proceed for several iterations

of the sample-based optimization. First we sample control sequences from a colored

noise distribution. If this is the first iteration, we introduce the elites sampled from

the flow into the population. For all iterations, we introduce the elites kept from

previous iterations into the population. We then compute the costs, and use the

best Nelites elites to update the parameters of the Gaussian used to sample control

sequences. We then select the best Nkept−elites < Nelites elites to be maintained for

the next iteration and proceed with the next iterations. Once we have finished all

iterations we return the lowest-cost elite.

3.4.5 Generalizing to OOD Environments

A novel environment can be OOD for the control sequence posterior and result in

poor performance. We present an approach where we project the OOD environment

embedding h in-distribution in order to produce low-cost trajectories when it is used

as part of the input to fζ . The intuition behind this approach is that our goal is

to sample low-cost trajectories in the current environment. Given that fζ will have

been trained over a diverse set of environments, if we can find an in-distribution

environment that would elicit similar low-cost trajectories, then we can use this

environment as a proxy for the actual environment when sampling from the flow.

Thus we avoid the problem of samples from the control sequence posterior being

unreliable when the input is OOD.

In order to do this projection, we first need to quantify how far out-of-distribution

a given environment is. Once we have such an OOD score, we will find a proxy envi-

ronment embedding ĥ by optimizing the score, while also regularizing to encourage
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Algorithm 4 A single step of FlowiCEM, this will run every timestep

Inputs: Cost function J , previous mean control sequence µ, Context vector
C = gω(x0, xG, ρ, h), control sequence posterior flow fζ , iCEM hyperparameters
(α, γ, σ2,M,N), Horizon T, Samples K

1: function FlowiCEMStep
2: ▷ Perform shift operation on nominal mean
3: µ← shifted µ
4: if Ukept−elites ̸= {} then
5: Ukept−elites ← shifted Ukept−elites

6: µT−1 ∼ N (0,Σ)
7: ▷ Generate initial elites from flow
8: ϵZ ∼ N (0, I)
9: Uflow ← fζ(ϵZ , C)
10: for i ∈ {1, ..., iters} do
11: ▷ Generate samples from colored noise
12: U ← SampleColoredNoise(µ, σ2)
13: ▷ Add samples from flow to population
14: if i == 0 then
15: U ← U ∪ Uflow
16: ▷ Add kept-elites to population
17: U ← U ∪ Ukept−elites
18: τ ∼ p(τ |U) ▷ Sample trajectories
19: costs ← J(τ) ▷ Evaluate costs
20: Uelites ← Nelites lowest-cost trajectories
21: µ← (1−m)mean(Uelites) +mµ
22: σ ← (1−m)std(Uelites) +mσ
23: Ukept−elites ← Best Nkept−elites elites

24: return lowest-cost elite from Ukept−elites
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low-cost trajectories. For the OOD score, we use the VAE we have discussed in

section 3.4.2. VAEs and other deep latent variable models have been used to detect

OOD data in prior work [38, 169, 109], however these methods are typically based

on evaluating the likelihood of an input, in our case p(E). For VAEs this requires

reconstruction. We would like to avoid using reconstruction in our OOD score for

two reasons. First, reconstruction, particularly of a 3D SDF, adds additional com-

putation cost and we would like to evaluate the OOD score in an online control loop.

Second, optimizing an OOD score based on reconstruction would drive us to find

an environment embedding proxy which is able to approximately reconstruct the

entire environment. This makes the problem more difficult than is necessary, as we

do not need ĥ to accurately represent the entire environment, only to elicit low-cost

trajectories from the control sequence posterior.

To determine how close h is to being in-distribution, we use the OOD score

LOOD(h) = − log pϕ(h), (3.15)

where pϕ(h) is the learned flow prior for the VAE. The intuition for using this as

an OOD score is that this term is minimized for the dataset in LV AE, so we should

expect it to be lower for in-distribution data. Previous work on OOD detection using

Normalizing Flows [75] found that using the likelihood of a Normalizing Flow as an

OOD score is more effective for image data when using a feature representation of

the input which contains higher-level semantic information compared with using the

raw pixel values. The authors hypothesize that the failure to successfully distinguish

between in-distribution and OOD data when using raw pixel values is the over-

reliance on local pixel correlations. We train the environment embedding h end-

to-end both for reconstruction and to be used for generating collision-free control

sequences. For this reason we hypothesize that our latent embedding h contains

higher level information on the structure of the environment, and hence the learned

flow prior likelihood is a more effective OOD score. Further motivating our approach,

using a learned prior was shown to improve density estimation over a Gaussian prior

[24]. Likewise, we found the learned prior yielded much better OOD detection than
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using a Gaussian prior, which is the standard VAE prior (see Figure 3.4).

We can perform gradient descent on LOOD to find ĥ, thus projecting the envi-

ronment to be in-distribution. Note that without regularization this process will

converge to a nearby maximum likelihood solution, which may lose key features of

the current environment. Since our aim is to sample low-cost trajectories from the

control sequence posterior, we use Lflow as a regularizer for this gradient descent.

Our intuition here is that in order to generate low-cost trajectories in the true envi-

ronment, the projected environment embedding should preserve important features

of the environment relevant for that particular planning query. The new environment

embedding is then given by

ĥ = argmin
h

bLOOD + Lflow, (3.16)

for scalar b > 0. We project h to ĥ by minimizing the equation 3.16 gradient descent.

This step is incorporated into our proposed MPC methods and we call the resulting

methods FlowMPPIProject and FlowiCEMProject. This version of our method will

perform M steps of gradient descent on the above combined loss at initialization,

followed by a single step at each iteration of the MPC. The algorithm for projection

is shown in algorithm 5. The algorithm SamplePertU is shown in the appendix.

46



Algorithm 5 Projection

Inputs: N iterations, K samples, θ, ϕ, ω, ζ parameters, control perturbation covari-

ance Σϵ, learning rate η, loss hyperparameters (α, β, b)

1: h1 ← ϕ

2: for n ∈ {1, ..., N} do
3: Compute log pϕ(h

n) via eq. (3.7)

4: C ← gω(x0, xG, h
n)

5: {Uk, qζ(Uk|C)}Kk=1 ← SamplePertU(C,Σϵ, K)

6: L ← −pϕ(hn)
7: for k ∈ {1, ..., K} do
8: wk ← from ({Ui, log qζ(Ui|C)}Ki=1, α, β}) via (3.11)

9: L ← L− wk · log qζ(Uk|C)

10: hn+1 ← hn − η ∂L
∂h

3.5 Results

In this section, we will evaluate our proposed approaches FlowMPPI & Flow-

iCEM with and without projection on three simulated systems; a 2D point robot, a

3D 12DoF quadrotor and a 7DoF manipulator. For each system, we will train the

flow on a dataset of starts, goals and environments and evaluate the performance on

environments drawn from the same distribution. In addition, for each system we will

test on novel environments that are radically different from those used for training

and evaluate the generalization of our approach and the ability of our projection

approach to adapt to these OOD environments. For the 12DoF quadrotor system

and the 7DoF manipulator, we additionally evaluate our method in simulation on

environments generated from real-world data. Our goal is to evaluate if the con-

trol sequence posterior, trained on simulated environments, can adapt to real-world

environments.

For our novel environments, we select environments which are difficult for sampling-

based MPC techniques. We will use the terms “in-distribution” and “out-of distri-
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Figure 3.4: Comparison of our OOD scores with using a VAE with a standard Gaus-
sian prior for in-distribution (red) and out-of-distribution (grey) simulated environ-
ments. a) planar navigation using a Gaussian prior, b) planar navigation using
a Normalizing flow prior, c) 12DoF quadrotor using a Gaussian prior, d) 12DoF
quadrotor using a Normalizing flow prior, These scores are computed by sampling h
from ϕ and evaluating log pϕ(h). The score is normalized by the dimensionality of h.
We see that our method, shown in (b) and (d), achieves a clear separation between
in-distribution and out-of-distribution environments in both cases.
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bution” for environments for the rest of this section, but note that these terms are

relative to the set of environments which we use to train our method. Being out-of-

distribution has no bearing on the non-learning based baselines. The performance

of non-learning sampling-based MPC algorithms depends only on the given environ-

ment, not its relation to other environments.

We evaluate our proposed algorithms on the resulting attained costs, success

rates, and, for the 12DoF quadrotor and 2DoF double integrator, smoothness of the

resulting controls. To compute smoothness we use

Lsmooth(U) =
∑
t=1

||ut − ut−1||2. (3.17)

3.5.1 Systems & Environments

In this section, we will introduce the systems and the environments we use for

evaluation. For all systems and environments, a task is considered a failure if there

is a collision or if the system does not reach the goal region within a timeout of

100 timesteps. The cost function for all systems is given by J(τ) = 100dG(xT ) +∑T−1
t=1 10dG(xt) +

∑T
t=1 10000D(xt) + ρv||vt||22, where T is the MPC horizon, dG is a

distance to goal function, and D is an indicator function which is 1 if xt is in collision

and 0 otherwise, and v is the velocity. The exception is that the 7DoF manipulator

does not have a velocity so that term is omitted. For all of our experiments, the

control horizon T = 40.

We use a Gaussian prior over controls, assuming each control dimension is inde-

pendent from one another. To encourage smoothness, we make control dimensions

correlated across time, by computing the covariance for the ith control dimension

ui as Σi
t,t′ = σ2 exp− ||uit−uit′ ||

2

l
. Here σ controls the magnitude of the controls and l

controls the smoothness. The prior is then given by p(U) = N (0,Σ). Combining the

cost and the control prior yields the total cost Ĵ(τ) = J(τ) + log p(U), with control

cost becoming the weighted l2-norm of the controls weighted by Σ. For all of our

experiments, the dynamics are deterministic. The parameterization of the total cost

function is ρ = [ρv, σ
2, l]. Further details of the generation of training data can be
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Figure 3.5: Examples of our ’in-distribution’ environments (top) and ’out-of-
distribution’ environments (bottom). a) The sphere environment for the planar
navigation task, showing sampled trajectories from the flow. b) The narrow pas-
sages environment for planar navigation, we see that the samples from the flow are
goal orientated and generally toward the passages, but most are generally not col-
lision free. c) The sphere environment for the 12DoF quadrotor. d) The narrow
passages environment for the 12DoF quadrotor
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Figure 3.6: The projection process visualized for the planar navigation task. We vi-
sualize the projected environment embedding using the VAE decoder on the bottom
row. Note that decoding h is only used for training the VAE and visualization, it is
not necessary for projection. The top shows the environment and sampled trajecto-
ries from qζ(U |C). The bottom shows the same samples overlaid on a reconstruction

of projected environment embedding ĥ. On the left, the initial SDF is very poor, and
sampled control sequences result in trajectories passing directly through the obsta-
cle. As the task progresses, the iterative projection results in an SDF that resembles
the training environment more. The environment embedding encodes obstacles that
result in a trajectory that traverses the narrow passage. Notice however, that regions
that are not relevant for this planning task, such as the lower wall, do not need to
accurately represent the environment.

found in appendix A.1.2.

3.5.1.1 Planar Navigation

The robot in the planar navigation task is a point robot with double-integrator

dynamics. The goal is to perform navigation in an environment cluttered with obsta-

cles. The state and control dimensionality are 4 and 2, respectively. The environment

is represented as a 64 × 64 SDF. Examples of the training and evaluation environ-

ments are shown in Figure 3.5 (a & b). The training environments consist disc-shaped

obstacles, where the size, location and number of obstacles is randomized. The out-

of-distribution environment consists of four rooms, with narrow passages randomly
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generated between them. The location of the passages is randomized for each OOD

environment. The distance-to-goal function is dG(x) = ||x − xG||2. The goal region

for this task is given by XG = {x : ||x−xG||2 < 0.1}. We consider cost parameters in

the range ρv ∈ [0.01, 1], σ2 ∈ [1, 10] and l ∈ [0.02, 2]. During evaluation, we evaluate

with three different settings of ρ. The first is [0.1, 4, 0.2] which moderately penalizes

the velocity, control magnitude, and controller smoothness. The next is [0.01, 8, 0.02]

which represents a more aggressive cost that has lower penalty on velocity, control

magnitude, and smoothness. The next is a more conservative cost function defined

by ρ = [1, 1, 2], with a stronger penalty on velocity, control magnitude and smooth-

ness. For each cost function we fix a single OOD environment and perform 100

control trials. For FlowMPPI, we use SUnominal to compute the cost to the nominal

trajectory, avoiding an additional query to the control sequence posterior flow. The

dynamics for this system are shown in appendix A.1.3.

3.5.1.2 3D 12DoF Quadrotor

This system is a 3D 12DoF underactuated quadrotor with the shape of a short

cylinder. It has state and control dimensionality of 12 and 4, respectively. As with

the planar navigation task, the goal is to perform navigation in a cluttered environ-

ment. Examples of the training and evaluation environments are shown in Figure

3.5 (c & d). The training environment consists of spherical obstacles of random size,

location, and number, and the out-of-distribution environment of four rooms sepa-

rated by randomly generated narrow passages. The environment is represented as a

64 × 64 × 64 SDF. The goal region is specified as a 3D position pG. The distance-

to-goal function is dG(x) = ||Ax − pG||2 + ρv||Bx||2 where A selects the position

components from the state x, and B selects the angular velocity components. The

goal region is XG = {x : dG(x) < 0.3}. During training, we consider cost param-

eters in the range ρv ∈ [0.01, 1], σ2 ∈ [4, 40] and l ∈ [0.02, 2]. During evaluation,

we evaluate on three different settings of ρ. The first is [0.1, 25, 0.02]. The next

is [0.1, 25, 0.02], which encourages smooth behavior without strongly penalizing the

magnitude of the controls. The next is a more conservative cost function defined
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by ρ = [1, 12, 0.2], which penalizes velocities and control magnitude more strongly.

For each cost function, we fix a single OOD environment and perform 50 control tri-

als. We also tested in two simulation environments generated from real-world data

(shown in 3.1). For FlowMPPI, we use SUnominal to compute the cost to the nominal

trajectory, avoiding an additional query to the control sequence posterior flow. The

dynamics for this system are shown in appendix A.1.4.

3.5.1.3 7DoF Manipulator

This system is a kinematic 7DoF manipulator shown in different environments

in Figure 3.7. The state and control dimensions are both 7. The goal is to reach a

target end-effector position in the presence of obstacles. The training environment

consists of spherical obstacles, shown in Figure 3.7(a). The number and size of the

spherical obstacles is randomized during training. The simulated novel environments

are shown in Figure 3.7(b-d). We additionally evaluate on one environment generated

from real-world data, shown in Figure 3.7(d,e). The environment is represented as

a 64 × 64 × 64 SDF. The goal region is specified as a 3D position pG. To generate

the SDF we generated pointclouds from several different views with a KinectV2. We

used motion capture to determine the camera frame and aggregated the point clouds

together. The distance-to-goal function is dG(x) = |ForwardKinematics(x) −
pG||2. The goal region is XG = {x : dG(x) < 0.1}. For this task we keep the cost

parameters ρ constant with σ2 = 4. We do not include the smooth prior, effectively

taking l → ∞. Since the 7DoF manipulator task is quasi-static, we do not include

the velocity penalty for this system. To perform fast batched collision checking on

the GPU using the environment SDF we approximate the robot geometry as a set

of spheres. For FlowMPPI, we use SZnominal to compute the cost to the nominal

trajectory, as this task is kinematic, computation time is less important.

3.5.2 OOD Score and Projection

To confirm the efficacy of our OOD score, we computed this score for the training

and OOD environments for each system above. Figure 3.4 shows that this score is
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clearly able to distinguish in-distribution environment embeddings from OOD ones.

3.5.3 Network Architectures

For both the control sequence posterior flow fζ and the VAE prior pϕ(h) we use

an architecture based on Real-NVP [33]. For the VAE prior pϕ(h) we use a flow

depth of 4, while for the control sampling flow fζ we use a flow depth of 12 for the

12DoF quadrotor and 2DoF double integrator, and 20 for the 7DoF manipulator. For

the control sampling flow we use the conditional coupling layers from [168]. For the

VAE encoder we use four CNN layers with a kernel of 3 and a stride of 2, followed

by a fully connected layer. For the VAE decoder we used a fully connected layer

followed by four transposed CNN layers. For the 3D case we use 3D convolutions.

The dimensionality of both h and C was 256 for all tasks. gω was defined as an

MLP with a single hidden layer of size 256. For nonlinear activations, we used ReLU

throughout. We implement all networks using PyTorch [115].

3.5.4 Training & Data

For training, we use 10000 randomly generated environments for planar navi-

gation task, and 20000 for the 3D 12DoF quadrotor and 7DoF manipulator tasks.

At each epoch, for each environment, we randomly select one of 100 start and goal

pairs, and also randomly sample cost parameters ρ. We train the control sequence

posterior flow fζ , the VAE parameters (θ, ϕ, ψ) and the context MLP gω end-to-end

using Adam. After 100 epochs, we freeze the VAE and do not continue training with

LVAE . This is primarily because the VAE converges quickly and training proceeds

more quickly without reconstruction. When training the VAE we divide the loss by

the total dimensionality of the SDF and use a = 5. For the double integrator and

quadrotor tasks, we train the control sequence posterior without perturbing the sam-

ples with noise. These are second-order systems and thus it is important to minimize

the controller jerk. For the 7DoF manipulator planning, we train with the noise. We

found that without using the noise for the 7DoF manipulator the resulting control

sequence posterior was not able to generate diverse enough samples for successful
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use as an MPC sampling distribution.

A full list of training hyperparameters can be found in appendix A.1.

3.5.5 Baselines

For our baselines, we use several state-of-the-art sampling-based MPC methods:

MPPI [167], Stein Variational MPC (SVMPC) [84] and improved CEM (iCEM) [119].

MPPI uses a Gaussian distribution as the sampling distribution, iCEM uses colored

noise, and SVMPC uses a mixture of Gaussians. For each baseline, we tune the

hyperparameters to get the best performance based on the training environments,

and maintain these hyperparameters when switching to the out-of-distribution en-

vironments. We evaluate each method with a sampling budget of 512. This means

that for methods that require multiple iterations per timestep, the sampling budget

is distributed across the iterations. A more detailed list of the hyperparameters for

each controller can be found in appendix A.1.5.
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Table 3.1: Comparison of methods for the Planar Navigation Tasks. We evaluate on both in-distribution environments and OOD environments
across different cost function parameters ρ.

In-Distribution Environment Out-of Distribution Environments
ρ = [0.1, 25, 0.2]T ρ = [0.1, 25, 0.2]T ρ = [0.1, 25, 2]T ρ = [1, 12, 0.2]T

Controller Success Cost Lsmooth Success Cost Lsmooth Success Cost Lsmooth Success Cost Lsmooth
MPPI 0.82 1829 15.4 0.24 2791 16.7 0.16 2842 18.2 0.15 3103 7.86
SVMPC 0.82 1824 6.60 0.08 3014 6.36 0.08 2991 7.62 0.09 3058 2.55
iCEM 0.87 1427 1.20 0.37 2175 0.873 0.41 2150 1.13 0.42 2142 0.662

FlowMPPI 0.97 1084 17.0 0.85 1529 20.8 0.92 1399 27.8 0.75 1867 7.24
FlowMPPIProject 0.96 1097 16.7 0.95 1328 22.4 0.95 1274 26.8 0.8 1783 7.34

FlowiCEM 0.97 1038 4.26 0.77 1678 3.64 0.77 1647 6.10 0.72 1801 1.27
FlowiCEMProject 0.98 1008 4.22 0.77 1633 3.71 0.77 1583 7.49 0.74 1777 1.59

Table 3.2: Comparison of methods for the 12DoF quadrotor task. We evaluate on both in-distribution environments and OOD environments
across different cost function parameters ρ.

In-Distribution Environment Out-of Distribution Environments
ρ = [0.1, 25, 0.2]T ρ = [0.1, 25, 0.2]T ρ = [0.1, 25, 2]T ρ = [1, 12, 0.2]T

Controller Success Cost Lsmooth Success Cost Lsmooth Success Cost Lsmooth Success Cost Lsmooth
MPPI 0.50 2999 14.2 0.06 4307 53.0 0.08 4079 46.3 0.0 4047 72.0
SVMPC 0.32 3580 89.0 0.00 4768 17.7 0.00 4671 16.7 0.00 4400 16.9
iCEM 0.60 2775 1.55 0.14 4069 1.64 0.24 3784 1.66 0.00 4397 1.25

FlowMPPI 0.85 2138 67.3 0.36 3077 60.8 0.80 2876 52.3 0.78 2504 58.2
FlowMPPIProject 0.96 1933 67.7 0.9 2569 58.2 0.98 2560 49.5 0.84 2385 54.0

FlowiCEM 0.68 2556 106 0.62 3474 67.4 0.62 3470 45.0 0.38 3026 68.8
FlowiCEMProject 0.98 2225 108 0.72 3272 101.7 0.86 3047 67.7 0.68 2654 84.4
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Table 3.3: Computational times

System MPPI SVMPC iCEM FlowMPPI FlowMPPIProject FlowiCEM FlowiCEMProject

Planar Navigation 0.0078 0.052 0.032 0.029 0.075 0.059 0.116
12DoF Quadrotor 0.084 0.124 0.087 0.076 0.136 0.134 0.195
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Table 3.4: Comparison of methods for the 3D 12DoF quadrotor navigation task with
two environments generated from real-world data. The rooms environment is shown
in figure 3.5 (b) and the stairway environment is shown in figure 3.5 (a). We evaluate
on 100 randomly sampled starts and goals in each environment.

