
1

Constrained Stein Variational Trajectory Optimization
Thomas Power1 and Dmitry Berenson1

Abstract—We present Constrained Stein Variational Trajectory
Optimization (CSVTO), an algorithm for performing trajectory
optimization with constraints on a set of trajectories in parallel.
We frame constrained trajectory optimization as a novel form of
constrained functional minimization over trajectory distributions,
which avoids treating the constraints as a penalty in the objective
and allows us to generate diverse sets of constraint-satisfying
trajectories. Our method uses Stein Variational Gradient Descent
(SVGD) to find a set of particles that approximates a distribution
over low-cost trajectories while obeying constraints. CSVTO is
applicable to problems with differentiable equality and inequality
constraints and includes a novel particle re-sampling step to escape
local minima. By explicitly generating diverse sets of trajectories,
CSVTO is better able to avoid poor local minima and is more
robust to initialization. We demonstrate that CSVTO outperforms
baselines in challenging highly-constrained tasks, such as a
7DoF wrench manipulation task, where CSVTO outperforms
all baselines both in success and constraint satisfaction.

I. INTRODUCTION

TRAJECTORY optimization and optimal control are pow-
erful tools for synthesizing complex robot behavior using

appropriate cost functions and constraints [1]–[5]. Constraint
satisfaction is important for safety-critical applications, such
as autonomous driving, where constraints determine which
trajectories are safe. Constraints can also provide effective
descriptions of desired behavior. For instance, consider a robot
sanding a table. This problem can be defined with an equality
constraint specifying that the end-effector must move along
the surface of the table as well as constraints on the minimum
and maximum force applied to the table. For many tasks,
including manipulation tasks like the one above, satisfying
these constraints can be very difficult as constraint-satisfying
trajectories may lie on implicitly defined lower-dimensional
manifolds. Such constraints present difficulties for sample-
based methods since the feasible set has zero measure and thus
it is difficult to sample. It is also difficult for gradient-based
methods since even for trajectories that start feasible, if the
constraint is highly nonlinear then updates based on a first-
order approximation of the constraint will lead to solutions
leaving the constraint manifold. In addition, many useful tasks
entail constrained optimization problems that are non-convex
and exhibit multiple local minima.

Global sample-based motion planning methods such as
Rapidly-Exploring-Random-Trees (RRT) [6]. Probabilistic
Roadmaps (PRM) [7] effectively solve difficult planning prob-
lems, however, they do not find paths that minimize a given cost
function. To minimize a given cost function, algorithms such as
RRT* and PRM* [8] have been proposed to find asymptotically

This work was sponsored by Honda Research Institute USA. 1Authors are
with the Robotics Department, University of Michigan, Ann Arbor, MI, USA.
{tpower, dmitryb}@umich.edu

Fig. 1. We use CSVTO to turn a wrench in the real world with online
replanning; b) A human disturbs the robot, changing the grasp position of the
wrench; c) The robot readjusts the grasp position; d) The robot achieves the
desired wrench angle.

globally optimal paths. Alternatively, a common approach is
to use the path returned from a sample-based motion planner
to initialize a trajectory optimization problem [9]. Sample-
based methods have additionally been applied to constrained
planning problems [10]–[13], and kinodynamic problems [14],
[15]. While effective for solving problems exhibiting local
minima, when applied to kinodynamic or constrained problems
these global methods are typically computationally expensive.

One of the key advantages of trajectory optimization tech-
niques over global search methods, such as sampling-based
motion planning, is computation speed. Faster computation
speed enables online re-planning to adapt to disturbances. For
example, consider again the robot sanding the table, but now
in the proximity of a human. The human may move in an
unexpected way which necessitates an update to the planned
trajectory. However, even if the cost function is well-suited
to the task, the performance of many trajectory optimization
methods is still highly dependent on the initialization. Poor
initialization may lead to the solver converging to a poor local
minimum. For example, for a robot minimizing a distance
to goal cost subject to collision constraints, this may mean a
trajectory that avoids obstacles but makes little or no progress
toward the goal. In the worst case, the solver may not find
a feasible solution, in which case the robot may collide with
an obstacle. A dependency on initialization is particularly
problematic when re-solving the optimization problem online
under limited computation time when disturbances can lead
to the previous solution becoming a poor initialization for
the current optimization problem. In the sanding example

2

mentioned previously, the human may move to block the robot’s
path, and performing a local optimization starting from the
previous trajectory may not return a feasible solution.

In this article, we formulate the constrained trajectory opti-
mization problem as a Bayesian inference problem. This view
has advantages as it aims to find a distribution over trajectories
rather than a single trajectory alone. As noted by Lambert
et. al. [16], commonly used Variational Inference approaches
[17] lead to minimizing entropy-regularized objectives [16]
which can improve exploration of the search space and give
greater robustness to initialization. Previous methods taking
the inference view of trajectory optimization have only been
able to incorporate constraints via penalties in the cost [16],
[18]–[20]. A drawback of penalty methods is that selecting the
relative weights of the penalties is challenging due to possible
conflicts with the objective. We compare against baselines that
incorporate constraints via penalties and show that, for non-
trivial constraints, this results in poor constraint satisfaction.
An alternative method for enforcing constraints in trajectory
optimization is via barrier functions [21], [22]. While effective,
they are only applicable to inequality constraints and have not
yet been applied in the context of trajectory optimization as
an inference problem.

