
Data-Efficient Robotic Manipulation of
Deformable One-dimensional Objects with

Unreliable Dynamics

by

Peter Mitrano

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Robotics)

in The University of Michigan
2024

Doctoral Committee:

Associate Professor Dmitry Berenson, Chair
Assistant Professor Nima Fazeli
Associate Professor Tucker Hermans
Assistant Professor Katie Skinner

Peter Mitrano

pmitrano@umich.edu

ORCID iD: 0000-0002-8701-9809

© Peter Mitrano 2023

ACKNOWLEDGEMENTS

Thanks to all the people who made this dissertation possible – To my advisor

Dmitry, to my friends and cohort-mates Tom and Johnson who have been with me

every step of the way, and to all my other lab mates and peers in Michigan Robotics.

Thank you to all the teachers who helped me find my way to research. Thank you

to my family for the many relaxing and re-energizing trips and holidays. Finally, I

would like to acknowledge my partner Andrea Sipos for her intellectual contributions,

for supporting me, and for bringing me so much happiness.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Introduction . 1
1.2 Related Work . 3

1.2.1 Manipulation of Deformable One-dimensional Objects 3
1.2.2 Unreliable Dynamics Models 4
1.2.3 Learning Dynamics from Limited Amounts of Data 5
1.2.4 Grasping and Regrasping 7
1.2.5 Topology and Knot Theory in Manipulation Planning 8

II. Learning Where to Trust Unreliable Dynamics 9

2.1 Introduction . 9
2.2 Problem Statement . 11

2.2.1 Classifier . 12
2.2.2 Recovery . 13
2.2.3 State Definition . 13

2.3 Methods . 14
2.3.1 Data Collection for Learning the Dynamics 14
2.3.2 Learning the Unconstrained Dynamics 15
2.3.3 Phase Two Data Collection 16
2.3.4 Learning the Classifier 17
2.3.5 Planning With a Learned Model and Classifier . . . 18
2.3.6 Evaluating Stuck States and Learning Recovery . . 19
2.3.7 Network architectures 20

iii

2.3.8 Simulation Environments 22
2.4 Discussion . 23

2.4.1 On the Specialization to Deformable Objects 23
2.4.2 Limitations . 24
2.4.3 Learning Performance 25
2.4.4 Physical Robot Demonstrations 26
2.4.5 Experiment Design 26

2.5 Results . 27
2.5.1 Baselines . 27
2.5.2 Scenario 1: Rope Dragging 28
2.5.3 Scenario 2: Dual Arm Rope Manipulation 29
2.5.4 Physical Robot Demonstrations 30

2.6 Conclusion . 31

III. Data Augmentation for Learning Reliability 32

3.1 Introduction . 32
3.2 Problem Statement . 35

3.2.1 Assumptions . 36
3.3 Methods . 37

3.3.1 Algorithm Overview 38
3.3.2 Solving the Augmentation Optimization Problem . . 41
3.3.3 Learning the Valid Transforms Objective 42
3.3.4 Application to Cluttered Planar Pushing 43
3.3.5 Application to Bimanual Rope Manipulation 43

3.4 Results . 44
3.4.1 Cluttered Planar Pushing 44
3.4.2 Bimanual Rope Manipulation 46
3.4.3 Real Robot Results 48

3.5 Limitations . 49
3.6 Conclusion . 49

IV. Focused Adaptation of Unreliable Dynamics 50

4.1 Introduction . 50
4.2 Problem Statement . 52
4.3 Methods . 53

4.3.1 Adapting the Dynamics 53
4.3.2 Online Learning . 54

4.4 Results . 57
4.4.1 Bimanual Rope Manipulation 58
4.4.2 Plant Watering . 58
4.4.3 Validating the Adaptation Method 59
4.4.4 Online Learning Experiments 60
4.4.5 Real Robot Results 61

iv

4.5 Conclusion . 62

V. The Grasp Loop Signature . 63

5.1 Introduction . 63
5.2 Defining the signature . 65

5.2.1 Preliminaries . 65
5.2.2 Computing the signature 66
5.2.3 Computational Complexity 69

5.3 Illustrative Examples . 69
5.4 DOO Manipulation with the signature 70

5.4.1 Problem Statement 70
5.4.2 DOO Point Reaching Method 70

5.5 Applications . 73
5.5.1 Pulling Environment 73
5.5.2 Untangling Environment 73
5.5.3 Threading Environment 75
5.5.4 Real World Threading 76

5.6 Conclusion . 77

VI. Conclusion and Outlook . 78

BIBLIOGRAPHY . 80

v

LIST OF FIGURES

Figure

2.1 Overview of the proposed method. Two data collection phases (A,B)
are used to collect training data for learning dynamics, a classifier
for where these dynamics are accurate, and a recovery model what
for actions to take when no accurate dynamics predictions can be
made. These learned components are used in an iterative process
of planning, replanning, and recovery (C). We apply this method to
a number of deformable objects tasks, including a dual arm robot
manipulating an automotive hose. 11

2.2 Converting a trajectory into examples for training the classifier. Each
large box represents a transition. In the first transition, the final
states s1 and ŝ1 are close, so the transition is labeled 1 (accurate). For
the third transition, the initial states s2 and ŝ2 are close, but the final
states s3 and ŝ3 are far, so this transition is labeled 0 (inaccurate).
In the final transition, the initial states are far, so this transition is
discarded. 13

2.3 Pictures of our simulation and real robot scenarios. (A) Simulated
Rope Dragging. (B) Simulated Tabletop Rope Manipulation. (C)
Retrieving a Charging Cable. (D) Removing Lifting Straps. (E)
Moving a Hose. (F) Preparing to Install a Hose. Annotations show
examples of goals for various tasks our method can complete. 14

2.4 Representing the state and environment in 3D voxel grids. (A) An
example for rope dragging. (B) An example dual arm rope manip-
ulation. Different colors are used to represent different channels in
the voxel grid, and alpha is used to indicate the voxel value, with 0
being fully transparent and 1 being fully opaque. 18

2.5 Network architectures. (A) dynamics, (B) classifier, and (C) recovery.
local refers to the translations used to make the states and actions
invariant to the position in the world frame, and is described in Sec-
tions 2.3.2, 2.3.4, and 2.3.7. Green capsules shapes indicate vectors,
and blue boxes indicate functions. The gray 3D box represents the
3D voxel grid representation of state (Section 2.3.7.2). 20

vi

2.6 Comparing success across methods. (left) The success rate as a func-
tion of the success threshold on task error for our simulated rope drag-
ging experiments. The dashed line indicates the size of the goal region
used. For example, this tells us that if our goal region was 0.1m, the
”Classifier” method would achieve about 84% success. (right) The
success rate as a function of the success threshold on task error for
our simulated dual arm rope manipulation experiments. 29

3.1 A mock-up of a car engine bay. The robot must move the rope and
place it under the engine without snagging it to set up for lifting
the engine. We use data augmentation to improve task success rate
during online learning for this task. 33

3.2 Examples of augmentations of rope generated by our method. On
the left is a picture of the scene in simulation from a zoomed out
viewpoint. The simplified engine block model is in the center. The
rope start (dark blue) and end (light blue) states are shown, with the
grippers shown at the start state. The static environment geometry
is shown in brown. The first row shows a transition in free space,
where the resulting augmentations are particularly diverse. The final
augmentation shows how our method found a transformation to move
the rope underneath the hook while remaining in free space. The
second row shows a transition which involves contact between the
rope and the environment. The augmentations preserve this contact. 34

3.3 (left) The environment for bimanual rope manipulation, in simula-
tion. (right) The environment for cluttered planar pushing of cylin-
ders, in simulation. 36

3.4 Illustration of aug state within Algorithm 2. All points and sets
are in the space of T . The path of T is shown in red with black
arrows. The pink set, State Valid, is the set where state valid is true.
T begins at the origin, and alternates between moving towards T target

and projecting back into the set state valid (by solving Equation (3.8)). 40
3.5 Examples of augmentations generated for learning the dynamics of

planar pushing of 9 cylinders. The pink cylinder is the robot. Time
is indicated by transparency. Augmentation transforms the positions
and velocities of the cylinders that moved, including the robot. All
moved objects are transformed together, rigidly. Despite the clutter,
we are able to find relatively large transformations that still preserve
existing contacts but do not create any new ones. 44

3.6 Mean position error (meters) for learning the dynamics of cluttered
planar pushing. 45

3.7 Predictions (blue) vs. ground truth (red) for planar pushing. The
robot is in pink. Trajectories are visualized with lines. The left
column shows predictions from a model trained with augmentation,
the right column without. 46

3.8 The success rate on simulated bimanual rope manipulation, using a
moving window average of 10. 47

vii

3.9 The success rate and task error distribution of bimanual rope manip-
ulation on the real robot. Task error is the distance between the goal
and the final observed state of the rope. 48

4.1 (A) An illustration of how our adaptation method focuses on regions
where the source and target dynamics are similar. When focusing
adaption on free-space dynamics, the prediction errors decrease for
other free-space data (similar), do not decrease for collision dynamics
(dissimilar). (B) A mock-up of a car engine bay. The robot must
move the rope and place it under the engine without snagging it to
set up for lifting the engine. We use our proposed adaptation method
to improve success rate during online learning for this task. 52

4.2 Block diagram showing the steps of our full online adaptation method.
A dynamics model is initialized offline in the source environment
(left), then adapted online in the target environment. 53

4.3 Source environment for bimanual rope manipulation (left) and sim-
ulated target environment (right) where there is a robot, obstacles,
and the rope damping and stiffness are changed. 55

4.4 Source environment for plant watering (left) and target environment
(right) where there is an additional plant, and the viscosity is tripled. 56

4.5 (center) Histograms showing weights assigned to the data according
to Equation (4.1) during the first 20 epochs of training. A histogram
is shown for each epoch, where color varies with epoch, and these
histograms are staggered along the y-axis. Initially, the weights vary
only slightly across the data, but the distribution becomes strongly
bimodal as training progresses. Examples of transitions given weight
0 (left) and weight 1 (right) at the end of training. 57

4.6 Prediction error for our method versus two baselines, evaluated on
a dataset of transitions from regions where the source and target
dynamics are similar. 59

4.7 Post-learning evaluation of rope manipulation in simulation: Three
metrics shown over the 20 iterations of online learning. The shaded
interval is the 95% confidence interval, with the boot-strapping method
used by Seaborn. 60

4.8 Success rate for the AllDataNoMDE baseline (left) versus FOCUS
(right) for online adaptation to real world bimanual rope manipulation. 61

5.1 Annotated image of our real world cable threading setup. The red
dashed line shows a grasp loop τ1 that is linked with the skeleton
S1. The blue grasp loop is not linked with S1. This distinction is
captured by the proposed GL-signature and is used in planning. . . . 64

5.2 (A) Illustration of the h-signature for a loop representing the robot
and DOO (blue) and a loop representing an obstacle (solid red). (B)
Two examples of the h-signature for a skeleton with two obstacle
loops S1 and S2. 65

viii

5.3 The process of constructing the GL-signature. (C) There are 2 grasp
loops and 3 object loops, so the GL-signature is a set with two ele-
ments, and each element is a vector of 3 non-negative integers. . . . 67

5.4 Example scenes and their GL values. The Panel in green shows envi-
ronments where we use the GL-signature in planning. Panels D and
E are additional examples where the GL-signature may be useful. . . 69

ix

LIST OF TABLES

Table

2.1 Task error statistics for simulated rope dragging. 30
2.2 Task error statistics for simulated dual arm rope manipulation. . . . 31
5.1 Results in the Untangle environment. Times in minutes are for the

completion of the task, where Sim Time does not include planning
time. Standard deviations are given in parentheses. 74

5.2 Results on the Threading task. 76

x

ABSTRACT

If I were to ask you to fold a towel, you would probably do it without much thought

or difficulty – but how? How did you know where the towel was? Did you think

about how the towel would move or deform, and how you’d react if the towel didn’t

move as you predicted? Or what if I asked you to fold it using your feet, could you

do it?

These questions hopefully help explain why a robot, which lacks the intuition and

experience of an adult human, might find this task challenging. A robot may need

specific computational answers to all of these questions and more. In more technical

terms, a robot needs to perceive, predict, and plan. Many methods for perceiving,

predicting, and planning have been proposed, and they can be effective for some tasks

in specific environments, but we have not yet achieved sufficiently fast and accurate

methods to perform complex tasks like pruning a plant, sewing sutures, or installing

cable harnesses – at least not outside carefully controlled settings.

This dissertation takes a step to increase the abilities of robots to manipulate

deformable objects. More specifically, deformable objects like ropes, hoses, and cables.

I focus on two problems, our inability to accurately predict in all scenarios how a

DOO will move or deform (called unreliable dynamics), and the cost of collecting

training data in robotic manipulation. I present a system that can quickly learn to

manipulation the DOO despite limited data and imperfect predictions, as well as plan

grasps and regrasps when the robot gets stuck.

xi

CHAPTER I

Introduction

1.1 Introduction

One of the most common assumptions in robotic manipulation is that the object

being manipulated is rigid. That is, when the object moves, the entire object moves

without deforming. In contrast, a deformable object like a towel will change shape

when one part of the towel is moved, such as when grasped and moved by a robot. The

evolution of the state of the object over time, given the robot’s actions, is called the

dynamics, and planning for manipulation relies heavily on accurate dynamics models.

For instance, when the robot plans how to move its arm to fold a towel, the dynamics

model might predict the shape of the towel. Assuming rigidity simplifies the dynamics

considerably, and so planning with rigid models is efficient and sometimes sufficient.

However, many of the objects we want robots to manipulate are not actually rigid.

For example: clothing, food, wires, hoses, thread, foams, composites like carbon fiber,

paper products, fluids, granular materials, or even people. Even thick steel bars may

not be accurately described as rigid if the task is to cut or grind them. Without

rigidity, planning for manipulation becomes difficult because, at present, we do not

have dynamics models that are accurate for a wide enough range of states, actions,

or objects.

Instead, we have dynamics models that are reliable in some cases but not others.

This is true for both physics-based analytic models, such as FEM or mass-spring-

damper models, and for learned models, such as neural networks. For physics-based

models, the model may have incorrect parameters for friction, damping, or stiffness.

It may be completely lacking certain physical phenomena like torsional friction, air-

resistance, or plastic deformation. It may also be intentionally simplified in order

to make the computation faster, which can be essential for planning and control.

Learning dynamics models from real world data can mitigate this issue because the

1

learned dynamics will at least be accurate in the situations in which we have collected

training data. But when there is a lack of relevant training data or poor generalization,

the learned dynamics may still be unreliable. Real world data collection is costly,

can lack diversity, and doesn’t scale easily. Thus, the problem of unreliable dynamics

models is not yet solved simply by learning the model from real world data. Therefore,

this dissertation is motivated by the research question “How can robots use inaccurate

models and limited real-world data to plan to manipulate deformable objects?”. By

studying this question, I seek to expand the capabilities of robots to new kinds of

manipulation and new kinds of objects.

This thesis addresses the problems of unreliable dynamic models when real-world

data collection is expensive. While most prior work handles these challenges with fast

replanning and/or exhaustive training in simulation, I propose methods for learning

where a dynamics model is accurate and avoiding inaccurate regions in planning.

I focus specifically on deformable one-dimensional objects (DOOs), which includes

objects like rope, hoses, cables, string, or potentially objects like cooked spaghetti or

plant stems. These objects are, in some ways, the simplest type of deformable object,

because their state can be compactly represented as a sequence of points, and they

exhibit less self-occlusion than other deformable objects.

To make progress on the problem of learning and planning with unreliable dy-

namics, I leverage knowledge of physics, topology, and the fact that we do not need

accurate dynamics models of the entire state-action space in order to accomplish a

given task. To incorporate physics, I make extensive use of physics simulators as well

as design heuristics and cost functions based on our knowledge of contact, gravity,

and friction. To incorporate topology, I develop a topological signature that catogo-

rizes different grasps to make planning more efficient. To avoid modeling the entire

state-action space, I focus on regions of the state-action space which are useful for

the desired tasks.

This thesis makes the following contributions, organized into four chapters:

• Chapter II: Learning a classifier to predict where a dynamics model is accurate,

and what to do when the model is inaccurate. This work was published in

Science Robotics, May 2021 [87].

• Chapter III: Data augmentation to enable online-learning of the classifier using

only several hours of real world data. This work was published in RSS 2022

[86].

2

https://www.science.org/doi/10.1126/scirobotics.abd8170?ijkey=.c4Zxhar5QEgI&keytype=ref&siteid=robotics
https://roboticsproceedings.org/rss18/p031.html

• Chapter IV: Online adaptation that focuses on easy-to-model dynamics, which

enables fast sim2real adaptation. This work was published in ICRA 2023 [88].

• Chapter V: A topological signature and planning method for regrasping that

expands DOO manipulation capabilities to new robot morphologies and new

tasks. This work is under review for ICRA 2024.

1.2 Related Work

In this section, I review recent work related to this thesis. First, I briefly overview

related work on robotic manipulation of deformable one-dimensional objects (DOOs),

since that is the focus of this thesis. The next two sections of related work are devoted

to the two challenges my work addresses – unreliable dynamics and data efficiency.

1.2.1 Manipulation of Deformable One-dimensional Objects

This thesis focuses on model-based manipulation planning, so we begin the related

work with a discussion of the dynamics models used for DOO manipulation planning.

1.2.1.1 Dynamics for DOO manipulation

Before considering the dynamics, we first need to discuss the state representation

for the DOO. By far the most common representation is a set of points in R3, where

each point pi has an index i ∈ [0, N), and where the number of points N is chosen

a priori and is fixed. However, some works use raw images as their state [33, 92,

130, 94, 33, 43]. In addition to the state representation, one must also choose an

action representation, such as a delta-position of points that are grasped by the robot

[76, 75, 43], delta-poses of the grippers [105], velocities of the grasped points [72],

or wrenches applied to the object [11, 67]. In this thesis, we use the common point

representation of DOO state, and explore both delta-position and joint velocity action

representations.

Some dynamics models for DOOs are derived from first-principles [121, 67, 11],

others are learned directly from data [33, 141, 131], and some are a mix of both

[72, 73, 42]. For image-based prediction or for systems with high-dimensional states

or complex dynamics, neural networks are a popular choice [6, 33, 92, 47, 43]. These

models are often trained on datasets of random actions, using the mean squared

prediction error as the training objective.

3

https://ieeexplore.ieee.org/document/10161366

1.2.1.2 Planning for DOO manipulation

These dynamics models are then used to create plans for how to manipulate the

object using a variety of methods such as A* [130], RRT [47], the cross entropy method

(CEM) [40], and gradient-based optimization [116]. The choice of planner typically

depends on the type of manipulation or the task being performed. For example, MPC

methods like CEM or random-shooting are often paired with fast dynamics models

for dexterous manipulation, since rapid replanning with inaccurate dynamics can be

better than long-horizon planning [33, 93, 92]. In contrast, if the task requires large

motions through regions with narrow passages, then an RRT or A* planner may be

preferred. In this thesis, we use both RRT and MPC planning methods, since they

complement each other well.

1.2.2 Unreliable Dynamics Models

In cases where we cannot assume our dynamics models will always be accurate,

prior work has proposed several ways of quantifying the reliability of a dynamics

model, as well as different ways to use that in planning.

1.2.2.1 Quantifying Model Reliability

In [64, 65] the error of the dynamics is learned using data coming from the true

dynamics. [84] proposes training a classifier for model reliability, where the ground-

truth label is a combination of thresholding the observed error, and comparing the

first-order homotopy of the true versus predicted states. [64] introduced Model Devia-

tion Estimators (MDE) which estimate a continuous scalar error values, and which we

use in this thesis. Another approach is to quantify uncertainty in the dynamics due to

lack of data [66, 23, 57], known as epistemic uncertainty. Intuitively (and sometimes

literally) this means evaluating the distance to the training data, and treating states

or state-action pairs which are far from any training data as unreliable. Finally, [82]

proposed another notion of reliability based on the expected reduction in task-error,

called utility, rather than the difference in state.

1.2.2.2 Using Model Reliability Estimates in Planning

There are several ways to use estimates of model reliability in planning. [130] and

[47] both avoid regions where the learned model may have significant error. With

MDEs, avoiding unreliable regions can be done by penalizing the cumulative or final

error as predicted by the MDE [64], or a binary notion of reliability can be used to

4

reject transitions in an RRT planner [84]. A related problem is also addressed in [125],

which makes local adjustments in response to inaccurate predictions encountered in

execution.

If a dynamics model has a known probabilistic transition model, belief-space plan-

ning can be used [54, 101]. However, meaningful predictive uncertainty distributions

are difficult to estimate for novel scenarios, so these methods have not yet been applied

to DOO manipulation.

1.2.3 Learning Dynamics from Limited Amounts of Data

The above works focus on quantifying and managing the unreliability of the dy-

namics model. Various learning techniques have been proposed to try to increase the

model’s reliability. However, the main limitation for these learning methods is the

lack of large and diverse real world datasets. The problem of learning better models

from limited data is important for robotics applications and has received significant

attention as researchers have tried to apply deep learning to robotics [145, 62].

1.2.3.1 Adapting Dynamics Models

Given a class of dynamics models which have a few physical parameters, such as

spring-mass or FEM models, one approach is to use real world observations to more

accurately estimate system parameters (e.g. system-identification or active-learning)

[108, 3, 31, 94]. For example, [91] uses system identification for deformable objects.

These methods assume that there exists a set of system parameters which explain the

observations. They also rely on collecting diverse data which disambiguates related

parameters like mass and friction, which makes these methods sensitive to how the

data is collected and may require complex data collection setups.

Another approach to improve accuracy is to first pre-train the dynamics on large

datasets generated in simulation. Generating large amounts of diverse data is prac-

tical in simulation, but the challenge is that simulations may not be accurate to or

representative of the real world. This difference has been called the sim2real gap, and

many sim2real methods have been proposed to address this [100, 100, 154, 74, 21].

Curriculum learning and transfer learning methods can be used to transfer models

trained in simulation to the real world [7, 115, 123]. Since transfer works best when

the difference is small, curriculum learning methods create intermediate problems

of increasing difficulty by changing the labels or the task. Curriculum learning has

been successful in classification, reinforcement learning, and machine translation [63,

5

149, 146, 102]. Prior work has also used estimates of similarity between the source

and target system to guide adaptation, for instance by selecting training data most

similar to the source system [115] or selecting the most useful source domain for a

given target domain [26].