Rooms Environment Stairway Environment
ρ = [0.1, 25, 0.2]T ρ = [0.1, 25, 0.2]T

Method Cost Success Lsmooth Cost Success Lsmooth
MPPI 0.34 2576 12.8 0.1 3194 13.6
SVMPC 0.00 3621 14.8 0.02 4255 12.8
iCEM 0.24 2749 1.30 0.12 2577 1.32

FlowMPPI 0.94 1643 69.6 0.44 2260 70.3
FlowMPPIProject 0.94 1589 67.2 0.58 2045 73.4

FlowiCEM 0.66 2386 102 0.38 2646 87.5
FlowiCEMProject 0.68 2068 100 0.54 2435 105.7

3.5.6 Results

The results comparing our MPC methods to baselines are shown in Tables 3.1,

3.2 3.4 and 3.5. In addition, box plots showing the distribution of costs are shown

in Figures 3.9 and 3.10, and the computational times for all methods are shown

in Table 3.3. For the planar navigation case, we see that all our proposed meth-

ods perform similarly for the in-distribution environment, as expected. All methods

based on iCEM perform well for this task, with iCEM achieving the lowest cost of

all baselines. In addition, iCEM reliably achieves the smoothest controls. For the

out-of-distribution environments, all of our proposed flow variants reach the goal

significantly more often. For example, the success rate for FlowMPPIProject is 0.95

for ρ = [0.1, 25, 0.2] compared with the next closest baseline, iCEM, which attains

a success rate of 0.85. While all of our proposed methods demonstrate strong per-

formance in cost and success rate, they achieve lower control smoothness than their

corresponding baseline method. For example, for the in-distribution environment,

FlowiCEM results in a smoothness of 4.26 vs 1.20 for iCEM while improving the cost

from 1427 to 1008. The flow-based methods show stronger control action, trading
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Figure 3.7: We evaluate our approach on control of a kinematic 7DoF manipulator
on four environments in simulation (a-d). Tasks consist of a) Navigating around
spherical obstacles b) Reaching into a shelf c) Going from one side of a wall to
another d) Reaching inside a fridge e) Real world setup for the reaching into a fridge
task. The voxel grid in d) was generated from the fridge in e) using multiple views
of a Kinect v2.
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Figure 3.8: a,b) iCEM baseline performing a task where the goal is to navigate to
to the inside of the fridge. The baseline fails to successfully navigate to the goal.
c,d) One of our proposed methods, FlowiCEMProject, successfully navigating to the
inside of the fridge.
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Figure 3.9: Box plot of the costs for the double integrator experiments. We evalu-
ate on 100 trials for the training environment consisting of randomly generated disc
obstacles. In addition we evaluate for 100 trials with three different cost parameter-
izations in three different environments consisting of 4 walls with narrow passages
between them.
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Figure 3.10: Box plot of the costs for the 12DoF quadrotor experiments. We evaluate
on 50 trials for the training environment consisting of randomly generated disc ob-
stacles. In addition, we evaluate 50 trials with three different cost parameterizations
in three different environments consisting of 4 walls with narrow passages between
them.
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off smoothness for rapidly moving to the goal. Since the overall cost for these meth-

ods is lower, this suggests that this trade-off is desirable according to our given cost

functions. The projection process for the planar navigation is shown in Figure 3.6).

We observed during this experiment that when iCEM is able to generate a trajectory

that reaches the goal region, they are able to locally optimize this trajectory better

than FlowMPPI variants, while FlowMPPI is better able to generate sub-optimal

trajectories to the goal region.

For the quadrotor system, FlowMPPIProject outperforms all other methods in

both cost and success rate across all environments and cost parameterizations bar

the training environment. and sampling budgets. For the cost parameterization

ρ = [0.1, 25, 0.2] evaluated on the Narrow Passages environment, FlowMPPIProject

attains a 90% success rate compared to 14% by iCEM and 6% by MPPI for OOD

environments. When we increase the smoothness parameter, FlowMPPI attains 98%

vs 24% for iCEM and 8% for MPPI. Increasing the smoothness parameter in the

cost does lead to a corresponding improvement in the Lsmooth for all the methods

other than iCEM. When evaluating on the more conservative cost ρ = [0.1, 25, 0.2],

all baselines fail with 0% success rate, while FlowMPPIProject attains 68%. The

dynamics of the quadrotor task make it much more difficult, particularly because

stabilizing around the goal is non-trivial. We found that the baselines struggled to

find trajectories that both reached and stabilized to the goal and thus were more

susceptible to becoming stuck in local minima.

Table 3.4 shows the results when evaluating our method in simulation in two en-

vironments generated from real-world data. FlowMPPIProject outperforms all other

methods in cost & success rate, despite only being trained on simulated environments

consisting of large spherical obstacles. For the challenging stairway environment,

FlowMPPIProject achieves 58% success, while the next closest baseline, iCEM, has

44% success. FlowMPPI and FlowiCEM achieve only 44% and 54% success rate,

respectively, for this task, rising to 78% and 53% when performing online projection,

highlighting the importance of projection for real-world environments.

The results for the 7DoF manipulator experiment are shown in table 3.5. For

this experiment, we use a fixed sampling budget of 512 samples for all methods.
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On the in-distribution environment methods perform similarly, with FlowMPPI and

FlowiCEM marginally improving on MPPI and iCEM, respectively, and projection

resulting in further improvement. For the OOD environments, either FlowMPPIPro-

ject or FlowiCEMProject perform best in both success rate and average cost. For the

Fridge environment, which was generated from real world data, FlowiCEMProject

achieved 97% success rate compared with 89% for iCEM and 44% for SVMPC. Fig-

ure 3.1 shows FlowiCEMProject running on a 7DoF manipulator in real hardware.

These results suggest that our learned flow-based posterior does indeed improve the

performance of sampling-based MPC methods for a variety of tasks. It is especially

encouraging that our methods succeed despite the testing environments being very

different (i.e. OOD) with respect to the training environments, which demonstrates

the generalization afforded by our OOD-projection approach.
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Table 3.5: Results for attempting task 100 times for each environment in simulation. The environments are shown in Figure 3.7. The fridge
environment is generated from real-world data from the fridge shown in Figure 3.7 (e)

.

In-Distribution Out-of Distribution
Spheres Environment Shelf Environment Wall Environment Fridge Environment

Method Success Cost Success Cost Success Cost Success Cost

MPPI 0.83 836 0.24 1900 0.12 1938 0.16 1944
SVMPC 0.82 737 0.08 2132 0.42 1628 0.44 1946
iCEM 0.85 694 0.66 1302 0.36 1768 0.89 898

FlowMPPI 0.85 698 0.65 1355 0.62 1280 0.74 1080
FlowiCEM 0.86 628 0.62 1339 0.44 1573 0.94 850

FlowMPPIProject 0.87 582 0.75 1127 0.64 1178 0.83 819
FlowiCEMProject 0.86 612 0.66 1268 0.7 1109 0.97 798
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3.6 Discussion

While our results demonstrate the efficacy of using a flow-based posterior and

OOD-project for MPC problems, our approach has several limitations. First, our

experiments only consider navigation tasks where the objective is to reach a config-

uration while avoiding collision. This means that the cost functions are relatively

easily parameterized with a start, goal, and SDF of the environment. In order to

generalize our method to a wider range of tasks, such as robotic manipulation, we

must be able to design a flexible task parameterization that we can use as input to

the control sequence posterior. This is a topic we intend to explore in future work.

Second, while our experiments demonstrate that our OOD-projection approach

enables our method to generalize to novel environments, the limits to this general-

ization are unknown. Given a novel environment, we do not have a way of predicting

how well our projection method is likely to work without attempting the task in that

environment. Our overall projection seeks to find an environment embedding that

has a high likelihood according to the training distribution while minimizing the cost

of sampled trajectories. This inevitably leads to some loss of information. In par-

ticular, the regularization term minimizing the cost of sampled trajectories can only

encourage the preservation of environment details local to the sampled trajectories,

so we can only expect a local approximation of the environment. In addition, finding

an environment embedding with a high likelihood under the training distribution

means we are unable to represent environment geometries that differ significantly

from those seen during training.

Third, we have only considered the case where the environment is static. A simple

method of applying to a dynamic environment could be incorporated by updating

the SDF online and planning as if the scene were static. However, our projection

method currently updates the environment embedding with a single gradient step

per timestep to reduce the computation time, using the previous environment em-

bedding as the initialization. If the environment SDF is reset every time-step then

one gradient step may no longer be sufficient to adapt to novel environments. One

interesting potential avenue for future work is to incorporate knowledge of the envi-
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ronment dynamics during planning, by predicting the future environment SDFs as in

[40]. By projecting these future environment SDFs in-distribution we may avoid the

issue of having the environment representation reset, as we can warm-start from the

projected future SDF. However, in our current approach the SDF is encoded once

at the beginning of the task, this method would require encoding both current and

predicted SDFs at every time-step, which would increase the computational cost.

Fourth, we note from Table 3.3 that incorporating projection requires significant

computation time, and thus the current implementation cannot be used for real-time

control. For both the 12DoF quadrotor and the 2DoF double integrator, the total

computational time is larger than the simulation time-step for both FlowiCEMPro-

ject and FlowMPPIProject. Also note that the computation time is likewise longer

than the simulation time-step for several of the baseline methods, including all meth-

ods for the 12DoF quadrotor. Our method and all baselines were implemented in

Python, and implementing these methods in C++ may enable real-time performance

on these systems in future work. The learned components of our system could be

deployed in C++ using LibTorch [115].

Fifth, training an effective control-sequence posterior requires tuning system-

dependent hyper-parameters. While some hyper-parameters can be automatically

selected (see Appendix A.1.1 for details), tuning parameters α and β is necessary

when considering a new system. These parameters control the trade-off between

diversity and low-cost control-sequence samples, and this trade-off is sensitive to the

scale of the objective, which is often system-dependent.

Finally, we assume that an accurate model of the dynamics is known. Since

we are using the learned control-sequence posterior in the context of model-based

control, we believe assuming access to a dynamics model is reasonable. However,

if the dynamics model is inaccurate, the control sequence posterior will have been

learned using data from an inaccurate model. MPC is often robust to model errors,

but it is unclear how the performance will be affected by using the inaccurate learned

control sequence posterior.
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3.7 Conclusion

In this chapter, we have presented a framework for using a Conditional Normal-

izing Flow to learn a control sequence sampling distribution for MPC based on the

formulation of MPC as Variational Inference. The control sequence posterior samples

control sequences which result in low-cost trajectories that avoid collision. We have

shown how this control sequence posterior can be used in two different sampling-

based MPC methods, FlowMPPI and FlowiCEM. We have also proposed a method

for adapting this control sequence posterior to OOD environments by projecting the

representation of the environment to be in-distribution, essentially “hallucinating”

an in-distribution environment which elicits low-cost trajectories from the control

sequence posterior. We have demonstrated that incorporating our learned sampling

distribution into MPC algorithms offers large improvements over baselines in difficult

environments and that by performing the environment projection we can successfully

transfer a control sequence posterior learned with simulated environments to envi-

ronments generated from real-world data.
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CHAPTER IV

Constrained Stein Variational Trajectory

Optimization

In this chapter we present Constrained Stein Variational Trajectory Optimiza-

tion (CSVTO), an algorithm for performing trajectory optimization with constraints

on a set of trajectories in parallel. We frame constrained trajectory optimization

as a novel form of constrained functional minimization over trajectory distributions,

which avoids treating the constraints as a penalty in the objective and allows us

to generate diverse sets of constraint-satisfying trajectories. Our method uses Stein

Variational Gradient Descent (SVGD) to find a set of particles that approximates a

distribution over low-cost trajectories while obeying constraints. CSVTO is applica-

ble to problems with differentiable equality and inequality constraints and includes

a novel particle re-sampling step to escape local minima. By explicitly generating

diverse sets of trajectories, CSVTO is better able to avoid poor local minima and is

more robust to initialization. We demonstrate that CSVTO outperforms baselines

in challenging highly-constrained tasks, such as a 7DoF wrench manipulation task,

where CSVTO outperforms all baselines both in success and constraint satisfaction.

4.1 Introduction

Trajectory optimization and optimal control are powerful tools for synthesizing

complex robot behavior using appropriate cost functions and constraints [17, 139, 56,
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118, 18]. Constraint satisfaction is important for safety-critical applications, such as

autonomous driving, where constraints determine which trajectories are safe. Con-

straints can also provide effective descriptions of desired behavior. For instance,

consider a robot sanding a table. This problem can be defined with an equality

constraint specifying that the end-effector must move along the surface of the table

as well as constraints on the minimum and maximum force applied to the table.

For many tasks, including manipulation tasks like the one above, satisfying these

constraints can be very difficult as constraint-satisfying trajectories may lie on im-

plicitly defined lower-dimensional manifolds. Such constraints present difficulties for

sample-based methods since the feasible set has zero measure and thus it is difficult

to sample. It is also difficult for gradient-based methods since even for trajectories

that start feasible, if the constraint is highly nonlinear then updates based on a first-

order approximation of the constraint will lead to solutions leaving the constraint

manifold. In addition, many useful tasks entail constrained optimization problems

that are non-convex and exhibit multiple local minima.

Global sample-based motion planning methods such as Rapidly-Exploring-Random-

Trees (RRT) [79]. Probabilistic Roadmaps (PRM) [71] effectively solve difficult plan-

ning problems, however, they do not find paths that minimize a given cost function.

To minimize a given cost function, algorithms such as RRT* and PRM* [70] have

been proposed to find asymptotically globally optimal paths. Alternatively, a com-

mon approach is to use the path returned from a sample-based motion planner to

initialize a trajectory optimization problem [87]. Sample-based methods have addi-

tionally been applied to constrained planning problems [14, 105, 58, 120], and kin-

odynamic problems [91, 165]. While effective for solving problems exhibiting local

minima, when applied to kinodynamic or constrained problems these global methods

are typically computationally expensive.

One of the key advantages of trajectory optimization techniques over global search

methods, such as sampling-based motion planning, is computation speed. Faster

computation speed enables online re-planning to adapt to disturbances. For example,

consider again the robot sanding the table, but now in the proximity of a human.

The human may move in an unexpected way which necessitates an update to the
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Figure 4.1: We use CSVTO to turn a wrench in the real world with online replanning;
b) A human disturbs the robot, changing the grasp position of the wrench; c) The
robot readjusts the grasp position; d) The robot achieves the desired wrench angle.

planned trajectory. However, even if the cost function is well-suited to the task, the

performance of many trajectory optimization methods is still highly dependent on

the initialization. Poor initialization may lead to the solver converging to a poor

local minimum. For example, for a robot minimizing a distance to goal cost subject

to collision constraints, this may mean a trajectory that avoids obstacles but makes

little or no progress toward the goal. In the worst case, the solver may not find a

feasible solution, in which case the robot may collide with an obstacle. A dependence

on initialization is particularly problematic when re-solving the optimization problem

online under limited computation time when disturbances can lead to the previous

solution becoming a poor initialization for the current optimization problem. In the

sanding example mentioned previously, the human may move to block the robot’s

path, and performing a local optimization starting from the previous trajectory may

not return a feasible solution.

In this article, we formulate the constrained trajectory optimization problem as

a Bayesian inference problem. This view has advantages as it aims to find a distri-

bution over trajectories rather than a single trajectory alone. As noted by Lambert
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et. al. [83], commonly used Variational Inference approaches [16] lead to minimizing

entropy-regularized objectives [83] which can improve exploration of the search space

and give greater robustness to initialization. Previous methods taking the inference

view of trajectory optimization have only been able to incorporate constraints via

penalties in the cost [176, 106, 83, 84]. A drawback of penalty methods is that se-

lecting the relative weights of the penalties is challenging due to possible conflicts

with the objective. We compare against baselines that incorporate constraints via

penalties and show that, for non-trivial constraints, this results in poor constraint

satisfaction. An alternative method for enforcing constraints in trajectory optimiza-

tion is via barrier functions [51, 111]. While effective, they are only applicable to

inequality constraints and have not yet been applied in the context of trajectory

optimization as an inference problem.

We propose Constrained Stein Variational Trajectory Optimization (CSVTO), an

algorithm that performs constrained trajectory optimization on a set of trajectories

in parallel. Our method builds on Orthogonal-Space Stein Variational Gradient De-

scent (O-SVGD), a recent non-parametric variational inference method for domains

with a single equality constraint [179]. We present a constrained SVGD algorithm

for trajectory optimization with differentiable equality and inequality constraints,

generating a diverse set of approximately constraint-satisfying trajectories. The tra-

jectories are approximately constraint-satisfying because we do not run the algorithm

until convergence to avoid excessive computation times. We additionally incorporate

a novel re-sampling step that re-samples and perturbs particles in the tangent space

of the constraints to escape local minima. Our contributions are as follows:

• We frame constrained trajectory optimization as a novel form of constrained

functional minimization over trajectory distributions, which avoids treating the

constraints as a penalty in the objective.

• We present a constrained SVGD algorithm for trajectory optimization, which is

applicable to problems with differentiable equality and inequality constraints.

• We propose a novel particle re-sampling step for re-sampling and perturbing
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trajectory particles in the tangent space of the constraints to escape local min-

ima.

• We evaluate our method on three complex constrained problems, including a

12DoF underactuated quadrotor and two highly constrained 7DoF manipula-

tion tasks.

Our experimental results demonstrate that CSVTO outperforms baselines in chal-

lenging, highly constrained tasks, such as a 7DoF wrench manipulation task where

our method achieves 20/20 success compared with 12/20 for Interior Point OP-

Timizer (IPOPT) [157] and 19/20 for Stein Variational Model Predictive Control

(SVMPC) [84], CSVTO also achieves the lowest constraint violation of all baselines.

In addition, CSVTO outperforms baselines in a 12DoF quadrotor task with a dy-

namic obstacle that necessitates online adaption of the planned trajectory.

The chapter is organized as follows. In Section 4.2 we discuss related work.

In Section 4.3 we will discuss the trajectory optimization problem, followed by an

overview of the variational inference approach to trajectory optimization in Section

4.4. In Section 4.5 we introduce our novel formulation of trajectory optimization as a

constrained functional minimization over trajectory distributions. We will then give

some additional background information on SVGD in Section 4.6 which is necessary

to develop our algorithm. In Section 4.7 we introduce CSVTO. In Section 4.8 we

evaluate our method on a 12DoF quadrotor task and two highly constrained tasks

with a 7DoF manipulator. We additionally deployed CSVTO to turn a wrench in

the real world (Figure 4.1).

4.2 Related Work

4.2.1 Trajectory optimization

Previous work on local trajectory optimization techniques includes direct methods

[6, 118], where the explicit optimization problem is transcribed and solved using

nonlinear solvers such as IPOPT [157] or Sparse Nonlinear OPTimizer (SNOPT) [46].

Methods in this class include Sequential Convex Programming (SCP) methods such
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as TrajOpt [139] and Guaranteed Sequential Trajectory Optimization (GuSTO) [17].

In contrast, indirect methods aim instead to solve the local optimality conditions of

the trajectory and early examples include Differential Dynamic Programming (DDP)

[101] and iterative Linear Quadratic Regulator (iLQR) [90], however, neither of these

methods can handle constraints. Later work incorporated constraint satisfaction with

these indirect methods [45, 171, 56]. Direct methods are typically easier to initialize

but less accurate [156]. However all of these methods only aim to find a single

locally-optimal trajectory, and the performance is dependent on the initialization.

In contrast, our approach optimizes a diverse set of trajectories in parallel. This

makes our approach easier to initialize as well as more robust to disturbances when

re-planning online. Our approach is related to the direct methods, in that we use

an iterative algorithm that aims to minimize an objective. However, our method

is based on viewing the trajectory optimization problem as a Bayesian inference

problem.