We propose Constrained Stein Variational Trajectory Op-
timization (CSVTO), an algorithm that performs constrained
trajectory optimization on a set of trajectories in parallel. Our
method builds on Orthogonal-Space Stein Variational Gradient
Descent (O-SVGD), a recent non-parametric variational infer-
ence method for domains with a single equality constraint
[23]. We present a constrained Stein Variational Gradient
Descent (SVGD) algorithm for trajectory optimization with
differentiable equality and inequality constraints, generating a
diverse set of approximately constraint-satisfying trajectories.
The trajectories are approximately constraint-satisfying because
we do not run the algorithm until convergence to avoid
excessive computation times. We additionally incorporate a
novel re-sampling step that re-samples and perturbs particles
in the tangent space of the constraints to escape local minima.
Our contributions are as follows:

• We frame constrained trajectory optimization as a novel
form of constrained functional minimization over trajec-
tory distributions, which avoids treating the constraints as
a penalty in the objective.

• We present a constrained SVGD algorithm for trajectory
optimization, which is applicable to problems with differ-
entiable equality and inequality constraints.

• We propose a novel particle re-sampling step for re-
sampling and perturbing trajectory particles in the tangent
space of the constraints to escape local minima.

• We evaluate our method on three complex constrained
problems, including a 12DoF underactuated quadrotor and
two highly constrained 7DoF manipulation tasks.

Our experimental results demonstrate that CSVTO out-
performs baselines in challenging, highly constrained tasks,
such as a 7DoF wrench manipulation task where our method
achieves 20/20 success compared with 12/20 for Interior Point
OPTimizer (IPOPT) [24] and 19/20 for Stein Variational

Model Predictive Control (SVMPC) [20], CSVTO also achieves
the lowest constraint violation of all baselines. In addition,
CSVTO outperforms baselines in a 12DoF quadrotor task with
a dynamic obstacle that necessitates online adaption of the
planned trajectory.

The article is organized as follows. In Section II we
discuss related work. In Section III we will discuss the
trajectory optimization problem, followed by an overview of
the variational inference approach to trajectory optimization in
Section IV. In Section V we introduce our novel formulation of
trajectory optimization as a constrained functional minimization
over trajectory distributions. We will then give some additional
background information on SVGD in Section VI which is
necessary to develop our algorithm. In Section VII we introduce
CSVTO. In Section VIII we evaluate our method on a 12DoF
quadrotor task and two highly constrained tasks with a 7DoF
manipulator. We additionally deployed CSVTO to turn a wrench
in the real world (Figure 1).

II. RELATED WORK

A. Trajectory optimization

Previous work on local trajectory optimization techniques
includes direct methods [4], [25], where the explicit opti-
mization problem is transcribed and solved using nonlinear
solvers such as IPOPT [24] or Sparse Nonlinear OPTimizer
(SNOPT) [26]. Methods in this class include Sequential
Convex Programming (SCP) methods such as TrajOpt [2]
and Guaranteed Sequential Trajectory Optimization (GuSTO)
[1]. In contrast, indirect methods aim instead to solve the
local optimality conditions of the trajectory and early examples
include Differential Dynamic Programming (DDP) [27] and
iterative Linear Quadratic Regulator (iLQR) [28], however,
neither of these methods can handle constraints. Later work
incorporated constraint satisfaction with these indirect methods
[3], [29], [30]. Direct methods are typically easier to initialize
but less accurate [31]. However all of these methods only aim
to find a single locally-optimal trajectory, and the performance
is dependent on the initialization. In contrast, our approach
optimizes a diverse set of trajectories in parallel. This makes
our approach easier to initialize as well as more robust to
disturbances when re-planning online. Our approach is related
to the direct methods, in that we use an iterative algorithm that
aims to minimize an objective. However, our method is based
on viewing the trajectory optimization problem as a Bayesian
inference problem.

B. Sample-based Motion Planning

Many global search methods have been developed in the
sampling-based motion planning literature, yielding motion
planners for constrained domains. These can be broadly
categorized as projection methods, whereby sampled con-
figurations are projected to the constraint [10], [11], and
continuation methods, which use a local approximation of the
constraint manifold at feasible configurations to sample new
configurations [12], [13]. Our method of trajectory optimization
is similar to continuation methods, as our iterative algorithm
projects update steps to the tangent space of the constraint.

3

While these global motion planners can be highly effective, they
are typically too computationally intensive to be run online.