Another method is domain randomization, which uses random variations of condi-

tions during training to enable the model to be robust to that type of variance during

test time [77]. Some methods go further, and iteratively refine the noise distribu-

tion by comparing simulations to rollouts executed in the real world [22, 68]. These

methods can be used to adapt a dynamics model learned in one environment to an-

other environment, but they require knowledge of how parameters can vary between

the source and the target domains. For example, one may need to choose which pa-

rameters may vary (mass, stiffness, damping, friction) as well as mean and variances

[22]. Our approach to adaptation does not adapt simulation parameters, but instead

adapts a neural network dynamics model.

Existing work on adaptation, curriculum learning, and domain randomization can

fail in the case where the simulation and real world dynamics differ significantly in

some regions but not in others. This is often the case for unreliable dynamics of

DOOs, since some regions of state-action space have very difficult to model dynamics

(contact with environment, self-contact, knots, etc.), but other regions are simple

(free-space). We address this specific kind of adaptation problem in Chapter IV.

1.2.3.2 Data Augmentation

One way to make better use of limited data is to use data augmentation. Data

augmentation is the process of creating additional training examples by modifying

existing ones. Data augmentation has been applied to many machine learning prob-

lems, from material science [97] to financial modeling [29] (see [49, 32, 110] for several

surveys). It is especially common in computer vision [110, 111, 27, 69, 8], and is

also popular in natural language processing [32, 78]. In these fields the data is often

in standardized data types—images, text, or vectors of non-physical features (e.g.

prices). Each of the data types can be used for a wide variety of tasks, and various

data augmentations have been developed for various pairings of data type and task.

However, problems in robotic manipulation use other formats of data, such as

point clouds or object poses, and may consist of time-series data mixed with time-

invariant data. The data augmentation method I propose in Chapter III fills this gap,

and is designed specifically for data of the types most prevalent in robotics.

In contrast to engineering augmentations based on prior knowledge, another body

6

of work uses unsupervised generative models to generate augmentations [124, 97,

29]. Typically, these methods train a model like an Auto-Encoder or Generative

Adversarial Network (GAN) [37]) on the data, encode the input data into the latent

space, perturb the data in the latent space, then decode to produce the augmented

examples. These methods can be applied to any data type, and handle both regression

and classification problems. However, they do not incorporate prior knowledge, and

only add small but sophisticated noise. In contrast, we embed prior knowledge about

the physical and spatial nature of manipulation, and as a result can produce large

and meaningful augmentations, at the cost of being less generally-applicable.

1.2.3.3 Small Models and Feature Engineering

Although adaptation and data augmentation are popular approaches to make

better use of limited data, there are other methods that have been proposed for

data-efficient learning, both in general and specifically for robotic manipulation. We

highlight a few important ones here, but note that these are all complementary to

model adaptation and/or data augmentation.

The most common technique is simply to pick a low-capacity model class, such

as linear models or very small neural networks [96, 151]. Alternatively, prior work

has also developed heuristics/priors specific to robotics [53] which can be used as

objectives during training. Another extremely useful technique is to engineer the

state or action representations to include certain known invariances. For instance, a

standard technique in dynamics learning methods is to represent the input positions

in a local frame as opposed to a world frame, to encode translation invariance [72,

45, 153]. There are also methods for learning these kinds of invariances [151].

1.2.4 Grasping and Regrasping

With rigid grasping, the challenge is primarily in achieving a stable [80, 79, 85,

89, 30], with grasp functionality being a secondary focus [17, 104]. With deformables,

stability is less often a concern, and functionality (what you can do with that grasp)

is the main challenge. Works on cloth smoothing or folding [43, 76, 138] use pick-and-

place primitives with a single manipulator, which is too restrictive for many tasks. In

[147], a dual arm manipulator autonomously dresses a mannequin. Their method for

grasp planning is based on learned visual models of the garment, and only considers

grasps near keypoints such as the elbow or shoulder. The methods in [129, 95, 141]

plan grasps on the DOO, but they assume the rope is planar (flat on a table), use

7

one manipulator, and do not consider obstacles for the manipulator. [112] describes a

method that produces pick, place, and sliding paths in the configuration space with-

out explicit task planning. However, this method does not address underactuated

kinodynamic systems such as DOOs. [107, 84, 131, 114, 144, 143] all address manip-

ulation planning for DOOs assuming the grasp is fixed, which is complementary to

grasping and regrasping.

1.2.5 Topology and Knot Theory in Manipulation Planning

Topology and homotopy have been used in path planning for flying and driving

robots [13, 14], as well as tethered robots [48]. [48] operates only in 2D and [50]

considers an approximation of homotopy for 3D path planning. [13] introduces a

simple-to-compute and exact signature for characterizing the homotopy of 3D paths

with respect to 3D obstacles with holes in them, called the h-signature. We build on

[13] to define the GL-signature presented in Chapter V.

Prior work on knot typing and untying has also applied knot theory to DOO

manipulation [127, 128, 106, 132, 38, 118, 119]. These methods use planar crossing

representations, which projects a curve into a specified plane and counts the sequence

and type of crossings. [106] used this method for robotic knot tying, and extended this

to tying around obstacles by specifying connections between obstacles and the DOO.

However, these methods do not consider how the manipulator effects the topology,

and fail in some cases with non-planar obstacles. A method for threading surgical

needles was proposed in [133], but uses floating grippers and does not address planning

for the robots’ arms or obstacles, and is limited tight-tolerance insertion tasks.

8

CHAPTER II

Learning Where to Trust Unreliable Dynamics

This first chapter addresses the questions “When should we trust a dynamics

model?” and “What do we do if the model is unreliable at the current state?”. I

introduce a formal problem statement for planning with unreliable dynamics, and

formalize learning reliability as a binary classification problem. I then propose meth-

ods for learning this classifier and using this classifier in planning. I also define what

it means to be in need of recovery in terms of the classifier. Using this definition, I

then propose a method for learning a recovery policy for these states using the data

already collected for the classifier.

2.1 Introduction

Control and motion planning methods that rely on models to predict the out-

comes of potential actions are ubiquitous in robotics. But whether these models are

analytical, simulated, learned, or implicit within a policy, they are only as valid as

the assumptions used to create them. When encountering a real-world unstructured

environment, these assumptions may be violated, rendering a model unreliable [130].

What is worse, estimating how erroneous our models are is difficult, as methods that

predict uncertainty distributions based on training data [23, 66] don’t account for

novel scenarios, e.g. when new types of constraints are introduced. This is especially

problematic if these constraints are not easily represented [55] in the model’s state

space. Consequently, the inability to generate meaningful predictive uncertainty dis-

tributions for novel scenarios precludes the use of belief-space planning techniques

[134, 2, 10].

Roboticists rarely address the unreliable model problem directly; instead, we often

resort to high-frequency re-planning, hoping to compensate for model errors online

[33, 61]. But this kind of approach assumes that the erroneous model is somehow

9

likely to produce useful short-horizon actions. While it may not be possible to cre-

ate universally-valid models of complex high-degree-of-freedom systems such as de-

formable objects, this does not preclude using imperfect models to perform useful

tasks. For example, we do not need to know all the friction and stiffness properties of

a rope to drag it along the ground. The key questions, which have, until now, received

very little attention, are 1) When should we trust a model? and 2) What do we do

if the robot is in a state where the model is unreliable? Addressing these questions is

paramount if we wish to deploy robots in unstructured environments such as homes

and industrial sites, where conditions change frequently, and it may not be possible

to gather large datasets and re-learn accurate dynamics after every change.

This chapter tackles the above two questions in the context of learning dynamics

models for the manipulation of rope-like objects among constraints such as obstacles.

A key challenge in this domain is that the behavior of the rope when in contact

is extremely difficult to predict, as it is heavily influenced by the rope’s often non-

uniform friction and stiffness properties. These properties are not only difficult to

model, they are also difficult to estimate from observation. Thus, the hypothesis

at the core of our work is that it is much better to learn to predict where a useful

(but limited) model is reliable than to attempt to learn a model which is reliable

everywhere. Specifically, in the context of rope manipulation, we propose a two-

phase learning process, where we learn a useful model of rope dynamics assuming

constraints such as obstacles are not present. Then, given limited data of the rope’s

interaction with obstacles, we can learn a classifier that predicts when the learned

model is reliable. We then use this classifier in motion planning for novel tasks to

bias the planner away from regions of state space where the model cannot be trusted.

We emphasize that we do not attempt to learn the dynamics of the rope in contact

from this limited dataset. In fact, we find that attempting to learn these dynamics

yields poor results.

While the above methods allow us to perform useful tasks with rope despite being

unable to predict dynamics on constraints boundaries, we are still faced with the

question of what to do when the rope strays into a part of state space where the

learned model is unreliable. This may occur because of error in execution, an exter-

nal disturbance, or simply by starting the task in a state from which prediction is

unreliable. Our approach for overcoming this problem is to first use our classifier to

detect when this has occurred, and then to recover—i.e. execute a series of actions

that bring us back to a region where the learned model is reliable. While random

actions can eventually lead us to this region, we find that it is more efficient to use a

10

Figure 2.1: Overview of the proposed method. Two data collection phases (A,B)
are used to collect training data for learning dynamics, a classifier for where these
dynamics are accurate, and a recovery model what for actions to take when no ac-
curate dynamics predictions can be made. These learned components are used in an
iterative process of planning, replanning, and recovery (C). We apply this method to
a number of deformable objects tasks, including a dual arm robot manipulating an
automotive hose.

recovery policy (also learned from the limited dataset) to determine which actions are

likely to improve model reliability. After reaching the region where our predictions

are reliable, we can launch our planner to move to the goal. An overview of our

learning and execution frameworks is shown in Figure 2.1.

2.2 Problem Statement

Here we present the formal problem addressed by our method. Let the state space

of the system be S and the action space be A. The true dynamics are f(E , st, at)→
st+1 produces the next state st+1 given the environment E , state st, and action at. We

consider the feasible discrete-time motion planning problem, which informally means

finding a sequence of actions that take the system from a start configuration s0 to

a goal region G ⊂ S. In general, f may not be known in closed-form, or it may

be expensive to evaluate within a planner. Thus, we cannot solve this problem by

planning with the true dynamics f .

Instead, we consider the challenge of planning with an incomplete model of the

11

dynamics h. Since these dynamics will sometimes be inaccurate, we introduce the

model-error requirement (MER) to reason about where they can be trusted. The

MER is a constraint in the planning problem, to ensure that our plan only contains

predictions from our dynamics h that are δ-close to the true dynamics f . The model-

error is defined for a given state-action (st, at) using a distance function in state space

dist, and is shown in Equation (2.1).

dist(ŝt+1, st+1) = dist(h(E , ŝt, at), f(E , st, at)) (2.1)

Using this, we define the MER itself as dist(ŝt+1, st+1) < δ. Thus, the planning

problem is

find N, a0, . . . , aN−1

subject to ŝt+1 = h(E , ŝt, at) t ∈ [0, N)

dist(ŝt+1, st+1) < δ t ∈ [0, N)

ŝN ∈ G

(2.2)

2.2.1 Classifier

We cannot evaluate the MER directly during planning because it requires the

true future state st+1. In planning, we only know the environment, actions, and

predicted states (E , ŝt, at, ŝt+1). Consequently, we need to evaluate the MER using

only the information known in planning. This can be posed as the following binary

classification problem:

INPUT E , ŝt, at, ŝt+1

LABEL dist(ŝt+1, st+1) < δ
(2.3)

Let the classifier which solves this problem be g(E , ŝt, at, ŝt+1) → {0, 1}. For

training this classifier, LABEL can be computed using the actual st+1 recorded during

data collection (Section “Phase Two Data Collection”). A diagram illustrating the

inputs to the classifier and its labels is shown in Figure 2.2. Finally, given dynamics

h and classifier g, we can approximately solve Problem (2.2) using motion planning

(see Section “Planning With a Learned Model and Classifier”).

We note that the MER is conservative in the sense that we only need the final

predicted ŝN and actual state sN to be close. Unfortunately, reasoning about only

the final state in the MER would be a constraint on the entire trajectory. Such a

constraint is neither tractable to learn nor amenable to planning in our scenarios.

Thus, we enforce the MER for every action taken by the planner.

12

Figure 2.2: Converting a trajectory into examples for training the classifier. Each
large box represents a transition. In the first transition, the final states s1 and ŝ1 are
close, so the transition is labeled 1 (accurate). For the third transition, the initial
states s2 and ŝ2 are close, but the final states s3 and ŝ3 are far, so this transition
is labeled 0 (inaccurate). In the final transition, the initial states are far, so this
transition is discarded.

2.2.2 Recovery

With this definition of the MER and the classifier, we also formally define what

it means to be stuck, i.e. in need of recovery. This can be written as a function

r(E , st) → {0, 1} which determines whether a given state, environment pair can be

escaped while enforcing the MER:

r(E , st) =

0 ∃ a ∈ A for which dist(ŝt+1, st+1) < δ

1 otherwise
(2.4)

Again, we cannot compute r(E , st) directly online, as it requires knowing the actual
effect of executing actions. Instead, we will use an approximation to this function.

Once we know if a state is in need of recovery, we can either launch the planner (if

not) or perform recovery actions (if so).

2.2.3 State Definition

In this chapter, we focus on rope manipulation tasks with Ng = 1 or Ng = 2

grippers; the state of each gripper is a point in R3. We assume that the robot end

13

Figure 2.3: Pictures of our simulation and real robot scenarios. (A) Simulated Rope
Dragging. (B) Simulated Tabletop Rope Manipulation. (C) Retrieving a Charging
Cable. (D) Removing Lifting Straps. (E) Moving a Hose. (F) Preparing to Install a
Hose. Annotations show examples of goals for various tasks our method can complete.

effectors are rigidly attached to the object. The configuration of the rope is a set of

Nrl points in R3Nrl . The state s is then a vector of the positions of the gripper(s) and

the points along the rope. The dimension of the state space is thus Nd = 3(Ng+Nrl).

2.3 Methods

2.3.1 Data Collection for Learning the Dynamics

Our first phase of data collection is used for training our model of the uncon-

strained dynamics. This involves sampling random actions and recording the ob-

served states to form trajectories [s0, a0, s1, . . . , aNt−1, sNt]. In all our experiments,

we use Nt = 10. We sample actions randomly, choosing target positions which are

within 0.1m of the current gripper position(s). Put another way, we sample actions

which are changes in position in a ball around the current position. We repeat the

previously sampled change in position with 80% probability, which creates larger,

more consistent motions and gives better coverage of our environments. During this

14

phase, we do not reset the rope’s position between trajectories.

In this phase, we also want to avoid activating physical constraints during data

collection. This is done by removing obstacles, and by restricting the actions taken

during data collection. For rope dragging, this only means removing any obstacles.

For dual arm rope manipulation, this means removing obstacles, removing the arms

entirely, and preventing the rope from overstretching by limiting the distance between

the grippers. Although removing the arms would not be possible in the real world,

it seems possible to design a conservative set of actions which would similarly ensure

that the rope does not interact with the arms, or the arms with each other. At a

high level, the purpose of this is to simplify the dynamics by avoiding activating any

physical constraints during this phase.

For rope dragging, we collected 6,144 trajectories containing 10 steps, of which

1,536 are reserved for validation and testing. For dual arm rope manipulation, we

collected 2,048 trajectories containing 10 steps, of which 512 are reserved for validation

and testing.

2.3.2 Learning the Unconstrained Dynamics

Once we have collected our dataset of trajectories, we train our dynamics network.

This network is a two layer fully connected neural network which takes in a state st and

action at and predicts a change in state ∆ŝt+1. A diagram showing this architecture

is shown in Figure 2.5 and discussed in more detail in Section 2.3.7. This model can

be used to make multistep predictions by feeding the predicted state back into the

model. The loss is the combined prediction error for all time steps in the trajectory,

and is shown in Equation (2.5).

MSE(s0, a0, . . . , aNt−1) =
1

Nt

Nt−1∑
t=1

∥∥ŝt − st
∥∥2

ŝ0 = s0

ŝt+1 = h(E , ŝt, at)

(2.5)

2.3.2.1 Incorporating Uncertainty in the Learned Dynamics

Prior work has shown that it can be beneficial to consider the uncertainty in

the learned dynamics [109, 5, 23], even without considering constraints not seen in

training. For instance, if the training data does not cover the state-action space well,

then having a measure of uncertainty in the dynamics predictions makes it possible to

15

detect out of distribution predictions. This is a measure of epistemic uncertainty—

uncertainty due to lack of data (as opposed to inherent randomness) [46, 44].

As is done in prior work [36, 23, 66], we use an ensemble of neural networks trained

on the same phase one data starting with different random seeds. When a point

prediction is needed, like in planning or in constructing the classifier and recovery

datasets, we take the mean of the ensemble prediction. When a measure of uncertainty

is needed, we compute the sum of the standard deviations along each dimension of

state across all the models in the ensemble. For simplicity we will denote this as

σ2. We use this measure of uncertainty as an input to the classifier. The intuition

behind this method is that the trained networks’ predictions will be similar near the

training data, but will diverge far away from training data. This makes it possible for

the classifier to reject or accept transitions based on the uncertainty of the learned

dynamics. Although we did not find that this provided a significant improvement for

our tasks, we include it nonetheless as it may be beneficial in scenarios where the

unconstrained model is trained on a dataset with poor coverage of the state space.

2.3.3 Phase Two Data Collection

Once the unconstrained dynamics have been learned, we next learn where this

model is accurate, and what actions to take when it is not. For this, we perform

a second phase of data collection. In this phase, we collect data in the kinds of

environments where we intend to perform tasks. We perform the same type of random

data collection process as in the first phase, but now physical constraints are included,

allowing us to gather examples of where our unconstrained dynamics are accurate and

where they are not. Using the data collected in this phase, we can construct datasets

to train our classifier as well as our recovery actions model. A related approach was

used in [39] for learning to estimate the reachability of a quadruped robot. Our prior

work has also demonstrated that this type of data can also be collected by planning

and executing those plans, rather than by taking random actions [83]. However, both

of the above methods used analytical/simulation models for predicting the dynamics.

Furthermore, our approach is in contrast to many methods in robust control and safe

reinforcement learning, which are built on the idea that predictions made outside

the training distribution are unreliable [152, 36]. Those methods do not require a

second data collection phase, but as a consequence would be overly conservative as

the presence of any obstacle near the rope would be considered out-of-distribution.

In order to get diverse data we frequently randomize the locations of obstacles in

the environment. For dual arm rope manipulation, this requires releasing the rope

16

and moving the arms out of the way before randomizing obstacles, so that we can

arrange the obstacles without permanently entangling the rope or arms.

For rope dragging, we collected 2,048 trajectories of length 50 in phase two, of

which 512 were reserved for validation and testing. For dual arm rope manipulation,

we collected 5,996 trajectories of length 20, of which 1,516 were reserved for validation

and testing.

In total, the combined phase one and two datasets for dragging has 163,840 tran-

sitions, and the combined phase one two datasets for dual arm rope manipulation has

140,400 transitions. In comparison, [72] uses 500,000 transitions in order to accurately

learn the contact dynamics of a rope amongst disc-shaped obstacles in 2D.

2.3.4 Learning the Classifier

Given the data collected in phase two, we now describe how to construct training

examples for the classifier. For this we need both the predictions of the unconstrained

dynamics as well the labels of whether the model-error requirement is satisfied. To

compute the predictions, we take the starting state for each trajectory in the dataset

and roll out the unconstrained dynamics prediction for the rest of the trajectory.

This produces a tuple of (st, ŝt, at, st+1, ŝt+1) for each time step in each trajectory.

As stated in Problem (2.2) the label should be 1 if dist(ŝt+1, st+1) < δ and 0 oth-

erwise. To compute dist(ŝt+1, st+1), we require a distance function dist between the

predicted state ŝt+1 and the actual state st+1. We selected the threshold δ by com-

puting the 90th percentile of prediction error for the unconstrained dynamics on the

unconstrained dynamics validation set. A sensitivity analysis of the threshold is given

in Supplementary Materials. For rope dragging, δ =0.065m and for dual arm rope

manipulation δ =0.025m. Additionally, we discard all the transitions after the first

transition labeled 0, since it is unclear whether the dynamics would have been ac-

curate had it not diverged previously. A diagram illustrating how a trajectory is

converted into examples for the classifier is shown in Figure 2.4.

The classifier network g(E , ŝt, at, ŝt+1, σ2) → pc ∈ {0, 1} takes as input the en-

vironment E and the transition ŝt, at, ŝt+1. Since we use an ensemble of dynamics

models, these states are the mean predictions of the ensemble. We also include the

variance σ2 of the ensemble predictions as input to the classifier. The classifier out-

puts a number between 0 (inaccurate) and 1 (accurate). The network architecture

is shown in Figure 2.5. Since this is a binary classification problem, we use binary

cross-entropy loss to train it. Furthermore, since physical constraints are spatial in

nature, we convert the environment and states into multi-channel 3D voxel grids and

17

Figure 2.4: Representing the state and environment in 3D voxel grids. (A) An exam-
ple for rope dragging. (B) An example dual arm rope manipulation. Different colors
are used to represent different channels in the voxel grid, and alpha is used to indicate
the voxel value, with 0 being fully transparent and 1 being fully opaque.

use Convolutional Neural Networks (CNN) (details in Section 2.3.7).

We also note that depending on the environments and specific parameters for how

actions are sampled, the resulting dataset of transitions may be imbalanced. In our

experiments, our classifier datasets contained more positive than negative examples,

ranging between 65% and 95% positive. To mitigate bias in our classifier, we balance

each minibatch by oversampling examples from the underrepresented class.

2.3.5 Planning With a Learned Model and Classifier

Once we have learned our unconstrained dynamics and classifier, these models are

used for planning. Although they could be applied to a number of different planning

methods, including the cross entropy method (CEM) [58], probabilistic roadmaps

(PRM) [56], or trajectory optimization [103], we chose to use them in a kinodynamic

RRT [70], as implemented in the Open Motion Planning Library (OMPL) [117]. Kin-

odynamic RRT is a sampling-based tree-search algorithm, and is well suited for our

tasks as they contain local minima and narrow passages. Graph-based methods like

PRMs could be used instead if we expect to plan repeatedly in the same environment,

and trajectory optimization could be used if there are criteria such as path length

which should be minimized.

In our Kinodynamic RRT, we sample a single random action at and attempt to

extend using that action. Whenever we attempt to extend from state ŝt with action

at to the state ŝt+1, we first check the transition (ŝt, at, ŝt+1) by feeding it through the

classifier. The extension is added to the tree only if the classifier output is greater

than 0.5. We chose this type of planner for its simplicity, and many algorithmic and

implementation optimizations could be made to decrease planning times.

18

2.3.6 Evaluating Stuck States and Learning Recovery

The formal definition of being stuck (Equation (2.4)) evaluates every possible

action from a given state. In practice, checking whether a state is stuck consists of

sampling Nrs actions and checking whether any of them are accepted by the classifier.