4.2.2 Sample-based Motion Planning

Many global search methods have been developed in the sampling-based motion

planning literature, yielding motion planners for constrained domains. These can

be broadly categorized as projection methods, whereby sampled configurations are

projected to the constraint [14, 105], and continuation methods, which use a local

approximation of the constraint manifold at feasible configurations to sample new

configurations [58, 120]. Our method of trajectory optimization is similar to con-

tinuation methods, as our iterative algorithm projects update steps to the tangent

space of the constraint. While these global motion planners can be highly effective,

they are typically too computationally intensive to be run online.

4.2.3 Planning & Control as Inference

Prior work framing trajectory optimization as Bayesian inference has used Gaus-

sian approximations to yield fast, gradient-based algorithms [106, 107, 151, 131, 164,

176]. Ha et al. presented a probabilistic approach for trajectory optimization with
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constraints, using Laplace approximations around local minima found by solving

a non-linear program (NLP) [48]. This approach uses a Gaussian approximation

with a degenerate covariance with variance only in the tangent space of the con-

straints. Samples from this distribution will generally deviate from the constraint

manifold for non-linear constraints, in contrast, our approach directly optimizes for

diverse constraint-satisfying samples. Sample-based techniques such as Model Pre-

dictive Path Intregral (MPPI) control [167] and Cross-Entropy Method (CEM) [77]

have strong connections to the inference formulation of Stochastic Optimal Control

(SOC) [162], but these methods again use Gaussian sampling distributions. Sev-

eral recent works have focused on improving the performance of these algorithms,

often by modifying the sampling distribution. Watson and Peters recently proposed

using a Gaussian Process as a sampling distribution [163], and Pinneri et al. pro-

posed using colored noise [119], both of which lead to smoother sampled trajectories.

Bhardwaj et al. [15] has also demonstrated improvements to MPPI with a focus on

robot manipulation. However, in all of these prior works, the sampling distribution

is uni-modal. Uni-modal sampling distributions can be problematic in complex en-

vironments due to their lack of flexibility which hinders exploration of the search

space. Recent work has proposed learning non-Gaussian sampling distributions with

flexible model classes [123, 136].

Another class of methods has used Stein Variational Gradient Descent (SVGD)

[96] for Model Predictive Control (MPC) [84, 12] and trajectory optimization [83].

By using particle approximations these methods can generate multi-modal trajectory

distributions. SVGD has also been used to improve Probabilistic Roadmaps (PRMs)

[85], and for planning to goal sets [116]. Our method is also based on SVGD.

However, to date, control-as-inference-based methods have been unable to han-

dle highly constrained domains. Recently Constrained Covariance Steering MPPI

(CCSMPPI) [10] was proposed which can satisfy chance inequality constraints, but

is restricted to linear systems. Our method uses SVGD to generate diverse sets

of constraint-satisfying trajectories which can satisfy both inequality and equality

constraints. Another method closely related to ours is Stochastic Multimodal Tra-

jectory Optimization (SMTO) [114], this method treats the trajectory optimization
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problem as a density estimation problem and alternates between sampling and per-

forming a gradient-based optimization to generate multiple low-cost trajectories that

satisfy the constraints. SMTO uses Covariant Hamiltonian Optimization for Motion

Planning (CHOMP) [180] to perform the gradient-based optimization sequentially

for each sampled trajectory. Our contribution is complementary to SMTO; SMTO

could substitute CHOMP with our method, CSVTO, in the gradient-optimization

step. This would have the advantage of performing the gradient-based optimization

in parallel and encouraging diversity among trajectories.

4.2.4 Gradient Flows for constrained optimization

Our method is closely related to methods using gradient flows for constrained

optimization. Gradient flows are an optimization method that re-frames optimiza-

tion as the solution to an ordinary differential equation (ODE); gradient flows can

be thought of as continuous-time versions of gradient descent algorithms. Yamashita

proposed a gradient flow method for equality-constrained problems [173]. The most

common method of extending this to problems with inequality constrained is via

the introduction of slack variables to convert inequality constraints to equality con-

straints [138, 140, 64]. Our method, CSVTO, also uses slack variables to transform

inequality constraints into equality constraints. Recently, Feppon et. al. [39] pro-

posed a method that instead solves a Quadratic Program (QP) subproblem to identify

active inequality constraints which are treated as equality constraints in the gradient

flow. Jongen and Stein applied constrained gradient flows to global optimization, by

proposing a gradient flow algorithm that iterates between searching for local minima

and local maxima [64].

SVGD has been interpreted as a gradient flow [95], and similar ideas to those

developed in the gradient flows for constrained optimization literature were recently

explored in O-SVGD [179]. O-SVGD performs SVGD in domains with a single equal-

ity constraint. We extend and modify O-SVGD to domains with multiple equality

and inequality constraints.
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4.3 Trajectory Optimization

Trajectory optimization is commonly modeled as an Optimal Control Problem

(OCP). We consider a discrete-time system with state x ∈ Rdx and control u ∈ Rdu ,

where dx and du are the dimensionality of the state and control, respectively, and

dynamics xt = f(xt−1,ut−1). We define finite horizon trajectories with horizon T as

τ = (X,U), where X = {x1, ...xT} and U = {u0, ...uT−1}. Given an initial state x0,

the aim when solving an OCP is to find a trajectory τ that minimizes a given cost

function C subject to equality and inequality constraints:

min
τ

C(τ)

s.t.

h(τ) = 0

g(τ) ≤ 0

∀t ∈ {1, . . . , T}

f(xt−1,ut−1) = xt

umin ≤ ut−1 ≤ umax

xmin ≤ xt ≤ xmax.

(4.1)

Here we have separated general inequality constraints g from simple bounds con-

straints, as well as the dynamics constraints from other equality constraints h. We

additionally assume that C is non-negative and once differentiable and that f, g, h

are all twice differentiable1. Problem (4.1) will be non-convex in general, therefore it

is likely it will have multiple local minima. The quality of solutions for most methods

for solving this optimal control problem depends heavily on the initialization; often

a poor initialization can lead to infeasibility.

1We can also accommodate constraints that are only once-differentiable via an approximation
(see Section 4.7.1.1
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4.4 Variational Inference for Trajectory Optimization

In this section, we will demonstrate how unconstrained trajectory optimization

can be framed as an inference problem, as in [131, 150, 112, 84]. This framing results

in estimating a distribution over low-cost trajectories, rather than a single optimal

trajectory. By using this framing we can leverage approximate inference tools for

trajectory optimization, in particular, Variational Inference [16]. In this section, we

will show how this framing leads to an entropy-regularized objective [83] which aims

to find a distribution over low-cost trajectories while maximizing entropy. By using

an entropy-regularized objective we aim to have improved exploration of the search

space and greater robustness to initialization.

To reframe trajectory optimization as probabilistic inference, we first introduce

an auxiliary binary random variable o for a trajectory such that

p(o = 1|τ) = exp (−γC(τ)), (4.2)

which defines a valid probability distribution over o provided both γ and C are non-

negative. We can trivially see that the trajectory that maximizes the likelihood of

p(o = 1|τ) is the trajectory that minimizes the cost. Introducing this binary variable

allows us to express the cost as a likelihood function, which we will use in the Bayesian

inference formulation of trajectory optimization. Using this likelihood to perform

inference gives us a principled way of computing a distribution over trajectories,

where lower-cost trajectories have a higher likelihood. The term γ controls how

peaked the likelihood function is around local maxima, or minima of C, which in

turn controls the dispersion of the resulting trajectory distribution after performing

inference.

We aim to find the posterior distribution over trajectories, conditioned on the

value of auxiliary variable o. This is given by Bayes theorem as

p(τ |o = 1) =
p(o = 1|τ)p(τ)

p(o = 1)
, (4.3)
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where p(τ) = p(X,U) is a prior on trajectories. For deterministic dynamics, this

prior is determined by placing a prior on controls U. This prior is a design choice and

can be used to regularize the controls. For instance, a squared control cost can be

equivalently expressed as a Gaussian prior. Alternatively, this prior could be learned

from a dataset of low-cost trajectories [154]. The trajectory prior is

p(τ) = p(U)
T∏
t=1

δ(xt − x̂t), (4.4)

where x̂t = f(xt−1,ut−1), and δ is the Dirac delta function. This inference problem

can be performed exactly for the case of linear dynamics and quadratic costs [9,

164]. However, in general, this problem is intractable and approximate inference

techniques must be used. We use variational inference to approximate p(τ |o = 1) with

distribution q(τ) which minimizes the Kullback–Leibler divergence KL(q(τ)||p(τ |o =
1)) [16]. The quantity to be minimized is

KL (q(τ)||p(τ |o = 1)) =

∫
q(τ) log

q(τ)

p(τ |o = 1)
dτ

=

∫
q(τ) log

q(τ)p(o = 1)

p(o = 1|τ)p(τ)
dτ.

(4.5)

The p(o = 1) term in the numerator does not depend on τ so can be dropped from

the minimization. This results in the variational free energy F :

F(q) =
∫
q(τ) log

q(τ)

p(o = 1|τ)p(τ)
dτ (4.6)

= −Eq(τ)[log p(o = 1|τ) + log p(τ)]−H(q(τ)) (4.7)

= Eq(τ)[γC(τ)]− Eq(τ)[log p(τ)]−H(q(τ)), (4.8)

where H(q(τ)) is the entropy of q(τ). Intuitively, we can understand that the first

term promotes low-cost trajectories, the second is a regularization on the trajectory,

and the entropy term prevents the variational posterior from collapsing to amaximum

a posteriori (MAP) solution. We may choose to provide regularization on the controls
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as part of C, in which case the prior term is absorbed into the cost term.

4.5 Problem Statement

In this article, we frame the constrained optimal control problem introduced in

Section 4.3 as a probabilistic inference problem, using ideas developed in Section 4.4.

It is first instructive to consider the dynamics constraint, which is incorporated

into the prior in equation (4.4) via the Dirac delta function. In this case, the term

Eq(τ)[− log p(τ)] is infinite for any τ which does not obey the dynamics constraint.

We can convert this unconstrained optimization problem with infinite cost to the

following constrained optimization problem on the space of probability distributions:

min
q
F̃(q)

s.t.

∀t ∈ {1, . . . , T}

Pq(f(xt−1,ut−1) = xt) = 1,

(4.9)

where F̃(q) is the free energy from equation (4.8) with the infinite cost term
∑T

t=1 log δ(xt−
f(xt−1,ut−1)) dropped from log p(τ), and Pq(A) is the probability of event A under
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probability measure q(τ). Applying this process to other constraints we have

min
q
F̃(q)

s.t.

Pq(h(τ) = 0) = 1

Pq(g(τ) ≤ 0) = 1

∀t ∈ {1, . . . , T}

Pq(f(xt−1,ut−1) = xt) = 1

Pq(umin ≤ ut−1 ≤ umax) = 1

Pq(xmin ≤ xt ≤ xmax) = 1.

(4.10)

Our goal is to solve the above optimization problem. However, for any practical

algorithm, we cannot guarantee exact constraint satisfaction, both due to the poten-

tial non-convexity of the constraint functions and due to limited computation time.

Computation time is especially limited in an online planning scenario. Therefore

we will evaluate our method according to both the cost of the resulting trajectories

and the amount of constraint violation when optimizing within a fixed number of

iterations.

4.6 Stein Variational Gradient Descent

We develop an algorithm to solve the constrained variational inference objective

in (4.10) based on Stein Variational Gradient Descent (SVGD) [96]. In this section

we will give an overview of SVGD which forms the foundation of our method. SVGD

is a variational inference technique that uses a non-parametric representation of the

variational posterior. In our algorithm, we use SVGD to approximate the distribution

p(τ |o = 1) with particles, where each particle is a trajectory. Consider the variational

inference problem

q∗(x) = argmin
q(x)

KL (q(x)||p(x)) , (4.11)

81



where x ∈ Rd and p and q are two probability density functions supported on Rd.

SVGD uses a particle representation of q(x) = 1
N

∑N
i=1 δ(x − xi), and iteratively

updates these particles in order to minimize KL (q(x)||p(x)). SVGD updates the

particle set with the update equation

xik+1 = xik + ϵϕ∗(xik), (4.12)

where ϵ > 0 is a step-size parameter. The update ϕ∗ is computed using a differen-

tiable positive definite kernel function K via

ϕ∗(xik) =
1

N

N∑
j=1

K(xik,x
j
k)∇xj

k
log p(xjk) +∇xj

k
K(xik,x

j
k). (4.13)

The first term of this objective maximizes the log probability p(x) for the particles,

with particles sharing gradients according to their similarity defined by K. The

second term is a repulsive term that acts to push particles away from one another

and prevents the particle set from collapsing to a local MAP solution.

We will now give further details on the derivation of the SVGD algorithm and

demonstrate that it does indeed minimize KL (q(x)||p(x)). We will use the develop-

ments in this section to show that the fixed points of our algorithm satisfy first-order

optimality conditions in section 4.7.1.3. SVGD is based on the Kernelized Stein

Discrepancy (KSD) [97], which is a measure of the discrepancy between two distri-

butions p and q. The KSD is computed as the result of the following constrained

functional maximization

S(p, q) = max
ϕ∈Hd

{Ex∼q[Apϕ(x)] s.t. ||ϕ||Hd ≤ 1} , (4.14)

where ϕ : Rd → Rd is a function in a vector-valued Reproducing Kernel Hilbert

Space (RKHS) Hd with a scalar kernel K : Rd × Rd → R. Ap is the Stein operator

Apϕ(x) = ∇x log p(x)
Tϕ(x) +∇x · ϕ(x), (4.15)
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where ∇x · ϕ(x) =
∑d

k=1 ∂xkϕk(x). It was established in [97] that S(q, p) = 0 ⇐⇒
p = q for a strictly positive-definite kernel K. To minimize the KL divergence, SVGD

considers the incremental transform xϵ = x+ ϵϕ(x), where x ∼ q(x) and ϵ is a scalar

step-size parameter. The resulting distribution after applying the transform is q[ϵϕ].

SVGD uses the following result:

∇ϵKL(q[ϵϕ]||p(x))|ϵ=0 = −Ex∼q[Apϕ(x)], (4.16)

which relates the Stein operator and the derivative of the KL divergence w.r.t the

perturbation ϵ. We would like to select ϕ that maximally decreases the KL diver-

gence. By considering ϕ ∈ {ϕ ∈ Hd ; ||ϕ||Hd ≤ 1}, the optimal ϕ is the solution to

the following constrained functional maximization:

ϕ∗ = arg max
ϕ∈Hd
{−∇ϵKL(q[ϵϕ]||p(x))|ϵ=0, s.t.||ϕ||Hd ≤ 1}. (4.17)

This maximization has a closed-form solution, derived by Liu et al. in Theorem 3.8

of [97]. Note that we have used a slightly different definition of the Stein operator

than that used by Liu et al., with Ap as defined in equation (4.15) as equal to the

trace of the Stein operator defined in [97]. The closed-form solution is given by

ϕ∗(·) = Ex∼q[ApK(·,x)] (4.18)

= Ex∼q[K(·,x)∇x log p(x) +∇xK(·,x)], (4.19)

and the resulting gradient of the KL divergence is

∇ϵKL(q[ϵϕ∗]||p(x))|ϵ=0 = −S(p, q). (4.20)

This implies that for a suitably-chosen kernel K, if the gradient of the KL divergence

is zero then the KSD is also zero, which means that p = q. We finally arrive at the

update rule given in equation (4.13) as the approximation of the closed-form solution

in equation (4.19) with a finite set of particles.
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4.6.1 Orthogonal-Space Stein Variational Gradient Descent

Recently Zhang et. al. proposed O-SVGD, a method for performing SVGD

with a single equality constraint [179], though they do not consider the problem of

trajectory optimization. In this section, we give an overview of O-SVGD, but we

give an alternative derivation to that given in [179] based on vector-valued RKHS

and matrix-valued kernels [161]. This alternative derivation will allow us to analyze

our algorithm (Section 4.7.1.3). The problem [179] aims to solve is

min
q
KL(q(x)||p(x)) s.t. Pq(h(x) = 0) = 1, (4.21)

where h represents a single equality constraint. For particles x that are on the

manifold induced by h(x) = 0, we would like them to remain on the manifold after

applying the Stein update in equation (4.12). To do this, we replace the function

ϕ(x) with P (x)ϕ(x). Where P (x) projects the updates to be in the tangent space of

the constraint and is given by

P (x) = I − ∇h(x)∇h(x)
T

||∇(h(x)||2
. (4.22)

We can develop an SVGD algorithm that updates particles on the constraint manifold

by considering the set of functions {P (x)ϕ(x), ϕ(x) ∈ Hd}. By applying Lemma 2

from [161] we establish that this set of functions is an RKHS Hd
⊥ with matrix-valued

kernel K⊥ given by

K⊥(x
i,xj) = P (xi)K(xi,xj)P (xj)T (4.23)

= K(xi,xj)P (xi)P (xj), (4.24)

where we have used the fact that K is a scalar function and that P (x) is symmetric

to rearrange. Running SVGD with kernel K⊥ will therefore solve the constrained

minimization problem (4.17), maximally reducing the KL divergence while only con-

sidering updates that lie in the tangent space of the constraint. Zhang et. al. [179]

also add a term to equation (4.12) that drives particles to the manifold induced by

84



the constraint

ϕC = −ψ(h(x))∇h(x)
||∇h(x)||2

, (4.25)

where ψ is an increasing odd function.

4.7 Methods

Our proposed trajectory optimization algorithm uses SVGD to perform con-

strained optimization on a set of trajectories in parallel. The result is a diverse

set of low-cost constraint-satisfying trajectories. The full algorithm is shown in Al-

gorithm 6. First, we will introduce the main component of our proposed algorithm,

which decomposes the Stein update into a step tangential to the constraint bound-

ary, and a step toward constraint satisfaction. We will then provide an analysis of

the algorithm which relates it to problem (4.10). Finally, we will discuss strategies

for improving performance which include separating the bounds constraints, an an-

nealing strategy for increasing particle diversity, and re-sampling particles during the

optimization. Figure 4.2 demonstrates CSVTO being applied to a 2D toy problem.

4.7.1 Constrained Stein Trajectory Optimization

Solving the constrained variational inference problem in (4.10) is very difficult,

since it requires finding a distribution that may exhibit multi-modality and has con-

strained support. To address this, we use a non-parametric representation of the

distribution q(τ). We use SVGD where each particle is a trajectory, and iteratively

update the particle set while enforcing the constraints on each particle. To do this

we extend O-SVGD to multiple equality and inequality constraints and use it to

generate constraint-satisfying trajectories.

First, we relate using SVGD for unconstrained trajectory optimization to the

minimization of the unconstrained variational free energy F(q) from (4.7). Consider

the iterative transform τϵ = τ + ϵϕ∗(τ), where ϕ∗ is the solution to (4.17) with

posterior log likelihood log p(τ |o = 1), τ ∼ q(τ) and τϵ ∼ q[ϵϕ∗](τ). We can recast
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(a) (b) (c) (d) (e)

Figure 4.2: CSVTO visualized for a 2D problem. The posterior is a mixture of 3
Gaussians, with the log posterior peaks visualized. There is an equality constraint
that the particles must lie on the circle. There is also an inequality constraint that the
particles must lie outside the shaded region. a) The initial particles are randomly
generated and are not necessarily feasible. b) Due to the annealing discussed in
section 4.7.1.4, early on in the optimization the particles are constraint-satisfying
and diverse. c) The particles move towards the relative peaks of the objective,
however, the circled particle has become stuck in a poor local minimum due to the
constraints, where the gradient of the log posterior is directed towards an infeasible
peak. Since the particle is isolated it is not sufficiently affected by the repulsive
gradient term that would help escape the local minimum. d) The re-sampling step
from section 4.7.1.8 re-samples the particles, applying noise in the tangent space of
the constraints. This eliminates the particle at the poor local minimum. e) The set
of particles converges around the local minimum of the objectives while satisfying
the constraints.
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(4.17) for trajectories in terms of the free energy F(q)

ϕ∗(τ) = arg max
ϕ∈Hd
{−∇ϵF(q[ϵϕ])|ϵ=0, s.t.||ϕ||Hd ≤ 1}. (4.26)

Thus the update τ + ϵϕ∗ ensures we maximally decrease the variational free energy.

If ϕ∗(τ) = 0 then q(τ) is at a local minimum of F(q). We will now modify the Stein

update to account for constraints.