C. Planning & Control as Inference

Prior work framing trajectory optimization as Bayesian
inference has used Gaussian approximations to yield fast,
gradient-based algorithms [18], [19], [32]–[35]. Ha et al.
presented a probabilistic approach for trajectory optimiza-
tion with constraints, using Laplace approximations around
local minima found by solving a non-linear program (NLP)
[36]. This approach uses a Gaussian approximation with
a degenerate covariance with variance only in the tangent
space of the constraints. Samples from this distribution will
generally deviate from the constraint manifold for non-linear
constraints, in contrast, our approach directly optimizes for
diverse constraint-satisfying samples. Sample-based techniques
such as Model Predictive Path Intregral (MPPI) control [37] and
Cross-Entropy Method (CEM) [38] have strong connections
to the inference formulation of Stochastic Optimal Control
(SOC) [39], but these methods again use Gaussian sampling
distributions. Several recent works have focused on improving
the performance of these algorithms, often by modifying the
sampling distribution. Watson and Peters recently proposed
using a Gaussian Process as a sampling distribution [40], and
Pinneri et al. proposed using colored noise [41], both of which
lead to smoother sampled trajectories. Bhardwaj et al. [42]
has also demonstrated improvements to MPPI with a focus
on robot manipulation. However, in all of these prior works,
the sampling distribution is uni-modal. Uni-modal sampling
distributions can be problematic in complex environments due
to their lack of flexibility which hinders exploration of the
search space. Recent work has proposed learning non-Gaussian
sampling distributions with flexible model classes [43], [44].

Another class of methods has used Stein Variational Gradient
Descent (SVGD) [45] for Model Predictive Control (MPC)
[20], [46] and trajectory optimization [16]. By using particle
approximations these methods can generate multi-modal tra-
jectory distributions. SVGD has also been used to improve
Probabilistic Roadmaps (PRMs) [47], and for planning to goal
sets [48]. Our method is also based on SVGD.

However, to date, control-as-inference-based methods have
been unable to handle highly constrained domains. Recently
Constrained Covariance Steering MPPI (CCSMPPI) [49] was
proposed which can satisfy chance inequality constraints, but is
restricted to linear systems. Our method uses SVGD to generate
diverse sets of constraint-satisfying trajectories which can
satisfy both inequality and equality constraints. Another method
closely related to ours is Stochastic Multimodal Trajectory
Optimization (SMTO) [50], this method treats the trajectory
optimization problem as a density estimation problem and
alternates between sampling and performing a gradient-based
optimization to generate multiple low-cost trajectories that
satisfy the constraints. SMTO uses Covariant Hamiltonian
Optimization for Motion Planning (CHOMP) [51] to perform
the gradient-based optimization sequentially for each sampled
trajectory. Our contribution is complementary to SMTO; SMTO
could substitute CHOMP with our method, CSVTO, in the

gradient-optimization step. This would have the advantage
of performing the gradient-based optimization in parallel and
encouraging diversity among trajectories.

D. Gradient Flows for constrained optimization

Our method is closely related to methods using gradient
flows for constrained optimization. Gradient flows are an
optimization method that re-frames optimization as the solution
to an ordinary differential equation (ODE); gradient flows can
be thought of as continuous-time versions of gradient descent
algorithms. Yamashita proposed a gradient flow method for
equality-constrained problems [52]. The most common method
of extending this to problems with inequality constrained is
via the introduction of slack variables to convert inequality
constraints to equality constraints [53]–[55]. Our method,
CSVTO, also uses slack variables to transform inequality
constraints into equality constraints. Recently, Feppon et. al.
[56] proposed a method that instead solves a Quadratic Program
(QP) subproblem to identify active inequality constraints
which are treated as equality constraints in the gradient flow.
Jongen and Stein applied constrained gradient flows to global
optimization, by proposing a gradient flow algorithm that
iterates between searching for local minima and local maxima
[55].

SVGD has been interpreted as a gradient flow [57], and
similar ideas to those developed in the gradient flows for
constrained optimization literature were recently explored in
O-SVGD [23]. O-SVGD performs SVGD in domains with a
single equality constraint. We extend and modify O-SVGD to
domains with multiple equality and inequality constraints.

III. TRAJECTORY OPTIMIZATION

Trajectory optimization is commonly modeled as an Optimal
Control Problem (OCP). We consider a discrete-time system
with state x ∈ Rdx and control u ∈ Rdu , where dx and du are
the dimensionality of the state and control, respectively, and
dynamics xt = f(xt−1,ut−1). We define finite horizon trajec-
tories with horizon T as τ = (X,U), where X = {x1, ...xT }
and U = {u0, ...uT−1}. Given an initial state x0, the aim
when solving an OCP is to find a trajectory τ that minimizes
a given cost function C subject to equality and inequality
constraints:

min
τ

C(τ)

s.t.
h(τ) = 0

g(τ) ≤ 0

∀t ∈ {1, . . . , T}
f(xt−1,ut−1) = xt

umin ≤ ut−1 ≤ umax

xmin ≤ xt ≤ xmax.

(1)

Here we have separated general inequality constraints g from
simple bounds constraints, as well as the dynamics constraints
from other equality constraints h. We additionally assume that
C is non-negative and once differentiable and that f, g, h are

4

all twice differentiable1. Problem (1) will be non-convex in
general, therefore it is likely it will have multiple local minima.
The quality of solutions for most methods for solving this
optimal control problem depends heavily on the initialization;
often a poor initialization can lead to infeasibility.

IV. VARIATIONAL INFERENCE FOR TRAJECTORY
OPTIMIZATION

In this section, we will demonstrate how unconstrained
trajectory optimization can be framed as an inference problem,
as in [20], [34], [58], [59]. This framing results in estimating
a distribution over low-cost trajectories, rather than a single
optimal trajectory. By using this framing we can leverage
approximate inference tools for trajectory optimization, in
particular, Variational Inference [17]. In this section, we will
show how this framing leads to an entropy-regularized objective
[16] which aims to find a distribution over low-cost trajectories
while maximizing entropy. By using an entropy-regularized
objective we aim to have improved exploration of the search
space and greater robustness to initialization.