Since the classifier is trained to approximate the MER, this is a quick and effective

method for determining whether recovery is needed. Additionally, this procedure

is done naturally by the RRT at the start of planning, which means that checking

for recovery can be easily integrated into planning without any redundant calls to

sampling, dynamics, or classification.

Given the unconstrained dynamics and the classifier, we can also use the data

collected in phase two to learn recovery actions. As defined in our problem statement,

recovery actions are needed when the robot is in a state where the classifier rejects

all proposed actions. In this case, we would like the robot to take recovery actions

which bring it back to regions of state space where the unconstrained dynamics are

accurate.

For this, we propose training a neural network to evaluate the probability that

an action is recovering. This network takes in a state, action, and the environment

(El, st, at) and outputs the probability pr that the action is recovering. Specifically,

when we detect recovery is needed, we sample Nrs actions randomly and use this

learned recovery model to assign each action a probability of recovering. The highest

probability action is then selected and executed; this sampling, recovery probability

evaluation, and execution process repeats until the system is no longer stuck. This

approach requires training a model which estimates the probability that an action is

recovering. To construct a dataset of recovering actions and labels of the recovery

probability, we use a similar approach to the one used to construct the classifier

dataset.

This process considers each observed transition st, at, st+1 and environment E in

the dataset and first determines whether recovery is needed at st. We sample Nrs

random actions from that state, predict according to the unconstrained dynamics,

and feed this into the classifier. If all Nrs sampled transitions are rejected, then the

state st needs recovery. Next we perform the same test starting at the next state

st+1. Here we record the proportion of the sampled actions which were accepted, and

this is used as the label for probability of recovery pr. For example, if at st none of

the random samples were accepted, but from st+1 all Nrs were accepted, then this is

an excellent example of recovery, and we would like our recovery model to predict

that taking action at from st in environment E is likely to lead to recovery. On the

19

Figure 2.5: Network architectures. (A) dynamics, (B) classifier, and (C) recovery.
local refers to the translations used to make the states and actions invariant to the
position in the world frame, and is described in Sections 2.3.2, 2.3.4, and 2.3.7. Green
capsules shapes indicate vectors, and blue boxes indicate functions. The gray 3D box
represents the 3D voxel grid representation of state (Section 2.3.7.2).

other hand, if when checking st+1 we find that still no actions are accepted by the

classifier, then this is a poor example of recovery. We use all transitions for which

recovery is needed (i.e. r(E , st) = 1 as the dataset for training our recovery model,

and train the network using binary-cross entropy to predict the recovery probability.

For our experiments, we set Nrs to 32. More details about the neural network and its

structure can be found in Section 2.3.7.

Approaches to recovery like those from the safe exploration community [60, 12, 34]

are focused on staying within a region of the state space from which the agent can

guarantee safety during the learning process, or the existence of a sequence of control

actions which will move the system into a predefined safe set. In contrast, our method

is targeting the case where the model is already too unreliable for use at the given

state and any predictions made cannot be trusted.

2.3.7 Network architectures

Our method uses three neural networks, one for the dynamics model, one for the

classifier, and one for recovery. Architectures are shown in Figure 2.5.

20

2.3.7.1 Dynamics Model Architecture

The dynamics network is a two layer fully connected network with 1,024 hidden

units in each layer and ReLU activation. This model takes in the state of the rope and

grippers concatenated with the actions and outputs the change in state, which is then

added to the input state to produce the final predicted state. Furthermore, because

we assume that the unconstrained dynamics are invariant to the global position in

space, we first translate the state and actions into a local frame before feeding them

into the dynamics network. For rope dragging, states and actions are relative to the

position of the gripper, and for dual arm manipulation they are relative to the average

of all the points of the rope.

2.3.7.2 Classifier Architecture

The classifier network takes in the environment E and a transition ŝt, at, ŝt+1 and

outputs the probability of the MER being satisfied. Since we experimented with

performing classification on multiple transitions we use a Long Short Term Memory

network (LSTM) with a CNN encoder, although in this work we only consider a single

transition as input. As shown in Figure 2.5, a single time step is passed through a

CNN encoder that maps a single state ŝt and action at into a latent vector. The

state and environment are first represented in a 3D voxel grid and passed through

three convolutional layers. The output is flattened and concatenated with the vector

representations of the state and action. The LSTM outputs a scalar prediction of

the probability of the MER being satisfied for each time step. Since we use a single

transition, this means there are two outputs, one for time t and one for t + 1. The

output for time t is ignored, because it is not a function of ŝt+1. Instead, we use the

output for time t+ 1 as the probability for the entire transition ŝt, at, ŝt+1.

In order to represent the environment and states in a voxel grid of a fixed size, we

take a crop of the full environment occupancy grid centered around the local origin (as

defined above for dynamics). As with the local representation of states and actions,

this assumes invariance to the absolute position. Additionally, using a fixed size local

environment has the benefit of allowing the size of the full environment to change

from task to task without any retraining. In order to make it easier for the classifier

to reason over the 3D input, we also include a 3D representation of the input states.

For each component of the state (grippers, rope) we construct a 3D voxel grid of the

same size and location as the local environment and each voxel’s value is proportional

to the inverse-log of its distance to the nearest point in that component of the state.

21

This results in a smoothed version of simply drawing the points into the voxel grid,

and examples are shown in Figure 2.4. We stack these representations along with the

local environment to get a multi-channel voxel grid.

The vector representations of state and action are the same as is described for

the dynamics, however we use both the original state vector (not translated) and the

local state vector (translated). This is because the classifier should be able to learn

reachability and kinematic constraints, e.g. in our dual-arm manipulation scenario.

2.3.7.3 Recovery Architecture

Finally, the recovery network has the same encoder structure as the classifier, and

we use the learned parameters, without fine-tuning, of convolution layers from the

classifier in the recovery network. This network takes in a proposed transition, this

time consisting of the 3D local environment, a single state, and a proposed action,

and outputs the probability of recovery. Unlike the classifier, we do not pass in the

predicted result of the proposed action, since recovery is only used when accurate

predictions cannot be made. After encoding, two fully connected layer with ReLU

activation followed by a layer with sigmoid activation are used to map down to the

output probability.

2.3.7.4 Full Dynamics Architecture

Our full dynamics baseline uses a different network. We use the network proposed

in [93], but extend to 3D convolution. The state representations used are the same

as in our unconstrained dynamics network. Graph neural network architectures for

predicting physics in 3D may provide more accurate predictions [72, 90], however

these networks assume a graphical model of the world is known, whereas our dynamics

learning method does not.

2.3.8 Simulation Environments

We use the Gazebo simulator with ODE physics [59, 113] for our quantitative

experiments. We emphasize that our method does not have access to the simulator’s

model of the rope or the simulation parameters. For our rope dragging experiment,

the rope is modeled with 10 rigid links, and the state consists of the positions of the

links and the position of the gripper s = [xg, yg, zg, x1, y1, z1, . . . , x10, y10, z10], which

has 33 dimensions. We considered including gripper orientation, however this would

make the dynamics dependent on gripper geometry and friction properties (because

22

the rope could wind around the gripper) without necessarily enabling significant new

capabilities, so we chose not to include orientation. The gripper is attached to one

end of the rope, and the point at the other end of the rope (which we will call the

tail) is the point which we wish to place at a goal position. Task error is measured

is the Euclidean distance in 3D between the tail and the goal point. The actions are

target gripper positions a = [x, y, z], and a local controller is used to attempt to reach

these goals. When commanded into an obstacle, the gripper will stop or potentially

slide as it applies force into the obstacle. An action completes when the commanded

position is reached or a timeout of 1 second occurs. The nominal joint velocity of the

controller is tuned to reduce jerk and keep the simulation quasi-static.

For the dual arm rope manipulation experiments, the rope is modeled with 25

rigid links, and the state consists of the positions of the links and the positions of

the two grippers s = [xg1, yg1, zg1, xg2, yg2, zg2, x1, y1, z1, . . . , x25, y25, z25], which has 81

dimensions. The grippers attach to opposite ends of the rope. The actions are target

positions for each gripper a = [x1, y1, z1, x2, y2, z2]. A Jacobian-based inverse kine-

matics controller is used to track the target position for each gripper. This controller

stops when the target position is reached or just before any collisions between the

arms or between the arms and obstacles.

2.4 Discussion

2.4.1 On the Specialization to Deformable Objects

Planning with inaccurate models has many potential applications, so it would be

interesting to explore a broader range of tasks in future work. However, deformable

object manipulation is particularly well-suited for our framework. Specifically because

1) Compliance allows us to make mistakes, stop, and replan; 2) Dynamics are more

complex in some regions than in others; and 3) Much of the state space and dynamics

are irrelevant for doing useful tasks. We discuss each of these points below:

First, our method relies on taking actions for which we have no accurate model,

which means we must be able to take actions safely, despite their outcome being

uncertain. The compliance afforded by deformable objects allows us to safely collect

data, and thus to learn where our model is wrong.

Second, our method assumes that there is some subset of the dynamics which

we can learn accurately, and which is sufficiently useful. Such an assumption is

particularly well-suited to deformable object manipulation, where the full dynamics

are much more difficult to learn than the unconstrained dynamics, yet interesting and

23

practical tasks can still be done without learning these dynamics.

Third, deformable objects have high-dimensional state-action spaces. However,

only a small region of state-action space is either reachable or useful for practical tasks

(i.e. we need not consider the many different crumpled or knotted states). Because

of this, it is often acceptable to avoid large portions of this space. Our method takes

advantage of this in many ways, including 1) only learning the dynamics for the

subset of state-action space covered in phase 1 data collection, and 2) only learning

the classifier for the relatively small subset of state-action space covered in phase 2

data collection.

2.4.2 Limitations

In this work we present significant progress on planning with unreliable models

and addressing their inaccuracies, however many open questions remain. In this work

we do not address challenges in state estimation and tracking, control and precise

manipulation, or in describing and defining complex tasks.

There are also many avenues in which our proposed methods might be improved

or extended. For instance, we define which simplified dynamics should be learned

by defining the phase one setting and data collection procedures. This assumes that

we know which dynamics will be tractable to learn, but still useful for planning in

more constrained scenarios. In future work, it would be interesting to explore how

to make this decision automatically, e.g. we can search over various simplifications

of the dynamics based on the performance of learned models. Finally, we plan to

extend these methods to incorporate real world data based on potentially unreliable

perception and tracking.

Although we show that our method can be used for several interesting tasks, we

are limiting the tasks our method can do by choosing to learn only the unconstrained

dynamics. Our method assumes that the goal is reachable while remaining in the part

of state-action space where the unconstrained dynamics are accurate. While this is

a reasonable assumption, it would be interesting to incorporate our method into a

framework which uses it to get as close as possible to a given goal and then switching

to a feedback-based local method (e.g. [96, 51, 139]) to finalize the task (as is done

in [83]).

In terms of recovery, we note that although our learned recovery actions dramat-

ically improved our performance for the dual arm manipulation task, the learned

recovery policy still fails in some cases. The learned recovery policy tends to raise the

grippers, as this is an effective strategy in the training data. However, while this will

24

work well when the rope is draped on the table or obstacles, it leads to being caught

on a protrusion if the rope starts below it. A better policy would likely be learned

by collecting phase two data in environments where getting caught and escaping is

more likely.

In this work, we treat the simulator as a black-box proxy for the real world.

However, these simulations can differ from real world physics, and so at best they

provide a starting point from which sim2real methods can be used to transfer either

a learned dynamics model [35, 24] or a learned policy [16, 99] to the real world. For

instance, it would be useful to adapt online to different stiffnesses of lengths of rope

without re-collecting large datasets. Sim2real has been demonstrated for a number of

other robots and tasks [71, 98], and incorporating these techniques into our proposed

methods is an interesting direction for future work.

2.4.3 Learning Performance

In addition to reporting the performance of our complete method on various tasks,

here we also report the training and validation accuracies of our learned models.

Further details on the training of these models can be found in Sections “Learning the

Unconstrained Dynamics”, “Learning the Classifier”, and “Evaluating Stuck States

and Learning Recovery”.

For dynamics learning, we report learning error as the Euclidean distance between

every predicted and true point on the rope, and average over all the points, time steps,

and examples in the dataset. For rope dragging, our unconstrained dynamics model

has an error of 0.0081m in training and 0.0097m in testing. These numbers are

small in comparison to the length of the rope (0.5m) and the size of the environment

(2x2m). FD achieves an error of 0.0090m in training and 0.0117m in testing. For dual

arm rope manipulation, our unconstrained dynamics model has an error of 0.0025m

in training in 0.0030m in testing. Here the rope has a length of 0.8m, indicating that

we are able to learn the unconstrained dynamics very accurately. The full dynamics

baseline achieves an error of 0.0194m in training and 0.0218m in testing. Learning

accurate dynamics over long horizons is critical for planning, and by learning only

the unconstrained dynamics, our method is able to do so with higher accuracy than

the full dynamics baseline.

We report learning metrics on the phase two dataset (see Section “Learning the

Classifier” for details). For rope dragging, the classifier achieved an accuracy of

0.890, precision of 0.959 and recall of 0.822 on the training set. On the testing set,

it has an accuracy of 0.835, precision of 0.888, and recall of 0.789. For dual arm

25

rope manipulation, the classifier achieved an accuracy of 0.904, precision of 0.914 and

recall of 0.927 on the training set. On the testing set, it has an accuracy of 0.890,

precision of 0.895, and recall of 0.927. Throughout our experimentation we observed

that, as prior work has noted [83], the accuracy of this classifier is a poor indicator

of its usefulness in planning.

For recovery, we use the binary cross entropy loss to measure learning performance.

For rope dragging, the training loss (unitless) is 0.021 and the testing loss is 0.023.

For rope dragging, the training loss is 0.139 and the testing loss is 0.146.

2.4.4 Physical Robot Demonstrations

To demonstrate the practicality of our method, we designed real-world mockups

of domestic and automotive tasks. For dual arm manipulation, we demonstrate three

tasks done under the hood of a car, where the robot manipulates hoses and straps.

For rope dragging, we show an example where the robot retrieves a phone charging

cable by sliding it. For clarity and simplicity, we demonstrate only the parts of these

tasks where our method applies and forgo the use of sophisticated local controllers

to, for example, plug the charging cable into the phone.

Perception of deformable objects remains a difficult open problem [140], much less

in cluttered environments where the object is partially-occluded. Online perception

of the object was not used in this demonstration, is used in future chapters. To

demonstrate our methods despite not having such perception algorithms, we manually

constructed the scenes in a simulator and planned our actions there before executing

them on the real robot.

In both scenes, we re-use the unconstrained dynamics models learned in simulation

directly. For rope dragging, we also re-use the classifier and recovery models as-

is. For dual arm manipulation however, because a different robot is used, and the

scene geometry differs significantly from our simulation, we use classifier and recovery

models trained on scenes similar to the one we test on in the real world. For more

information, see the video in our supplemental materials.

2.4.5 Experiment Design

To compare these methods quantitatively, we consider the task error over 150 trials

per method in two types of rope manipulation tasks. The obstacle configurations are

randomized before every trial, and each trial is allowed 180 seconds. During these 180

seconds, the method alternates between action selection and execution, where action

26

selection is either planning or recovery. The trial is terminated if the goal is reached

or the time limit is reached (see Figure 2.1, and Supplementary Materials for more

details).

At the end of the trial, the final state is used to determine task error, and we report

statistics of this error across the trials. A trial is a success if the final state error is

below the goal threshold. Because tasks are generated randomly, some tasks will be

impossible to achieve (e.g. the object cannot reach the goal because of a barrier),

thus the absolute success rate is less informative than the difference in success rates

between methods. When claims of statistical significance are made, a one-sided T-test

is used and p-values are reported.

2.5 Results

To rigorously evaluate our approach, we perform statistical comparisons of our

method vs. ablations and baselines in simulation over two types of rope manipulation

tasks in 150 randomly-generated environments. We show that our approach greatly

improves performance over learning the full dynamics as well as simply trusting the

model learned in a simplified setting. We then demonstrate the practicality of our

method for performing tasks on a real robot in domestic and automotive scenarios.

2.5.1 Baselines

In this work we argue that learning the dynamics for deformable objects in envi-

ronments with constraints such as obstacles is difficult, and that we should instead

learn only the unconstrained dynamics and a classifier to predict when those dynam-

ics are valid. To support this claim we compare to a method which plans with a

model of the full dynamics. We term this baseline Full Dynamics (FD), and we learn

the dynamics using an approach similar to [92] (see Section “Learning the Uncon-

strained Dynamics”). In FD, we learn the dynamics from a dataset collected in the

same way as we collect data for our classifier (Section “Phase Two Data Collection”).

Our method uses two phases of data collection, the data in each phase is used differ-

ently. Therefore, to make a fair comparison, the full dynamics baseline is trained on

a dataset whose size is equal to our method’s two datasets combined. Once trained,

we plan with FD using the same Rapidly-exploring Random Tree (RRT) planner

as in our method. However, unlike our method, FD requires no constraint checker

(learned or otherwise), as anything we might consider a constraint is subsumed by

the dynamics.

27

Additionally, we remove various components of our method to demonstrate the

benefits they provide. We compare to a version called No Classifier, which plans

using our unconstrained dynamics but no constraint checker. Comparisons to this

baseline show the benefit of using the classifier over simply trusting the unconstrained

dynamics everywhere. We also compare to a version without recovery (Classifier),

and a method which takes random actions as its recovery policy (Classifier + Random

Recovery).

2.5.2 Scenario 1: Rope Dragging

Here we describe our results for the task of dragging a rope-like object along a

surface among obstacles, as is shown in Figure 2.1a. Rope manipulation has numerous

important applications including suturing and managing wires or hoses, and the rope

dragging task requires long horizon planning for which our method is well-suited. The

task is to place one end of a rope at a point while dragging the rope by the other end.

This task is difficult because the system is highly under-actuated and the environment

is cluttered. Task error is the Euclidean distance between the end of the rope and

the goal point. The goal region is a sphere about the goal point with radius 5 cm.

This task illustrates the challenges of long horizon planning for deformable objects

in cluttered scenes, and is challenging for existing methods. The practicality of our

method is illustrated in our physical robot demonstrations.

The task error across 50 trials is shown in Figure 2.6a. Our complete method

reached the goal 76% of the time with a mean task error of 4.48 cm. This is better

than FD (32% success, 20.32 cm error) and No Classifier (60% success, 8.20 cm error)

and is significant at p < 0.001. Additional numerical results are shown in Table 2.1.

For this task, recovery was never needed, meaning that for all states from which the

planner was run there was at least one action from that state which our classifier

accepted as yielding an accurate prediction. The benefit of recovery actions is shown

in the dual arm manipulation task below.

To show the ability of our classifier to learn difficult prediction functions, we also

compare our results to a manually-engineered solution for this scenario. By inspecting

the data of where the model tended to make errors, we found that, unsurprisingly,

the model could not predict the effect of pushing/pulling the rope into obstacles but

was fairly accurate when not in contact with obstacles or sliding along them (See

Supplementary Materials for examples of sliding motion accepted by our classifier).

To capture this predictive behavior with a rough approximation we used a collision

checker to measure if the predicted state was penetrating into the obstacle in place of

28

Figure 2.6: Comparing success across methods. (left) The success rate as a function
of the success threshold on task error for our simulated rope dragging experiments.
The dashed line indicates the size of the goal region used. For example, this tells us
that if our goal region was 0.1m, the ”Classifier” method would achieve about 84%
success. (right) The success rate as a function of the success threshold on task error
for our simulated dual arm rope manipulation experiments.

our learned classifier (as is done in [67]). Note that this is a scenario-specific method

derived by using human intuition and an engineered collision-checker. While this

intuition and hand engineered solution can be an effective solution for some tasks,

changes in the task or object being manipulated often lead to additional tuning and

engineering. For example, if the rope was very thick and the points defining the

rope state (which are along the central axis of the rope) did not enter obstacles even

when the rope was pressing into an obstacle, collision boundaries would need to be

tuned. Likewise, if the rope is very thin, numerical error in predictions could lead

to erroneous collision-checking results when sliding along the surface of an obstacle.

To the credit of our method, we found that using the collision checker gave a 78%

success rate and a mean task error of 12.74 cm, with p = 0.498 for the hypothesis

that our method outperforms the collision checking method. This is an encouraging

result, as it demonstrates that our method can perform on-par with a scenario-specific

human-engineered solution, at least in this scenario.

2.5.3 Scenario 2: Dual Arm Rope Manipulation

Here we describe our results for using a robot for dual arm manipulation of rope

among obstacles, as is shown in Figure 2.3b. Using two arms to manipulate de-

formable objects allows more control of the object than one arm and introduces

additional interesting challenges in coordinating the two arms. The task we use for

evaluation is to place the midpoint of the rope at a point in 3D while only hold-

29

Name Dynamics Classifier
max
(m)

mean
(m)

median
(m)

std. dev.
(m)

Classifier Unconstrained Learned 1.133 0.128 0.044 0.247

No Classifier Unconstrained None 1.408 0.325 0.045 0.425

Full Dynamics Full None 1.519 0.438 0.156 0.450

Table 2.1: Task error statistics for simulated rope dragging.

ing the ends. In addition to obstacles, this scenario imposes the constraints of not

overstretching the rope, not colliding the arms, and staying within the reachability

limits of the robot. Task error is the Euclidean distance between the midpoint of the

rope and the goal point. The goal region is defined as a sphere about the goal point

with radius 5 cm. This type of manipulation, while difficult for existing methods, is

a prerequisite for many practical tasks such as cable harnessing.

The task error across 100 trials is shown in Figure 2.6b. Our complete method

(Classifier + Learned Recovery) reached the goal 84% of the time with a mean task

error of 7.29 cm. This is statistically significantly (p < 0.001) better than FD, which

reached the goal 17.7% of the time with a mean task error of 20.32 cm, and No

Classifier, which reached the goal 47% of the time with a mean task error of 16.97 cm.

We also compare to our method without recovery actions, and to our method with

random recovery actions. In this task, recovery actions are critical, and without them

our method performs statistically significantly (p < 0.001) worse with a success rate

of 61% and a mean task error of 14.69 cm. When compared to random recovery

actions, which reaches the goal 78% of the time, our method has similar task error (p

= 0.281 for the hypothesis that our method outperforms random recovery), however

our method needs only a third as many recovery actions to achieve this task error.

Over all 100 trials, random recovery used 613 recovery actions whereas our method

used only 177. Additional numerical results are shown in Table 2.2.

2.5.4 Physical Robot Demonstrations

We demonstrate potential applications of our method on real-world mock-ups of

several domestic and automotive tasks. The first set of tasks are performed under

the hood of a car, and require the robot to manipulate straps or hoses. These tasks

include moving the midpoint of a hose to a specific location (Figure 2.3e), positioning

the ends of a wiper fluid hose for installation (Figure 2.3f), and removing lifting straps

from an engine (Figure 2.3d).