4.7.1.1 Equality constraints

We propose a modified Stein update rule for the i-th particle, in which we de-

compose the update into two components:

τ ik+1 = τ ik + αJϕ⊥(τ
i
k) + αCϕC(τ

i
k), (4.27)

where ϕ⊥ is an update that is tangential to the constraint boundary, ϕC acts in

the direction which decreases constraint violation, αJ and αC are scalar step size

parameters, and k is the iteration. We replace the O-SVGD ϕC from equation (4.25)

with a Gauss-Newton step to minimize h(τ)Th(τ)

ϕC(τ) = ∇h(τ)T (∇h(τ)∇h(τ)T )−1 h(τ). (4.28)

This uses approximate second-order curvature information for fast convergence. We

then compute the projection matrix P (τ), which projects vectors onto the tangent

space of the constraints as

P (τ) = I −∇h(τ)T (∇h(τ)∇h(τ)T )−1∇h(τ). (4.29)

Inverting ∇h(τ)∇h(τ)T is only possible if ∇h(τ) is full rank. When ∇h(τ) is not

full rank, we compute the pseudo-inverse of ∇h(τ)∇h(τ)T via the singular-value

decomposition, discarding singular vectors corresponding to singular values that are
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zero. Once we have P (τ), we use it to define the tangent space kernel, as in [179]:

K⊥(τ
i, τ j) = K(τ i, τ j)P (τ i)P (τ j). (4.30)

We then use this kernel for the SVGD update to produce an update that is in the

tangent space of the constraint:

ϕ∗
⊥(τ

i) =
1

N

N∑
j=1

K⊥(τ
i, τ j)∇τ j log p(τ

j|o = 1)

+∇τ jK⊥(τ
i, τ j).

(4.31)

Since K⊥ is a matrix-valued function, the last term is calculated (as in [161]) as

[∇τ jK⊥(τ
i, τ j)]l =

∑
m

∇[τ j ]m [K⊥(τ
i, τ j)]l,m, (4.32)

where the notation [x]l indicates the lth element of x. Equation (4.31) has several

interesting features. First, two trajectory particles τ i and τ j are considered close if

they are close according to the original kernel K. In addition, expanding the first

term to K(τ i, τ j)P (τ i)P (τ j)∇τ j log p(τ
j|o = 1), we see that if P (τ i) = P (τ j) this

reduces to K(τ i, τ j)P (τ j)∇τ j log p(τ
j|o = 1). For P (τ i) ̸= P (τ j), the magnitude of

this term will always be reduced. Intuitively this means that particles will share

gradients if particles are close and the tangent space of the constraint is similar. In

addition, all updates will be in the tangent space of the constraint.

Repulsive term in the tangent space The derivative ∇[τ j ]m [K⊥(τ
i, τ j)]l,m can

be expanded to

∇[τ j ]m [K⊥(τ
i, τ j)]l,m = ∇[τ j ]m [K(τ i, τ j)P (τ i)P (τ j)]l,m

= [P (τ i)P (τ j)]l,m∇[τ j ]mK(τ i, τ j)+

K(τ i, τ j)[P (τ i)]l,m∇[τ j ]m [P (τ
j)]l,m.

(4.33)
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We see from equation (4.33) above that the gradient of the kernel consists of two

terms. The first term projects the gradient of the unconstrained kernel to the tangent

space of the constraints both at τ i and τ j.

The second term requires computing the derivative of the matrix-valued pro-

jection function. This term is expanded further in Appendix B.1, showing that it

requires the evaluation of the second derivative of the constraint function ∇2h(τ).

For problems with constraints for which the second derivative is unavailable, we can

remove this second term for individual constraints. We do this by setting the second

derivative of a particular constraint to be the zero matrix (see Appendix B.1). Doing

so effectively uses a locally linear approximation of the constraint to compute the

repulsive gradient.

We will discuss how we define a kernel on trajectories in section 4.7.1.5.

4.7.1.2 Extension to Inequality Constraints

We extend the above method to inequality constraints with the use of slack

variables. We turn the inequality constraints into equality constraints with slack

variable z:

g(τ) +
1

2
z2 = 0. (4.34)

The full set of equality constraints then becomes

ĥ =

[
h(τ)

g(τ) + 1
2
z2

]
. (4.35)

Converting inequality constraints to equality constraints via squared slack vari-

ables is often avoided as it can introduce spurious non-local-minima that satisfy

the Karush–Kuhn–Tucker (KKT) conditions [7]. To mitigate this issue we make an

assumption on the regularity of the problem, denoted as (R) in [138]. The details

of the assumption are technical and we do not include it here. The assumption

essentially states that ∇ĥ is full rank at initialization and remains so during the

optimization. Under these assumptions, Schropp [138] proved that the hyperbolic

equilibrium points of the augmented system are local minima of the equality and
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inequality-constrained optimization problem. Optimizing multiple trajectories in

parallel provides additional robustness against this issue. Even should some par-

ticles become stuck at one of these undesirable fixed points, in Section 4.7.1.8 we

propose a method for re-sampling the set of particles which redistributes particles

away from these fixed points. While we could avoid this issue by using non-negative

slack variables with the transformation g(τ)+ z, where z > 0, we found that this led

to poorer constraint satisfaction in practice.

After introducing the slack variables, we compute the constrained Stein update

with all constraints as equality constraints. We augment the state with z as

τ̂ =

[
τ

z

]
. (4.36)

The projection is given by

P (τ̂) = I −∇ĥ(τ̂)T (∇ĥ(τ̂)∇ĥ(τ̂)T )−1∇ĥ(τ̂), (4.37)

and the kernel is

K⊥(τ̂
i, τ̂ j) = K(τ i, τ j)P (τ̂ i)P (τ̂ j). (4.38)

Notice that the kernel uses the original τ and not the augmented τ̂ . We then perform

the constrained Stein update on the augmented state:

ϕ∗
⊥(τ̂

i) =
1

N

N∑
j=1

K⊥(τ̂
i, τ̂ j)

[
∇ log p(τ j|o = 1)

0

]
+∇τ̂ jK⊥(τ̂

i, τ̂ j)

(4.39)

ϕC(τ̂) = ∇ĥ(τ̂)T (∇ĥ(τ̂)∇ĥ(τ̂)T )−1 ĥ(τ̂). (4.40)

Once we have performed the iterative optimization we have a set of trajectories.

We then select a trajectory to execute by choosing the one that minimizes the penalty

function

Ĉλ(τ̂) = C(τ) + λ
∑
|ĥ(τ̂)|. (4.41)
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4.7.1.3 Analysis

In this section, we provide an analysis of CSVTO. We demonstrate that sta-

tionary points of the gradient flow satisfy the first-order optimality conditions for

the constrained variational optimization problem in (4.10), subject only to equality

constraints.

Theorem 1. Assume that ∇h is full rank. Let ϕ∗ ∈ Hd be the solution to (4.17)

with the unconstrained kernel K, and ϕ∗
⊥ ∈ Hd

⊥ be the solution to (4.17) using the

tangent space kernel K⊥. If the following holds:

αJϕ
∗
⊥(τ) + αCϕC(τ) = 0, (4.42)

then the following must be true:

ϕ∗(τ) +∇h(τ)Tµ = 0 (4.43)

h(τ) = 0, (4.44)

where µ is a vector of Lagrange multipliers.

Proof. Since ϕC and ϕ∗
⊥ are orthogonal, then if equation (4.42) holds then ϕC =

ϕ∗
⊥ = 0. Next, we note that ϕ∗

⊥(τ) = P (τ)ϕ̂, where ϕ̂ ∈ Hd and further P (τ)ϕ̂(τ) =

0 =⇒ P (τ)ϕ∗(τ) = 0. To see this, consider P (τ)ϕ∗(τ) ̸= 0. This would im-

ply that ∇ϵKL(q[ϵPϕ∗]||p(τ |o = 1))|ϵ=0 ̸= 0, which implies that there is a descent

direction. This would mean that ∃ ϕ⊥ such that −∇ϵKL(q[ϵϕ∗⊥]||p(τ |o = 1))|ϵ=0 <

−∇ϵKL(q[ϵϕ⊥ ||p(τ |o = 1))ϵ=0, which is a contradiction. Expanding P (τ)ϕ∗ = 0 yields[
I −∇h(τ)T

(
∇h(τ)∇h(τ)T

)−1∇h(τ)
]
ϕ∗(τ) = 0

ϕ∗(τ)−∇h(τ)T
[(
∇h(τ)∇h(τ)T

)−1∇h(τ)ϕ∗(τ)
]
= 0.

(4.45)

Specifying µ = −
(
∇h(τ)∇h(τ)T

)−1∇h(τ)ϕ∗(τ) results in equation (4.43) being sat-
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isfied. Now we expand ϕC = 0 resulting in

∇h(τ)T (∇h(τ)∇h(τ)T )−1h(τ) = 0. (4.46)

To show feasibility at the stationary point we left multiply (4.46) by ∇h(τ), which
for full rank ∇h results in h(τ) = 0.

Theorem 1 holds when we can integrate the expectation in (4.19). However, we

are approximating the expectation with particles so (4.43) may not hold in prac-

tice. However, the feasibility condition (4.44) remains true when using a particle

approximation for q. To extend this proof to inequality constraints, note that in

Section 4.7.1.2 we discussed the regularity conditions under which hyperbolic stable

stationary points of the gradient flow on the augmented equality-constrained system

satisfy first-order optimality conditions of the original system with both equality and

inequality constraints.

4.7.1.4 Annealed SVGD for improved diversity

We employ an annealing technique for SVGD as proposed in [30]. We use a pa-

rameter γ ∈ [0, 1] which controls the trade-off between the gradient of the posterior

log-likelihood and the repulsive gradient. For γ << 1 the repulsive term dominates

resulting in trajectories being strongly forced away from one another. As γ increases

the gradient of the posterior likelihood has a greater effect resulting in trajectories

being optimized to decrease the cost. When combined with ϕC this results in the op-

timization prioritizing diverse constraint-satisfying trajectories first, then decreasing

cost later in the optimization. The annealed update is given by

ϕi⊥(τ̂) =
1

N

N∑
j=1

γK⊥(τ̂i, τ̂j)

[
∇ log p(τj|o)

0

]
+∇τ̂jK⊥(τ̂i, τ̂j).

(4.47)

We use a linear annealing schedule with γk = k
K
, where K is the total number of

iterations. When performing online re-planning, we only perform the annealing when
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optimizing the trajectory the first time-step.

4.7.1.5 Trajectory Kernel

CSVTO relies on a base kernel K(τ i, τ j) operating on pairs of trajectories which

defines the similarity between trajectories. As noted by Lambert et. al. [84], high

dimensional spaces can result in diminishing repulsive forces, which can be prob-

lematic for trajectory optimization problems due to the time horizon. We use a

similar approach to SVMPC [84] in that we decompose the kernel into the sum of

kernels operating on smaller components of the trajectory. We use a sliding window

approach to decompose the trajectory. For a given sliding window length W let

τ t = [xt:t+W , ut−1:t−1+W ]T . The overall kernel is then given by

K(τ i, τ j) = 1

T −W

T−W∑
t

K(τ it , τ
j
t ). (4.48)

We use the Radial-Basis Function (RBF) kernel K(τ it , τ
j
t ) = exp(− 1

h
||τ it − τ

j
t ||22) as

the base kernel, where h is the kernel bandwidth. We use the median heuristic as in

[96] to select the kernel bandwidth:

h =
median(||τ it − τ

j
t ||2)2

log(N)
, (4.49)

where N is the number of particles.

4.7.1.6 Bounds constraint

Bounds constraints can, in principle, be handled as general inequality constraints

as described in the above section. However, since this involves adding additional slack

variables incorporating bounds constraints involves an additional T × 2(du + dx)

decision variables in the optimization, where dx and du are the state and control

dimensionalities, respectively. It is more computationally convenient to use a simple

approach where at every iteration we directly project the trajectory to satisfy the
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bound constraints. This is done by

τ ∗ = min(max(τmin, τ), τmax). (4.50)

4.7.1.7 Initialization

As introduced in section 4.4, we have a user-specified prior on controls p(U). To

initialize CSVTO on a new problem, we proceed by sampling from this prior p(U)

and using the dynamics f(xt, ut) to generate sampled trajectories. In this way, we

ensure that the initial trajectory satisfies the dynamics constraints.

We use a different initialization scheme when running trajectory optimization

online in a receding horizon fashion as in Algorithm 7, as it is typical to warm-

start the optimization with the solution from the previous timestep. For a single

particle, the trajectory consists of τ = (x1, ...,xT ,u0, ...,uT−1)). The shift operation

computes τ ′ = (x2, ...,x
′
T+1,u1, ...,u

′
T ). Here x′

T+1,u
′
T is the initialization for the

newly considered future timestep. The initializations x′
T+1,u

′
T may be chosen in a

problem-specific way. In our approach, we choose them by duplicating the previous

timestep’s state and control, i.e. (x′
T+1,u

′
T ) = (xT ,uT−1).

When running the algorithm with inequality constraints, for both the online

and warm-start optimizations we initialize the slack variable z with z =
√

2|g(τ)|
so that trajectories satisfying the inequality constraint are initialized to satisfy the

transformed equality constraint.

The above heuristic is motivated by the assumption that the solution should not

vary much between timesteps. However, the fact that we have a set of trajectories

rather than a single one can invalidate this assumption, since we can only take a

single action. Trajectories that have very different first actions from the action taken

can end up being quite poor initializations, particularly in the presence of constraints

that can render them infeasible. Over time these poor initializations can lead to the

degradation in the quality of the particles, which motivates the next section in which

we discuss a re-sampling technique to prevent sample impoverishment.
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4.7.1.8 Re-sampling

As discussed above, the shift operation can lead to trajectories that are not ex-

ecuted becoming infeasible and rendering those particles useless for trajectory opti-

mization. In addition, our cost and constraints are not necessarily convex, so, as with

any local optimization method, poor initializations can lead to infeasibility. We take

inspiration from the Particle Filter literature [54] and incorporate a re-sampling step

which is executed when performing online re-planning. Every resample steps

timesteps we re-sample after performing the shift operation on the previous tra-

jectory particles. To perform re-sampling, we compute weights using the penalty

function

wi =
exp(− Ĉλ(τ̂i)

β
)∑N

j exp(− Ĉλ(τ̂j)

β
)
, (4.51)

where β is a temperature parameter. We then re-sample a new set of particles

according to weights wi. It is common in the particle filter literature to additionally

add noise, to prevent re-sampled particles collapsing. However, in our case, it is

undesirable to add random noise to a constraint-satisfying trajectory as it may lead

to constraint violation. We avoid this issue by sampling noise and projecting the

noise to only have components in the tangent space of the constraints for a given

trajectory. Suppose we have sampled trajectory τi from the set of particles. We first

sample ϵ ∼ N (0, σ2
resampleI), and then update the trajectory with

τnew = τi + P (τi)ϵ, (4.52)

where P (τi) is the projection matrix from equation (4.29).

4.8 Results

We evaluate our approach in three experiments. The first is a constrained 12DoF

quadrotor task which has nonlinear underactuated dynamics. The second experiment

is a 7DoF robot manipulator task, where the aim is to move the robot end-effector to
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Algorithm 6 A single step of CSVTO, this will run every timestep.

1: function CSVTO(x0, τ,K,anneal)
2: z←

√
2|g(τ)|

3: τ̂ ← [τ, z]T

4: for k ∈ {1, ...,K} do
5: for i ∈ {i, ...,N} do
6: ϕiC ← via eq. 4.40
7: if anneal then
8: γ ← k

K

9: ϕi⊥ ← via eq. 4.47
10: else
11: ϕi⊥ ← via eq. 4.39

12: τ̂ i ← τ̂ i + αJϕ
i
⊥ + αCϕ

i
C

13: τ̂ i ← ProjectInBounds(τ̂ i).

14: ▷ Get the best trajectory according to penalty function
15: τ̂ ∗ ← argminτ Ĉλ(τ̂)
16: ▷ Discard slack variables
17: τ ∗, τ ← τ̂ ∗, τ̂
18: return τ ∗, τ
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Algorithm 7 CSVTO running with online re-planning

1: function CSVTO MPC(x0, τ0)
2: for t ∈ {1, ...,T} do
3: ▷ Resample
4: if mod(t, resample steps) = 0 then
5: τt ← Resample(τt)

6: if t = 1 then
7: K ← Kw

8: anneal← True
9: else
10: K ← Ko

11: anneal← False
12: τ ∗t , τt ← CSVTO(xt, τt, K,anneal)
13: ▷ Select first control from the best trajectory
14: ut ← τ∗
15: xt ← StepEnv(ut)
16: ▷ Shift operation
17: τt+1 ← Shift(τt)

a goal location while being constrained to move along the surface of a table. The third

experiment is also a 7DoF robot manipulator task, where the aim is to manipulate

a wrench to a goal angle. Both of these 7DoF manipulator tasks involve planning in

highly constrained domains. We perform the manipulator experiments in IsaacGym

[99]. The hyperparameters we use in all experiments are shown in Table 4.1. For all

experiments, the costs and constraint functions are written using PyTorch [115], and

automatic differentiation is used to evaluate all relevant first and second derivatives.

4.8.1 Baselines

We compare our trajectory optimization approach to both sampling-based and

gradient-based methods. We compare against IPOPT [157], a general non-linear

constrained optimization solver, which has been widely used for robot trajectory

optimization [6, 118]. We use the MUMPS [3] linear solver for IPOPT. When running

IPOPT, where second derivatives are available we use exact derivatives computed

via automatic differentiation in PyTorch, where they are not available we use the
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Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) [93] to

approximate the Hessian. The method used will be indicated for each experiment.

For CSVTO and IPOPT, we use a direct transcription scheme; IPOPT solves the

optimization problem as expressed in problem (4.1). For IPOPT we use the open-

source implementation provided by [157].

We additionally compare against MPPI [167] and SVMPC [84]. MPPI and

SVMPC are methods for performing unconstrained trajectory optimization, with

constraints commonly incorporated with penalties. For these methods we use the

penalty function Ĉ(λ,µ)(τ) = C(τ)+λ
∑
|h(τ)|+µ

∑
|g(τ)|+, where |g(τ)|+ is a vec-

tor consisting of only the positive values of g(τ). We use separate penalty weights

for equality and inequality constraints. We evaluate each of these baselines on two

different magnitudes of penalty weights on equality constraints λ. In the SVMPC

paper, the authors show that their method can be used both with and without

gradients. We evaluate against two versions of SVMPC, one using a sample-based

approximation to the gradient and another using the true gradient. For SVMPC and

MPPI we use a shooting scheme since they can only handle constraints via penalties,

which can lead to poor satisfaction of the dynamics constraint. We use our own

implementations for MPPI and SVMPC in PyTorch.

4.8.2 12DoF Quadrotor

We evaluate our method on a 12DoF underactuated quadrotor problem. The goal

is to navigate the quadrotor from a start state to a goal state. We chose this problem

to demonstrate our approach on a problem with complex nonlinear underactuated

dynamics. The experimental setup is shown in Figures 4.3 and 4.4. The state of the

quadrotor is x = [x, y, z, p, q, r, ẋ, ẏ, ż, ṗ, q̇, ṙ]T , where (x, y, z) is the 3D position and

(p, q, r) are the Euler angles. The control is the thrust u = [u1, u2, u3, u4]
T ∈ R4.

We place bounds constraints on the (x, y) location of the quadrotor to be within a

10m× 10m area centred at (0, 0). The goal is to travel from start locations sampled

uniformly from x, y ∈ [3.0m, 4.5m] to a goal location of (4, 4) within 100 time steps.

We place an equality constraint that the quadrotor must travel along a nonlinear
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(a) CSVTO t=1 (b) CSVTO t=5 (c) CSVTO t=10 (d) CSVTO t=15

(e) IPOPT t=1 (f) IPOPT t=5 (g) IPOPT t=10 (h) IPOPT t=15

Figure 4.3: Experimental setup for the quadrotor task. The quadrotor must travel
to the goal location, avoiding the obstacle in red while remaining on the blue mani-
fold. The fading yellow shows the path of the obstacle from previous timesteps. a-d)
CSVTO maintains a set of trajectories (dashed), with the selected trajectory shown
as a solid curve. CSVTO can keep a diverse set of trajectories and switches between
them to avoid the moving obstacle. e-f) IPOPT generates an initial trajectory that
makes good progress toward the goal and obeys the manifold constraint. However,
even after the first timestep the obstacle has moved to render this trajectory infeasi-
ble. As the obstacle moves further IPOPT is unable to find an alternative trajectory
and ends in a collision.
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surface z = fsurf (x, y). For this surface, we sample z values from a Gaussian Process

(GP) prior with an RBF kernel and zero mean function on a 10 × 10 grid of (x, y)

points. We use the sampled values as observations for a GP with the same kernel

and mean function and use the corresponding posterior mean function as the equality

constraint. We sample a single surface in this way and use it for all experiments.