To reframe trajectory optimization as probabilistic inference,
we first introduce an auxiliary binary random variable o for a
trajectory such that

p(o = 1|τ) = exp (−γC(τ)), (2)

which defines a valid probability distribution over o provided
both γ and C are non-negative. We can trivially see that the
trajectory that maximizes the likelihood of p(o = 1|τ) is
the trajectory that minimizes the cost. Introducing this binary
variable allows us to express the cost as a likelihood function,
which we will use in the Bayesian inference formulation
of trajectory optimization. Using this likelihood to perform
inference gives us a principled way of computing a distribution
over trajectories, where lower-cost trajectories have a higher
likelihood. The term γ controls how peaked the likelihood
function is around local maxima, or minima of C, which in turn
controls the dispersion of the resulting trajectory distribution
after performing inference.

We aim to find the posterior distribution over trajectories,
conditioned on the value of auxiliary variable o. This is given
by Bayes theorem as

p(τ |o = 1) =
p(o = 1|τ)p(τ)

p(o = 1)
, (3)

where p(τ) = p(X,U) is a prior on trajectories. For determin-
istic dynamics, this prior is determined by placing a prior on
controls U. This prior is a design choice and can be used to
regularize the controls. For instance, a squared control cost can
be equivalently expressed as a Gaussian prior. Alternatively, this
prior could be learned from a dataset of low-cost trajectories
[60]. The trajectory prior is

p(τ) = p(U)

T∏
t=1

δ(xt − x̂t), (4)

1We can also accommodate constraints that are only once-differentiable via
an approximation (see Section VII-A1a

where x̂t = f(xt−1,ut−1), and δ is the Dirac delta function.
This inference problem can be performed exactly for the case
of linear dynamics and quadratic costs [35], [61]. However, in
general, this problem is intractable and approximate inference
techniques must be used. We use variational inference to ap-
proximate p(τ |o = 1) with distribution q(τ) which minimizes
the Kullback–Leibler divergence KL(q(τ)||p(τ |o = 1)) [17].
The quantity to be minimized is

KL (q(τ)||p(τ |o = 1)) =

∫
q(τ) log

q(τ)

p(τ |o = 1)
dτ

=

∫
q(τ) log

q(τ)p(o = 1)

p(o = 1|τ)p(τ)
dτ.

(5)

The p(o = 1) term in the numerator does not depend on τ
so can be dropped from the minimization. This results in the
variational free energy F :

F(q) =
∫
q(τ) log

q(τ)

p(o = 1|τ)p(τ)
dτ (6)

= −Eq(τ)[log p(o = 1|τ) + log p(τ)]−H(q(τ)) (7)
= Eq(τ)[γC(τ)]− Eq(τ)[log p(τ)]−H(q(τ)), (8)

where H(q(τ)) is the entropy of q(τ). Intuitively, we can
understand that the first term promotes low-cost trajectories,
the second is a regularization on the trajectory, and the entropy
term prevents the variational posterior from collapsing to a
maximum a posteriori (MAP) solution. We may choose to
provide regularization on the controls as part of C, in which
case the prior term is absorbed into the cost term.

V. PROBLEM STATEMENT

In this article, we frame the constrained optimal control
problem introduced in Section III as a probabilistic inference
problem, using ideas developed in Section IV.

It is first instructive to consider the dynamics constraint,
which is incorporated into the prior in equation (4) via the
Dirac delta function. In this case, the term Eq(τ)[− log p(τ)] is
infinite for any τ which does not obey the dynamics constraint.
We can convert this unconstrained optimization problem with
infinite cost to the following constrained optimization problem
on the space of probability distributions:

min
q

F̃(q)

s.t.
∀t ∈ {1, . . . , T}
Pq(f(xt−1,ut−1) = xt) = 1,

(9)

where F̃(q) is the free energy from equation (8) with the
infinite cost term

∑T
t=1 log δ(xt − f(xt−1,ut−1)) dropped

from log p(τ), and Pq(A) is the probability of event A under

5

probability measure q(τ). Applying this process to other
constraints we have

min
q

F̃(q)

s.t.
Pq(h(τ) = 0) = 1

Pq(g(τ) ≤ 0) = 1

∀t ∈ {1, . . . , T}
Pq(f(xt−1,ut−1) = xt) = 1

Pq(umin ≤ ut−1 ≤ umax) = 1

Pq(xmin ≤ xt ≤ xmax) = 1.

(10)

Our goal is to solve the above optimization problem. However,
for any practical algorithm, we cannot guarantee exact con-
straint satisfaction, both due to the potential non-convexity of
the constraint functions and due to limited computation time.
Computation time is especially limited in an online planning
scenario. Therefore we will evaluate our method according to
both the cost of the resulting trajectories and the amount of
constraint violation when optimizing within a fixed number of
iterations.