30

Name Dynamics Classifier
max
(m)

mean
(m)

median
(m)

std. dev.
(m)

Classifier
Learned
Recovery

Unconstrained Learned 0.450 0.073 0.045 0.094

Classifier
Random
Recovery

Unconstrained Learned 0.629 0.081 0.046 0.106

Classifier Unconstrained Learned 0.630 0.147 0.047 0.167

No Classifier Unconstrained None 0.741 0.170 0.082 0.165

Full Dynamics Full None 0.621 0.203 0.191 0.142

Table 2.2: Task error statistics for simulated dual arm rope manipulation.

We also perform the task of fetching a charging cable (Figure 2.3c). In this

example, the robot cannot reach the end of the cable directly because it is blocked

by an obstacle. Instead, the robot grasps the cable elsewhere, and must drag the end

of the cable towards the phone.

Notably, these tasks use several different types of goals described in the state

space of the rope and grippers, all of which can be handled by our planner. This is in

contrast to policy learning methods [81, 118, 139] and methods which use goal images

[95, 33, 148]. More details on how we perform these tasks can be found in Section

“Physical Robot Demonstrations”.

2.6 Conclusion

In summary, the proposed method is able to complete a variety of difficult rope

manipulation tasks in clutter. We are able to learn the unconstrained dynamics

accurately, and by using our learned classifier, the planner successfully avoids the

regions of state-action space where these unconstrained dynamics are incorrect. Us-

ing the classifier outperforms both using the full dynamics and simply trusting the

unconstrained model by a wide margin. Last, recovery makes the method more re-

silient, allowing the robot to act even when it cannot trust its dynamics model. In

our tabletop manipulation simulations, we demonstrated that these recovery actions

statistically significantly improve the success rate of our method.

31

CHAPTER III

Data Augmentation for Learning Reliability

The previous chapter introduced the Model-Error Requirement RRT and a method

for learning a recovery policy. In simulation, we used these methods to learn the

reliability of a dynamics model for bimanual rope manipulation. We also executed

trajectories planned in simulation in the real world to illustrate what it would look

like to apply these methods in the real world. This was needed because the proposed

learning methods did not consider data efficiency, and required datasets that would

be impractical to collect in the real world.

This chapter addresses this problem by proposing a data augmentation method

for manipulation. We first formalize data augmentation as an optimization problem,

where we attempt to maximize diversity, validity, and relevance. We propose loss

functions that formalize these abstract concepts, and apply our proposed method

to learning dynamics and learning reliability. Finally, we use the proposed data

augmentation method to learn reliability for dual-arm rope manipulation – online,

from scratch, and in the real world.

3.1 Introduction

In recent years, interest in applying deep learning to robotic manipulation has

increased. However, the lack of cheap data has proven to be a significant limitation

[145]. To enable applications such as smart and flexible manufacturing, logistics, and

care-giving robots [137], we must develop methods that learn from smaller datasets,

especially if the learning is done online on real robots.

One of the simplest and most effective ways to mitigate the problem of small

datasets is to use data augmentation. While data augmentation has been shown to

significantly improve generalization performance in tasks like image classification, it

is not straightforward to extend existing data augmentation methods to the types of

32

Figure 3.1: A mock-up of a car engine bay. The robot must move the rope and place
it under the engine without snagging it to set up for lifting the engine. We use data
augmentation to improve task success rate during online learning for this task.

data used in robotic manipulation. Furthermore, most existing augmentation meth-

ods fall into one of two categories, and both have severe limitations:

In the first category, augmentations are defined by a set of transformations, sam-

pled independently for each example. Most image augmentation methods fall into this

category, where rotations or crops are sampled randomly for each example [8, 27, 111].

By making augmentations independent of the example being augmented, we are re-

stricted to operations which are valid on all examples. In the second category, there

are methods which learn a generative model (VAE, GAN, etc.) of the data, and then

sample new training examples from that model [124, 97, 29]. This approach assumes

a useful generative model can be learned from the given dataset, but we found these

methods did not perform well when the dataset is small.

It is not trivial to define a coherent framework for data augmentation that en-

compasses many domains and many types of learning problems (e.g. classification

and regression). Thus, the first contribution of this chapter is a formalization of the

data augmentation problem. In our problem statement (Section 3.2), we formalize

data augmentation as an optimization problem based on three key criteria: validity,

33

Figure 3.2: Examples of augmentations of rope generated by our method. On the left
is a picture of the scene in simulation from a zoomed out viewpoint. The simplified
engine block model is in the center. The rope start (dark blue) and end (light blue)
states are shown, with the grippers shown at the start state. The static environment
geometry is shown in brown. The first row shows a transition in free space, where
the resulting augmentations are particularly diverse. The final augmentation shows
how our method found a transformation to move the rope underneath the hook while
remaining in free space. The second row shows a transition which involves contact
between the rope and the environment. The augmentations preserve this contact.

relevance, and diversity. We define an augmented example as valid if it obeys the

laws of physics and is possible in the real world. Augmentations are relevant if they

are similar to data that would be seen when performing the target task. Diversity

encourages the augmentations to be as varied as possible, i.e. the transformations

applied to the data should be uniformly distributed to maximize diversity. Producing

diverse augmentations for each original example is key to improving the generalization

of the trained network.

The general definitions of validity, relevance, and diversity we propose depend

on information that is intractable to compute for many manipulation problems, and

therefore we also present approximations to these definitions. We do not claim that

this formulation is useful for all manipulation problems, and clearly define the physical

assumptions behind this formulation in Section 3.2.

Our second contribution is a method for solving this approximated optimization

problem. Our method operates on trajectories of object poses and velocities, and

searches for rigid-body transformations to apply to the moving objects in the scene

to produce augmentations. Our method encourages validity by preserving contacts

and the influence of gravity. Additionally, we encourage relevance by initializing the

34

Algorithm 1: ϕ(x)

1 T = sample(x)
2 x̃ = apply(x, T)
3 return x̃

augmentations nearby the original examples and preserving near-contacts. Finally, we

encourage diversity by pushing the augmentations towards randomly sampled targets.

Our results demonstrate that training on our augmentations improves downstream

task performance for a simulated cluttered planar-pushing task and a simulated bi-

manual rope manipulation task. The learning problems in these tasks include clas-

sification and regression, and have high-dimensional inputs and outputs. Lastly, we

demonstrate our augmentation in an online learning scenario on real-robot bimanual

rope manipulation using noisy real-world perception data (Figure 3.1). In this sce-

nario, augmentation increased the success rate from 27% to 50% in only 30 trials.

Additional materials such as code and video can be found on our project website.

3.2 Problem Statement

In this section, we formally define the form of data augmentation studied in this

chapter. We define a dataset D as a list of examples x ∈ X and, optionally, labels

ℓ(x) = w, where ℓ is a task-specific labeling function. We assume the space X is a

metric space with a distance function dist. Augmentation is a stochastic function

ϕ : X → X which takes in an example x and produces the augmented example

x̃. The general form is shown in Algorithm 1. Internally, augmentation will call

sample to generate a vector of parameters, which we call T . We also define x̃1:k as

a set of k augmented examples produced by calling sample then apply k times.

The parameters T describe the transformation which will be applied to the example

in the apply procedure. We focus on augmentation functions that are stochastic,

thus ϕ will sample new augmented examples each time it is called. If the dataset

contains labels w, we assume that the labels should not change when the example is

augmented.

We propose that useful augmentations should be valid, relevant, and diverse. Let

the valid set Xv be the set of examples which are physically possible. Let the rel-

evant set Xr be the set of examples likely to occur when collecting data for or ex-

ecuting a specific set of tasks in a specific domain. We define validity(x̃) = 1 if

x̃ ∈ Xv and validity(x̃) = 0 otherwise. We also define relevance(x̃) := e−dist(x̃,Xr)

35

https://sites.google.com/view/data-augmentation4manipulation

Figure 3.3: (left) The environment for bimanual rope manipulation, in simulation.
(right) The environment for cluttered planar pushing of cylinders, in simulation.

and diversity(x̃1:k) := e−DKL(px̃1:k (T) ||U[T−,T+]), where DKL is the Kullback–Leibler di-

vergence and px̃1:k
(T) is the distribution of the parameters for a set of augmented

examples x̃1:k. Diversity is maximized when the augmentation transformations are

uniformly distributed in the range [T−, T+]. With these concepts defined, we define

data augmentation as the following optimization problem, the solution to which is a

set of augmentations x̃1:k:

max
x̃1:k

diversity(x̃1:k) + β
∑

x̃i
relevance(x̃i)

subject to validity(x̃i) ∀ x̃i ∈ x̃1:k

ℓ(x̃) = ℓ(x)

(3.1)

where β is a positive scalar.

This optimization problem can be solved directly if Xv, Xr, and ℓ are known.

However, in manipulation tasks, that is rarely the case. Instead, we will formulate

an approximation to this problem using measures of relevance, diversity, and validity

that are derived from physics and useful for a variety of robotic manipulation tasks

and domains.

3.2.1 Assumptions

Most augmentation algorithms rely on some expert knowledge or heuristics to

define what is a valid augmentation. For instance, rotating an image for image clas-

sification makes an assumption that rotation does not change the label, and this is

not always true. Similarly, the efficacy or correctness of our algorithm is also subject

to certain assumptions. Here, we define the key assumptions:

• The geometry of the robot and all objects is known.

36

• The scene can be decomposed into objects which can be assigned or detected

as either moving or stationary.

• Examples are time-series, consisting of at least two states.

• All possible contacts between stationary vs. moving objects have the same

friction coefficient.

• Contacts between the robot and objects/environment (e.g. grasps) can be de-

termined from the data.

• A rigid-body transformation of an object preserves internal forces arising from

its material properties.

• Objects only move due to contact or under the force of gravity. We do not

handle movement due to magnetism or wind, for example.

Notably, the assumption that a rigid-body transformation preserves internal, ma-

terial forces is what allows us to handle cluttered scenes with many moving objects, as

well as deformable or articulated objects. While it could be valuable to augment the

deformation or relative motion of the objects, doing so in a way that is valid would be

challenging. Instead, we transform them all rigidly (See examples in Figures 3.2,3.5).

The assumption of having a common friction coefficient between all moving versus

stationary objects is in-line with much manipulation research. For example, work on

planar pushing assumes friction is uniform across the plane [154, 142]. Note that we

make no assumption on the coefficients of friction between two moving objects.

Naturally, there are scenarios where these assumptions do not hold and thus where

our algorithm may not perform well. However, our experiments demonstrate signifi-

cant improvement on two very different manipulation scenarios, and we expect these

assumptions extend to other scenarios as well.

3.3 Methods

We first describe an approximation to the augmentation problem (3.1), which is

specialized for manipulation. Next, we decompose this problem and describe each

component in detail.

37

3.3.1 Algorithm Overview

Since robotic manipulation is interested specifically in moving objects, we focus on

augmenting trajectories of poses and velocities of moving objects. A key insight is that

objects in the scene can be categorized as either robots, moved objects, or stationary

objects, and that these should be considered differently in augmentation. We denote

the moved objects state as s, the robot state as q, the robot action as a, and the

stationary objects as E (also called environment). Our method augments the moved

object states, the robot state, and the actions, but not the stationary objects. We do

not assume any specific representation for states or actions, and examples of possible

representations include sets of points, joint angles, poses, or joint velocities. Since we

operate on trajectories, we bold the state (s, q) and action (a) variables to indicate

time-series (e.g s1:T = s). With this categorization, we can write x = {s, q,a, E} and
x̃ = {s̃, q̃, ã, E}.

We choose the parameters T to be rigid body transformations, i.e. either SE(2)

or SE(3). We parameterize T as a vector with translation and rotation components,

with the rotation component with Euler angles bounded from −π/2 to π/2, which

gives uniqueness and a valid distance metric. These rigid body transforms are applied

to moved objects in the scene, and augmented robot state and action are computed

to match. We choose rigid body transforms because we can reasonably assume that

even for articulated or deformable objects, augmenting with rigid body transforms

preserve the internal forces, and therefore the augmentations are likely to be valid.

It may seem that an effective method to generate augmentations is then to ran-

domly sample transforms independent of the data. However, this is not an effective

strategy because it is highly unlikely to randomly sample valid and relevant transfor-

mations. We confirm this in our ablations studies (included in the Appendix 1.A).

Instead of sampling transforms randomly, we formulate an approximation to Problem

3.1:

min
T

LU(T, T
target) + β1Lbbox(s̃) + β2Lvalid(T)+

β3Locc(s̃, e) + β4L∆d−(s̃, E)+
Lrobot(s̃, q̃, ã, E)

subject to {s̃, q̃, ã, E} = apply(s, q,a, E , T)
T target ∼ U[T−, T+]

(3.2)

The decision variable is now the parameters T , and the validity constraint is

moved into the objective. We propose that diversity should be maximized by the

38

transforms being uniformly distributed, and therefore LU penalizes the distance to

a target transform T target sampled uniformly within [T−, T+]. The relevance and

validity terms (which are intractable to compute) are replaced with four objective

functions, which are specialized to manipulation. The magnitudes of different terms

are balanced by β1, β2, β3, β4, which are defined manually. We define each objective

function below:

3.3.1.1 Bounding Box Objective

First is the bounding-box objective Lbbox, which keeps the augmented states s̃

within the workspace/scene bounds defined by [s−, s+]. The bounding box objective

encourages relevance, since states outside the workspace are unlikely to be relevant

for the task.

Lbbox =

|s|∑
i=1

max(0, s̃i − s+i) + max(0, s−i − s̃i) (3.3)

3.3.1.2 Transformation Validity Objective

The transformation validity objective Lvalid assigns high cost to transformations

that are always invalid or irrelevant for the particular task or domain. It is defined

by function fvalid, which takes in only the transformation. For example, in our rope

manipulation case, it is nearly always invalid to rotate the rope so that it floats

sideways. In our cluttered pushing task, in contrast, this term has no effect. This term

can be chosen manually on a per-task basis, but we also describe how a transformation

validity objective can be learned from data in section 3.3.3.

Lvalid = fvalid(T) (3.4)

3.3.1.3 Occupancy Objective

The occupancy objective Locc is designed to ensure validity by preventing objects

that were separate in the original example from penetrating each other and ensuring

that any existing penetrations are preserved. In other words, we ensure that the

occupancy O(p) of each point p̃s,i ∈ p̃s in the augmented object state matches the

occupancy of the corresponding original point ps,i ∈ ps. For this term, we directly

define the gradient, which moves p̃s,i in the correct direction when the occupancies do

not match. This involves converting the environment E into a signed-distance field

39

Figure 3.4: Illustration of aug state within Algorithm 2. All points and sets are
in the space of T . The path of T is shown in red with black arrows. The pink
set, State Valid, is the set where state valid is true. T begins at the origin, and
alternates between moving towards T target and projecting back into the set state valid
(by solving Equation (3.8)).

(SDF) and the moved objects states s into points ps. This objective assumes that

the environment has uniform friction, so that a contact/penetration in one region of

the environment can be moved to another region.

Locc =
∑

ps,i∈ps
p̃s,i∈p̃s

SDF(p̃s,i)
(
O(ps,i)−O(p̃s,i)

)
(3.5)

3.3.1.4 Delta Minimum Distance Objective

The delta minimum distance objective is designed to increase relevance by pre-

serving near-contact events in the data. We preserve near-contact events because they

may signify important parts of the task, such as being near a goal object or avoiding

an obstacle. We define the point among the moved object points ps which has the

minimum distance to the environment pd− = argminps,i
SDF(ps,i). The corresponding

point in the augmented example we call p̃d− .

L∆d− = ||SDF(pd−)− SDF(p̃d−)||22 (3.6)

3.3.1.5 Robot Contact Objective

The robot contact objective Lrobot ensures validity of the robot’s state and the

action. This means that contacts involving the moved objects which existed in the

original example must also exist in the augmented example. Let the contact points

on the robot be pcq and the contact points on the moved objects’ state be pcs.

Lrobot =
∑
i

(||pcq,i − pcs,i||22) (3.7)

40

Algorithm 2: ϕ(s, q,a, E)
// aug state

1 T target ∼ U[T−, T+]
2 T = 0 (identity)
3 for i ∈ Np do
4 Told = T
5 T = step towards(T, T target)
6 T = solve Equation (3.8)
7 if dist(T, Told) < δp then
8 break

// aug robot
9 s̃, state valid = apply state(s,a, T)

10 q̃, ã, ik valid ← IK(q,a, s̃, E)
11 if !state valid or !ik valid then
12 return s, q, a, E
13 else
14 return s̃, q̃, ã, E

Finally, we note that other objective functions can be added for the purpose of

preserving task-specific labels, i.e. so that ℓ(x) = ℓ(x̃). However, for our experiments,

no additional functions were necessary.

3.3.2 Solving the Augmentation Optimization Problem

This section describes how we solve Problem (3.2), and the procedure is detailed in

Algorithm 2. First, we split the problem into two parts, aug state and aug robot.

In aug state, we optimize the transform T to produce the moved objects’ state

s̃ while considering environment E . To achieve diversity, we uniformly sample a

target transform T target and step towards it iteratively. This stepping alternates with

optimizing for validity and relevance. We visualize this procedure in Figure 3.4, as

well as in the supplementary video. The innermost optimization problem is

argmax
T

β1Lbbox + β2Lvalid + β3Locc + β4L∆d− (3.8)

We solve Problem (3.8) using gradient descent, terminating after either Mp steps

or until the gradient is smaller than some threshold ϵp.

Note that we start aug state in Algorithm 2 with T at the identity transfor-

mation, rather than initially sampling uniformly. This has two benefits. First, the

identity transform gives the original example, which is always in the relevant set.

41

Algorithm 3: Data Collection for Learning Valid Transformations

Input: Qvalid, nvalid

Output: Dvalid

1 y−valid =∞
2 for i ∈ [1, nvalid] do
3 for (st, qt, at, E) ∈ Qvalid do
4 αvalid = i/nvalid

5 T ∼ U[αvalidT
−, αvalidT

+]
6 st+1, qt+1 = simulate(st, qt, at, E)
7 s̃t,t+1, q̃t,t+1, ãt = apply(st,t+1, qt,t+1, at, T)
8 s̃′t+1, q̃

′
t+1 = simulate(s̃t, q̃t, ãt, E)

9 yvalid = ||s̃t+1 − s̃′t+1||
10 if yvalid < y−valid then
11 y−valid = yvalid, Tmin = T, y−valid = yvalid
12 add (Tmin, y

−
valid) to Dvalid

13 return Dvalid

Second, it is unlikely that a uniformly sampled transformation is valid or relevant, so

starting at a random transformation would make solving Problem (3.8) more difficult.

In aug robot, we are optimizing Lrobot. This corresponds to computing the

augmented robot states q̃ and actions ã given the augmented states s̃ and the envi-

ronment E . Minimizing Lrobot means preserving the contacts the robot makes with

the scene, which we do with inverse kinematics (Line 10 in Algorithm 2).

3.3.3 Learning the Valid Transforms Objective

As discussed above, we include a term Lvalid based only on the transformation T .

In some cases, such as our rope manipulation example, it may not be obvious how to

define this objective manually. Our rope is very flexible, and therefore rotating the

rope so that it floats in a sideways arc is invalid, but it may be valid for a stiff rope

or cable. To address this, we offer a simple and data efficient algorithm for learning

the transformation validity function fvalid.

Our method for learning fvalid is given in Algorithm 3. This algorithm repeat-

edly samples augmentations of increasing magnitude, and tests them on the system

(lines 6 and 8). This generates ground truth states starting from an input state and

action. The result is a dataset Dvalid of examples (T , yvalid). We then train a small

neural network fvalid,θ(T) to predict the error yvalid and use the trained model as our

transformation validity objective. We collect nvalid =
√
10d examples, where d is the

dimensionality of the space of the transformation T .

42

This method owes its efficiency and simplicity to a few key assumptions about

the system/data. First, we assume that we can collect a few (< 1000) examples

from the system and test various transformations. This could be performed in a

simulator, as we do in our experiments. Because the transformation validity objective

is not a function of state, action, or environment, we can make simplifications to this

simulation by picking states and environments which are easy to simulate. We denote

this set of states and actions as Qvalid. Second, because the transformation parameters

are low-dimensional (3 and 6 in our experiments) the trained model generalizes well

with relatively few examples.

3.3.4 Application to Cluttered Planar Pushing

In this section, we describe how we apply the proposed method to learning the

dynamics of pushing of 9 cylinders on a table (Figure 3.3). The moved object state

s consists of the 2D positions and velocities of the cylinders. The robot state q is

a list of joint positions, and the actions a are desired end effector positions in 2D.

There is no w in this problem. The parameters T used are SE(2) transforms. In

this problem, any individual trajectory may include some moved cylinders and some

stationary ones. In our formulation, the stationary cylinders are part of E and are not

augmented, whereas the moved ones are part of s and are augmented. The robot’s

end effector (also a cylinder) is also augmented, and IK can be used to solve for joint

configurations which match the augmented cylinders’ state and preserve the contacts

between the robot and the moved cylinders.

3.3.5 Application to Bimanual Rope Manipulation

In this section, we describe how we apply the proposed method to a bimanual

rope manipulation problem (Figure 3.3). In this problem, there is a binary class

label, so w ∈ {0, 1}, which is preserved under our augmentation (last constraint in

Problem (3.1)). The rope is the moved object, and its state s is a set of 25 points

in 3D. The robot state q is a list of the 18 joint positions, and the actions a are

desired end effector positions in the robot frame. In this problem, we know that the

only contacts the robot makes with the objects or environment are its grasps on the

rope. Therefore, we preserve these contacts by solving for a robot state and action

that match the augmented points on the rope. The parameters T used are SE(3)

transforms.

43

Figure 3.5: Examples of augmentations generated for learning the dynamics of pla-
nar pushing of 9 cylinders. The pink cylinder is the robot. Time is indicated by
transparency. Augmentation transforms the positions and velocities of the cylinders
that moved, including the robot. All moved objects are transformed together, rigidly.
Despite the clutter, we are able to find relatively large transformations that still pre-
serve existing contacts but do not create any new ones.

3.4 Results

We start by describing the tasks and our experimental methodology, then we

present our results. These experiments are designed to show that training on aug-

mentations generated by our method improves performance on a downstream task.

We perform two simulated experiments, where we run thousands of evaluations, in-

cluding several ablations (see Appendix 1.A). We also perform a real robot experiment

(Figure 3.1) where we run 30 iterations of online validity classifier learning, with aug-

mentation and without. In all experiments, we train until convergence or for a fixed

number of training steps. This ensures a fair comparison to training without augmen-

tation, despite the differing number of unique training examples. In all experiments,

we generate 25 augmentations per original example (See Appendix 1.B). We define

key hyperparameters of our method in Appendix 1.C. A link to our code is available

on the project website.