The dynamics for the 12DoF quadrotor are from [135] and are given by



x

y

z

p

q

r

ẋ

ẏ

ż

ṗ

q̇

ṙ


t+1

=



x

y

z

p

q

r

ẋ

ẏ

ż

ṗ

q̇

ṙ


t

+∆t



ẋ

ẏ

ż

ṗ+ q̇s(p)t(q) + ṙc(p)t(q)

q̇c(p)− ṙsṗ

q̇
s(p)

c(q)
+ ṙ

c(p))

c(q)

−(s(p)s(r) + c(r)c(p)s(q))K u1
m

−(c(r)s(p)− c(p)s(r)s(q))K u1
m

g − c(p)s(q))K u1
m

(Iy−Iz)q̇ṙ+Ku2
Ix

(Iz−Ix)ṗṙ+Ku3
Iy

(Ix−Iy)ṗq̇+Ku4
Iz


t

(4.53)

where c(p), s(p), t(p) are cos, sin, tan functions, respectively. We use parameters m =

1kg, Ix = 0.5kg ·m2, Iy = 0.1kg ·m2, Iz = 0.3kg ·m2, K = 5, g = −9.81m · s−2. We

use the same dynamics both for planning and for simulation.

We consider three variants of this task with different obstacle avoidance con-

straints: 1) We consider the case with no obstacles; 2) We consider the case of static

obstacles. For the static obstacles case, we wish to demonstrate our method in a

cluttered environment with arbitrarily shaped obstacles. We do this by generating

the obstacles similarly to the surface constraint, which results in a smooth obsta-

cle constraint. We consider a constraint function fobs(x, y), where the obstacle-free

region is {(x, y), fobs(x, y) ≤ 0}. We sample values for fobs(x, y) from a GP prior

with an RBF kernel and a constant mean function of −0.5, so that there is a bias
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towards being obstacle-free, on a 10 × 10 grid of (x, y) points. We then use these

points as the observations for a GP with the same mean function and kernel as the

GP prior. We also add observations at (−4,−4) and (4, 4) of −2, to ensure the start

and goal regions are obstacle free. We use the resulting GP posterior mean function

as fobs(x, y). We do this once and keep the same obstacle constraint for all trials.

The resulting obstacle constraint is shown in Figure 4.4; 3) Finally, we consider a

cylindrical obstacle in the x-y plane that moves during the trial in a path that is

unknown to the planner; at every timestep, the planner plans assuming the obstacle

will remain fixed. If the quadrotor collides with an obstacle during execution then

we consider the task failed.

The planning horizon is 12. The posterior log p(τ |o) for this problem is a quadratic

cost given by

log p(τ |o) = (xT − xgoal)TP (xT − xgoal)+
T−1∑
t=1

(xt − xgoal)TQ(xt − xgoal) + uTt−1Rut−1.
(4.54)

The control cost is equivalent to the prior on controls p(ut) = N (0, R−1). The values

we use for the costs are

Q = Diag(5, 5, 0.5, 2.5, 2.5, 0.025, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5) (4.55)

P = 2Q (4.56)

R = Diag(1, 16, 16, 16). (4.57)

For this problem, we use automatic differentiation to compute all required second

derivatives for both IPOPT and CSVTO. We run IPOPT with two different max-

imum iteration settings. For the first, we limit the maximum number of iterations

to 100 for the initial warm start and to 10 for subsequent time steps. We limit the

number of iterations so that IPOPT has a comparable computation time to other

baselines. The next setting is to set the maximum iterations to 1000, which al-

lows IPOPT to run until convergence for most queries. We refer to this method as
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Figure 4.4: Experimental set-up for the quadrotor with static obstacles task. The
quadrotor must travel to the goal location, avoiding the obstacles in red while re-
maining on the blue manifold.

IPOPT-1000. As we will show in Section 4.8.5, this method is substantially slower

than other baselines and prohibitively slow for MPC applications, but we included

this baseline to see how well IPOPT performs when computation time is not an issue.

For the baselines using a penalty method we use µ = 2000 and test two variants for

λ: λ = 100 and λ = 1000.

In Figure 4.5 we compare CSVTO and IPOPT run for 200 iterations for a single

planning query with multiple different initializations, indicating that for the same

initializations, CSVTO finds a lower cost local minimum. To generate these initial-

izations, we sample a nominal control sequence from the prior p(U) and use small

Gaussian perturbations with σ = 0.01 around this nominal control sequence as the

initialization. The initial state sequence is found by applying these controls with

the dynamics. We repeat this process 10 times for a different nominal control se-

quence. The results demonstrate that parallel trajectory optimization with CSVTO

is beneficial even when the initial trajectory distribution is not diverse.

We ran the quadrotor experiments for the three different obstacle cases for 20

trials with randomly sampled starts. The results are shown in Figure 4.6. CSVTO

succeeds for 20/20 trials for the no obstacles and dynamic obstacles cases, and 19/20

for the static obstacle case, all with a goal threshold of 0.3m. For the static-obstacle

and dynamic-obstacle experiments, IPOPT is the next best performing with 20/20

trials for no-obstacles at a goal threshold of 0.4m, but success falls to 15/20 for both

the static-obstacles and dynamic-obstacle case. We see that running IPOPT with

more iterations improves performance for the static obstacles case, but in the other
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Figure 4.5: Comparison between CSVTO and IPOPT with multiple initializations
on the quadrotor task with static obstacles. We compare CSVTO with 8 trajectory
samples vs. 8 runs of IPOPT, both from the same initializations and record the
minimum cost achieved from the 8 trajectories over 200 iterations of both. We run
10 trials for each method. The shaded regions show the range of the minimum cost
achieved over the 10 trials. We see that from the same initializations, CSVTO finds
a solution with a lower cost.

two cases, there is no significant difference in performance when allowing IPOPT to

run until convergence. However, running IPOPT to convergence has substantially

higher computation time, which we will discuss further in section 4.8.5. For the

no-obstacles and dynamic-obstacle cases, we see that sample-based methods perform

well according to the task success rate, however, they fail to satisfy the surface

equality constraint. In addition, both MPPI and SVMPC fail for the static obstacles

case.

Trajectories generated from IPOPT vs CSVTO for the dynamic obstacles case

are shown in Figure 4.3, IPOPT generates a trajectory aiming to go around the

obstacle, but the movement of the obstacle renders that trajectory infeasible as time

progresses. IPOPT is not able to adapt the trajectory to go around the obstacle.

In contrast, CSVTO generates a multimodal set of trajectories that go either way

around the obstacle. It is then able to update the trajectories effectively, avoiding the

obstacle and reaching the goal. We do see that IPOPT achieves the lowest constraint

violation in the case of no obstacle or a static obstacle, while CSVTO achieves the
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Figure 4.6: Results for quadrotor experiments. The top row shows the success rate
as we increase the size of the goal region. The bottom row shows the average surface
constraint violation as a function of time. Left) No obstacle. Middle) Static obstacles.
Right) Dynamic obstacle.

lowest constraint violation when there is a dynamic obstacle.

4.8.3 Robot Manipulator on Surface

In this task, we consider a 7DoF robot manipulator where the end effector is

constrained to move in SE(2) along the surface of a table. The robot must move

to a goal location while avoiding obstacles on the surface. The setup is shown in

Figure 4.7. This system’s state space is the robot’s joint configuration q ∈ Rd. The

actions are the joint velocity q̇ and the dynamics are given by Euler integration qt+1 =

qt + q̇t dt, with dt = 0.1. The prior distribution over actions is p(U) = N (0, σ2I),

where σ = 0.5. The planning horizon is 15. The cost is C(τ) = 2500||pxyT − p
xy
goal||2 +

250
∑T−1

t=1 ||p
xy
t −p

xy
goal||2, where p

xy
t is the end effector x, y position which is computed

from the forward kinematics. The equality constraints on this system are pzt = 0.8,

which is the height of the table, and additionally, there is an orientation constraint

that the z-axis of the robot end effector must be orthogonal to the table, i.e. the
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inner product of the table z-axis and the robot z-axis should be equal to -1.

While obeying the table constraint the robot must also avoid 3 obstacles from the

Yale-CMU-Berkeley (YCB) object dataset [20]. We enforce this with a constraint

that the signed distance to the obstacles must be positive, which we compute from

the meshes of the objects. Since signed distance functions (SDFs) are composable via

the min operator, we combine the SDFs of the three obstacles into a single inequality

constraint per timestep rather than an inequality constraint per obstacle. This is to

reduce the total number of inequality constraints, as introducing more inequality

constraints results in more slack variables and a higher dimensional problem. To

evaluate this constraint, offline we generate points on the surface of the robot. Online,

we use forward kinematics to map all of these points to the world frame and evaluate

their SDF value, selecting the minimum SDF value as the value of the constraint.

To compute the gradient of the constraint, consider that for any surface point we

can compute the gradient of the SDF value with respect to the point from the object

mesh. We then use automatic differentiation to backpropagate this gradient through

the forward kinematics to compute a gradient of the SDF value with respect to

the joint configuration. Finally, to calculate an overall gradient, we use a weighted

combination of the gradients for each surface point, with the weight computed via a

softmin operation on the SDF values.

The resulting inequality constraint is not twice differentiable, both because of

non-smooth object geometries and because of composing SDFs with the min opera-

tor. Due to this, for CSVTO we omit the second-order term in equation (4.33) for the

inequality constraint, and for IPOPT we use L-BFGS to approximate second-order

information. Computing the SDF value and gradient is a computationally expensive

operation, so we pre-compute grids of the SDF values and the SDF gradients and do

a look-up when performing the optimization. We use a 320× 320× 480 grid with a

resolution of 2.5mm. There are also joint limit constraints on all of the robot joints.

For the penalty-based baselines, we use penalty parameters of µ = 2000 and

variants with λ = 100 and λ = 1000. For IPOPT, we found that running until

convergence was prohibitively costly, taking several minutes to converge per opti-

mization. For this reason, we limited the maximum number of iterations for IPOPT
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Figure 4.7: Snapshots from CSVTO used for the robot manipulator on a surface
experiment. The robot must move the end-effector to a goal location while remaining
on the surface of the table and avoiding the obstacles. CSVTO generates trajectories
that explore different routes to the goal.

to be the same as CSVTO, resulting in a similar computation time. This is discussed

further in Section 4.8.5.

Due to contact with the table, the dynamics of the system used for planning can

deviate from those in the simulation. When computing the constraint violation, we

use the actual constraint violation in the simulator rather than the planned constraint

violation.

We run this experiment for 20 trials with random goals and show the results

in Figure 4.8. Our results show that CSVTO succeeds in all 20 trials with a goal

threshold 0f 0.1m and achieves the lowest constraint violation of all methods. The

next closest baseline, IPOPT succeeds 19/20 times, with the failure case resulting

from a poor local minima with qt and qt+1 on either side of an obstacle, but a large

distance from one another. This resulted in the robot becoming stuck on the obstacle

and unable to make progress.

4.8.4 Robot Manipulator using wrench

In this task, we consider a 7DoF robot manipulator in which the goal is to ma-

nipulate a wrench to a goal angle. To turn the wrench, the robot must be able to

supply at least 1Nm of torque. The setup is shown in Figure 4.9. The state space

is [q ϕ θ]T . q ∈ R7 is the configuration space of the robot. ϕ parameterizes the

distance between the robot end-effector and the wrench in the x-y plane as l + ϕ

where l is a nominal distance. θ is the wrench angle. The actions are the joint
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Figure 4.8: Results for robot manipulator on surface experiments Left column shows
success rate as we increase the size of the goal region. Right column shows average
constraint violation as a function of time for both the height constraint and the
orientation constraint.

velocities q̇. The dynamics of the joint configuration are given by Euler integration

qt+1 = qt + q̇t dt, with dt = 0.1. We use a simple geometric model for dynamics

of ϕ and θ. Assuming that the robot end-effector remains grasping the wrench we

compute the next ϕ as ϕ = ||pxyee − p
xy
wrench||2 − l. To compute the next joint angle θ

we use θt+1 = θt+ tan ∆xee
∆yee

. The prior distribution over actions is p(U) = N (0, σ2I),

where σ = 1.

The equality constraints of the system are that pzee should be at a fixed height,

and additionally that θT = θgoal. There is also a constraint that the end-effector

orientation of the robot remains fixed relative to the wrench. To do this we compute

the desired end-effector orientation from the wrench angle, and compute the relative

rotation between the desired and actual end-effector orientation in axis-angle form,

constraining the angle to be zero. In total, combining the dynamics constraints for

ϕ and θ with the other equality constraints there are four equality constraints on the

pose of the end-effector per time step. When reporting the constraint violation, we

report the maximum violation of these four constraints. The inequality constraints

of the system are that the desired torque should be achievable within the robot joint
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limits. This constraint is min torque ≤ J(q)T (l + ϕ) ≤ max torque where J

is the manipulator jacobian. There are also joint limit bound constraints, and a

bound constraint on ϕ. Computing the second derivative of this constraint requires

computing the second derivative of the manipulator Jacobian, which is costly. To

avoid this, for CSVTO we omit the second-order terms in equation (4.33) and for

IPOPT we use L-BFGS. There is no cost C for this experiment, instead, the inference

problem reduces to conditioning the prior on constraint satisfaction. The planning

horizon is 12.

For the penalty-based methods we use µ = 1000 and variants with λ = 1000 and

λ = 10000. We run IPOPT both until convergence with a max number of iterations

of 1000 and additionally with a max iterations of 200 at warmup and 20 online, which

results in a similar computation time to CSVTO.

We run this experiment for 20 trials with random initializations and show the

results in the bottom row of Figure 4.10. This problem is challenging because the

dynamics are based on a simple inaccurate geometric model. Compliance in the

gripper causes deviation from this geometric model, and the model is only accurate

so long as all constraints hold. Our results show that CSVTO can succeed in all

20 trials with a goal threshold of 0.06 radians and achieves the lowest constraint

violation. The next closest baseline, SVMPC-grad with λ = 10000 succeeds 19/20

times with a goal threshold of 0.09 radians, dropping to 11/20 at 0.06 radians. We

find that running IPOPT to convergence leads to poor performance, as the solver is

unable to converge to a feasible solution. Limiting the maximum iterations to 200

for the initial warm-start and 20 for subsequent online iterations leads to improved

task performance, achieving a success rate of 12/20.

We also demonstrate CSVTO on real hardware for the robot manipulator ma-

nipulating a wrench task, shown in Figure 4.1. After generating a configuration-

space trajectory using CSVTO, we command the robot to move to the first config-

uration waypoint of that trajectory using a joint impedance controller. Once the

robot has reached the desired waypoint, we perform re-planning to generate a new

configuration-space trajectory. We use the same hyperparameters as those in the sim-

ulator for this experiment. During execution, we applied disturbances by perturbing
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the robot end-effector. The impedance controller can reject small disturbances, but

larger disturbances require re-planning from the perturbed location. Figure 4.1 shows

one such perturbation. Despite large disturbances, our method was able to readjust

the grasp and complete the task successfully.

4.8.5 Computation Time

To determine the computation times for CSVTO and each baseline, we ran 10

trials for each experiment on a computer with an Intel i9-11900KF Processor with an

NVIDIA RTX 3090 GPU. We record the average computation times for the initial

trajectory as well as subsequent online trajectories, which we refer to as tw and

to, respectively. We also record the standard deviations of the computation times.

The number of iterations used for the warm-up and online phase is Kw and Ko,

respectively. For IPOPT this is a maximum number of iterations, and the solver

may terminate early. For all other methods, all iterations are used.

4.8.5.1 12DoF Quadrotor

The average computation time of CSVTO compared to baselines for all quadrotor

experiments is shown in Table 4.2. For this experiment, computing the gradient was

a major computational bottleneck, thus for the sample-based methods we allowed

them more iterations. We see that MPPI and SVMPC are faster than CSVTO with

online trajectory computation times of 0.366s, 0.439s, and 0.589s, respectively. For

the no-obstacles and dynamic-obstacle cases, IPOPT is also faster than CSVTO with

an average online computation time of 0.429s and 0.479s due to early termination.

However, for the static obstacles case, this rises to 0.768s compared to CSVTO

at 0.650s. When running IPOPT to convergence, the solving time is substantially

larger, with an average computation time for the static obstacle case of 15.8s. We

also see that the standard deviations are very large, due to the variability in how

quickly the solver converges. Combining these with the results from Section 4.8.2,

we see that CSVTO outperforms IPOPT to convergence with substantially faster

computation times.

109



4.8.5.2 Robot 7DoF Manipulator

The computation times for all methods on both 7DoF manipulation experiments

are shown in Table 4.3. For the manipulator on a surface experiment, the difference

in computation speed of the sample-based vs gradient-based algorithms per iteration

was less pronounced than for the quadrotor experiment. We thus kept the number

of iterations the same for all experiments, with 100 warm-up iterations and 10 online

iterations. CSVTO and IPOPT have similar computation times at 1.12s and 1.14s

to compute a trajectory online. MPPI is again the fastest algorithm at 0.691s to

generate a trajectory online, though the performance is lower both in terms of task

success and constraint violation. Initial attempts to run IPOPT with a maximum of

1000 iterations took several minutes to solve, which rendered it impractical.

For the wrench task, CSVTO and SVMPC-grad have similar computation times.

While CSVTO requires the computation of the second derivative of the constraints,

the cost evaluation of SVMPC-grad requires a loop through the time horizon, slowing

down both cost and gradient evaluation. Since CSVTO employs a collocation scheme

this process is vectorized. Whether CSVTO or SVMPC-grad is faster depends on

the relative cost of computing the second derivatives vs. looping through the time

horizon. Each iteration of IPOPT was faster than CSVTO for this experiment, as

IPOPT using the L-BFGS approximation computes no second derivatives, whereas

CSVTO only neglected the second derivatives of the force inequality constraint. We

thus allowed IPOPT more iterations, as seen in Table 4.3. Attempting to allow

IPOPT to run with a much larger maximum iteration number resulted in much

slower solving times and worse performance.
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Table 4.1: Hyperparameter values for the three experiments

Experiment # particles αJ αC ϵ Kw Ko resample steps β σresample λ W

Quadrotor 8 0.1 1 0.5 100 10 10 0.55 0.1 1000 3
Manipulator on Surface 8 0.01 1 0.1 100 10 1 0.1 0.01 1000 3
Manipulator wrench 4 0.01 1 0.25 100 10 1 0.1 0.01 1000 3

Table 4.2: Mean and standard deviation of computation times for CSVTO and all baseline methods for the
12DoF quadrotor experiments. tw and to are the average times taken to generate the trajectories for the
warm-up phase and online phase, respectively

No Obstacles Static Obstacles Dynamic Obstacle

Method Kw Ko tw (s) to (s) tw (s) to (s) tw (s) to (s)

CSVTO (Ours) 100 10 5.92± 0.235 0.589± 0.003 6.56± 0.39 0.650± 0.025 6.47± 0.344 0.643± 0.021
IPOPT 100 10 4.36± 2.29 0.429± 0.008 7.19± 2.48 0.768± 0.069 3.19± 1.89 0.479± 0.097

IPOPT-1000 1000 1000 17.5± 30.2 2.40± 1.10 39.2± 32.0 15.8± 10.1 10.8± 24.5 2.45± 2.26
SVMPC-grad 100 10 8.25± 0.080 0.771± 0.217 8.24± 0.061 0.765± 0.23 8.28± 0.054 0.850± 0.014

SVMPC 250 25 4.26± 0.030 0.439± 0.002 6.07± 0.031 0.621± 0.003 4.35± 0.24 0.449± 0.017
MPPI 250 25 3.63± 0.021 0.366± 0.0019 5.45± 0.039 0.55± 0.003 3.66± 0.13 0.373± 0.016
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Table 4.3: Average computation times for CSVTO and all baseline methods for the 7DoF robot manipulator
experiments. tw and to are the average times taken to generate the trajectories for the warm-up phase and
online phase, respectively

Surface Wrench

Method Kw Ko tw (s) to (s) Kw Ko tw (s) to
CSVTO (Ours) 100 10 9.41± 0.42 1.12± 0.19 100 10 9.62± 0.84 0.64± 0.004

IPOPT 100 10 10.26± 3.5 1.14± 0.27 200 20 5.82± 0.54 0.493± 0.028
IPOPT-1000 1000 1000 — — 1000 1000 30.8± 2.51 22.7± 2.84
SVMPC-grad 100 10 8.55± 0.072 1.10± 0.27 100 10 9.54± 0.071 0.732± 0.004

SVMPC 100 10 7.27± 0.097 0.758± 0.010 100 10 7.44± 0.15 0.571± 0.007
MPPI 100 10 6.91± 0.12 0.691± 0.028 100 10 7.05± 0.11 0.506± 0.006
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4.9 Discussion

In this section we will discuss some of the advantages of CSVTO over baselines,

and then discuss some limitations and finally highlight areas for future work.