VI. STEIN VARIATIONAL GRADIENT DESCENT

We develop an algorithm to solve the constrained variational
inference objective in (10) based on Stein Variational Gradient
Descent (SVGD) [45]. In this section we will give an overview
of SVGD which forms the foundation of our method. SVGD
is a variational inference technique that uses a non-parametric
representation of the variational posterior. In our algorithm,
we use SVGD to approximate the distribution p(τ |o = 1)
with particles, where each particle is a trajectory. Consider the
variational inference problem

q∗(x) = argmin
q(x)

KL (q(x)||p(x)) , (11)

where x ∈ Rd and p and q are two probability density
functions supported on Rd. SVGD uses a particle representation
of q(x) = 1

N

∑N
i=1 δ(x − xi), and iteratively updates these

particles in order to minimize KL (q(x)||p(x)). SVGD updates
the particle set with the update equation

xi
k+1 = xi

k + ϵϕ∗(xi
k), (12)

where ϵ > 0 is a step-size parameter, k is the iteration number,
and i is the particle index. The update ϕ∗ is computed using a
differentiable positive definite kernel function K via

ϕ∗(xi
k) =

1

N

N∑
j=1

K(xi
k,x

j
k)∇xj

k
log p(xj

k) +∇xj
k
K(xi

k,x
j
k).

(13)
The first term of this objective maximizes the log probability
p(x) for the particles, with particles sharing gradients according
to their similarity defined by K. The second term is a repulsive
term that acts to push particles away from one another and
prevents the particle set from collapsing to a local MAP
solution.

We will now give further details on the derivation of the
SVGD algorithm and demonstrate that it does indeed minimize
KL (q(x)||p(x)). We will use the developments in this section
to show that the fixed points of our algorithm satisfy first-order
optimality conditions in section VII-A3. SVGD is based on the
Kernelized Stein Discrepancy (KSD) [62], which is a measure
of the discrepancy between two distributions p and q. The
KSD is computed as the result of the following constrained
functional maximization

S(p, q) = max
ϕ∈Hd

{Ex∼q[Apϕ(x)] s.t. ||ϕ||Hd ≤ 1} , (14)

where ϕ : Rd → Rd is a function in a vector-valued
Reproducing Kernel Hilbert Space (RKHS) Hd with a scalar
kernel K : Rd × Rd → R. Ap is the Stein operator

Apϕ(x) = ∇x log p(x)
Tϕ(x) +∇x · ϕ(x), (15)

where ∇x ·ϕ(x) =
∑d

k=1 ∂xk
ϕk(x). It was established in [62]

that S(q, p) = 0 ⇐⇒ p = q for a strictly positive-definite
kernel K. To minimize the KL divergence, SVGD considers
the incremental transform xϵ = x + ϵϕ(x), where x ∼ q(x)
and ϵ is a scalar step-size parameter. The resulting distribution
after applying the transform is q[ϵϕ]. SVGD uses the following
result:

∇ϵKL(q[ϵϕ]||p(x))|ϵ=0 = −Ex∼q[Apϕ(x)], (16)

which relates the Stein operator and the derivative of the KL
divergence w.r.t the perturbation ϵ. We would like to select ϕ
that maximally decreases the KL divergence. By considering
ϕ ∈ {ϕ ∈ Hd ; ||ϕ||Hd ≤ 1}, the optimal ϕ is the solution to
the following constrained functional maximization:

ϕ∗ = arg max
ϕ∈Hd

{−∇ϵKL(q[ϵϕ]||p(x))|ϵ=0, s.t.||ϕ||Hd ≤ 1}.
(17)

This maximization has a closed-form solution, derived by Liu
et al. in Theorem 3.8 of [62]. Note that we have used a slightly
different definition of the Stein operator than that used by Liu
et al., with Ap as defined in equation (15) as equal to the trace
of the Stein operator defined in [62]. The closed-form solution
is given by

ϕ∗(·) = Ex∼q[ApK(·,x)] (18)
= Ex∼q[K(·,x)∇x log p(x) +∇xK(·,x)], (19)

and the resulting gradient of the KL divergence is

∇ϵKL(q[ϵϕ∗]||p(x))|ϵ=0 = −S(p, q). (20)

This implies that for a suitably-chosen kernel K, if the gradient
of the KL divergence is zero then the KSD is also zero, which
means that p = q. We finally arrive at the update rule given in
equation (13) as the approximation of the closed-form solution
in equation (19) with a finite set of particles.

A. Orthogonal-Space Stein Variational Gradient Descent

Recently Zhang et. al. proposed O-SVGD, a method for
performing SVGD with a single equality constraint [23], though
they do not consider the problem of trajectory optimization.
In this section, we give an overview of O-SVGD, but we give

6

an alternative derivation to that given in [23] based on vector-
valued RKHS and matrix-valued kernels [63]. This alternative
derivation will allow us to analyze our algorithm (Section
VII-A3). The problem [23] aims to solve is

min
q
KL(q(x)||p(x)) s.t. Pq(h(x) = 0) = 1, (21)

where h represents a single equality constraint. For particles
x that are on the manifold induced by h(x) = 0, we would
like them to remain on the manifold after applying the Stein
update in equation (12). To do this, we replace the function
ϕ(x) with P (x)ϕ(x). Where P (x) projects the updates to be
in the tangent space of the constraint and is given by