3.4.1 Cluttered Planar Pushing

The cluttered planar pushing environment consists of a single robotic arm pushing

9 cylinders around on a table. The task is to learn the dynamics, so that the motion

of the cylinders can be predicted given initial conditions and a sequence of robot

44

https://sites.google.com/view/data-augmentation4manipulation

Figure 3.6: Mean position error (meters) for learning the dynamics of cluttered planar
pushing.

actions. For this, we use PropNet [72], and our task is inspired by the application

of PropNet to planar pushing in [120]. The inputs to PropNet are an initial state

s0 and a sequence of actions a, and the targets are the future state (s1, . . . , sT). All

trajectories are of length 50. We evaluate the learned dynamics by computing the

mean and maximum errors for position and velocity on a held-out test set. Example

augmentations for this scenario are shown in Figure 3.5.

This is an interesting application of our augmentation for several reasons. First,

it is a regression task, which few augmentation methods allow. Second, the output of

the dynamics network is high-dimensional (900 for a prediction of length 50), which

normally means large datasets are needed and engineering invariances into the data

or network is difficult. Finally, the trajectories contain non-negligible velocities and

are not quasi-static.

The original dataset contained 60 trajectories of length 50, or 3000 time steps in

total. For comparison, previous work on the same dynamics learning problem used

over 100 000 time steps in their datasets [72, 120]. This is similar to the number of

training examples we have after augmentation, which is 75 000 time steps. Finally,

we measured the performance of our implementation and found that for the planar

pushing scenario we generate 4.5 augmentations per second on average.

The primary results are shown in Figure 3.6. Augmentation reduces the average

position error from 0.001 54m to 0.001 33m, a decrease of 14%. Additionally, we

include two baselines, one which adds Gaussian noise to the state, robot, action, and

environment data, and one which uses a VAE to generate augmentations as in [97].

The magnitude of the Gaussian noise was chosen manually to be small but visually

noticeable. Our proposed augmentation method is statistically significantly better

than the baseline without augmentation (p < 0.0362), the Gaussian noise baseline

45

Figure 3.7: Predictions (blue) vs. ground truth (red) for planar pushing. The robot
is in pink. Trajectories are visualized with lines. The left column shows predictions
from a model trained with augmentation, the right column without.

(p < 0.0001), and the VAE baseline (p < 0.0002). This difference in error may seem

small, but note that error is averaged over objects, and most objects are stationary.

Two roll-outs from with-augmentation and from without-augmentation are shown in

Figure 3.7. In particular, we found that augmentation reduces “drift,” where the

model predicts small movements for objects that should be stationary. Finally, we

note that the Gaussian noise and VAE baselines perform worse than no augmentation,

suggesting that data augmentation can hurt performance if the augmentations are

done poorly.

3.4.2 Bimanual Rope Manipulation

In this task, the end points of a rope are held by the robot in its grippers in a scene

resembling the engine bay of a car, similar to [87], and shown in Figure 3.3. The robot

has two 7-dof arms attached to a 3-dof torso with parallel-jaw grippers. The tasks

the robot performs in this scene mimic putting on or taking off lifting straps from the

car engine, installing fluid hoses, or cable harnesses. These tasks require moving the

strap/hose/cable through narrow passages and around protrusions to various specified

goal positions without getting caught. One iteration consists of planning to the goal,

executing open-loop, then repeating planning and execution until a timeout or the

46

Figure 3.8: The success rate on simulated bimanual rope manipulation, using a mov-
ing window average of 10.

goal is reached. The goal is defined as a spherical region with 4.5 cm radius, and is

satisfied when any of the points on the rope are inside this region.

The planner is an RRT with a learned constraint checker for edge validity (validity

classifier), and more details are given in [87]. We want to learn a classifier that takes

in a single transition x = (st, at, st+1, Et) and predicts whether the transition is valid.

Without a good constraint checker, the robot will plan trajectories that result in the

rope being caught on obstacles or not reaching the goal. We apply our augmentation

algorithm to the data for training this constraint checker. After an execution has

completed, the newly-collected data along with all previously collected data are used

to train the classifier until convergence. Example augmentations for this scenario

are shown in Figure 3.2. The objective is to learn the constraint checker in as few

iterations as possible, achieving a higher success rate with fewer data.

In this experiment, a total of 3038 examples were gathered (before augmentation,

averaged over the 10 repetitions). Since the purpose of our augmentations is to im-

prove performance using small datasets, it is important that this number is small. In

contrast, prior work learning a similar classifier used over 100 000 examples in their

datasets [87, 84]. This is similar to the number of training examples we have after

augmentation, which is 75 950 on average. Finally, we measured the performance of

our implementation and found that for the rope scenario we generate 27 augmenta-

47

Figure 3.9: The success rate and task error distribution of bimanual rope manipulation
on the real robot. Task error is the distance between the goal and the final observed
state of the rope.

tions per second on average.

The primary results are shown in Figure 3.8. Over the course of 100 iterations, the

success of our method using augmentation is higher than the baseline of not using

augmentation, as well as the Gaussian noise baseline. We omit the VAE baseline,

since it performed poorly in the planer pushing experiment. Furthermore, it is com-

putationally prohibitive to retrain the VAE at each iteration, and fine-tuning the

VAE online tends to get stuck in bad local minima. The shaded regions show the

95th percentile over 10 runs. If we analyze the success rates averaged over the final

10 iterations, we find that without augmentation the success rate is 48%, but with

augmentation the success rate is 70%. The Gaussian noise baseline has a final success

rate of 31%. A one-sided T-test confirms statistical significance (p < 0.001 for both).

3.4.3 Real Robot Results

In this section, we perform a similar experiment to the simulated bimanual rope

manipulation experiment, but on real robot hardware. This demonstrates that our

method is also effective on noisy sensor data. More importantly, it demonstrates

how augmentation enables a robot to quickly learn a task in the real world. We use

CDCPD2 [135] to track the rope state. The geometry of the car scene is approximated

with primitive geometric shapes, like in the simulated car environment.

We ran the validity classifier learning procedure with a single start configuration

and a single goal region, both with and without augmentation. After 30 iterations of

learning, we stop and evaluate the learned classifiers several times. With augmenta-

tion, the robot successfully placed the rope under the engine 13/26 times. Without

48

augmentation, it succeeded 7/26 times. The Gaussian noise and VAE baselines per-

forms poorly in simulated experiments, therefore we omit them in the real robot

experiments.

3.5 Limitations

First, our proposed method uses many hyper-parameters which may be difficult

to tune. However, there are methods which can be used to automatically tune these

parameters [8, 27].

Additionally, there are problems and applications where the proposed objective

functions do not ensure validity, relevance, and diversity. In these cases, the structure

of our augmentation and projection procedures can remain, while new objective func-

tions are developed. Another limitation is that our method may not be applicable if

the dataset also contains images, since the 3D transformations we apply to objects in

the scene would require re-rending the altered scene. Much recent research in robotics

has moved away from engineered state representations like poses with geometric in-

formation, and so there are many learning methods which operate directly on images.

Extending the augmentation method to also operate on images is an open area for

future research.

3.6 Conclusion

This chapter proposes a novel data augmentation method designed for trajectories

of geometric state and action robot data. We introduce the idea that augmentations

should be valid, relevant, and diverse, and use these to formalize data augmenta-

tion as an optimization problem. By leveraging optimization, our augmentations are

not limited to simple operations like rotation and jitter. Instead, our method can

find complex and precise transformations to the data that are valid, relevant, and

diverse. Our results show that this method enables significantly better downstream

task performance when training on small datasets. In simulated planar pushing,

augmentation decreases the prediction error by 14%. In simulated bimanual rope

manipulation, the success rate with augmentation is 70% compared to 47% without

augmentation. We also perform the bimanual rope manipulation task in the real

world, which demonstrates the effectiveness of our algorithm despite noisy sensor

data. In the real world experiment, the success rate improves from 27% to 50% with

the addition of augmentation.

49

CHAPTER IV

Focused Adaptation of Unreliable Dynamics

The previous chapter introduced a data augmentation method for manipulation.

We used this method to learn reliability for dual-arm rope manipulation in the real

world. The dynamics model used in these experiments was also trained on real world

data, in a separate phase that was designed to ensure no contact between the rope

and the environment. This extra step was time-consuming and hand-designed, and

attempts to use free-space dynamics pretrained in simulation failed because the sim-

ulation and the real world rope dynamics were too different.

This chapter address this problem, by proposing a novel dynamics adaptation

method. Our key insight is that a free-space data from simulation is far more similar

to free-space data from the real world than it is to non-free-space data from the real

world. More generally, the problem we address is to adapt a dynamics model from a

source environment to a target environment, where the source and target dynamics

are similar in some regions but different in others. Our proposed adaptation method

focuses adaptation on data where the dynamics are similar, which we show leads

to more accurate dynamics for planning and good estimates of the dynamics model’s

reliability. Ultimately, we use this method to simultaneously adapt a dynamics model

learned in simulation and learn reliability – all online and in the real world.

4.1 Introduction

Learning dynamics models for manipulation is an increasingly popular paradigm,

in part because learned models can be repeatedly improved using autonomously col-

lected real-world data. However, fine-tuning an initial dynamics model on new data

can perform poorly when the data contains complex dynamics on which the dynam-

ics model was not initially trained. For example, suppose we want to manipulate

50

a rope amongst clutter, and we have a dynamics model trained on free-space mo-

tions in simulation. Free-space transitions in the real world are fairly similar to the

free-space in simulation, but transitions where the rope deforms on objects in the

scene are very different from anything seen in simulation. We call these transitions

distracting, because they are hard to learn from a few examples, and because they

make it harder to adapt accurately to the free space dynamics. More generally, tran-

sitions from regions of dissimilar dynamics can inhibit effective transfer to regions

of similar dynamics. This problem is similar to “cleaning” data in machine learning

[18, 52, 15]. For dynamics learning, defining what “clean” means can be difficult, and

has not been studied extensively. Instead, the dominant paradigm is simply to train

on all the collected data.

However, training on all the data can fail because real world datasets for learning

dynamics are often too small to learn generalized models over the entire state-action

space. In our experiments, we show that simply fine-tuning on all the data can yield

a model that is not accurate enough for planning. If the task can be completed

while remaining in regions where dynamics are similar, then it can be worth trad-

ing accuracy in dissimilar regions for accuracy in similar regions. Our key insight is

that, when we are adapting from an initial model, we can leverage the initial model

to achieve significantly lower prediction error by focusing on transitions where the

source and target dynamics are the most similar. The idea that transfer is easier

when the source and target data are similar is well-supported in the transfer learn-

ing literature [115, 20]. Concurrent work in offline reinforcement learning has also

explored how staying closed to similar data leads to better policies [126].

To implement this strategy, we propose an adaptation method which minimizes

prediction error in regions where the source and target dynamics are similar. The

proposed method minimizes prediction error in these regions by fine-tuning on an

initially small set of data from these regions, and growing that subset over the course

of training. This is done with a loss function inspired by curriculum-learning that

weighs transitions according to their prediction error, assigning higher weight to low-

error transitions. Under the assumption that there are paths to the goal where the

source and target dynamics are similar, this adaptation method can be used to achieve

high task success in the target environment.

The first contribution of this chapter is a method for adapting dynamics mod-

els to datasets which contain distracting transitions. We demonstrate the proposed

method is successful in filtering out distracting data and that the resulting trained

model is more accurate in the regions of state-action space where the source and tar-

51

Data

Pr
ed

ic
tio

n
Er

ro
r

𝛾

Actual PredictedA B

Similar Dissimilar

Figure 4.1: (A) An illustration of how our adaptation method focuses on regions
where the source and target dynamics are similar. When focusing adaption on free-
space dynamics, the prediction errors decrease for other free-space data (similar), do
not decrease for collision dynamics (dissimilar). (B) A mock-up of a car engine bay.
The robot must move the rope and place it under the engine without snagging it to
set up for lifting the engine. We use our proposed adaptation method to improve
success rate during online learning for this task.

get dynamics are similar. The second contribution is a data-efficient online-learning

method that pairs our adaptation method with prior work on planning with unre-

liable dynamics models [87, 64]. We call our combined method for online learning

FOCUS. FOCUS achieves higher success rates in the low-data regime because the

adapted dynamics are more accurate, which leads to finding more reliable plans.

4.2 Problem Statement

The problem addressed in this chapter is to adapt a dynamics model trained in a

source environment to data collected in a target environment, where the source and

target environments have dynamics which are similar in some regions of the state-

action space, but different in others. Furthermore, we consider the case where data

collection is done by planning and executing paths to goals in the target environment

using the learned dynamics model.

To formalize this, first consider the standard dynamics learning problem with a

dataset D of transitions of states, actions, and next states (s, a, s′). We also assume a

distance function dist(s1, s2) that returns a scalar is given. The true dynamics are s′ =

f(s, a), and the learned dynamics are ŝ′ = f̂(s, a). We propose defining the source and

target environment dynamics as similar for a transition if dist(fS(s, a), 0Tf(s, a)) <

52

Offline

Source environment

Online

Target environment

collect dataset .

train dynamics model
on dataset

plan and execute

adapt
dynamics

update MDE
MDE

Figure 4.2: Block diagram showing the steps of our full online adaptation method. A
dynamics model is initialized offline in the source environment (left), then adapted
online in the target environment.

γ. The threshold γ should be small enough that it excludes distracting transitions,

but large enough to include as much data from the target environment as possible.

Let DST be the set of transitions from the target environment where this similarity

condition holds.

In order to minimize the amount of data needed for adaptation to generalize,

we aim to adapt the dynamics only to transitions from regions where this similarity

condition holds (DST). However, we also care about successfully completing the task,

and therefore we also assume there are paths {s0, a0, . . . , aT−1, sT} to the goal sT ∈ G
within the regions of similar dynamics (st, at, st+1) ∈ DST .

While the ultimate objective of adaptation should be to maximize task success

in the target environment, an important condition for task success is minimizing

prediction error on DST . If the goal is reachable within DST (as we assume), the

prediction error onDST is small (our objective), and our motion planner is constrained

to stay in DST , then we can also expect high task success. Next, we discuss how our

adaptation method minimizes error on DST , followed by how we can achieve high

task success by additionally constraining a motion planner to DST .

4.3 Methods

4.3.1 Adapting the Dynamics

At a high level, our method minimizes prediction error on DST by dynamically

weighing the training data D such that transitions that are likely to be in DST are

53

given weights near 1 and transitions unlikely to be in DST are given weights near 0.

Given a transition from our training data (s, a, s′) ∈ D, we cannot directly evaluate

whether that transition is in DST , since that would require knowing the true dynamics

0Tf . However, since the initial dynamics, denoted f̂0, is assumed to accurately fit the

source dynamics, it is likely that transitions with low prediction error under the initial

dynamics dist(f̂0(s, a), s
′) < γ are in DST . By training on transitions with initially

low error, we expect the prediction error on other transitions which belong to DST

to also decrease. This slowly brings more and more transitions to have prediction

errors below γ. On the other hand, the prediction error is unlikely to decrease for

transitions not in DST , because they are dissimilar to the transitions with low initial

error. Thus, at each step j of training, we assign each transition a weight as a function

of the prediction error ||ŝ′ − s′||2, and multiply this weight by the loss. The full loss

is shown in Equation (4.1).

Lf =
1

T

T∑
t=1

(
||ŝt − st||2wt

)
wt = 1− σ

(
ϕ(j)(||ŝt − st||2 − γ)

) (4.1)

σ is the sigmoid function. When j is large, the boundary is almost hard, and

transitions with error below γ have weight near 1 and transitions with error above

have weight near 0. When j is small, the boundary is soft, and the weights vary

less. The term ϕ(j) controls the rate of change of hardness. We use ϕ(j) = 0.5j

in our experiments. We found that allowing the weighting to be soft during early

training steps improves the stability in the case where few or no transitions have

error below γ at the beginning of training. The parameter γ can be chosen based on

either the maximum error that can be corrected by a low-level controller, or based

on the distribution of error on a validation set from the source environment (e.g the

97th percentile).

4.3.2 Online Learning

In this section, we describe how the proposed adaptation method can be combined

with prior work on planning with unreliable dynamics to achieve data-efficient online

adaptation of dynamics models. A block diagram of the full method, which we call

FOCUS, is shown in Figure 4.2. FOCUS consists of an offline phase and an online

phase. In the offline phase, we train a dynamics model using data from the source

54

Source Target

Figure 4.3: Source environment for bimanual rope manipulation (left) and simulated
target environment (right) where there is a robot, obstacles, and the rope damping
and stiffness are changed.

environment, which in our experiments is a simple simulation. We use random actions

to collect a diverse set of data and standard techniques for training the neural network

dynamics model [87].

In the online phase, we adapt the learned dynamics model to the target environ-

ment (e.g. the real world). This process alternates between (1) collecting new data

in the target environment by planning and executing, (2) fine-tuning the dynamics,

and (3) fine-tuning the model deviation estimator (MDE). We now explain the data

collection and MDE fine-tuning steps.

4.3.2.1 Planning and Execution for Data Collection

We use a kinodynamic RRT planner where nodes are propagated using the learned

dynamics model. Since the learned dynamics are adapting to only DST and are not

accurate everywhere, we additionally constrain the planner to stay in DST . Since

DST is not known a priori, we train another neural network, called a model deviation

estimator (MDE) [64, 84, 87], to predict the error of the dynamics model (more details

in Section 4.3.2.2). In addition to producing more robust plans, planning with MDEs

has the additional benefit of focusing data collection on DST . By collecting more data

where the source and target dynamics are close, a larger fraction of D is likely to be

in DST , and therefore the adaptation procedure has more data from which to learn.

We use the MDE in planning as a constraint checker. If the dynamics error

predicted by the MDE is below a threshold dmax, then we add it to the planning tree.

We also randomly accept transitions with high predicted dynamics error with low

probability (0.01), so that the planner will occasionally return paths with exploratory

actions (we call these random-accepts). These exploratory actions are essential for

55

Source Target

target container controlled
container

xy

z

Figure 4.4: Source environment for plant watering (left) and target environment
(right) where there is an additional plant, and the viscosity is tripled.

training the MDE, since they can correct over-estimation of model error from the

MDE. The threshold dmax for allowable error is similar to γ, but may be set higher

or lower to control the exploration/exploitation tradeoff.

The robot uses the planner to attempt the task, and repeatedly plans and executes

open-loop until a timeout or the goal is reached. If no plan is found that reaches the

goal, the plan which gets closest to the goal is executed. This repeated planning and

execution is called one episode. After some fixed number of episodes (e.g. 10) we

fine tune the dynamics and the MDE using all data collected so far during the online

phase.

4.3.2.2 Fine-tune MDE

The MDE is used to constrain planning to regions where the dynamics model is

predicted to be accurate, which has two benefits. First, it helps bias data collection to

contain transitions from DST . Second, it makes reaching the goal more likely since it

avoids plans that do not match to the true dynamics. The MDE d̂ = h(E , s, a, ŝ′) is a
convolutional neural network which takes as input the environment, state, action, and

next predicted state, and predicts the error of the dynamics model d̂. We represent

the environment E as a voxelgrid of the scene. The ground truth error used for

training is the error between the true observed state and the state predicted by the

learned dynamics: d = dist(ŝ′, s′). The loss function is shown in Equation (4.2).

56

Ro
pe

W
at

er

Low Weight, High Error High Weight, Low Error

PredictedActual

control box

Predicted
Volume

Actual
Volume

Figure 4.5: (center) Histograms showing weights assigned to the data according to
Equation (4.1) during the first 20 epochs of training. A histogram is shown for each
epoch, where color varies with epoch, and these histograms are staggered along the
y-axis. Initially, the weights vary only slightly across the data, but the distribution
becomes strongly bimodal as training progresses. Examples of transitions given weight
0 (left) and weight 1 (right) at the end of training.

Intuitively, the MDE should be easier to learn with fewer data than learning the

dynamics accurately everywhere, since the MDE need only predict the magnitude of

the error as opposed to the full state vector [87].

Lh = ||d̂− d||2e−khd (4.2)

kh is a hyperparameter that reduces the need to predict high dynamics errors with

high accuracy. We set kh = 10.

4.4 Results

We begin by describing the two domains for our experiments: bimanual rope

manipulation and plant watering. We then validate the claims that (1) our proposed

adaptation method achieves lower prediction error in regions of similar dynamics, and

(2) that FOCUS achieves higher success rates more quickly in the online adaptation

setting compared to baselines which train on all data equally.

57

4.4.1 Bimanual Rope Manipulation

In this task, a 16-DOF dual arm robot is holding two ends of a rope in a scene

resembling the engine bay of a car (scene shown in Figures 4.1,4.3). The task mimics

putting on lifting straps on the engine, which requires moving the rope through narrow

passages and around protrusions. The goal is to place the middle of the rope in

a goal region defined as a sphere of radius 0.045m. The planner outputs gripper

position actions, and a local controller executes the actions while maintaining gripper

orientations. The learned dynamics model predicts the state of the rope, represented

as 25 points, given the initial rope state and gripper position actions.

In the rope manipulation experiments, the source simulation has no obstacles and

the robot is simplified to floating kinematic grippers. We then test adaptation to two

different target environments: (1) another simulation which includes the robot and

obstacles and has different damping and stiffness parameters for the rope, and (2)

the real world. Thus, this tests adaptation to a different rope despite the distracting

transitions where the rope deforms on the robot or the obstacles. Gazebo with ODE

physics is used for simulation [59]. For rope manipulation, the set DST would be

the transitions from the target environment where the rope is in free space. We use

γ = 0.08.

4.4.2 Plant Watering

The goal in this task, illustrated in Figure 4.4 is to pour at least 75% of the

initial volume from a controlled container into a target container without spilling

more than 5%. The source environment is a variation from the SoftGym PourWater

environment [75]. The target environment has triple the viscosity, a shorter container,

and a plant in the target container. Although the agent can pour from above, that

causes the water to splatter, which is more difficult to predict than the free-space pours

of the target environment. Additionally, the box can collide with the plant, which

is dissimilar to the source dynamics where there are no obstacles. The controlled

container can rotate about the z-axis The state space is the 4-DOF [x, y, z, θ] pose of

the controlled container, 3-DOF [x, y, z] pose of the target container, control volume,

and target volume. The action space is a target pose [xdes, ydes, θdes] which is followed

by a proportional controller. For plant watering, the set DST contains free-space

motions and pours, whereas collision with and pouring on the plant is not in DST .

We use γ = 0.05.