4.9.1 Local minima

CSVTO produces diverse approximately constraint-satisfying trajectories. By

encouraging diversity through the course of the optimization the algorithm searches

the solution space more widely and can result in multi-modal sets of solutions, for

example, see Figure 4.3. We found that this behavior is beneficial for escaping

from local minima. This was most clearly demonstrated in the 12DoF Quadrotor

experiment. We found that in the case of no obstacles, IPOPT was consistently able

to get relatively close to the goal, achieving a 100% success rate at a goal region

of 0.4m. However, it was unable to escape a local minimum in the vicinity of the

goal region. This local minimum appears to be induced by the surface constraint,

as IPOPT frequently became stuck at a position where it needed to climb in height

to reach the goal while satisfying the constraint, incurring a large control cost. In

contrast, CSVTO was able to achieve a 100% success with a much smaller goal region

of 0.2m.

4.9.2 Initialization

CSVTO optimizes a set of trajectories in parallel. Each of these trajectories

has a different random initialization, and, as mentioned, the objective encourages

trajectory diversity. We find that this approach is effective at making the algorithm

more robust to poor initialization. This is most clearly seen in the 7DoF wrench

manipulation experiment, shown in Figure 4.9. This system is highly constrained,

and we can see from figure 4.9 that the trajectories generated by IPOPT can be very

low quality when poorly initialized. This is reflected in the success rates, where in

our experiments CSVTO succeeds for 20/20 of the trials vs. 12/20 for IPOPT.
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Figure 4.9: The robot manipulator turning a wrench experimental set-up. The goal
is to turn the wrench by 90 degrees. End-effector planned path at the first time-
step visualized for three different initial trajectories generated by CSVTO (Top)
and IPOPT (Bottom). CSVTO’s end-effector path traces an arc around the wrench
center to turn the wrench, while IPOPT paths are often poor, containing very large
steps and lacking smoothness

.

4.9.3 Limitations & Future Work

Differentiability Our method requires that all costs and constraints are differen-

tiable. This is a restrictive assumption, particularly when treating dynamics as a

constraint. Many contact-rich robot manipulation tasks exhibit discontinuities that

invalidate this assumption.

Slack variables Our approach converts inequality constraints to equality con-

straints by introducing slack variables. While this is a natural way of incorporating

inequality constraints into our method, it results in increasing the number of decision

variables by the number of inequality constraints. This is likely to be problematic

for long-horizon planning tasks with many inequality constraints. A possible solu-

tion would be solving a QP subproblem at every iteration to determine the active
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Figure 4.10: Results for the robot manipulator using the wrench. Left column shows
the success rate as we increase the size of the goal region. The right column shows
the average constraint violation as a function of time time, where we compute the
constraint violation at a given time via the maximum violation among the equality
constraints.

inequality constraints as in [39], however, this has the issue that we would need to

solve an individual QP subproblem for every particle.

Computation time inadequate for real-time control We note from Table

4.2, in the dynamic obstacle quadrotor task the average computation time for online

trajectory generation is 0.643s for CSVTO, compared to MPPI, the fastest baseline,

taking 0.373s. In this case, the solve times for the current implementation of CSVTO

and all baselines are insufficient for real-time reactive control. Our method, all

baselines other than IPOPT, and all cost and constraint functions were implemented

in Python, using automatic differentiation in PyTorch to compute the relevant first

and second derivatives. Implementing these methods in C++, using a library such

as CasADI [4] for automatic differentiation, may enable real-time performance on

these systems in future work.

Kernel selection While our approach decomposes the kernel into a sum of kernels

operating on sub-trajectories, each of these kernels is an RBF kernel. While the RBF
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has attractive properties, such as strict positive-definiteness and smoothness, we be-

lieve that exploring task-specific kernels for trajectory optimization is an interesting

avenue for future work.

4.10 Conclusion

In this chapter, we presented Constrained Stein Variational Trajectory Optimiza-

tion (CSVTO), an algorithm for performing constrained trajectory optimization on

a set of trajectories in parallel. To develop CSVTO we formulated constrained tra-

jectory optimization as a Bayesian inference problem, and proposed a constrained

Stein Variational Gradient Descent (SVGD) algorithm inspired by O-SVGD [179]

for approximating the posterior over trajectories with a set of particles. Our results

demonstrate that CSVTO outperforms baselines in challenging highly-constrained

tasks, such as a 7DoF wrench manipulation task, where CSVTO succeeds in 20/20

trials vs 12/20 for IPOPT. Additionally, our results demonstrate that generating

diverse constraint-satisfying trajectories improves robustness to disturbances, such

as changes in the environment, as well as robustness to initialization.
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CHAPTER V

Parallel Trajectory Optimization for Dexterous

Manipulation

5.1 Introduction

In Chapter IV, we introduced a method for constrained trajectory optimization

on a set of trajectories in parallel. We demonstrated this method applied to two

constrained manipulation tasks; planning with the end-effector constrained to move

on a surface and turning a wrench. In these situations, the tasks can be completed

by the gross motion of the arm. However, for many tasks we need robots to exhibit

more dexterity in their manipulation, particularly when operating in environments

and using tools that are designed for humans. For instance, consider a robot turn-

ing a precision screwdriver. The robot needs to supply sufficient torque to turn the

screwdriver while maintaining the grasp. While we could use the gross motion of

the arm to turn the screwdriver, by using a dexterous multi-fingered hand we can

achieve continuous turning without having to reorient the arm. Another possible so-

lution would be to design a custom end-effector to turn the screwdriver continuously.

However, this is just a single task. For a multi-stage task using a screwdriver may

only be necessary for one stage, and other stages may require picking up an object,

or the use of other tools such as a wrench.

In this chapter 1, we demonstrate that CSVTO is effective for optimizing trajec-

1This chapter is based on unpublished work done with Fan Yang
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tories for challenging, dexterous manipulation tasks. We show CSVTO being applied

to two tasks using a multi-fingered hand, turning a 1DoF valve, and turning a pre-

cision screwdriver. Our results show that for the screwdriver case, the challenge of

the resulting optimization leads to IPOPT, a general nonlinear solver [157], to drop

the screwdriver in 3/10 attempts. In contrast, CSVTO can successfully turn the

screwdriver for all 10 attempts.

5.2 Related Work

5.2.1 Planning

There is a long history of developing planning methods for dexterous manipula-

tion [153, 172, 62]. Many of these methods explicitly reason about changes in contact

state. For instance, Jijie et al. [172] propose sample-based motion planning in a hy-

brid configuration space for finger gait planning. Recently, the CMGMP algorithm

was proposed by Cheng et al. [25, 26] which automatically generates possible contact

modes in a sample-based motion planning framework. Other approaches have used

Monte-Carlo Tree Search (MCTS) to plan contact modes [27]. Optimization-based

approaches have also been used for dexterous manipulation [92, 55, 143, 134, 152].

Liu [92] proposed a multi-step optimization framework that first optimizes contact

forces, and then optimizes motion. Other methods have focused on optimizing a

plan within a given contact mode [143], or given an existing sequence of constraints

[26]. To optimize the sequence of contacts one approach is to explicitly search for

a schedule of contacts while optimizing a trajectory, which can be formulated as a

Mixed Integer Program [100]. Other methods rely on an implicit representation of

the contact schedule, i.e. contact-implicit trajectory optimization [121, 63]. This

approach leads to optimization problems that are difficult to solve, recent work by

Chen et. al. combines this approach with MCTS to improve planning times and

feasibility [23].
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5.2.2 Learning based

Recently, learning approaches have become more popular for dexterous manip-

ulation. These methods do not require hand-specified models and precisely known

object geometries but learn from data. Some approaches learn models which are then

used for planning. For instance, methods have been proposed that use locally linear

models [80], as well as neural network dynamics models [108]. Other approaches

have used reinforcement learning to learn policies directly from experience [5, 175],

or from demonstration [130]. Recent work has proposed combining learning-based

approaches and model-based planning within a hierarchical framework [47, 177].

5.3 Problem Statement

This chapter considers the dexterous manipulation of an object using a multi-

fingered hand. The configuration of the object is given by qO, and the configuration

of the i-th finger is given by qi. The objective is to find a sequence of commanded

joint positions {q̂it, t ∈ [1, T ], i ∈ Ifingers} such that the object moves from some initial

configuration qO0 to a goal configuration qOg . We assume the contact mode does not

change during the task. Specifically, fingers in contact will remain in contact and no

additional contacts will be introduced during the manipulation. We assume that the

system is quasi-static.

5.4 Methods

To solve the problem outlined in Section 5.3, we frame it as a trajectory optimiza-

tion problem. We optimize for a sequence of joint configurations {qit, t ∈ [1, T ], i ∈
Ifingers}, and commanded change in joint configuration {∆qit, t ∈ [1, T ], i ∈ Ifingers}.
Note that q̂it+1 = qit+∆qit, and that q̂it is the commanded joint configuration whereas

qit is the actual joint configuration. Making this distinction allows us to reason about

applied forces, for instance by commanding a joint configuration which would lead

to penetration of the obstacle we apply a force to the object.
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The objective of the trajectory optimization problem is to minimize the following

min
qit,∆q

i
t,q

O
t

t∈[1,T ],i∈Ifingers

T−1∑
t=0

(
||qt+1 − qt||2 +

∑
i

||∆qi,t||2
)

+ ||qOT − qOg ||2, (5.1)

where qt = [qOt , {qit, i ∈ Ifingers}] is the overall configuration of the fingers and

object at time t. This objective encourages the trajectory to take small steps in

configuration space while minimizing the final distance to the goal for the object

configuration. To ensure the trajectory is physically feasible, we use a variety of

different constraints that we now discuss.

5.4.1 Contact Constraints

The contact constraints are in place to ensure that the relevant fingers make

contact with the object. To do this, we assume that we have access to a signed

distance function for the object, expressed as ϕO(p
O), which allows us to compute

both the signed distance and the surface normals of the object at points pO in the

object frame. For each fingertip we first pre-compute N points on the surface of

the fingertip mesh, expressed in the fingertip frame as {pfk}k=1,...,N . When querying

the value of the contact constraints for configurations (qO, {qi}i∈If ingers) we map all

points to the world frame using the forward kinematics to compute {pWk }k=1,...,N , and

then transform these to the object frame. We then compute the signed distance and

surface normal for each of these points {ϕO(pOk ),∇pOk
ϕO(p

O
k )}k=1,...,N . In principle

the overall signed distance is mink ϕO(p
O
k ), however, this minimum operator is non-

differentiable. We instead use the well-known softmin smooth approximation

wk =
exp−βϕO(pOK)∑N
k=1 exp−βϕO(pOk )

, (5.2)

where β is a temperature parameter; we use β = 1000. Our contact constraint for

each finger is
∑

k wkϕ
O
k (p

O
k ) = 0. To get the derivative of this constraint, note that

the derivative of the SDF of the k-th point in the object frame, ∇pOk
ϕO(p

O
k ), is the

surface normal. The gradient of the SDF of the k-th point with respect to the object
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configuration is −∇pOk
ϕO(p

O
k )J

O(qO), where JO(qO) is the jacobian of the object at

configuration qO. Similarly, the gradient of the SDF of the k-th point with respect

to the finger configuration is ∇pik
ϕ(pik)J

i(qi), where ∇pik
ϕ(pik) is the surface normal

translated to the i-th finger frame, and J i(qi) is the jacobian of the i-th finger. Using

these we can compute an overall gradient of the SDF using the differentialibility of

the softmin operation. In addition, we also use the softmin weight to estimate the

contact points pOc =
∑

k wkp
O
k . Note that for this constraint we do not enforce a

particular contact point, therefore the precise contact point can vary through the

optimization.

5.4.2 Kinematics Constraints

We use kinematics constraints to enforce consistency between the change in the

configuration of the fingertips and the movement of the object. For each contact, we

estimate the velocity of the contact point on the fingertip in the object frame as

vit = Jpi(q
i
t)(q

i
t+1 − qit), (5.3)

where J ipi is the contact Jacobian for the i-th finger evaluated at the contact point

pi. We then estimate the velocity of the contact point on the object as

vOt = JOpO(q
O
t )(q

O
t+1 − qOt ), (5.4)

where JOpO is the contact Jacobian of the object evaluated at the contact point.

Assuming a sticking contact, the instantaneous velocities for the contact point on

the finger and object should be equal to one another.

5.4.3 Force Constraints

We include the contact forces per finger as a decision variable {f it , t ∈ [1, T ], i ∈
Ifingers}. The purpose of this is for two reasons, the first is to enforce friction

constraints, and the second to enforce a wrench balance to ensure the quasi-static

assumption holds. We assume that force balance only holds at the end of a transition.
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Therefore the force f it is defined as the instantaneous contact force after we have

transitioned from qit to q
i
t+1, immediately before beginning the transition to qit+2. At

this instance, the controller has a set-point of qit + ∆qit, but has actually achieved

qit+1. The forces must satisfy the following constraints

Jpi(q
i
t+1)

Tf it = Kp(q
i
t +∆qit − qit+1), (5.5)∑

i

f it × pO = 0, (5.6)

The second of these two constraints enforces static equilibrium. Note that this con-

straint is a torque balance constraint. We do not include full force balance, since in

all of our experiments the position of the object is constrained; it is the orientation

that is controlled. Extending to full 6D motion is intended for future work.

5.4.4 Friction Constraints

To ensure we have a sticking or rolling contact, we place inequality constraints

that the forces must lie in the friction cone. We use a linearized friction cone. Thus

have the following constraint

Af it ≤ 0, (5.7)

Where A describes the linearized friction cone. When linearizing the friction cone

transforming the conic constraint into 8 linear inequality constraints. This constraint

ensures that the contact force at the end of transition from qt to qt+1 lies the linearized

friction cone. We also add an additional constraint that the contact force at the

beginning of the transition lies in the linearized friction cone. We approximate this

force as Jp(q
i
t)(q

i
t+1 − qit). Note that this assumes the contact force is proportional

to the contact velocity, and effectively assumes that JT
†
= J , where JT

†
is the

psuedo-inverse of JT . This leads to the following inequality constraint

AJp(q
i
t)(q

i
t+1 − qit) ≤ 0. (5.8)
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5.4.5 Rolling Contacts

The contact constraint outlined above does not enforce a particular contact point,

rather this contact point varies through the optimization. In addition, the kinemat-

ics constraint and friction constraints themselves only prohibit sliding movement.

Therefore our trajectory optimization allows for rolling contacts. This is crucial for

increasing flexibility given the limited degrees of freedom for each finger.

5.5 Results

In this section, we evaluate the application of CSVTO to challenging dexterous

manipulation tasks. We evaluate CSVTO on two different experimental setups using

the allegro hand. For the first, we use the thumb and index finger of the allegro to

turn a 1-D valve. The configuration of the object is the valve angle θ. For the second

experiment, we use the thumb, index, and middle fingers of the allegro to turn a

precision screwdriver. We model the screwdriver as connected to a surface using a

ball joint, hence the configuration for the object is qO = [θ, ψ, ϕ]T . We run these

experiments in IsaacGym. For all experiments, we run with a time horizon of 15.

5.5.1 Baseline

We compare using CSVTO to solve the trajectory optimization with IPOPT

[157], a general nonlinear optimizer. We use IPOPT, using L-BFGS to approximate

the Hessian of the Lagrangian. For CSVTO we neglect second order terms, using

only the gradients of thee cost and constraints. For both IPOPT and CSVTO we

set the maximum number of iterations to be 1000.

5.5.2 Valve turning

We set the goal valve angle to be θg =
π
3
, where the initial valve angle is 0. We

show an example execution of trajectory planned by CSVTO in Figure 5.2. The

performance of CSVTO and IPOPT is shown in Figure 5.1. We solve the same

optimization problem for 10 different random initializations. CSVTO and IPOPT
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Figure 5.1: The average executed valve angle for the allegro valve turning task over
10 initializations. The shaded region shows the range of executed valve angles. The
goal valve angle is shown in dotted black.

perform similarly for this experiment, successfully turning the valve, though not able

to precisely reach the goal due to the kinematics of the robot. The average solve time

for CSVTO is 193s compared with IPOPT at 711s, showing that CSVTO achieves

similar performance with much faster solve times.

5.5.3 Screwdriver turning

We set the goal screwdriver orientation to be qOg = [0, 0,−π
3
]T , where the ini-

tial screwdriver orientation is [0, 0, 0]T . As a result, the trajectory should turn the

Figure 5.2: Snapshots of execution of trajectory planned by CSVTO, turning the
valve.
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Figure 5.3: The average executed screwdriver angles for the allegro valve turning
task over 10 initializations. The shaded region shows the range of executed valve
angles. The goal valve angles are shown in dotted black.

Figure 5.4: Snapshots of execution of trajectory planned by CSVTO, turning the
precision screwdriver.

screwdriver while keeping it in an upright position. We show an example execu-

tion of trajectory planned by CSVTO in Figure 5.4. The performance of CSVTO

and IPOPT is shown in Figure 5.3. We solve the same optimization problem for 10

different random initializations. We see that for this experiment CSVTO outper-

forms IPOPT. For all 10 trials, CSVTO is able to turn the screwdriver successfully

while maintaining the grasp. In contrast, as seen by the large range of outcomes

for IPOPT, IPOPT drops the screwdriver in 3/10 trials. For this task the average

solve time for CSVTO is 315 compared with IPOPT at 1166, showing that CSVTO

achieves better performance with much faster solve times.
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5.6 Conclusion

In this chapter we demonstrated CSVTO on challenging dexterous manipulation

tasks using a multi-fingered hand. We demonstrated that we can outperform IPOPT

[157], a general nonlinear optimization solver for the task of turning a precision

screwdriver, where poor initialization results in IPOPT dropping the screwdriver

in 3/10 cases, compared to CSVTO which does not drop the screwdriver in any of

the 10 trials. In future work we intend to accelerate the trajectory optimization by

learning a generative model of trajectories with which to initialize the optimizer. In

addition, we intend to include the contact mode into the optimization so that we

can optimize the sequence of contacts to complete a task. For example, we would

like to be able to optimize the sequence of contacts required to continuously turn the

precision screwdriver.
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CHAPTER VI

Sampling Constrained Trajectories Using

Composable Diffusion Models

Chapter IV proposed a method for generating multiple diverse constraint-satisfying

trajectories in parallel. However, this method can be costly. In this chapter, we pro-

pose using diffusion models to learn a distribution over constraint-satisfying low-cost

trajectories. This learned distribution will then used with CSVTO to efficiently

generate multiple constraint satisfying trajectories. We propose exploiting the com-

posability of diffusion models to generalize the learned generative model to out-of-

distribution constraints which consist of the composition of multiple in-distribution

constraints. Our results demonstrate the benefit of our approach by showing im-

provement over baselines on a constrained 12DoF Quadrotor task and a 7DoF robot

manipulator task. Future work will be to extend this to a wide range of parameter-

ized constraints relevant to manipulation planning. 1

6.1 Introduction

Trajectory optimization and optimal control are important tools for generating

complex robot behavior [17, 139, 56, 118, 18]. When performing trajectory opti-

mization, ensuring constraint satisfaction is crucial to ensure the trajectories are

1The work in this chapter appeared in [126]
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Figure 6.1: Example trajectories for the 7DoF manipulator on a table experiment. At
the first timestep, the initial trajectories from CSVTO are quite poor, and CSVTO
becomes stuck unable to pass through the narrow passage between obstacles. CSVTO
with the single-constraint diffusion models both generate initial trajectories towards
the goal but fail to make progress past the initial passage. CSVTO with the composed
diffusion generates trajectories that immediately pass through the narrow passage
and satisfy the table constraint, and successfully traverses the passage.

safe. Satisfying these constraints can be very difficult as constraint-satisfying tra-

jectories may lie on implicitly-defined lower-dimensional manifolds that have zero

measure, presenting difficulties for sample-based methods. In addition, many useful

tasks entail constrained optimization problems that are non-convex and exhibit mul-

tiple local minima. This makes trajectory optimization difficult for gradient-based

methods, as poor initialization may lead to poor local minima or even infeasible so-

lutions. This is particularly problematic when re-solving the optimization problem

online under limited computation time when disturbances can lead to the previous

solution becoming a poor initialization for the current optimization problem.

In this chapter, we formulate the constrained trajectory optimization problem

as a Bayesian inference problem. This view has advantages as it aims to find a

distribution over trajectories rather than a single trajectory alone. As noted by

Lambert et. al. [83], commonly used Variational Inference approaches [16] lead to
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minimizing entropy-regularized objectives [83] which can improve exploration of the

search space and give greater robustness to initialization. Previous methods taking

the inference view of trajectory optimization have only been able to incorporate

constraints via penalties in the cost [176, 106, 83, 84]. A drawback of penalty methods

is that selecting the relative weights of the penalties is challenging due to possible

conflicts with the objective function.