P (x) = I − ∇h(x)∇h(x)
T

||∇(h(x)||2
. (22)

We can develop an SVGD algorithm that updates particles on
the constraint manifold by considering the set of functions
{P (x)ϕ(x), ϕ(x) ∈ Hd}. By applying Lemma 2 from [63]
we establish that this set of functions is an RKHS Hd

⊥ with
matrix-valued kernel K⊥ given by

K⊥(x
i,xj) = P (xi)K(xi,xj)P (xj)T (23)

= K(xi,xj)P (xi)P (xj), (24)

where we have used the fact that K is a scalar function and
that P (x) is symmetric to rearrange. Running SVGD with
kernel K⊥ will therefore solve the constrained minimization
problem (17), maximally reducing the KL divergence while
only considering updates that lie in the tangent space of the
constraint. Zhang et. al. [23] also add a term to equation (12)
that drives particles to the manifold induced by the constraint

ϕC = −ψ(h(x))∇h(x)
||∇h(x)||2

, (25)

where ψ is an increasing odd function.

VII. METHODS

Our proposed trajectory optimization algorithm uses SVGD
to perform constrained optimization on a set of trajectories
in parallel. The result is a diverse set of low-cost constraint-
satisfying trajectories. The full algorithm is shown in Algorithm
1. First, we will introduce the main component of our proposed
algorithm, which decomposes the Stein update into a step
tangential to the constraint boundary, and a step toward
constraint satisfaction. We will then provide an analysis of
the algorithm which relates it to problem (10). Finally, we will
discuss strategies for improving performance which include
separating the bounds constraints, an annealing strategy for
increasing particle diversity, and re-sampling particles during
the optimization. Figure 2 demonstrates CSVTO being applied
to a 2D toy problem.

A. Constrained Stein Trajectory Optimization

Solving the constrained variational inference problem in
(10) is very difficult, since it requires finding a distribution
that may exhibit multi-modality and has constrained support.
To address this, we use a non-parametric representation of

the distribution q(τ). We use SVGD where each particle is a
trajectory, and iteratively update the particle set while enforcing
the constraints on each particle. To do this we extend O-SVGD
to multiple equality and inequality constraints and use it to
generate constraint-satisfying trajectories.

First, we relate using SVGD for unconstrained trajectory op-
timization to the minimization of the unconstrained variational
free energy F(q) from (7). Consider the iterative transform
τϵ = τ+ϵϕ∗(τ), where ϕ∗ is the solution to (17) with posterior
log likelihood log p(τ |o = 1), τ ∼ q(τ) and τϵ ∼ q[ϵϕ∗](τ).
We can recast (17) for trajectories in terms of the free energy
F(q)

ϕ∗(τ) = arg max
ϕ∈Hd

{−∇ϵF(q[ϵϕ])|ϵ=0, s.t.||ϕ||Hd ≤ 1}. (26)

Thus the update τ + ϵϕ∗ ensures we maximally decrease the
variational free energy. If ϕ∗(τ) = 0 then q(τ) is at a local
minimum of F(q). We will now modify the Stein update to
account for constraints.

1) Equality constraints: We propose a modified Stein update
rule for the i-th particle, in which we decompose the update
into two components:

τ ik+1 = τ ik + αJϕ⊥(τ
i
k) + αCϕC(τ

i
k), (27)

where ϕ⊥ is an update that is tangential to the constraint
boundary, ϕC acts in the direction that decreases constraint
violation, αJ and αC are scalar step size parameters, and k is
the iteration. We replace the O-SVGD ϕC from equation (25)
with a Gauss-Newton step to minimize h(τ)Th(τ)

ϕC(τ) = ∇h(τ)T (∇h(τ)∇h(τ)T)−1 h(τ). (28)

This uses approximate second-order curvature information for
fast convergence. We then compute the projection matrix P (τ),
which projects vectors onto the tangent space of the constraints
as

P (τ) = I −∇h(τ)T (∇h(τ)∇h(τ)T)−1∇h(τ). (29)

Inverting ∇h(τ)∇h(τ)T is only possible if ∇h(τ) is full rank.
While in Sections VII-A2 and VII-A3 we assume that ∇h(τ)
is full rank, for numerical stability we compute the pseudo-
inverse of ∇h(τ)∇h(τ)T via the singular-value decomposition,
discarding singular vectors corresponding to singular values
that are smaller than 1× 10−6. Once we have P (τ), we use
it to define the tangent space kernel, as in [23]:

K⊥(τ
i, τ j) = K(τ i, τ j)P (τ i)P (τ j). (30)

We then use this kernel for the SVGD update to produce an
update that is in the tangent space of the constraint:

ϕ∗⊥(τ
i) =

1

N

N∑
j=1

K⊥(τ
i, τ j)∇τj log p(τ j |o = 1)

+∇τjK⊥(τ
i, τ j).