58

Figure 4.6: Prediction error for our method versus two baselines, evaluated on a
dataset of transitions from regions where the source and target dynamics are similar.

4.4.3 Validating the Adaptation Method

We now evaluate whether the proposed adaptation method achieves lower predic-

tion error on DST . We start by creating validation sets which contain transitions not

used for training, and which are known to be in DST . For rope, this means transitions

where the rope is in free space. For water, this means transitions which do not collide

with or pour over the plant. We evaluate our method and two baselines, all starting

from the same pre-trained model and adapting to the same dataset from the target

environment. The baseline AllData fine-tunes on all transitions with equal weights.

The baseline LowInitialError uses our weighting function, but computes the weights

once using f̂0 and does not re-compute them throughout training. Our method uses

our proposed loss function (Equation (4.1)) which re-computes the weights on each

batch during training.

For bimanual rope manipulation, the dataset contains 6288 transitions and the

validation set contains 792 transitions. For plant watering, the training dataset con-

tains 854 transitions and the validation set contains 130 transitions. The results are

visualized in Figure 4.6. In both experiments, the error of our method is statistically

significantly lower than both baselines (p < 0.0001).

Figure 4.5, demonstrates the intuition behind our adaptation method. In the cen-

ter, we show histograms over time of the weights assigned to the transitions in the

training dataset, for water and for rope. The distribution is initially unimodal since

the weighting function when j = 0 is soft, but as training progresses the distribution

rapidly becomes bimodal, where most transitions are given a weight of 1, but some

transitions are given a weight of 0. We show examples of these low and high weight

59

Figure 4.7: Post-learning evaluation of rope manipulation in simulation: Three met-
rics shown over the 20 iterations of online learning. The shaded interval is the 95%
confidence interval, with the boot-strapping method used by Seaborn.

transitions on either side. For rope manipulation, we found that the number of the

transitions with prediction error below γ increases from 52% at epoch 1 to 80% at

epoch 20, which shows that the subset of data we train on grows. This explains why

our method outperforms the LowInitialError baseline, since that baseline is not mak-

ing use of as much of the data as our method does. The presence of transitions with

0 weight (e.g. 20% for rope at epoch 20) shows that our method is not converging to

training on all examples, which does not perform well based on the AllData baseline.

4.4.4 Online Learning Experiments

We show that FOCUS achieves higher task success with fewer data than baselines

which fine-tune the dynamics on all available data. The first baseline, called All-

DataNoMDE does not use our proposed adaptation method and does not use MDEs

when planning, which makes it a conventional online learning method. The second,

called AllData includes MDEs in planning, but ablates our fine-tuning method. First,

we evaluate in the rope manipulation domain on adaptation from one simulation to

another (see Figure 4.3). We ran 20 iterations of online learning, where each iteration

consists of 10 episodes, which amounts to roughly 6, 000 transitions in total during

learning. We then repeated this 10 times for each method/baseline with different

random seeds.

After learning, we took the models saved after each learning iteration and ran

100 episodes of evaluation per method. To maximize success rates of all methods, we

use a longer timeout and do not allow random-accepts when planning. We also stop

execution and replan if the error between the plan and the observed state exceeds a

large threshold on model error (0.25).

The results of this first experiment are summarized in Figure 4.7. The proposed

method (FOCUS) shows the highest success rate when plans are found. The AllData

method, which ablates our method for fine-tuning the dynamics, never finds paths to

60

Figure 4.8: Success rate for the AllDataNoMDE baseline (left) versus FOCUS (right)
for online adaptation to real world bimanual rope manipulation.

the goal. This is because its dynamics are not sufficiently accurate, and so the MDE

constraint makes the planning problem infeasible. Accurately learning the dynamics

in the AllData or AllDataNoMDE methods would involve predicting the deformation

of the rope on obstacles, which is challenging given a dataset of only a few thousand

transitions.

4.4.5 Real Robot Results

We performed a similar experiment to the first rope manipulation experiment,

but on real robot hardware where sensor and actuator noise are substantial factors

(approximately 5 cm of end-effector error). More importantly, it demonstrates how

FOCUS enables a robot to quickly learn a task in the real world. We use CDCPD2

[135] to track the rope state. The geometry of the car scene is approximated with

primitive geometric shapes. We use the same source simulation environment as for

the simulation rope experiment, but now the target environment is the real world.

The robot must learn to adapt the simulated free-space rope dynamics to the real

world, despite the different real-world free-space dynamics and the fact that the rope

can deform on the robots’ arms or on the objects in the scene. Because perception

and actuation error are higher in the real world than in simulation, we use γ = 0.2.

We ran the online learning procedure with a single start configuration and a single

goal region for one random seed and compare FOCUS to the AllDataNoMDE baseline,

since AllDataNoMDE performed best in simulation. After 15 iterations of learning,

we freeze the models and evaluate task success 32 times. The success rates are shown

in Figure 4.8. With FOCUS, the robot successfully placed the rope under the engine

15/32 times, while AllDataNoMDE succeeded 11/32 times. Achieving high success

rates in this task is difficult due to narrow passages, perception error, and actuator

error. Failure modes for FOCUS include the rope getting pulled out of the robots’

hands, getting too close and catching on obstacles, and failing to find plans that reach

the goal.

61

4.5 Conclusion

This chapter studies the problem of adapting learned dynamics models to datasets

which contains transitions where the dynamics are very different from the source

environment. This type of domain mismatch is common in online dynamics learning

settings, where the source dynamics are learned in simulation or on a simpler task.

Traditional adaptation methods can fail in this setting because trying to fit data

from regions of dissimilar dynamics leads to poor predictions even in regions where

the source and target dynamics are similar.

Our key insight is to instead focus adaptation on regions where the source and

target dynamics are similar. We propose an adaptation method which assigns high

weight to transitions with low prediction error, and dynamically re-assigns weights

during the course of training. The set of low-error transitions is initially a small set,

but grows as training pulls down the prediction error for other similar transitions. We

combine our adaptation method with prior work on planning with unreliable dynamics

to make FOCUS, a data-efficient online adaptation method. We demonstrate that

FOCUS can learn a bimanual rope manipulation task in simulation and in the real

world, and achieves higher task success rates than baselines which attempt to fit all

the training data.

62

CHAPTER V

The Grasp Loop Signature

The previous chapter introduced a method for adapting dynamics when some

regions of the source and target dynamics are similar and others are not. This method

allowed us to adapt a dynamics model and learn reliability in the real world. This

also removed the need for specialized methods for collecting real-world training data

from specific regions of dynamics.

However, for all the dual-arm DOO manipulation experiments thus far, we have

assumed the robot is already grasping the object, and that these grasps cannot change

during the manipulation. This assumption severely limits the tasks we can do, and

in some cases also makes the manipulation slow compared to an approach that al-

lows regrasping. This chapter begins to relax this assumption and use regrasping.

Although I am not the first to consider regrasping deformable objects (see Section

1.2 for related work), there has been little attention devoted to regrasping DOOs,

and prior methods are not widely applicable to different robot morphologies or tasks.

Using the proposed method, I enable robots to re-grasp when stuck, enabling new

tasks and increasing robustness. In this chapter, we use a simulator as our dynamics

model and assume it is tuned to be accurate for the given task. This assumption could

be relaxed by integrating methods from previous chapters, but further experiments

would be needed to test this.

5.1 Introduction

Manipulation planning for deformable one-dimensional objects (DOOs) like ropes

and cables is challenging due to the high-dimensional state representation of these

objects and the cost of simulating their motion. Furthermore, most tasks benefit from

multiple arms to control DOO shape and avoid becoming tangled with the environ-

ment. Therefore, the planner needs to consider the DOO, the arms manipulating it,

63

Figure 5.1: Annotated image of our real world cable threading setup. The red dashed
line shows a grasp loop τ1 that is linked with the skeleton S1. The blue grasp loop is
not linked with S1. This distinction is captured by the proposed GL-signature and is
used in planning.

and the environment. A task and motion planning (TAMP) approach to this prob-

lem would decompose planning into a grasp selection problem and a motion planning

problem for the DOO given a specific grasp, as in [129, 95, 141]. However, the DOO

planning problems are often expensive to solve. To reduce the space of grasps we

need to search, we borrow the idea of a signature from the field of topology.

To explain what this signature represents, consider how the robot should grasp

the tip of the cable in Figure 5.1. By grasping we form a loop, which we call a

grasp loop and show as blue and red dashed lines in Figure 5.1. It is possible to

grasp either around the left side or the right side of the frame, but these two grasps

are categorically different in that we cannot smoothly deform from one to the other

without breaking the grasp or the frame. The frame also forms a loop, called an

obstacle loop. When grasping from the left (red), these two loops are linked, but when

grasping from the right (blue) they are not. Our key insight is that the robot, DOO,

and environment form a graph of grasp loops and we can use this graph to construct a

signature, GL-signature, which captures topological information relevant for planning.

To be clear, we do not address knots in the DOO. Our work is complimentary to work

on tying or untying knots [127, 106, 119, 132].

The main contribution of this chapter is the GL-signature which compactly repre-

64

h(τ, S) = 0 h(τ1, S) = [1, 1]
h(τ2, S) = [0, 1]

S1

S2

τ1

τ2

A B

S S Sτ τ τ

h(τ, S) = 1 h(τ, S) = 2

Figure 5.2: (A) Illustration of the h-signature for a loop representing the robot and
DOO (blue) and a loop representing an obstacle (solid red). (B) Two examples of
the h-signature for a skeleton with two obstacle loops S1 and S2.

sents the topology of both the object and the arms manipulating it. We claim this

signature is applicable to many systems and is useful for manipulation planning. Fig-

ure 5.4 shows three examples where we demonstrate planning, and two more examples

where the GL-signature may be useful. In simulation, we show that methods using

the GL-signature outperform baselines and ablations which search for grasps without

using topological information. Finally, we demonstrate a threading and point reach-

ing task on a physical robot. Videos and animations can be found on our Project

Website1.

In the remainder of this chapter, we first review related work and then define the

GL-signature. Next, we describe a method for DOO manipulation that demonstrates

the utility of the GL-signature. Section 5.5 describes how this method can be applied in

three environments, which we call Pulling, Untangling, and Threading. We conclude

with a brief discussion of our real world demonstration of the Threading task, which

is depicted in Figure 5.1.

5.2 Defining the GL-signature

5.2.1 Preliminaries

We primarily use notation that is consistent with [13]. We call a closed one-

dimensional curve in 3D a loop. The environment is assumed to be decomposed

into a skeleton made up of multiple obstacle loops S = {S1, . . . , Sn}. Each obstacle

loop is made up of line segments Si = {s1i , . . . , s
ni
i }. An example environment and

corresponding skeleton is shown in Figure 5.3. In practice, the skeleton can either

1https://sites.google.com/view/doo-manipulation-signature/home

65

https://sites.google.com/view/doo-manipulation-signature/home

be specified manually or computed automatically from a medial axis transform of a

mesh or pointcloud of the environment.

[13] plans paths that are in a given homotopy class or avoid a certain homotopy

class. They compare two paths by considering the homotopy class of the closed loop

τ formed by joining the two paths at their shared start and end points. For a path

loop τ and an obstacle loop S , [13] defines the h-signature h(τ, S) ∈ Z, which counts

the number of times τ passes through S . The sign of h in this case is determined by

the direction of τ . The h-signature can be extended to a list of the h-signatures with

respect to each obstacle loop in the skeleton h(τ,S)) = [h(τ, S1), . . . , h(τ, Sn)]. These

cases are illustrated in Figure 5.2. The equation for computing h(τ, S) is reproduced

from [13]. The point sj
′

i is the point that follows sji , and r is a point on the loop τ .

The integration over τ is done numerically.

h(τ, S) =
1

4π

∫
τ

ni∑
j=1

Φ(sji , s
j′

i , r)∆r

Φ(sji , s
j′

i , r) =
1

||d||2
(d× p′

||p′||
− d× p

||p||

)
p = sji − r, p′ = sj

′

i , d =
(sj

′

i − sji)× (p× p′)

||sj′i − sji ||2

(5.1)

We take this idea but apply it to grasp loops, instead of paths. Unlike in path

planning, where the direction of τ matters, we only care how or whether loops are

linked. Accordingly, we assert that h is always non-negative.

5.2.2 Computing the GL-signature

The GL-signature is composed of the h-signatures h(τ,S) of grasp loops τ formed

by the robot and DOO. We describe the process here and in Algorithm 4. The grasp

loops are constructed based on a graphical model of the state G = (V,E) where

vertices V are the robot base, its grippers, and attach points, and edges are paths

between them. Attach points are used to represent locations on the DOO which

are fixed relative to the robot (e.g plugged into the wall or rigidly mounted on the

robot itself). Figure 5.3 illustrates how the graph construction step works. The robot

base vertex is connected to all gripper and attach vertices because it connects to the

grippers directly (via the robot geometry) and the attach points indirectly (via the

environment). Edges E connect grippers/attach points to one another if they are

66

A Graph ConstructionState Loop ConstructionB C

b

g2
g1

a1

Valid Cycles:
 [b,g1,g2]
 [b,g2,a1]

h(τ1,S) = [1,0,0]
h(τ2,S) = [0,1,0]

GL={[1,0,0],[0,1,0]}

τ2

τ1

S3
S2

S1

Figure 5.3: The process of constructing the GL-signature. (C) There are 2 grasp loops
and 3 object loops, so the GL-signature is a set with two elements, and each element
is a vector of 3 non-negative integers.

adjacent on the DOO. In Figure 5.3, the vertices (g1, g2) are adjacent, as are (g2, a1),

but (g1, a1) are not. In Algorithm 5, the function Adj(vi, vj, s) checks for adjacency

between vi and vj at the given state s.

From G, we extract all cycles O of exactly 3 distinct vertices which contain a

gripper (getValidCycles), and convert each cycle to a grasp loop τ (getLoops).

To make a grasp loop from a cycle, we concatenate the 3D paths represented by the

cycles’ edges. This requires a skeletonized representation of the robot geometry, which

can be constructed from the kinematic tree and the origins of the links, as well as the

points representing the DOO. A path between the robot base and an attach point

(e.g. (b, a1) in Figure 5.3) can be chosen arbitrarily, as long as it is the same for all

states. Cycles not containing a gripper (e.g. (b, a1, a2)) are omitted for compactness,

since attach points presumably cannot be changed by the planner.

For each grasp loop, we compute the associated h-signature h(τi,S). The GL-
signature of the state, denoted GL(s), is the multiset of the h-signatures of each grasp

loop. In a multiset the order does not matter, but elements may repeat. The number

of repetitions of an element is called its multiplicity. Two multisets are equivalent if

their elements and multiplicities are equal. Preserving repetitions in the GL-signature
allows us to represent multiple grasp loops that go through the same obstacle loop.

This may result in a grasp loop containing two grippers that has h(τ,S) = 0 (i.e.

not linked S). The red dashed grasp loop shown in Figure 5.4 B3 is an example of

this. Releasing one of the grippers does not categorically change what we can do

with the object, and neither would grasping with an additional gripper right next to

two already grasping. Therefore, if there is a cycle with h(τ,S) = 0 containing two

67

Algorithm 4: Compute the GL-signature
Input : V,S, s
Output: GL(s)

1 G = addEdges(V, s) // Graph construction
2 O = getValidCycles(G)
3 if |O| = 0 then
4 return ∅
5 τ = getLoops(G,O, s)
// Remove empty gripper-gripper cycles (optional)

6 for τi ∈ τ, oi ∈ O do
7 if h(τi,S) = 0 then
8 for vi, vj ∈ oi do
9 if vi, vj are gripper vertices then

10 V = V \ vj // choice of vj or vi is arbitrary
11 goto 1 Graph construction
// Compute final GL-signature

12 GL(s) = MultiSet{h(τi,S)|τi ∈ τ}
13 return GL(s)

grippers, one of the grippers is removed from the graph and the process restarts from

the graph construction step (Lines 7-16 in 4).

This graph construction assumes a fixed base, but by constructing the graph

differently, we can adapt to other scenarios. For example, we might connect drones

flying together in a swarm, even though there may not be a physical connection

between them. Two drones grasping the DOO simultaneously would form a loop (Fig

5.4 E), allowing us to plan over the scene’s topology.

Algorithm 5: addEdges
Input : V, s
Output: G

1 E = ∅
2 for vi ∈ V do
3 for vj ∈ V do

// Skip invalid edges
4 if vi = vj then
5 continue
6 else if ¬Adj(vi, vj, s) then
7 continue
8 E = E ∪ (vi, vj) // Add the edge
9 return E

68

GL = {[0,0,0,0,1,1,0,0]} GL = {[0,0,0,0,0,0,0,0]}

Lifting a BoxDrones transporting agricultural tubing

Untangling a Cable

GL = {[0,0,0,0,1,1,0,0]} GL = {[0,0,0,0,0,1,1,0]}GL = {[0,0,0,0,1,1,0,0]} GL = {[]}

Pulling a Hose

GL = ∅

Threading a Cable

GL = {[0,0,0],[0,1,0]} GL = {[1,1,1]} GL = {[1,0,0],[0,0,0]}

GL = {[0],[0]} GL = {[0]} GL = {[0],[1]}

A

B

C

DE

Figure 5.4: Example scenes and their GL values. The Panel in green shows environ-
ments where we use the GL-signature in planning. Panels D and E are additional
examples where the GL-signature may be useful.

5.2.3 Computational Complexity

The complexity of computing the GL-signature can be written in Big-O notation

based on the number of skeletons ns, number of line segments in the skeleton ls,

arms and/or attach points na, and the length of the arms and/or DOO la. In the

base case of na = 2, the graph has 3 vertices and at most cycle of length 3. And

adding another vertex adds at most one cycle, so in the worst case na arms/attach

points create na − 1 loops. Each cycle (loop) is compared with each skeleton, and

the number of comparisons scales linearly with both the number of line segments and

the length of the loop, giving a total complexity of O
(
(na − 1)nslsla

)
. Our Python

implementation using the NetworkX library [41] for computing the GL-signature for

a state takes ≤10ms in all environments.

5.3 Illustrative Examples

Figure 5.4 shows a variety of robotic systems for which we can compute the GL-
signature. The upper group show environments where we apply our planning meth-

ods. The lower group are examples where we believe the GL-signature would be useful,

but do not conduct evaluations. In panel A, the second and third images show how

the signature is invariant to smooth deformations, such as a change in object shape

69

or sliding the arm along the DOO. The drones example in section C shows how we

can create virtual connections between objects which are not physically connected.

This allows the planner to distinguish between E1 and E3, in which the third drone

is lifting the hose from different sides of the tree branch.

5.4 DOO Manipulation with GL-signature

5.4.1 Problem Statement

In this section, we define the DOO manipulation problem which our proposed

planning method addresses. The state s = (q, o) contains the robot configuration and

the DOO configuration. In our experiments, the robot has two 7-dof arms attached to

a 2-dof torso with parallel-jaw grippers, but the GL-signature can be applied to other

robot morphologies. We assume we have a complete geometric model and skeleton of

the environment. When manipulating with the current grasp, the action space is joint

velocities q̇. We describe points on the DOO primarily by their location l ∈ [0, 1],

where l = 0 is one end of the DOO and l = 1 is the other. Each location also

corresponds to a point p(l) ∈ R3. Grasps are represented by a vector of locations

l = [l1, l2], one for each gripper. A set of grasp locations l must also be paired with a

collision-free motion of the robot to the new grasp locations, which may be reachable

by many distinct joint configurations.

The goal of the manipulation is to bring a keypoint lk on the DOO to a goal

region with position pgoal and radius dgoal. This is a useful skill for plugging in

cables, or for using tools with an attached cable or hose, and more complex tasks

like cable harnessing can be described as a sequence of these point reaching goals.

Additionally, one can specify a desired GL-signature for the goal GLgoal. This type

of DOO manipulation is complementary to tying or untying knots, which has been

addressed in prior work [106, 119, 132].

5.4.2 DOO Point Reaching Method

Algorithm 6 describes our method for point reaching tasks. However, the cost

functions can be changed and additional checks can be included to adapt the method

to other tasks. Given the current grasp, we use MPPI [136] to find an action q̇ that

minimizes the goal cost Cgoal, shown in Eq (5.2). MPPI runs until the goal is reached

or progress stops. If progress stops, we plan and execute a grasp change, and resume

running MPPI. This process is repeated until the goal is reached (trial success) or

70

for imax iterations (trial failure). For both MPPI and grasp planning, we model the

dynamics of the robot, rope, and obstacles in MuJoCo [122].

Algorithm 6: DOO Point Reaching with the GL-signature
1 for i < imax do
2 q̇ =MPPI(s, pgoal, Cgoal)
3 s = f(q̇) // Execute and get state
4 if ||pgoal − p(lk)|| < dgoal then
5 break
6 if trapped then
7 d0 = min(|l0 − lk|) // Initial geodesic
8 l∗ = PlanGrasp(s, nx, Cgrasp, lk)
9 d∗ = min(|l∗ − lk|)

10 if d∗ ≥ d0 // Unable to grasp closer
11 then
12 Add GL(s) to B
13 l∗ = PlanGrasp(s, nx, lk)

14 ExecuteGraspChange(l∗)

The method for determining if MPPI is trapped, called trap detection, is adapted

from [150]. Trap detection operates on a window of recent joint configurations

q1, . . . , qT , and computes the average one-step state difference q̄ = qT−q1
T

and keeps a

running maximum of this value q̄+ over the trial. MPPI is considered trapped when

the ratio q̄
q̄+

is below a threshold (0.2-0.3 in our experiments).

The goal cost used for MPPI is shown in Equation (5.2), where the state s is used

to compute the grasp locations l, grasping state 1g, keypoint position p(lk), grasp

positions p(l), and number of contacts ncon.

Cgoal(s, q̇) = ||p(lk)− pgoal||+ α11g · ||p(l)− pgoal||+

α2

√
ncon + α3||q̇||

(5.2)

The first term in Eq. 5.2 brings the keypoint p(lk) towards the goal pgoal. The

second term provides a reward for moving the gripper towards the goal. 1g is a

binary vector indicating which grippers are grasping, and l are the current grasp

locations. The dot product enforces that only grasping grippers contribute to this

cost term. This term is useful when the DOO is slack and the keypoint cannot be

pulled directly (See Figure 5.4 C). The third term penalizes collision between the robot

and environment, based on the number of contacts ncon reported by the dynamics.

Finally, the fourth term penalizes high joint velocities to encourage smooth motion.

71

The hyperparameters α1,2,3 were selected to prioritize collision avoidance first, then

bringing the keypoint to the goal.