Recently, Power and Berenson [124] proposed Constrained Stein Variational Tra-

jectory Optimization (CSVTO), an algorithm that uses a non-parametric approxima-

tion of the posterior over low-cost constraint-satisfying trajectories. By generating

diverse sets of constraint-satisfying trajectories, this method is more robust to ini-

tialization than baselines that rely on a single trajectory. However, the method can

still fail if all of the trajectory initializations are poor. In addition, the computa-

tional time increases as the number of constraints and time horizon increases. When

running with a limited computational budget we generally do not have time to run

until convergence. In this chapter, we will discuss our proposed future work learning

a generative model of constraint-satisfying trajectories which is used with CSVTO.

Crucially, we propose using composable diffusion models to generalize the learned

generative model to out-of-distribution constraints which consist of the compositions

of constraints seen in training. This composition ability is important for tasks where

the task-specific constraints are not known at training-time and training on all pos-

sible constraints the robot might encounter is intractable. Our preliminary results

show improved performance with a finite computational budget for two experiments;

a 12DoF quadrotor and a 7DoF manipulator.

6.2 Related Work

6.2.1 Learning-based Constrained Planning

Learning-based approaches have previously been used to improve planning in con-

strained domains. Qureshi et al. proposed Constrained Motion Planning Networks

(CoMPNetX) [129], a learning-based method for constrained sample-based motion
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planning. Generative Adversarial Networks (GANs) have been used to learn distri-

butions of configurations satisfying constraints, by Lembono et al [88] for use with

constrained sample-based motion planning and by [113] for generating initializations

for a trajectory optimization problem. Kicki et al. proposed an approach for gener-

ating constraint-satisfying trajectories with a neural network that outputs a B-spline

parameterization of the trajectories [72].

6.2.2 Diffusion Models in Robotics

Diffusion probabilistic models [53, 141, 142] are a class of generative models that

have been recently applied to generating high-quality images [53], trajectories [61, 2]

learning multi-modal policies [28] and learning costs for grasp optimization [155].

Two mechanisms have been proposed for incorporating conditioning information,

classifier-guidance [32], which uses the gradients of an additionally learned classifier

with the unconditional diffusion model, and classifier-free guidance [52] which instead

learns a conditional diffusion model which takes the context information as input to

the diffusion model. One interesting feature of diffusion models that has been recently

explored is the composition of context information at test time, generalizing to novel

combinations of context [94, 34, 2].

6.3 Problem Statement

We frame the constrained optimal control problem introduced in Section 4.3 as a

probabilistic inference problem, using ideas developed in Section 4.4. We can consider

the constrained optimization problem as an unconstrained optimization problem with

infinite cost assigned to constraint violations. This results in p(o = 1 = |τ) = 0 =⇒
p(τ |o = 1) = 0, hence constraint violating trajectories are zero probability. We can

convert the unconstrained optimization problem with infinite cost to the following
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constrained optimization problem on the space of probability distributions:

q∗ = min
q
F̃(q)

s.t.

Pq(h(τ) = 0) = 1

Pq(g(τ) ≤ 0) = 1

∀t ∈ {1, . . . , T}

Pq(f(xt−1,ut−1) = xt) = 1

Pq(umin ≤ ut−1 ≤ umax) = 1

Pq(xmin ≤ xt ≤ xmax) = 1.

(6.1)

CSVTO solves this functional optimization problem with a non-parametric approx-

imation of q∗, and solves a single planning query for a specified cost C, constraints

g, h, and dynamics f . We can then say that q∗ = q∗(C, g, h, f). We will assume f is

fixed, and that the cost C is parameterized by a start x0 and a goal xg. We assume

that the constraints g, h are parameterized by {θ, y}, where θ ∈ Rn are continuous

parameterizations of the constraint and y ∈ [1, ...,M ] is an indicator variable for the

constraint type. For instance, different types of constraints could be obstacle avoid-

ance constraints vs. end-effector pose constraints. Thus q∗ = q∗(x0, xg, θ). Rather

than repeatedly solve this optimization problem from scratch, we aim to learn a

generative model which approximates this q∗. For a given x0, xg, θ we use CSVTO

to generate sampled trajectories (X,U) from q∗. The data from which we will learn

our generative model is {{Xi,Ui}Ki=1, x0, xg, θ, y}N . By using this generative model

as an initialization, our goal is to achieve better performance and lower constraint

violation within a limited computational budget. In addition, we seek to generalize

to unseen combinations of constraints, i.e. for constraints hi, hj seen individually

during training we aim to generalize to the case where it is necessary to satisfy both

hi and hj.
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6.4 Methods

Given trajectory samples (X,U) ∼ q∗(x0, xg, θ), we use a conditional diffusion

model pψ(X,U |x0, xg, θ) to learn a generative model of the data. We will first give

an overview of diffusion models.

6.4.1 Diffusion Models

Diffusion probabilistic models [53, 141, 142] are a class of generative models that

have been shown to be highly effective for learning distributions of trajectories [61, 2].

Given a dataset D = {τ}N , the data samples are τ0 and a predefined forward noising

process q(τk+1|τk) = N (
√
αkτk, (1 − αk)I) is used to progressively add noise to the

data for K steps, resulting in τ1, ..., τK increasingly noisy latent vectors. K and αk

are chosen such that τK ∼ N (0, I). To sample from the model, we use a trainable

reverse process pψ(τk−1|τk) = N (µ(τk, k),Σk), where µ is parameterized by a neural

network, and Σk is typically fixed, but can in principle be learned. Diffusion models

are learned with the loss

L(ψ) = Ek∼[1,K],τ0∼D,τk∼q(τk|τ0),ϵ∼N (0,I)[||ϵ− ϵψ(τk, k)||2] (6.2)

where ϵψ is a neural network. The mean of the reverse process µ is then calculated

from this ϵψ.

Classifier-free Guidance for Conditional Diffusion Models In the previous

section, we described an unconditional diffusion model. However, we would like to

generate trajectories conditioned on the start, goal, and constraints. For convenience,

we label all contextual information as c, the dataset is then D = {τ, c}N . We use a

technique known as classifier-free guidance [52]. The diffusion model is modified to

also take the context as an input ϵ(τk, c, k). The loss then becomes

L(ψ) =

Ek∼[1,K],τ0,c∼D,τk∼q(τk|τ0),ϵ∼N (0,I)[||ϵ− ϵψ(τk, c, k)||2].
(6.3)
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During training, with some dropout probability punconditional we replace c with ∅,
this effectively trains a conditional generative model and an unconditional genera-

tive model together. When sampling, the conditional and unconditional models are

combined via

ϵ̂(τk, c, k) = ϵψ(τk, ∅, k) + ω(ϵψ(τk, c, k)− ϵψ(τk, ∅, k)), (6.4)

where ω controls the influence of the conditioning information. We can see that

ω = 1 corresponds to simply using ϵ̂ = ϵψ(τk, c, k), ω is typically chosen to be larger

than 1 to more strongly incorporate the conditioning information.

6.4.2 Composing Constraints

As introduced in the previous section, the conditional diffusion model is ϵψ(τk, c, k),

where c is the contextual information. The contextual information is {x0, xg, θ, ŷ},
where ŷ is a one-hot encoding of y. We are interested in composing constraints,

such that we can generalize to novel combinations of constraints that have not been

seen together during training. Suppose we have L constraints, then the contextual

information is c = {x0, xg, θ1, ŷ1, ..., θL, ŷL}. These are composed at test time via

ϵ̂(τk, c, k) =ϵψ(τk, ∅, k)+
L∑
i=1

ωi(ϵψ(τk, {x0, xg, θi, ŷi}, k)− ϵψ(τk, ∅, k)),
(6.5)

where ωi is a hyperparameter that controls the relative influence of each constraint.

6.4.3 Architecture

For the neural network architecture we use the 1-D convolutional U-Net described

in [61]. We encode the start, goal, and constraint information with a multi-layer per-

ceptron (MLP) to a R256 vector which is used to condition the network via Feature-

wise Linear Modulation (FiLM) [117]. To query and train the unconditional diffusion
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model, we replace this vector with the zero vector. We train with Adam and a learn-

ing rate of 1× 10−4.

6.4.4 Using the learned model for planning with CSVTO

In principle, a perfect generative model planning would simply consist of sampling

from the diffusion model, as in [61, 2]. However, to ensure that trajectories satisfy

the constraints we use the samples as the initialization for CSVTO. CSVTO starts

from an initial set of particles and updates the particle set, driving the particles

towards constraint satisfaction and low cost while also promoting diversity. Suppose

we are running CSVTO with N particles. In the first time-step, we sample N

trajectories from the generative model to get a set of initial trajectory samples. At

subsequent timesteps, CSVTO gives N initial trajectories which are the shifted result

of the previous time-steps optimization. We sample an additional N trajectories from

the generative model and choose the best N of the 2N trajectories to serve as the

initialization for the optimization.

6.5 Results

We evaluate our approach in three experiments. The first is a constrained 12DoF

quadrotor task which has nonlinear underactuated dynamics. The second experiment

is a 7DoF robot manipulator task where the aim is to move the robot end-effector

to a goal location while being constrained to move along the surface of a table.

6.5.1 Ablations

We compare using our proposed composable learned generative model for trajec-

tory optimization with ablations. The first is CSVTO without a learned generative

model to sample trajectories from. For the second ablation we compare against using

the learned diffusion model without the composability, e.g. for a task that consists of

satisfying constraint h1 and h2, we compare using diffusion models which only take

into account a single constraint.
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Figure 6.2: Experimental setup for the training and evaluation of the quadrotor tasks.
The quadrotor must travel to the goal location. a) The quadrotor is constrained to
travel along a non-linear surface shown in purple. b) The quadrotor must avoid the
infeasible regions in the x-y plane shown in red. c) The quadrotor must satisfy both
the previous constraints, avoiding infeasible regions while staying on the non-linear
surface. The combination of these two constraints is not seen during training.

6.5.2 12DoF Quadrotor

For this task there are two types of constraints; a constraint that the quadro-

tor must travel along a nonlinear surface z = fsurf (x, y), and that the quadrotor

must avoid obstacles in the x-y plane, with in-collision configurations described by

fobs(x, y) < 0. To generate different versions of each of these two types of constraints,

we sample fobs and fsurf from a Gaussian Process prior with an RBF kernel and zero

mean function. To do this, we sample 10× 10 function evaluations on a 10× 10 x-y

grid. We then fit a GP to these function evaluations and use the posterior mean

of this GP as the constraint function. The constraint is then parameterized by the

10×10 function values. We collect a dataset that consists of trajectories that satisfy

either the surface constraint or the obstacle avoidance constraint. To collect the

dataset, we generate 10000 surface constraints and 10000 obstacle constraints. For

each constraint we run CSVTO with 16 particles and generate trajectories for 10

different starts and goals, resulting in 20000× 16× 10 = 3.2× 106 trajectories. We

evaluate with an unseen setup in which the quadrotor must satisfy both the obstacle

constraint and the surface constraint at the same time. Examples of the training

and evaluation set-ups are shown in Figure 6.2.

We run this experiment for 20 trials with randomly sampled starts, goals, surface,
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Figure 6.3: Results for quadrotor experiments. The left row shows the success rate
as we increase the size of the goal region. The right shows the average constraint
violation as a function of time

and obstacle constraints. The results are shown in Figure 6.3. CSVTO with the

composed diffusion outperforms the ablations, achieving succeeding 13/20 times at

a goal threshold of 0.6m, compared with 9/20 for CSVTO with no diffusion, the

next best baseline. We see that CSVTO with a diffusion model that only takes

into account the surface constraint performs similarly to CSVTO with no diffusion,

whereas CSVTO which only takes into account the obstacle constraint performs

significantly worse.

6.5.3 Robot Manipulator on Surface

For this experiment, we use the same experimental setup as that described in

6.5.3. In this task, there are again two types of constraints, a surface constraint

that the end-effector must be constrained to along the surface of the table, and an

obstacle constraint that the end-effector must avoid two cylindrical obstacles in the

x-y plane. For the obstacle constraint, θ ∈ R4 is the x-y positions of the center of both

obstacles, while for the surface constraint, θ = [h, 0, 0, 0], where h is the height of the

table. We collect a dataset that consists of trajectories that satisfy either the table

constraint or the obstacle avoidance constraint. To collect the dataset, we generate

10000 surface constraints and 10000 obstacle constraints. For each constraint we run

CSVTO with 16 particles and generate trajectories for 10 different starts and goals,
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Figure 6.4: Results for manipulator table experiments. The left row shows the success
rate as we increase the size of the goal region. The right shows the average constraint
violation as a function of time

resulting in 20000× 16× 10 = 3.2× 106 trajectories. We evaluate our approach in a

scenario in which the robot must satisfy both constraints at the same time.

We run this experiment for 20 trials with randomly sampled starts, goals, surface,

and obstacle constraints. The results are shown in Figure 6.4. CSVTO with the

composed diffusion outperforms the ablations, achieving succeeding 20/20 times at

a goal threshold of 0.04m, compared with 17/20 for CSVTO with no diffusion, the

next best baseline. We see that CSVTO with a diffusion model that only takes into

account one of the two constraints performs slightly worse than CSVTO. Examples

of trajectories generated by all methods are shown in Figure 6.1.

6.6 Challenges and Future Work

6.6.1 Generalizing constraints

While our work shows the benefit of learning composable diffusion models of

constraint-satisfying trajectories, we have so far only demonstrated these on fairly

limited constraints for manipulation planning. For the 7DoF manipulation task,

we only consider an SE(2) end-effector constraint at a fixed height, and obstacle

constraint that consists of ensuring the end-effector avoids 2D obstacles in the plane.

We intend to extend the generality of the constraints considered; the 2D obstacle
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constraint can be extended to avoiding 3D obstacles with the full 7DoF arm, and

the SE(2) end-effector constraint can be extended to Task-space regions (TSRs) [14].

With these more general constraint parameterizations a single diffusion model may

be able to be used to generate constraint-satisfying trajectories for diverse tasks such

as turning a wrench, wiping a cluttered table, or opening a cabinet door, all in the

presence of 3D obstacles.

6.6.2 Improving constraint-satisfaction

Currently our learned diffusion models are trained on constraint-satisfying tra-

jectories. This means they approximately, but do not exactly satisfy the constraints.

This necessitates using a post-processing step to enforce constraint satisfaction. Our

preliminary results show that using CSVTO results in good performance. However,

we intend to further improve the constraint satisfaction of the sampled trajectories.

Sampling from diffusion models is an iterative process, where trajectories are itera-

tively updated with the output of the neural network. We intend to investigate if the

techniques used in CSVTO to update trajectories toward constraint satisfaction can

be applied to the iterative sampling in a diffusion model. The current diffusion model

we are using uses a fixed number of diffusion timesteps, which cannot be changed

after training the model. This presents a challenge, as if we aim to enforce con-

straint satisfaction during sampling we only have a fixed number of samples in which

to do so. One possible route to alleviating this issue is to consider continuous-time

Score-based Models based on Stochastic Differential Equations (SDEs), which are a

generalization of diffusion models. Using these methods we may be able to adap-

tively change the number of steps when sampling. Another challenge is that when

sampling from diffusion models, the initial samples are pure Gaussian noise. During

training, the diffusion model may learn a path from Gaussian noise to a low-cost

constraint satisfaction that traverses a highly infeasible region of the search space. If

during sampling, we project to constraint satisfaction too early, we may find that the

trajectory leaves the learned diffusion path and is effectively OOD for the diffusion

model.
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CHAPTER VII

Conclusion and Outlook

In this thesis, we first introduced a method for planning for manipulation with

a highly miss-specified model from image observations, which relies on learning a

Gaussian Process to estimate the model uncertainty (Chapter II). We afterwards

presented a method that learns a generative model of control sequences to complete

a given task. We also demonstrated that we can adapt this generative model to Out-

of-Distribution (OOD) environments (Chapter III). We then presented a method that

views constrained trajectory optimization as inference and generates diverse sets of

constraint-satisfying trajectories for completing manipulation tasks. By generating

diverse sets of trajectories we demonstrated that we are better able to adapt to

online disturbances since at any given time we have a set of trajectories to select

from (Chapter IV). We additionaly demonstrated the application of this method

to challenging dexterous manipulation tasks with a multi-fingered hand (Chapter

V). Finally, in Chapter VI we proposed learning a generative model of constraint-

satisfying trajectories for manipulation planning which are used to initialize the

trajectory optimization method introduced in Chapter IV.
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7.1 Future Work

7.1.1 Simple Model Reductions for Manipulation Planning

The work in Chapter II assumes that a single suitable simple model reduction is

given a-priori for the task. In general this will not be the case, and an interesting

avenue of future work is identifying simple models. In addition, the method assumes

that a single simple model is sufficient to complete a given task, which may not be

true in general. For instance, consider the problem of tidying an open book. First,

the robot should close the book, for which it could model the book as an articulated

rigid object. Next, the robot should place the book on a bookshelf. If the book is

closed and remains so, an appropriate simple model for this task could be to treat

the book as a rigid object. An interesting future direction would be to explore how a

robot can autonomously select from a library of simple models in order to complete

long horizon tasks.

Another key limitation of the method presented in Chapter II is that it restricts

the robot to act in concordance with the simple model; the robot is unable to exploit

useful behavior of the underlying system if that behavior contradicts the simple

model. For instance, for a robot routing a cable through a narrow gap, the ability of

the cable to conform around obstacles in the vicinity of the gap may be helpful for

accomplishing the task. If the robot is using a rigid body simple model, this behavior

will be penalized for contradicting the simple model. An interesting direction for

future work could investigate how to reduce this limitation. For instance, the simple

model approximation could be used to bootstrap an initial learning phase, and then a

more flexible learning method could then exploit the true dynamics of the underlying

system.

7.1.2 Planning & Continual Learning:

In Chapters III and VI we proposed learning generative models for trajectories

for the purpose of planning. In both cases, we first collected a large dataset, then

trained on this dataset, and then deployed the resulting model. However, in real-
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world robotics the tasks and environments are never completely static - objects may

move in the environment, lighting and weather conditions change, and wear and tear

can change the robot’s dynamics. A general-purpose robot will need to continually

learn and update its models as it is deployed in its environment. In future work,

an interesting direction is exploring continual learning methods in the context of

learning withing planning frameworks. This will necessitate developing planners that

track changing conditions, and determine when, what, and how new data should be

collected.

7.1.3 Integrating Planning, Perception & Learning:

To make robots more reliable in unstructured environments, they must be able

to make decisions under uncertainty. A central source of uncertainty is perception

uncertainty. In Chapter II, we incorporated the uncertainty of learned perception

components when performing MPC. However, there is more work that could be done

on this integration. In particular, investigating methods that closely couple planning,

perception, and learning. Such methods will incorporate perception uncertainty into

the planning process, as well as planning to reduce perception uncertainty, perceive

when learning is necessary, and plan to collect the appropriate data. For example, a

robot manipulating a novel object may detect that it is uncertain about the object,

determine that it needs a new view of the object, and plan a trajectory that moves

the object to this new view. A central challenge in this work will be how to ensure

tractability when solving these high-dimensional joint problems. Gradient-based

particle methods such as those used in Chapter IV are a promising direction for

this.
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APPENDIX A

Appendix for Chapter 3: Learning a Generalizable

Trajectory Sampling Distribution for Model

Predictive Control

A.1 Training & Architecture Details

A.1.1 Hyperparameter Tuning

There are several hyperparameters to tune in our approach. The scalar a in equa-

tion 3.13 was tuned so that aLV AE and Lflow were of approximately similar magni-

tude. The scalar b in equation 3.16 was selected to be equal to the dimensionality of

the SDF observation divided by the dimensionality of the latent environment embed-

ding. This value was chosen initially to make the projection loss similar across the

quadcopter and the double integrator, and we found this automatic tuning worked

well in practice. Hyperparameters α, β together control the trade-off between en-

tropy and optimality, and we tuned these via a grid search and selected the values

that resulted in the best performance in the training environment when used with

FlowMPPI.
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Figure A.1: The architecture for both the prior flow and the control sequence poste-
rior flow, based on [33] and [168], showing a mapping from arbitrary Y to Y’. Each
flow consists of L chained transformation blocks. A transformation block consists of
a coupling layer and a random permutation. There is a final conditional coupling
layer on the output. For the vae prior, there is no context thus we use standard
coupling layers and not conditional coupling layers.
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Table A.1: Training and architecture hyperparameters

Variable
Planar

Navigation
3D 12DoF
Quadrotor

7DoF
Manipulator

control Σe N/A N/A 0.5(1− epoch

#epochs
)

α 2.5× 10−3 2.5× 10−3 # epochs

500epoch

β
# epochs

400epoch

# epochs

400epoch
1

# epochs 1000 2000 1000
Init. learn rate 1× 10−4 1× 10−4 1× 10−3

# Training envs. 10000 20000 20000
# (x0, xG)

per training env.
100 100 100

h dim 256 256 256
a 5 5 5

b
5

16
5

1024
1

1024

VAE train epochs 100 100 200
pϕ(h) depth 4 4 4
fζ depth 12 12 20
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A.1.2 Environment details

The environments are 4m × 4m for the planar navigation task, 4m × 4m × 4m

for the 12 DoF quadrotor, and 1.5m× 1.5m× 1.5m for the 7DoF manipulator. The

environments are generated as occupancy grids, from which we compute the SDF.