(31)

Since K⊥ is a matrix-valued function, the last term is calculated
(as in [63]) as

[∇τjK⊥(τ
i, τ j)]l =

∑
m

∇[τj]m [K⊥(τ
i, τ j)]l,m, (32)

7

(a) (b) (c) (d) (e)

Fig. 2. CSVTO visualized for a 2D problem. The posterior is a mixture of 3 Gaussians, with the log posterior peaks visualized. There is an equality constraint
that the particles must lie on the circle. There is also an inequality constraint that the particles must lie outside the shaded region. a) The initial particles
are randomly generated and are not necessarily feasible. b) Due to the annealing discussed in section VII-A4, early on in the optimization the particles are
constraint-satisfying and diverse. c) The particles move towards the relative peaks of the objective, however, the circled particle has become stuck in a poor
local minimum due to the constraints, where the gradient of the log posterior is directed towards an infeasible peak. Since the particle is isolated it is not
sufficiently affected by the repulsive gradient term that would help escape the local minimum. d) The re-sampling step from section VII-A8 re-samples the
particles, applying noise in the tangent space of the constraints. This eliminates the particle at the poor local minimum. e) The set of particles converges
around the local minimum of the objectives while satisfying the constraints.

where the notation [x]l indicates the lth element of x. Equation
(31) has several interesting features. First, two trajectory
particles τ i and τ j are considered close if they are close
according to the original kernel K. In addition, expand-
ing the first term to K(τ i, τ j)P (τ i)P (τ j)∇τj log p(τ j |o =
1), we see that if P (τ i) = P (τ j) this reduces to
K(τ i, τ j)P (τ j)∇τj log p(τ j |o = 1). For P (τ i) ̸= P (τ j), the
magnitude of this term will always be reduced. Intuitively this
means that particles will share gradients if particles are close
and the tangent space of the constraint is similar. In addition,
all updates will be in the tangent space of the constraint.

a) Repulsive term in the tangent space: The derivative
∇[τj]m [K⊥(τ

i, τ j)]l,m can be expanded to

∇[τj]m [K⊥(τ
i, τ j)]l,m = ∇[τj]m [K(τ i, τ j)P (τ i)P (τ j)]l,m

= [P (τ i)P (τ j)]l,m∇[τj]mK(τ
i, τ j)+

K(τ i, τ j)[P (τ i)]l,m∇[τj]m [P (τ j)]l,m.
(33)

We see from equation (33) above that the gradient of the kernel
consists of two terms. The first term projects the gradient of
the unconstrained kernel to the tangent space of the constraints
both at τ i and τ j .

The second term requires computing the derivative of the
matrix-valued projection function. This term is expanded further
in Appendix A, showing that it requires the evaluation of
the second derivative of the constraint function ∇2h(τ). For
problems with constraints for which the second derivative is
unavailable, we can remove this second term for individual
constraints. We do this by setting the second derivative of a
particular constraint to be the zero matrix (see Appendix A).
Doing so effectively uses a locally linear approximation of the
constraint to compute the repulsive gradient.

We will discuss how we define a kernel on trajectories in
section VII-A5.

2) Extension to Inequality Constraints: We extend the above
method to inequality constraints with the use of slack variables.
We turn the inequality constraints into equality constraints with
slack variable z:

g(τ) +
1

2
z2 = 0. (34)

The full set of equality constraints then becomes

ĥ =

[
h(τ)

g(τ) + 1
2z

2

]
. (35)

Converting inequality constraints to equality constraints via
squared slack variables is often avoided as it can introduce spu-
rious non-local-minima that satisfy the Karush–Kuhn–Tucker
(KKT) conditions [64]. To mitigate this issue we make an
assumption on the regularity of the problem, denoted as (R)
in [53]. The details of the assumption are technical and we
do not include it here. The assumption essentially states that
∇ĥ is full rank at initialization and remains so during the
optimization. Under these assumptions, Schropp [53] proved
that the hyperbolic equilibrium points of the augmented system
are local minima of the equality and inequality-constrained
optimization problem. Optimizing multiple trajectories in
parallel provides additional robustness against this issue. Even
should some particles become stuck at one of these undesirable
fixed points, in Section VII-A8 we propose a method for re-
sampling the set of particles which redistributes particles away
from these fixed points. While we could avoid this issue by
using non-negative slack variables with the transformation
g(τ) + z, where z > 0, we found that this led to poorer
constraint satisfaction in practice.

After introducing the slack variables, we compute the
constrained Stein update with all constraints as equality
constraints. We augment the state with z as

τ̂ =

[
τ
z

]
. (36)

The projection is given by

P (τ̂) = I −∇ĥ(τ̂)T (∇ĥ(τ̂)∇ĥ(τ̂)T)−1∇ĥ(τ̂), (37)

and the kernel is

K⊥(τ̂
i, τ̂ j) = K(τ i, τ j)P (τ̂ i)P (τ̂ j). (38)

Notice that the kernel uses the original τ and not the augmented
τ̂ . We then perform the constrained Stein update on the

8

augmented state:

ϕ∗⊥(τ̂
i) =

1

N

N∑
j=1

K⊥(τ̂
i, τ̂ j)

[
∇ log p(τ j |o = 1)

0

]
+∇τ̂jK⊥(τ̂

i, τ̂ j)

(39)

ϕC(τ̂) = ∇ĥ(τ̂)T (∇ĥ(τ̂)∇ĥ(τ̂)T)−1 ĥ(τ̂). (40)

Once we have performed the iterative optimization we have
a set of trajectories. We then select a trajectory to execute by
choosing the one that minimizes the penalty function

Ĉλ(τ̂) = C(τ) + λ
∑
|ĥ(τ̂)|. (41)

3) Analysis: In this section, we provide an analysis of
CSVTO. We demonstrate that stationary points of the gra-
dient flow satisfy the first-order optimality conditions for the
constrained variational optimization problem in (10), subject
only to equality constraints.