In PlanGrasp we sample nx grasps (≈50) and choose the best one. Grasps are

sampled first by choosing a strategy for each gripper. The possible strategies are

STAY, GRASP, MOVE, or RELEASE. For the GRASP or MOVE strategies, we sample a

location l ∈ [0, 1]. At least one gripper must be grasping. For each candidate grasp,

we simulate release and grasp dynamics using MuJoCo. Modeling grasping using

friction and caging is challenging, so we instead use equality constraints between the

rope and the grippers that are activated or deactivated. MoveIt [25] is used to find

collision-free paths to move the grippers to the desired grasp locations. The result is

a candidate state s and collision free trajectory for each candidate grasp. We choose

the grasp with the lowest cost according to Eq. 5.3. With abuse of notation, we say

the candidate state s, change in s, and grasp state 1g are derived from the candidate

grasp locations l.

Cgrasp(l) = 1feasible + 1B(s) + 1GL
(s,GLgoal)+

1g · |l− lk|+ β1∆s
(5.3)

The first term in Eq 5.3 assigns a large penalty (e.g. 100) if no collision-free

path to the grasp was found. The next two terms assign a large penalty based on

the GL-signature of candidate state, either for matching a blocklisted signature or

for not matching the goal signature. If the task has no goal signature, this term

is omitted. The fourth term encourages grasping near the keypoint, based on the

geodesic distance for any grasping grippers. The final term penalizes the change in

robot and DOO state. This results in shorter and faster grasps and is weighted by

β1 to be the least important term. The large penalties dominate the keypoint and

state-change terms.

We use a blocklist of GL-signature’s to avoid retrying topological configurations in

which we have failed to reach the goal. Blocklisting GL-signatures allows us to search

for grasps that are different from previous states, which was an effective strategy

in our experiments. However, we do not want to blocklist if the goal is reachable

with a different grasp with the same signature. Therefore, we only blocklist if the

planner cannot find any grasp with lower geodesic cost (4th term in Eq (5.3)) than

the current grasp (Alg 6 lines 8-12). This heuristic avoids blocklisting the current

GL-signature in the case that the current grasp cannot control the keypoint toward

the goal. This is inspired by the idea of diminishing rigidity [9], which says that the

72

control over a point on a deformable object decreases as the geodesic distance to the

gripper increases. In the case of multiple grippers, the initial grasp locations l0 or

new grasp locations l∗ may be a list of locations, in which case we use the min when

computing the geodesic distance (Alg 6 lines 8, 14).

5.5 Applications

We now describe how the above framework can be applied or adapted to DOO

manipulation in three different environments, Pulling, Untangling, and Threading.

5.5.1 Pulling Environment

The Pulling environment contains a large hose attached to a wall. The scene is

depicted in Figure 5.4 C. The robot is initially not grasping the hose, and the head

of the hose is out of the robot’s reach. The goal region, shown as a purple sphere,

is near the base of the robot on the floor. This environment requires regrasping to

bring the keypoint to the goal, and demonstrates the behavior of the general method

in the case where there are no skeletons, and no changes in the GL-signature.
When applying Alg 6 in this environment, the robot initially chooses a grasp as

far down the DOO as it can reach, due to the geodesic cost term in Equation 5.3.

Then, the gripper pulls towards the goal due to the second term in the MPPI cost

(5.2). This brings more of the DOO within reach. When the gripper reaches the goal,

the cost cannot be decreased and the controller slows to a stop. At this point, trap

detection triggers regrasp planning. Since the DOO is now closer, a plan is found

that reaches closer to the tip (lk = 1) than before. Because the grasp is closer to

the tip, the current GL-signature is not blocklisted. This repeats until the grasp is

close enough to the tip that it can be brought to the goal region. In the Pulling

environment, our method succeeded in 25/25 trials, where each trial differs in the

initial DOO configuration and the random seed used for sampling in planning.

5.5.2 Untangling Environment

The Untangle environment resembles a computer rack with a cable that needs to

be plugged in. The scene is depicted in Figure 5.4 A. One end of the DOO is fixed

to the environment (e.g. plugged in elsewhere), and the robot is initially grasping

some other location on the DOO. The robot often needs to regrasp several times in

order to reach the goal. Unlike in the Pulling environment, the GL-signature can take

73

Method Success Wall Time (m) Sim Time (m)
GL-signature (ours) 22/25 12 (5) 1.4 (1.1)
Always Blocklist 22/25 14 (7) 1.3 (1.0)
No GL-signature 10/25 20 (10) 2.0 (1.3)

TAMP50 15/25 142 (116) 2.4 (1.7)
TAMP5 9/25 34 (22) 1.8 (1.2)

Table 5.1: Results in the Untangle environment. Times in minutes are for the comple-
tion of the task, where Sim Time does not include planning time. Standard deviations
are given in parentheses.

on many different values depending on the configuration of the DOO and the grasp

configuration. This demonstrates the utility of the GL-signature in planning when

there is no goal GL-signature.
We evaluate Alg 6 on this task, and compare to an ablation that omits the two

terms using the GL-signature from Eq 5.3. We call this method No GL-signature.
This often results in greedy re-grasping of the keypoint. We also evaluate a version

called Always Blocklist, where we blocklist the current GL-signature every time a trap

is detected. Finally, we compare our proposed method to a method inspired by task

and motion planning (TAMP), where H additional steps of MPPI are simulated for

each candidate grasp during planning and the final goal cost is used in place of cost

terms relying on the GL-signature. We test two versions of this method with H = 5

and H = 50. Success rates and trial times are shown in Table 5.1. Trials vary in the

initial configuration of the robot, grasp location, DOO configuration, in the size of

the computer rack, and in the location of the goal.

Methods using the GL-signature have the highest success rates and are faster than

alternatives. Always Blocklist has an equivalent success rate as the full proposed

method, but prematurely abandons grasps that would lead to reaching the goal. Our

method and the Always Blocklist method each failed in 3 trials by trying too many

unsuccessful grasps before imax was reached. The No GL-signature ablation and both

TAMP methods usually fail by greedily trying to grasp the keypoint. Without a

very long horizon or the GL-signature, the planner often grasps with configurations

that make reaching the goal impossible. The longer horizon used in H = 50 helps

alleviate this issue but is insufficient in many cases while also causing a 10x increase

in planning time.

74

Algorithm 7: DOO Threading with the GL-signature
1 j = 1 // Threading subgoal index
2 for i < imax do
3 if j < N // threading subgoals
4 then
5 q̇ =MPPI(s,GLj, Cgoal)
6 s = f(q̇) // Execute and get state
7 if disc penetrated then
8 l∗ = PlanGrasp(s, nx, Cgrasp, 1)
9 if GL(l∗) == GLj then

10 ExecuteGraspChange(l∗)

11 if trapped then
12 l∗ = PlanGrasp(s, nx, Cgrasp, l − 0.05)
13 ExecuteGraspChange(l∗)

14 if GL(s) == GLj then
15 j = j + 1 // next subgoal
16 else
17 q̇ =MPPI(s, pgoal, Cgoal)
18 s = f(q̇) // Execute and get state
19 if pgoal − p(lk) < dgoal then
20 break

5.5.3 Threading Environment

In the Threading environment, the objective is for the robot to thread the DOO

through a series of fixtures in a specified order (e.g. ”fixture 1, then fixture 2, then

fixture 3”), after which it should bring the keypoint to a goal region. The threading

is described by a series of goal signatures GL1, . . . ,GLN . This skill could be applied

to installing cable harnesses in a car or electrical wiring in a building. One end of

the DOO is fixed to the environment, and the robot is initially grasping some other

location on the DOO. This environment is depicted in Figure 5.4 B.

We extend Alg 6 for this task in several ways. First, we run it iteratively, looping

over each of the three threading subgoals, then finally for the point reaching subgoal.

Second, when using MPPI to reach a threading subgoal, we augment Eq (5.2) with the

magnetic-field cost proposed in [133]. This uses the formula
∑ni

j=1Φ(s
j
i , s

j′

i , r) from in

Equation (5.1) for the direction of the magnetic field, but where r is the keypoint of

the DOO. This causes the keypoint to follow virtual magnetic field lines through the

fixture in the specified direction. Third, if a threading subgoal is reached, and the

planner returns a grasp which does not match GLgoal, we reject it and continue running

MPPI to push the cable further through the fixture. This happens when there is no

75

Method Success Wall Time (m) Sim Time (m)
GL-signature 42/50 8 (2) 1.3 (0.4)
TAMP5 21/50 17 (3) 1.3 (0.6)

Wang et al. [133] 12/50 8 (3) 1.0 (0.8)

Table 5.2: Results on the Threading task.

feasible grasp matching GLgoal due to obstacles or reachability issues. Furthermore, we

also check GLgoal after executing the grasp to ensure that any deviations that occurred

when executing the grasp plan do not change the GL-signature. To check when a

threading subgoal is reached, we use the disc penetration check from [133]. The goal

signatures GL1, . . . ,GLN are used in the grasp planning (3rd term in Eq (5.3)), but

the blocklist is not. Grasp sampling is restricted to alternating single-gripper grasps,

which speeds up grasp planning. The keypoint location for grasp planning is also

restricted. It is chosen to be the tip (lk = 1) when a threading subgoal is reached,

and further down the DOO than the current grasp when stuck (lk = l − 0.05). The

full Threading algorithm is shown in Alg 7, with the key differences highlighted in

green. We compare our proposed method to the TAMP5 method described previously.

In this environment, the TAMP method often chooses grasps that correctly thread

through fixtures 1 and 2, because those grasps allow immediate progress towards the

next subgoal. However, it often grasps incorrectly on fixture 3, which requires the

robot to first reach further around and results in less immediate progress towards the

next subgoal. We also adapted the method in [133] from a single floating gripper

to our dual arm robot. As in our method, we use alternating single-gripper grasps.

Instead of the more general trap detection method we use, this baseline checks the

distance between the gripper and the fixture being threaded. This baseline fails

similarly to the TAMP5 method, but additionally fails when MPPI is trapped but is

outside the distance-to-fixture threshold. Success rates and trial times are shown in

Table 5.2. Trials vary in the initial configuration of the robot, grasp location, DOO

configuration, and in the positions of the fixtures. In the trials in which our method

failed to complete the task, MPPI reached a joint configuration with one arm that

prevented the other arm from grasping the DOO at or near the tip, as required by

our method. This means the robot remained stuck until imax was reached.

5.5.4 Real World Threading

We demonstrate a simplified version of the Threading task in the real world, as

depicted in Figure 5.1. This shows the applicability of the proposed methods in the

76

presence of significant calibration, perception, and dynamics modeling errors. We

use CDCPD2 [135] to track the DOO and visual servoing from in-hand cameras to

guide grasping. The environment geometry is specified manually, and the simulation

dynamics were tuned to match the real world setup as closely as possible for the

particular setup.

5.6 Conclusion

In this chapter, we proposed the GL-signature which describes the topology of

closed loops formed by grasping the DOO with respect to closed loops formed by sta-

tionary objects in the environment. Our GL-signature builds on the h-signature pro-

posed in prior work on topological path planning. Furthermore, we describe an algo-

rithm for manipulating DOOs that plans grasps based on the proposed GL-signature.
In our experiments, we find that using the GL-signature improves task success and

reduces planning times compared to a task and motion-planning method. Finally, we

use the method to thread a cable and bring it to a goal region on a real robot.

In this chapter, we used the MuJoCo simulator as our dynamics model in MPC,

which required tuning the simulation to match the real world dynamics for our specific

task. Future work could address this by combining the methods from Chapters II-

IV with the methods in this chapter. One way to do this would be to learn the

dynamics online using FOCUS, instead of using a simulator. To do this, one would

need to extend the state-action representation or use multiple networks in order to

handle multiple different grasps. Alternatively, we could keep the simulator dynamics

but learn an MDE online using data augmentation, and integrate that by penalizing

predicted deviations in grasp planning, MPC, or both. In summary, by combining

the regrasping methods in this chapter with the learning and planning methods of

previous chapters, the robot could plan to grasp, regrasp, and manipulate DOOs

without relying entirely on accurate simulation.

77

CHAPTER VI

Conclusion and Outlook

In this thesis, I presented methods for learning and planning with dynamics models

of deformable one-dimensional objects (DOOs). By developing data augmentation

and focused adaptation methods, we achieved the data efficiency needed to learn

models on real robots while they work to complete useful manipulation tasks, in

fairly narrow settings. The models are not accurate everywhere, but our learning and

planning methods are aware of this and account for it. Ultimately, these methods

enabled the robot to perform parts of tasks like installing a hose in the hood of a

car, plugging in USB or extension cables, or using a vacuum. This work advances the

state of the art in robotic manipulation of DOOs, but there are several limitations

and exciting directions for future work.

First, I have assumed that the state of the rope is accurately tracked at all times

during the manipulation, and our experiments were set up carefully to allow for

this. However, heavy occlusion, brittle calibration methods, fast motion of the rope,

and tangling of the rope all make accurate tracking difficult. By requiring accurate

perception, we are severely limiting the tasks the robot can do. Therefore, we need to

relax our assumption of accurate perception. This could be accomplished by adding

per-point uncertainty estimates to the rope state representation, or by using partial-

shape or higher-level topological state information when the full shape is unknown.

For example, for the task of plugging in the cable, we care primarily about where the

tip of the cable is, and should not necessarily need to accurately track the entire cable.

Additionally, planning and control methods may need to account for this uncertainty

(for which there are many existing methods [101, 2, 10, 28]). Alternatively, one

could use state representations learned directly from images or video, instead of those

designed by hand [33, 40].

Related to this is our dependence on scene cameras. In all our experiments, mul-

tiple scene cameras were placed around the (stationary) robot to minimize occlusion.

78

This also requires calibration of these cameras with respect to the robot. This process

seems ill-suited for robots in the wild, especially robots doing mobile manipulation.

Even in semi-controlled environments such as warehouses, relying on scene cameras

will limit the flexibility and robustness of the system. Instead, the robot should be

equipped with multiple on-board cameras, and should actively move those cameras

to see the objects it is manipulating or obstacles it is avoiding.

Beyond cameras and perception, we are also presently limited by the hardware of

our robot arms. Notably, the robot Val used in almost all the experiments in this

thesis has significant backlash, which cannot be sensed by the joint encoders. It also

lacks dexterous hands, tactile sensing, or compliant controllers. In my opinion, the

ideal robot for DOO manipulation would have compliant controllers, dexterous and

sensorized grippers, two arms with 2-3 additional torso joints, and a mobile base.

Finally, we are limited by learning methods that are specialized to certain data

types, or observation/state/action spaces. For instance, the method I proposed uses

joint configurations, points representing the DOO, and voxelized environment geom-

etry, but even within my own methods there are differences in data types. There

are also methods that work well on large datasets of RGB images and end-effector

pose actions [19]. While we have methods that work well in some cases, no method

works well in all cases. To address this limitation, we should avoid hand-designing

task-specific state and action spaces and focus on ones that can be used widely. This

could make data sharing easier, reduce the effort required to shift between different

data distributions, and promote the development of methods that are less specialized.

By addressing these limitations, robots will hopefully be better at tasks like in-

stalling cables, sewing sutures, or using tools with pneumatic or hydraulic hoses. More

broadly, the goal is to significantly improve robotic manipulation such that we can

use it to replace work currently done by humans and do new work only suitable for

robots. However, it is equally important to ensure this technology benefits society.

There are significant risks of exacerbating wealth inequality and job displacement

[1, 4], and as scientists and engineers we must do our part to educate. We must

educate others on what robots can do and how they work, but we must also educate

ourselves on the impact these robots have on people and society. With this knowl-

edge and mindset, I believe we can build a future where robotic manipulation is both

capably and carefully deployed.

79

BIBLIOGRAPHY

80

BIBLIOGRAPHY

[1] Acemoglu, D., and P. Restrepo (2022), Tasks, automation, and the rise in us
wage inequality, Econometrica.

[2] Agha-mohammadi, A.-a., S. Chakravorty, and N. M. Amato (2014), FIRM:
Sampling-based feedback motion-planning under motion uncertainty and im-
perfect measurements, IJRR.

[3] Arndt, K., A. Ghadirzadeh, M. Hazara, and V. Kyrki (2021), Few-shot model-
based adaptation in noisy conditions, RA-L.

[4] Battista, A. D., S. Grayling, E. Hasselaar, T. Leopold, R. Li, M. Rayner, and
S. Zahidi (2023), Future of Jobs Report, World Economic Forum.

[5] Bechtle, S., Y. Lin, A. Rai, L. Righetti, and F. Meier (2019), Curious iLQR:
Resolving Uncertainty in Model-based RL, in CoRL.

[6] Bekey, G. A., and K. Y. Goldberg (1993), Neural Networks In Robotics, Science.

[7] Bengio, Y., J. Louradour, R. Collobert, and J. Weston (2009), Curriculum
learning, ICML.

[8] Benton, G. W., M. Finzi, P. Izmailov, and A. G. Wilson (2020), Learning
Invariances in Neural Networks from Training Data, NeurIPS.

[9] Berenson, D. (2013), Manipulation of deformable objects without modeling and
simulating deformation, in IROS.

[10] Berg, J. v. d., P. Abbeel, and K. Y. Goldberg (2011), LQG-MP: Optimized path
planning for robots with motion uncertainty and imperfect state information,
IJRR.

[11] Bergou, M., M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun (2008),
Discrete elastic rods, ACM Trans. Graph.

[12] Berkenkamp, F., M. Turchetta, A. P. Schoellig, and A. Krause (2017), Safe
Model-based Reinforcement Learning with Stability Guarantees, in NeurIPS.

[13] Bhattacharya, S., M. Likhachev, and V. Kumar (2011), Identification and rep-
resentation of homotopy classes of trajectories for search-based path planning
in 3d, in RSS.

81

https://www.weforum.org/publications/the-future-of-jobs-report-2023/digest
https://proceedings.neurips.cc/paper/2020/file/cc8090c4d2791cdd9cd2cb3c24296190-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/cc8090c4d2791cdd9cd2cb3c24296190-Paper.pdf

[14] Bhattacharya, S., M. Likhachev, and V. R. Kumar (2012), Topological con-
straints in search-based robot path planning, Autonomous Robots.

[15] Bogdoll, D., M. Nitsche, and J. M. Zöllner (2022), Anomaly detection in au-
tonomous driving: A survey, CVPR Workshop.

[16] Bousmalis, K., et al. (2018), Using Simulation and Domain Adaptation to Im-
prove Efficiency of Deep Robotic Grasping, in IROS.

[17] Brahmbhatt, S., A. Handa, J. Hays, and D. Fox (2019), ContactGrasp: Func-
tional Multi-finger Grasp Synthesis from Contact, IROS.

[18] Brodley, C. E., and M. A. Friedl (1999), Identifying mislabeled training data,
Journal of Articial Intelligence Research.

[19] Brohan, A., et al. (2023), RT-2: vision-language-action models transfer web
knowledge to robotic control, ArXiv Preprint.

[20] Bócsi, B., L. Csató, and J. Peters (2013), Alignment-based transfer learning for
robot models, in International Joint Conference on Neural Networks (IJCNN).

[21] Chang, P., and T. Padir (2020), Sim2real2sim: Bridging the gap between sim-
ulation and real-world in flexible object manipulation, in International Confer-
ence on Robotic Computing, IRC.

[22] Chebotar, Y., A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and
D. Fox (2019), Closing the sim-to-real loop: Adapting simulation randomization
with real world experience, in ICRA.

[23] Chua, K., R. Calandra, R. McAllister, and S. Levine (2018), Deep reinforcement
learning in a handful of trials using probabilistic dynamics models, NeurIPS.

[24] Clavera, I., J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel
(2018), Model-Based Reinforcement Learning via Meta-Policy Optimization, in
CoRL.

[25] Coleman, D., I. A. S, ucan, S. Chitta, and N. Correll (2014), Reducing the barrier
to entry of complex robotic software: a moveit! case study, Journal of Software
Engineering for Robotics.

[26] Courchesne, A., A. Censi, and L. Paull (2021), On assessing the usefulness of
proxy domains for developing and evaluating embodied agents, in IROS.

[27] Cubuk, E. D., B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le (2018), Autoaug-
ment: Learning augmentation policies from data, ArXiv Preprint.

[28] Deisenroth, M. P., D. Fox, and C. E. Rasmussen (2015), Gaussian Processes
for Data-Efficient Learning in Robotics and Control, IEEE Transactions on
Pattern Analysis and Machine Intelligence.

82

https://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
https://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf

[29] Demir, S., K. Mincev, K. Kok, and N. G. Paterakis (2021), Data augmentation
for time series regression: Applying transformations, autoencoders and adver-
sarial networks to electricity price forecasting, Applied Energy.

[30] Eppner, C., A. Mousavian, and D. Fox (2021), Acronym: A large-scale grasp
dataset based on simulation, ICRA.

[31] Evans, B., A. Thankaraj, and L. Pinto (2022), Context is everything: Implicit
identification for dynamics adaptation, in ICRA.

[32] Feng, S. Y., V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura, and
E. Hovy (2021), A Survey of Data Augmentation Approaches for NLP, Associ-
ation for Computational Linguistics.

[33] Finn, C., and S. Levine (2017), Deep visual foresight for planning robot motion,
ICRA.

[34] Fisac, J. F., A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. H. Gillula, and
C. J. Tomlin (2019), A General Safety Framework for Learning-Based Control
in Uncertain Robotic Systems, IEEE Transactions on Automatic Control.

[35] Fu, J., S. Levine, and P. Abbeel (2016), One-shot learning of manipulation skills
with online dynamics adaptation and neural network priors, in IROS.

[36] Gal, Y., and Z. Ghahramani (2016), Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning, in ICML.

[37] Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio (2014), Generative Adversarial Nets, NeurIPS.

[38] Grannen, J., et al. (2020), Untangling dense knots by learning task-relevant
keypoints, in CoRL.

[39] Guzzi, J., R. O. Chavez-Garcia, M. Nava, L. M. Gambardella, and A. Giusti
(2020), Path Planning With Local Motion Estimations, RA-L.

[40] Hafner, D., T. P. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. David-
son (2019), Learning Latent Dynamics for Planning from Pixels, in ICML.

[41] Hagberg, A. A., D. A. Schult, and P. J. Swart (2008), Exploring network struc-
ture, dynamics, and function using networkx, Python in Science Conference.

[42] Holl, P., V. Koltun, and N. Thuerey (2020), Learning to control pdes with
differentiable physics, ArXiv Preprint.

[43] Hoque, R., D. Seita, A. Balakrishna, A. Ganapathi, A. K. Tanwani, N. Jamali,
K. Yamane, S. Iba, and K. Goldberg (2020), Visuospatial foresight for multi-
step, multi-task fabric manipulation, in RSS.