For each training environment, we randomly sample 100 collision free start & goal

pairs. We sample start velocities from a Normal distribution, and set the goal velocity

to be zero. During evaluation, for both the in-distribution and out-of-distribution

environments, we sample 100 start, goal and environment tuples and evaluate all

methods on these tuples. The exception to this is the real-world environments,

where we keep the environments fixed and sample 100 start and goal pairs per real-

world environment and evaluate all methods on these pairs. To ensure the navigation

problem is non-trivial, we sample starts and goals that are at least 4m away.

A.1.2.1 Real-world environments

The two real-world environments are taken from area 3 from the 2D-3D-S dataset

[8]. To generate the two environments, we used the 3D mesh from the dataset and

defined a subset of the area to be the environment. We then generated an occupancy

grid by densely sampling the mesh, which we then used to compute the SDF.
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Table A.2: Controller agnostic parameters used for the evaluations

Variable
Planar

Navigation
12DoF

Quadrotor
7Dof

Manipulator

Control Horizon H 40 40 40
Trial length T 100 100 100
Dynamics ∆t 0.05 0.025 0.025

Table A.3: Controller hyperparameters used for the experiments for both our proposed method and the
baselines

Controller Variable Planar Navigation 12DoF Quadrotor 7DoF Manipulator

MPPI
λ 1 1 1
Σ 1 0.25 0.25

iterations 1 4 4

SVMPC

Σ 0.5 0.5 1
# particles 4 4 4

Learning rate 0.1 0.1 1
iterations 4 4 4

warm-up iterations 25 25 25

iCEM

Σ 0.75 0.5 0.5
noise parameter 2.5 3 3

% elites 0.1 0.1 0.1
% kept elites 0.3 0.5 0.5
iterations 4 4 4

momentum m 0.1 0.1 0.1

FlowMPPI
λ 1 1 1
Σ 1 0.5 0.25

iterations 1 2 4

FlowiCEM

Σ 0.75 0.5 0.5
noise parameter 2.5 3 3

% elites 0.1 0.1 0.1
% kept elites 0.5 0.3 0.5
iterations 4 4 4

momentum m 0.1 0.1 0.1

Projection
M 10 10 10

Proj. learn. rate 2× 10−3 2×10−3 1×10−2
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A.1.3 Planar Navigation

The dynamics for the planar navigation system are
x

y

ẋ

ẏ


t+1

=


1 0 ∆t 0

0 1 0 ∆t

0 0 0.95 0

0 0 0 0.95



x

y

ẋ

ẏ


t

+


0 0

0 0

∆t 0

0 ∆t

u (A.1)

A.1.4 12DoF Quadrotor

The dynamics for the 12DoF quadrotor are from [135] and are given by



x

y

z

p

q

r

ẋ

ẏ

ż

ṗ

q̇

ṙ


t+1

=



x

y

z

p

q

r

ẋ

ẏ

ż

ṗ

q̇

ṙ


t

+∆t



ẋ

ẏ

ż

ṗ+ q̇s(p)t(q) + ṙc(p)t(q)

q̇c(p)− ṙsṗ

q̇
s(p)

c(q)
+ ṙ

c(p))

c(q)

−(s(p)s(r) + c(r)c(p)s(q))K u1
m

−(c(r)s(p)− c(p)s(r)s(q))K u1
m

g − c(p)s(q))K u1
m

(Iy−Iz)q̇ṙ+Ku2
Ix

(Iz−Ix)ṗṙ+Ku3
Iy

(Ix−Iy)ṗq̇+Ku4
Iz


t

(A.2)

Where c(p), s(p), t(p) are cos, sin, tan functions respectively. We use a parameters

m = 1, Ix = 0.5, Iy = 0.1, Iz = 0.3, K = 5, g = −9.81. The quadrotor geometry is

modeled as a cylinder with radius 0.1m and height 0.05m.
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A.1.5 7DoF Manipulator

We use a kinematic model of the 7DoF manipulator

q = q + u∆t (A.3)

Where q is the robot joint configuration and u are the controls.

A.2 Algorithms

Algorithm 8 Sample from q(U |C)
1: function SampleU(C,K)
2: for i ∈ {k, ..., K} do
3: Zk ∼ N (0, I)
4: Uk ← fζ(Zk, C)

5: qζ(Uk|C)← from Ẑk via eq. (3.7)

6: return {Uk, qζ(Uk|C)}Kk=1

Algorithm 9 Sample from q(U |C) with Perturbation

1: function SamplePertU(C,Σϵ, K)
2: for i ∈ {k, ..., K} do
3: if Σϵ = 0 then
4: return SampleU
5: Zk ∼ N (0, I)
6: ϵk ∼ N (0,Σϵ)
7: Uk ← fζ(Zk, C) + ϵk
8: Ẑk ← f−1

ζ (Uk, C)

9: qζ(Uk|C)← from Ẑk via eq. (3.7)

10: return {Uk, qζ(Uk|C)}Kk=1
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Algorithm 10 Flow Training

Inputs: N iterations, K samples, Θ1 = {θ1, ψ1, ϕ1, ω1, ζ1} initial parameters, control
perturbation covariance Σϵ, learning rate η, loss hyperparameters (α, β)

1: for n ∈ {1, ..., N} do
2: h← ϕ
3: Ê ← pψ(E|h)
4: Compute log pϕ(h) via eq. (3.7)
5: Compute LV AE
6: C ← gω(x0, xG, ρ, h)
7: {Uk, qζ(Uk|C)}Kk=1 ← SamplePertU(C,Σϵ, K)
8: L ← LV AE
9: for k ∈ {1, ..., K} do
10: wk ← from ({Ui, log qζ(Ui|C)}Ki=1, α, β}) via (3.11)
11: L ← L− wk · log qζ(Uk|C)
12: Θn+1 ← Θn − η ∂L

∂Θ
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APPENDIX B

Appendix for Chapter 4: Constrained Stein

Variational Trajectory Optimization

B.1 Matrix Derivative of P (τ)]

In Equation (4.33) we showed that the repulsive gradient is split into two terms,

one of which contains the matrix derivative ∇[τ ]kP (τ). In this section, we show

how to compute this derivative. For notational convenience, let τ ∈ RN (thus

P (τ) ∈ RN×N), h(τ) ∈ RM (whereM is the number of constraints), and we omit the

dependence on τ when writing the constraint derivative ∇h(τ). ∇[τ ]kP (τ) is a ma-

trix of shape N ×N . We refer to the second derivative of the lth constraint ∇2hl(τ)

as Hl, which is an N × N matrix. The matrix derivative ∇[τ ]kP (τ), as defined in

Equation (4.33), can be expanded into three terms:

∇[τ ]k [P (τ)]i,k = 2Ai,k −Bi,k, (B.1)

where A,B ∈ RN×N and i, k ∈ {1, ..., N}. Ai,k is given by

Ai,k =
M∑
l

[Hl]k,i[
(
∇h∇hT

)−1∇h]l,k. (B.2)
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To compute Bi,k, we first consider the matrix Dk ∈ RM×M :

[Dk]l,m =
N∑
j

([Hl]k,j[∇h]l,j + [Hm]j,k[∇h]m,j) , (B.3)

for l,m ∈ {1, ...,M}. We then finally compute Bi,k as

Bi,k =

M∑
l

M∑
m

[Dk]l,m[∇hT
(
∇h∇hT

)−1
]i,l[
(
∇h∇hT

)−1∇h]m,k.
(B.4)

When neglecting second-order terms for the lth constraint hl(τ) (as discussed in

Section 4.7.1.1), we set Hl = 0 when computing Ai,k and Bi,k.

152



BIBLIOGRAPHY

153



BIBLIOGRAPHY

[1] Agrawal, P., A. Nair, P. Abbeel, J. Malik, and S. Levine (2016), Learning to
poke by poking: Experiential learning of intuitive physics, in NeurIPS.

[2] Ajay, A., Y. Du, A. Gupta, J. B. Tenenbaum, T. S. Jaakkola, and P. Agrawal
(2023), Is conditional generative modeling all you need for decision making?,
in The Eleventh International Conference on Learning Representations.

[3] Amestoy, P. R., A. Guermouche, J.-Y. L’Excellent, and S. Pralet (2006), Hy-
brid scheduling for the parallel solution of linear systems, Parallel Computing,
32 (2), 136–156.

[4] Andersson, J. A. E., J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl
(2019), CasADi – A software framework for nonlinear optimization and op-
timal control, Mathematical Programming Computation, 11 (1), 1–36, doi:
10.1007/s12532-018-0139-4.

[5] Andrychowicz, O. M., et al. (2020), Learning dexterous in-hand manipulation,
The International Journal of Robotics Research, 39 (1), 3–20.

[6] Apgar, T., P. Clary, K. Green, A. Fern, and J. W. Hurst (2018), Fast online
trajectory optimization for the bipedal robot cassie, in Robot.: Sci. Syst.

[7] Armand, P., and D. Orban (2007), The squared slacks transformation in non-
linear programming, Sultan Qaboos University Journal for Science [SQUJS],
17.

[8] Armeni, I., S. Sax, A. R. Zamir, and S. Savarese (2017), Joint 2d-3d-semantic
data for indoor scene understanding, arxiv.1702.01105.

[9] Attias, H. (2003), Planning by probabilistic inference, in Proc. 9th Int. Work-
shop on Artificial Intelligence and Statistics, pp. 9–16.

154



[10] Balci, I. M., E. Bakolas, B. Vlahov, and E. A. Theodorou (2022), Constrained
covariance steering based tube-mppi, in 2022 American Control Conference
(ACC), pp. 4197–4202.

[11] Banijamali, E., R. Shu, M. Ghavamzadeh, H. H. Bui, and A. Ghodsi (2018),
Robust locally-linear controllable embedding, in AISTATS.

[12] Barcelos, L., A. Lambert, R. Oliveira, P. Borges, B. Boots, and F. Ramos
(2021), Dual Online Stein Variational Inference for Control and Dynamics, in
Robot.: Sci. Syst.

[13] Bechtle, S., Y. Lin, A. Rai, L. Righetti, and F. Meier (2019), Curious ilqr:
Resolving uncertainty in model-based rl, in CoRL.

[14] Berenson, D., S. Srinivasa, and J. Kuffner (2011), Task space regions: A frame-
work for pose-constrained manipulation planning, Int. J. Rob. Res., 30 (12),
1435–1460.

[15] Bhardwaj, M., B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,
F. Ramos, and B. Boots (2022), Storm: An integrated framework for fast
joint-space model-predictive control for reactive manipulation, in Proc. Conf.
Robot. Learn., pp. 750–759.

[16] Blei, D. M., A. Kucukelbir, and J. D. McAuliffe (2017), Variational inference:
A review for statisticians, J. Am. Stat. Assoc., 112 (518), 859–877.

[17] Bonalli, R., A. Cauligi, A. Bylard, and M. Pavone (2019), Gusto: Guaranteed
sequential trajectory optimization via sequential convex programming, in Proc.
IEEE Int. Conf. Robot. Autom., pp. 6741–6747.

[18] Brasseur, C., A. Sherikov, C. Collette, D. Dimitrov, and P.-B. Wieber (2015),
A robust linear mpc approach to online generation of 3d biped walking motion,
in Proc. 15th IEEE-RAS Int. Conf. Humanoid Robots, p. 595–601.

[19] Byravan, A., F. Leeb, F. Meier, and D. Fox (2018), SE3-Pose-Nets: Structured
Deep Dynamics Models for Visuomotor Control, in ICRA.

[20] Calli, B., A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar
(2015), The ycb object and model set: Towards common benchmarks for ma-
nipulation research, in Int. Conf. on Advanced Robotics, pp. 510–517, IEEE.

155



[21] Carius, J., R. Ranftl, F. Farshidian, and M. Hutter (2022), Constrained
stochastic optimal control with learned importance sampling: A path integral
approach, Int. J. Rob. Res., 41 (2), 189–209.

[22] Chebotar, Y., A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and
D. Fox (2019), Closing the sim-to-real loop: Adapting simulation randomiza-
tion with real world experience, in ICRA.

[23] Chen, C., P. Culbertson, M. Lepert, M. Schwager, and J. Bohg (2021), Trajec-
totree: Trajectory optimization meets tree search for planning multi-contact
dexterous manipulation, 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 8262–8268.

[24] Chen, X., D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman,
I. Sutskever, and P. Abbeel (2017), Variational lossy autoencoder, in Proc. Int.
Conf. Learn. Representations.

[25] Cheng, X., E. Huang, Y. Hou, and M. T. Mason (2021), Contact mode
guided sampling-based planning for quasistatic dexterous manipulation in 2d,
in 2021 IEEE International Conference on Robotics and Automation (ICRA),
pp. 6520–6526.

[26] Cheng, X., E. Huang, Y. Hou, and M. T. Mason (2022), Contact mode guided
motion planning for quasidynamic dexterous manipulation in 3d, in 2022 In-
ternational Conference on Robotics and Automation (ICRA), pp. 2730–2736.

[27] Cheng, X., S. Patil, Z. Temel, O. Kroemer, and M. T. Mason (2024), Enhancing
dexterity in robotic manipulation via hierarchical contact exploration, IEEE
Robotics and Automation Letters, 9 (1), 390–397.

[28] Chi, C., S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song (2023),
Diffusion policy: Visuomotor policy learning via action diffusion, in Proceedings
of Robotics: Science and Systems (RSS).

[29] Chua, K., R. Calandra, R. McAllister, and S. Levine (2018), Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models, in
NeurIPS.

[30] D’Angelo, F., and V. Fortuin (2021), Annealed stein variational gradient de-
scent, arxiv.2101.09815.

156



[31] Deisenroth, M., and C. Rasmussen (2011), Pilco: A model-based and data-
efficient approach to policy search, in ICML.

[32] Dhariwal, P., and A. Q. Nichol (2021), Diffusion models beat GANs on image
synthesis, in Advances in Neural Information Processing Systems, edited by
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan.

[33] Dinh, L., J. Sohl-Dickstein, and S. Bengio (2017), Density estimation using
real NVP, in Proc. Int. Conf. Learn. Representations.

[34] Du, Y., C. Durkan, R. Strudel, J. B. Tenenbaum, S. Dieleman, R. Fergus,
J. Sohl-Dickstein, A. Doucet, and W. S. Grathwohl (2023), Reduce, reuse, recy-
cle: Compositional generation with energy-based diffusion models and MCMC,
in Proceedings of the 40th International Conference on Machine Learning, pp.
8489–8510.

[35] Ebert, F., C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine (2018), Visual
foresight: Model-based deep reinforcement learning for vision-based robotic
control, arXiv preprint 1812.00568.

[36] Farshidian, F., and J. Buchli (2015), Risk sensitive, nonlinear optimal con-
trol: Iterative linear exponential-quadratic optimal control with gaussian noise,
arXiv preprint: 1512.07173.

[37] Feng, S., E. Whitman, X. Xinjilefu, and C. G. Atkeson (2014), Optimization
based full body control for the atlas robot, in Humanoids.

[38] Feng, Y., D. J. X. Ng, and A. Easwaran (2021), Improving variational autoen-
coder based out-of-distribution detection for embedded real-time applications,
ACM Trans. Embed. Comput. Syst., 20 (5s).

[39] Feppon, F., Allaire, G., and Dapogny, C. (2020), Null space gradient flows
for constrained optimization with applications to shape optimization, ESAIM:
COCV, 26, 90.

[40] Finean, M. N., W. Merkt, and I. Havoutis (2021), Predicted composite signed-
distance fields for real-time motion planning in dynamic environments, Proceed-
ings of the International Conference on Automated Planning and Scheduling,
31, 616–624.

[41] Finn, C., and S. Levine (2016), Deep visual foresight for planning robot motion,
ICRA.

157



[42] Fleming, W. H., and S. K. Mitter (1982), Optimal control and nonlinear filter-
ing for nondegenerate diffusion processes, Stochastics, 8 (1), 63–77.

[43] Frigola, R., Y. Chen, and C. E. Rasmussen (2014), Variational gaussian process
state-space models, in NeurIPS.

[44] Gardner, J. R., G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson
(2018), Gpytorch: Blackbox matrix-matrix gaussian process inference with
gpu acceleration, in NeurIPS.

[45] Giftthaler, M., and J. Buchli (2017), A projection approach to equality con-
strained iterative linear quadratic optimal control, in Proc. 17th IEEE-RAS
Int. Conf. Humanoid Robotics, p. 61–66.

[46] Gill, P. E., W. Murray, and M. A. Saunders (2005), Snopt: An sqp algorithm
for large-scale constrained optimization, SIAM Rev., 47 (1), 99–131.

[47] Gordon, E. K., and R. S. Zarrin (2023), Online augmentation of learned grasp
sequence policies for more adaptable and data-efficient in-hand manipulation,
in 2023 IEEE International Conference on Robotics and Automation (ICRA),
pp. 5970–5976.

[48] Ha, J.-S., D. Driess, and M. Toussaint (2020), A probabilistic framework for
constrained manipulations and task and motion planning under uncertainty,
in Proc. IEEE Int. Conf. Robot. Autom., pp. 6745–6751, IEEE.

[49] Hafner, D., T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson
(2019), Learning latent dynamics for planning from pixels, in ICML.

[50] Hafner, D., T. P. Lillicrap, J. Ba, and M. Norouzi (2020), Dream to control:
Learning behaviors by latent imagination, in ICLR.

[51] Hauser, J., and A. Saccon (2006), A barrier function method for the optimiza-
tion of trajectory functionals with constraints, in IEEE 45th Conf. Decision
and Control, pp. 864–869.

[52] Ho, J., and T. Salimans (2022), Classifier-free diffusion guidance.

[53] Ho, J., A. Jain, and P. Abbeel (2020), Denoising diffusion probabilistic models,
in Proceedings of the 34th International Conference on Neural Information
Processing Systems.

158



[54] Hol, J. D., T. B. Schon, and F. Gustafsson (2006), On resampling algorithms for
particle filters, in 2006 IEEE Nonlinear Statistical Signal Processing Workshop,
pp. 79–82.

[55] Horowitz, M. B., and J. W. Burdick (2012), Combined grasp and manipulation
planning as a trajectory optimization problem, in 2012 IEEE International
Conference on Robotics and Automation, pp. 584–591.

[56] Howell, T. A., B. E. Jackson, and Z. Manchester (2019), Altro: A fast solver
for constrained trajectory optimization, in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., pp. 7674–7679.

[57] Ichter, B., J. Harrison, and M. Pavone (2018), Learning sampling distributions
for robot motion planning, in Proc. IEEE Int. Conf. Robot. Autom., pp. 7087–
7094.

[58] Jaillet, L., and J. M. Porta (2013), Path planning under kinematic constraints
by rapidly exploring manifolds, IEEE Trans. Robot., 29 (1), 105–117.

[59] James, S., A. J. Davison, and E. Johns (2017), Transferring end-to-end visuo-
motor control from simulation to real world for a multi-stage task, in CoRL.

[60] Jankowiak, M., G. Pleiss, and J. R. Gardner (2020), Parametric gaussian pro-
cess regressors, in ICML.

[61] Janner, M., Y. Du, J. Tenenbaum, and S. Levine (2022), Planning with dif-
fusion for flexible behavior synthesis, in International Conference on Machine
Learning.

[62] Ji, X., and J. Xiao (2001), Planning motions compliant to complex contact
states, The International Journal of Robotics Research, 20 (6), 446–465.

[63] Jiang, Y., M. Yu, X. Zhu, M. Tomizuka, and X. Li (2024), Contact-implicit
model predictive control for dexterous in-hand manipulation: A long-horizon
and robust approach.

[64] Jongen, H. T., and O. Stein (2004), Constrained global optimization: Adaptive
gradient flows, in Frontiers in Global Optimization, edited by C. A. Floudas
and P. Pardalos, p. 223–236.

[65] Kalman, R. E. (1960), A New Approach to Linear Filtering and Prediction
Problems, J. Basic Eng., 82 (1), 35–45.

159



[66] Kappen, H., and H.-C. Euler (2016), Adaptive importance sampling for control
and inference, J. Stat. Phys., 162, 1244–1266.

[67] Kappen, H. J. (2005), Linear theory for control of nonlinear stochastic systems,
Phys. Rev. Lett., 95, 200,201.
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