83

https://www.sciencedirect.com/science/article/pii/S0306261921010527
https://www.sciencedirect.com/science/article/pii/S0306261921010527
https://www.sciencedirect.com/science/article/pii/S0306261921010527
https://aclanthology.org/2021.findings-acl.84.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[44] Hora, S. C. (1996), Aleatory and epistemic uncertainty in probability elicitation
with an example from hazardous waste management, Reliability Engineering &
System Safety.

[45] Huang, H., D. Wang, R. Walters, and R. Platt (2022), Equivariant transporter
network, RSS.

[46] Hüllermeier, E., and W. Waegeman (2021), Aleatoric and epistemic uncertainty
in machine learning: an introduction to concepts and methods, Machine Learn-
ing.

[47] Ichter, B., and M. Pavone (2019), Robot Motion Planning in Learned Latent
Spaces, RA-L.

[48] Igarashi, T., and M. Stilman (2010), Homotopic path planning on manifolds for
cabled mobile robots, WAFR.

[49] Iwana, B. K., and S. Uchida (2020), An Empirical Survey of Data Augmentation
for Time Series Classification with Neural Networks, PLOS One.

[50] Jaillet, L., and T. Simeon (2008), Path deformation roadmaps: Compact graphs
with useful cycles for motion planning, IJRR.

[51] Jia, B., Z. Hu, J. Pan, and D. Manocha (2018), Manipulating Highly Deformable
Materials Using a Visual Feedback Dictionary, in ICRA.

[52] Jiang, G., W. Wang, Y. Qian, and J. Liang (2021), A unified sample selection
framework for output noise filtering: An error-bound perspective, JMLR.

[53] Jonschkowski, R., and O. Brock (2015), Learning state representations with
robotic priors, Autonomous Robots.

[54] Kaelbling, L. P., and T. Lozano-Pérez (2013), Integrated task and motion plan-
ning in belief space, IJRR.

[55] Kamthe, S., and M. P. Deisenroth (2018), Data-Efficient Reinforcement Learn-
ing with Probabilistic Model Predictive Control, in AISTATS.

[56] Kavraki, L. E., P. Svestka, J.-C. Latombe, and M. H. Overmars (1996), Prob-
abilistic roadmaps for path planning in high-dimensional configuration spaces,
TRO.

[57] Knuth, C., G. Chou, N. Ozay, and D. Berenson (2021), Planning with learned
dynamics: Probabilistic guarantees on safety and reachability via lipschitz con-
stants, RA-L.

[58] Kobilarov, M. (2011), Cross-Entropy Randomized Motion Planning, in RSS.

[59] Koenig, N. P., and A. Howard (2004), Design and use paradigms for Gazebo,
an open-source multi-robot simulator, in IROS.

84

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254841
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254841
https://link.springer.com/article/10.1007/s10514-015-9459-7
https://link.springer.com/article/10.1007/s10514-015-9459-7

[60] Koller, T., F. Berkenkamp, M. Turchetta, and A. Krause (2018), Learning-
Based Model Predictive Control for Safe Exploration, in CDC.

[61] Koller, T., F. Berkenkamp, M. Turchetta, J. Boedecker, and A. Krause (2019),
Learning-based Model Predictive Control for Safe Exploration and Reinforce-
ment Learning, in Workshop on Safe Autonomy.

[62] Kroemer, O., S. Niekum, and G. Konidaris (2021), A Review of Robot Learning
for Manipulation: Challenges, Representations, and Algorithms, JMLR.

[63] Kumar, A., T. Ma, and P. Liang (2020), Understanding self-training for gradual
domain adaptation, ICML.

[64] LaGrassa, A., and O. Kroemer (2022), Learning model preconditions for plan-
ning with multiple models, CoRL.

[65] LaGrassa, A., S. Lee, and O. Kroemer (2020), Learning skills to patch plans
based on inaccurate models, in IROS.

[66] Lakshminarayanan, B., A. Pritzel, and C. Blundell (2017), Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles, in NeurIPS.

[67] Lamiraux, F., and L. E. Kavraki (2001), Planning Paths for Elastic Objects
under Manipulation Constraints, IJRR.

[68] Langsfeld, J. D., K. N. Kaipa, and S. K. Gupta (2018), Selection of trajectory
parameters for dynamic pouring tasks based on exploitation-driven updates of
local metamodels, Robotica.

[69] Laskin, M., K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas (2020),
Reinforcement Learning with Augmented Data, NeurIPS.

[70] LaValle, S. M., and J. J. J. Kuffner (2001), Randomized Kinodynamic Planning,
IJRR.

[71] Lee, J., J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter (2020), Learning
quadrupedal locomotion over challenging terrain, Science Robotics.

[72] Li, Y., J. Wu, J. Zhu, J. B. Tenenbaum, A. Torralba, and R. Tedrake (2019),
Propagation Networks for Model-Based Control Under Partial Observation,
ICRA.

[73] Li, Z., and A. B. Farimani (2022), Graph neural network-accelerated lagrangian
fluid simulation, Computers & Graphics.

[74] Lim, V., H. Huang, L. Y. Chen, J. Wang, J. Ichnowski, D. Seita, M. Laskey,
and K. Goldberg (2022), Planar robot casting with real2sim2real self-supervised
learning, Workshop on Representing and Manipulating Deformable Objects,
ICRA.

85

https://www.jmlr.org/papers/volume22/19-804/19-804.pdf
https://www.jmlr.org/papers/volume22/19-804/19-804.pdf
https://proceedings.neurips.cc/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf
http://propnet.csail.mit.edu/propnet-paper.pdf

[75] Lin, X., Y. Wang, J. Olkin, and D. Held (2020), Softgym: Benchmarking deep
reinforcement learning for deformable object manipulation, in CoRL.

[76] Lin, X., Y. Wang, Z. Huang, and D. Held (2021), Learning visible connectivity
dynamics for cloth smoothing, in CoRL.

[77] Lowrey, K., S. Kolev, J. Dao, A. Rajeswaran, and E. Todorov (2018), Rein-
forcement learning for non-prehensile manipulation: Transfer from simulation
to physical system, in IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR).

[78] Ma, E. (2019), NLP Augmentation.

[79] Mahler, J., J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and
K. Goldberg (2017), Dex-net 2.0: Deep learning to plan robust grasps with
synthetic point clouds and analytic grasp metrics, in RSS.

[80] Mahler, J., et al. (2016), Dex-net 1.0: A cloud-based network of 3d objects
for robust grasp planning using a multi-armed bandit model with correlated
rewards, in ICRA.

[81] Matas, J., S. James, and A. J. Davison (2018), Sim-to-Real Reinforcement
Learning for Deformable Object Manipulation, in CoRL.

[82] McConachie, D., and D. Berenson (2016), Bandit-based model selection for
deformable object manipulation, in WAFR.

[83] McConachie, D., A. Dobson, M. Ruan, and D. Berenson (2020), Manipulating
deformable objects by interleaving prediction, planning, and control, IJRR.

[84] McConachie, D., T. Power, P. Mitrano, and D. Berenson (2020), Learning When
to Trust a Dynamics Model for Planning in Reduced State Spaces, RA-L.

[85] Miller, A. T., and P. K. Allen (2004), Graspit! A versatile simulator for robotic
grasping, IEEE Robotics Autom. Mag.

[86] Mitrano, P., and D. Berenson (2022), Data augmentation for manipulation,
RSS.

[87] Mitrano, P., D. McConachie, and D. Berenson (2021), Learning Where to Trust
Unreliable Models in an Unstructured World for Deformable Object Manipula-
tion, Science Robotics.

[88] Mitrano, P., A. LaGrassa, O. Kroemer, and D. Berenson (2023), Focused adap-
tation of dynamics models for deformable object manipulation, ICRA.

[89] Mousavian, A., C. Eppner, and D. Fox (2019), 6-dof graspnet: Variational grasp
generation for object manipulation, in ICCV.

86

https://github.com/makcedward/nlpaug
https://arxiv.org/pdf/2001.11051.pdf
https://arxiv.org/pdf/2001.11051.pdf
https://www.science.org/doi/10.1126/scirobotics.abd8170
https://www.science.org/doi/10.1126/scirobotics.abd8170
https://www.science.org/doi/10.1126/scirobotics.abd8170

[90] Mrowca, D., C. Zhuang, E. Wang, N. Haber, F.-F. Li, J. Tenenbaum, and
D. L. Yamins (2018), Flexible neural representation for physics prediction, in
NeurIPS.

[91] Murthy, J. K., et al. (2021), gradsim: Differentiable simulation for system iden-
tification and visuomotor control, in ICLR.

[92] Nagabandi, A., G. Kahn, R. S. Fearing, and S. Levine (2018), Neural Net-
work Dynamics for Model-Based Deep Reinforcement Learning with Model-Free
Fine-Tuning, in ICRA.

[93] Nagabandi, A., G. Yang, T. Asmar, R. Pandya, G. Kahn, S. Levine, and R. S.
Fearing (2018), Learning Image-Conditioned Dynamics Models for Control of
Underactuated Legged Millirobots, in IROS.

[94] Nagabandi, A., I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and
C. Finn (2019), Learning to adapt in dynamic, real-world environments through
meta-reinforcement learning, in ICLR.

[95] Nair, A., D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine
(2017), Combining self-supervised learning and imitation for vision-based rope
manipulation, in ICRA.

[96] Navarro-Alarcón, D., Y.-H. Liu, J. G. Romero, and P. Li (2013), Model-Free Vi-
sually Servoed Deformation Control of Elastic Objects by Robot Manipulators,
TRO.

[97] Ohno, H. (2020), Auto-encoder-based generative models for data augmentation
on regression problems, Soft Computing.

[98] OpenAI, et al. (2019), Solving Rubik’s Cube with a Robot Hand, ArXiv
Preprint.

[99] Peng, X. B., M. Andrychowicz, W. Zaremba, and P. Abbeel (2018), Sim-to-Real
Transfer of Robotic Control with Dynamics Randomization, in ICRA.

[100] Peng, X. B., M. Andrychowicz, W. Zaremba, and P. Abbeel (2018), Sim-to-real
transfer of robotic control with dynamics randomization, ICRA.

[101] Platt, R. J., L. P. Tedrake, Russ an Kaelbling, and T. Lozano-Pérez (2010),
Belief space planning assuming maximum likelihood observations, in RSS.

[102] Portelas, R., C. Colas, L. Weng, K. Hofmann, and P. Oudeyer (2020), Auto-
matic curriculum learning for deep RL: A short survey, IJCAI.

[103] Ratliff, N. D., J. A. Bagnell, and M. Zinkevich (2006), Maximum margin plan-
ning, in ICML.

[104] Rodriguez, D., and S. Behnke (2018), Transferring category-based functional
grasping skills by latent space non-rigid registration, RA-L.

87

https://ieeexplore.ieee.org/document/6581888
https://ieeexplore.ieee.org/document/6581888
https://link.springer.com/content/pdf/10.1007/s00500-019-04094-0.pdf
https://link.springer.com/content/pdf/10.1007/s00500-019-04094-0.pdf

[105] Ruan, M., D. McConachie, and D. Berenson (2018), Accounting for directional
rigidity and constraints in control for manipulation of deformable objects with-
out physical simulation, in IROS.

[106] Saha, M., and P. Isto (2007), Manipulation planning for deformable linear ob-
jects, IEEE Trans. Robotics.

[107] Sánchez, D., W. Wan, and K. Harada (2019), Tethered tool manipulation plan-
ning with cable maneuvering, RA-L.

[108] Sastry, S. S., and A. Isidori (1989), Adaptive control of linearizable systems,
IEEE Transactions on Automatic Control.

[109] Schneider, J. G. (1996), Exploiting Model Uncertainty Estimates for Safe Dy-
namic Control Learning, in NeurIPS.

[110] Shorten, C., and T. M. Khoshgoftaar (2019), A survey on Image Data Aug-
mentation for Deep Learning, Journal of Big Data.

[111] Simard, P., D. Steinkraus, and J. Platt (2003), Best practices for convolutional
neural networks applied to visual document analysis, International Conference
on Document Analysis and Recognition.

[112] Siméon, T., J. Laumond, J. Cortés, and A. Sahbani (2004), Manipulation plan-
ning with probabilistic roadmaps, IJRR.

[113] Smith, R. (2005), Open Dynamics Engine, Tech. rep., University of Auckland.

[114] Smolentsev, L., A. Krupa, and F. Chaumette (2023), Shape visual servoing of
a tether cable from parabolic features, ICRA.

[115] Sorocky, M. J., S. Zhou, and A. P. Schoellig (2020), Experience selection using
dynamics similarity for efficient multi-source transfer learning between robots,
in ICRA.

[116] Srinivas, A., A. Jabri, P. Abbeel, S. Levine, and C. Finn (2018), Universal
Planning Networks: Learning Generalizable Representations for Visuomotor
Control, in ICML.

[117] Sucan, I. A., M. Moll, and L. E. Kavraki (2012), The open motion planning
library, IEEE Robotics Autom. Mag.

[118] sundaresan, P., J. Grannen, B. Thananjeyan, A. Balakrishna, M. Laskey,
K. Stone, J. E. Gonzalez, and K. Goldberg (2020), Learning rope manipula-
tion policies using dense object descriptors trained on synthetic depth data, in
ICRA.

[119] Sundaresan, P., et al. (2021), Untangling dense non-planar knots by learning
manipulation features and recovery policies, in RSS.

88

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://ieeexplore.ieee.org/document/1227801
https://ieeexplore.ieee.org/document/1227801

[120] Tekden, A. E., A. Erdem, E. Erdem, M. Imre, M. Y. Seker, and E. Ugur (2020),
Belief Regulated Dual Propagation Nets for Learning Action Effects on Groups
of Articulated Objects, ICRA.

[121] Terzopoulos, D., J. C. Platt, A. H. Barr, and K. W. Fleischer (1987), Elastically
deformable models, in SIGGRAPH.

[122] Todorov, E., T. Erez, and Y. Tassa (2012), Mujoco: A physics engine for model-
based control, in IROS.

[123] Torrey, L., and J. Shavlik (2010), Transfer learning, in Handbook of research on
machine learning applications and trends: algorithms, methods, and techniques,
IGI global.

[124] Tran, T., T. Pham, G. Carneiro, L. J. Palmer, and I. D. Reid (2017), A Bayesian
Data Augmentation Approach for Learning Deep Models, NeurIPS.

[125] Vemula, A., Y. Oza, J. A. Bagnell, and M. Likhachev (2020), Planning and
Execution using Inaccurate Models with Provable Guarantees, in RSS.

[126] Vuong, Q., A. Kumar, S. Levine, and Y. Chebotar (2022), Dasco: Dual-
generator adversarial support constrained offline reinforcement learning,
NeurIPS.

[127] Wakamatsu, H., A. Tsumaya, E. Arai, and S. Hirai (2005), Manipulation plan-
ning for knotting/unknotting and tightly tying of deformable linear objects,
ICRA.

[128] Wakamatsu, H., A. Tsumaya, E. Arai, and S. Hirai (2006), Manipulation plan-
ning for unraveling linear objects, ICRA.

[129] Waltersson, G. A., R. Laezza, and Y. Karayiannidis (2022), Planning and con-
trol for cable-routing with dual-arm robot, ICRA.

[130] Wang, A., T. Kurutach, P. Abbeel, and A. Tamar (2019), Learning Robotic
Manipulation through Visual Planning and Acting, in RSS.

[131] Wang, C., Y. Zhang, X. Zhang, Z. Wu, X. Zhu, S. Jin, T. Tang, and
M. Tomizuka (2022), Offline-online learning of deformation model for cable
manipulation with graph neural networks, RA-L.

[132] Wang, W., and D. Balkcom (2018), Knot grasping, folding, and re-grasping,
IJRR.

[133] Wang, W., D. Berenson, and D. Balkcom (2015), An online method for tight-
tolerance insertion tasks for string and rope, ICRA.

[134] Wang, Y., S. Chaudhuri, and L. E. Kavraki (2018), Bounded Policy Synthesis
for POMDPs with Safe-Reachability Objectives, in Conference on Autonomous
Agents and MultiAgent Systems.

89

https://arxiv.org/pdf/1909.03785.pdf
https://arxiv.org/pdf/1909.03785.pdf
https://arxiv.org/pdf/1710.10564.pdf
https://arxiv.org/pdf/1710.10564.pdf

[135] Wang, Y., D. McConachie, and D. Berenson (2021), Tracking Partially-
Occluded Deformable Objects while Enforcing Geometric Constraints, ICRA.

[136] Williams, G., P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou (2016),
Aggressive driving with model predictive path integral control, ICRA.

[137] Wood, J. (2021), Robot workers are being hired at record rates in US companies
- here’s why, World Economic Forum.

[138] Wu, Y., W. Yan, T. Kurutach, L. Pinto, and P. Abbeel (2019), Learning to
manipulate deformable objects without demonstrations, ArXiv Preprint.

[139] Wu, Y., W. Yan, T. Kurutach, L. Pinto, and P. Abbeel (2020), Learning to
Manipulate Deformable Objects without Demonstrations, in RSS.

[140] Yan, M., Y. Zhu, N. Jin, and J. Bohg (2020), Self-Supervised Learning of State
Estimation for Manipulating Deformable Linear Objects, RA-L.

[141] Yan, W., A. Vangipuram, P. Abbeel, and L. Pinto (2020), Learning predictive
representations for deformable objects using contrastive estimation, in CoRL.

[142] Yu, K., M. Bauzá, N. Fazeli, and A. Rodriguez (2016), More than a Million
Ways to Be Pushed: A High-Fidelity Experimental Data Set of Planar Pushing,
IROS.

[143] Yu, M., K. Lv, H. Zhong, S. Song, and X. Li (2022), Global model learning for
large deformation control of elastic deformable linear objects: An efficient and
adaptive approach, TRO.

[144] Yu, M., H. Zhong, and X. Li (2022), Shape control of deformable linear objects
with offline and online learning of local linear deformation models, in ICRA.

[145] Zaremba, W. (2021), OpenAI Disbands Robotics, Interview on YouTube.

[146] Zhan, R., X. Liu, D. F. Wong, and L. S. Chao (2021), Meta-curriculum learning
for domain adaptation in neural machine translation, in AAAI.

[147] Zhang, F., and Y. Demiris (2022), Learning garment manipulation policies to-
ward robot-assisted dressing, Science Robotics.

[148] Zhang, M., S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and S. Levine
(2019), SOLAR: Deep Structured Representations for Model-Based Reinforce-
ment Learning, in ICML.

[149] Zhang, Y., P. David, and B. Gong (2017), Curriculum domain adaptation for
semantic segmentation of urban scenes, in ICCV.

[150] Zhong, S., Z. Zhang, N. Fazeli, and D. Berenson (2021), TAMPC: A controller
for escaping traps in novel environments, RA-L.

90

https://doi.org/10.1109/ICRA48506.2021.9561012
https://doi.org/10.1109/ICRA48506.2021.9561012
https://www.weforum.org/agenda/2021/12/robots-jobs-staff-shortage-automation/
https://www.weforum.org/agenda/2021/12/robots-jobs-staff-shortage-automation/
https://arxiv.org/pdf/1604.04038.pdf
https://arxiv.org/pdf/1604.04038.pdf
https://www.youtube.com/watch?v=429QC4Yl-mA&t=1170s

[151] Zhong, S., Z. Zhang, N. Fazeli, and D. Berenson (2021), TAMPC: A Controller
for Escaping Traps in Novel Environments, RA-L.

[152] Zhou, K., and J. C. Doyle (1998), Essentials of Robust Control, Prentice Hall.

[153] Zhu, X., D. Wang, O. Biza, G. Su, R. Walters, and R. Platt (2022), Sample
efficient grasp learning using equivariant models, RSS.

[154] Ziyan, G., A. Elibol, and N. Y. Chong (2021), Planar Pushing of Unknown
Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning, Inter-
national Conference on Automation Science and Engineering (CASE).

91

https://arxiv.org/pdf/2010.12516.pdf
https://arxiv.org/pdf/2010.12516.pdf
https://ieeexplore.ieee.org/document/9551513
https://ieeexplore.ieee.org/document/9551513

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Introduction
	Related Work
	Manipulation of Deformable One-dimensional Objects
	Dynamics for DOO manipulation
	Planning for DOO manipulation

	Unreliable Dynamics Models
	Quantifying Model Reliability
	Using Model Reliability Estimates in Planning

	Learning Dynamics from Limited Amounts of Data
	Adapting Dynamics Models
	Data Augmentation
	Small Models and Feature Engineering

	Grasping and Regrasping
	Topology and Knot Theory in Manipulation Planning

	Learning Where to Trust Unreliable Dynamics
	Introduction
	Problem Statement
	Classifier
	Recovery
	State Definition

	Methods
	Data Collection for Learning the Dynamics
	Learning the Unconstrained Dynamics
	Incorporating Uncertainty in the Learned Dynamics

	Phase Two Data Collection
	Learning the Classifier
	Planning With a Learned Model and Classifier
	Evaluating Stuck States and Learning Recovery
	Network architectures
	Dynamics Model Architecture
	Classifier Architecture
	Recovery Architecture
	Full Dynamics Architecture

	Simulation Environments

	Discussion
	On the Specialization to Deformable Objects
	Limitations
	Learning Performance
	Physical Robot Demonstrations
	Experiment Design

	Results
	Baselines
	Scenario 1: Rope Dragging
	Scenario 2: Dual Arm Rope Manipulation
	Physical Robot Demonstrations

	Conclusion

	Data Augmentation for Learning Reliability
	Introduction
	Problem Statement
	Assumptions

	Methods
	Algorithm Overview
	Bounding Box Objective
	Transformation Validity Objective
	Occupancy Objective
	Delta Minimum Distance Objective
	Robot Contact Objective

	Solving the Augmentation Optimization Problem
	Learning the Valid Transforms Objective
	Application to Cluttered Planar Pushing
	Application to Bimanual Rope Manipulation

	Results
	Cluttered Planar Pushing
	Bimanual Rope Manipulation
	Real Robot Results

	Limitations
	Conclusion

	Focused Adaptation of Unreliable Dynamics
	Introduction
	Problem Statement
	Methods
	Adapting the Dynamics
	Online Learning
	Planning and Execution for Data Collection
	Fine-tune MDE

	Results
	Bimanual Rope Manipulation
	Plant Watering
	Validating the Adaptation Method
	Online Learning Experiments
	Real Robot Results

	Conclusion

	The Grasp Loop Signature
	Introduction
	Defining the signature
	Preliminaries
	Computing the signature
	Computational Complexity

	Illustrative Examples
	DOO Manipulation with the signature
	Problem Statement
	DOO Point Reaching Method

	Applications
	Pulling Environment
	Untangling Environment
	Threading Environment
	Real World Threading

	Conclusion

	Conclusion and Outlook
	BIBLIOGRAPHY