Theorem 1. Assume that ∇h is full rank. Let ϕ∗ ∈ Hd be
the solution to (17) with the unconstrained kernel K, and
ϕ∗⊥ ∈ Hd

⊥ be the solution to (17) using the tangent space
kernel K⊥. If the following holds:

αJϕ
∗
⊥(τ) + αCϕC(τ) = 0, (42)

then the following must be true:

ϕ∗(τ) +∇h(τ)Tµ = 0 (43)
h(τ) = 0, (44)

where µ is a vector of Lagrange multipliers.

Proof. Since ϕC and ϕ∗⊥ are orthogonal, then if equation (42)
holds then ϕC = ϕ∗⊥ = 0. Next, we note that ϕ∗⊥(τ) = P (τ)ϕ̂,
where ϕ̂ ∈ Hd and further P (τ)ϕ̂(τ) = 0 =⇒ P (τ)ϕ∗(τ) =
0. To see this, consider P (τ)ϕ∗(τ) ̸= 0. This would imply that
∇ϵKL(q[ϵPϕ∗]||p(τ |o = 1))|ϵ=0 ̸= 0, which implies that there
is a descent direction. This would mean that ∃ ϕ⊥ such that
−∇ϵKL(q[ϵϕ∗

⊥]||p(τ |o = 1))|ϵ=0 < −∇ϵKL(q[ϵϕ⊥ ||p(τ |o =
1))ϵ=0, which is a contradiction. Expanding P (τ)ϕ∗ = 0 yields[

I −∇h(τ)T
(
∇h(τ)∇h(τ)T

)−1∇h(τ)
]
ϕ∗(τ) = 0

ϕ∗(τ)−∇h(τ)T
[(
∇h(τ)∇h(τ)T

)−1∇h(τ)ϕ∗(τ)
]
= 0.

(45)

Specifying µ = −
(
∇h(τ)∇h(τ)T

)−1∇h(τ)ϕ∗(τ) results in
equation (43) being satisfied. Now we expand ϕC = 0 resulting
in

∇h(τ)T (∇h(τ)∇h(τ)T)−1h(τ) = 0. (46)

To show feasibility at the stationary point we left multiply (46)
by ∇h(τ), which for full rank ∇h results in h(τ) = 0.

Theorem 1 holds when we can integrate the expectation in
(19). However, we are approximating the expectation with par-
ticles so (43) may not hold in practice. However, the feasibility
condition (44) remains true when using a particle approximation
for q. To extend this proof to inequality constraints, note that
in Section VII-A2 we discussed the regularity conditions under
which hyperbolic stable stationary points of the gradient flow

on the augmented equality-constrained system satisfy first-order
optimality conditions of the original system with both equality
and inequality constraints.

4) Annealed SVGD for improved diversity: We employ an
annealing technique for SVGD as proposed in [65]. We use
a parameter γ ∈ [0, 1] which controls the trade-off between
the gradient of the posterior log-likelihood and the repulsive
gradient. For γ << 1 the repulsive term dominates resulting in
trajectories being strongly forced away from one another. As γ
increases the gradient of the posterior likelihood has a greater
effect resulting in trajectories being optimized to decrease the
cost. When combined with ϕC this results in the optimization
prioritizing diverse constraint-satisfying trajectories first, then
decreasing cost later in the optimization. The annealed update
is given by

ϕi⊥(τ̂) =
1

N

N∑
j=1

γK⊥(τ̂i, τ̂j)

[
∇ log p(τj |o)

0

]
+∇τ̂jK⊥(τ̂i, τ̂j).

(47)

We use a linear annealing schedule with γk = k
K , where K

is the total number of iterations. When performing online re-
planning, we only perform the annealing when optimizing the
trajectory the first time-step.

5) Trajectory Kernel: CSVTO relies on a base kernel
K(τ i, τ j) operating on pairs of trajectories which defines
the similarity between trajectories. As noted by Lambert et.
al. [20], high dimensional spaces can result in diminishing
repulsive forces, which can be problematic for trajectory
optimization problems due to the time horizon. We use a similar
approach to SVMPC [20] in that we decompose the kernel into
the sum of kernels operating on smaller components of the
trajectory. We use a sliding window approach to decompose
the trajectory. For a given sliding window length W let
τ t = [xt:t+W , ut−1:t−1+W]T . The overall kernel is then given
by

K(τ i, τ j) = 1

T −W

T−W∑
t

K(τ it , τ
j
t). (48)

We use the Radial-Basis Function (RBF) kernel K(τ it , τ
j
t) =

exp(− 1
h ||τ

i
t − τ

j
t ||22) as the base kernel, where h is the kernel

bandwidth. We use the median heuristic as in [45] to select
the kernel bandwidth:

h =
median(||τ it − τ

j
t ||2)2

log(N)
, (49)

where N is the number of particles.
6) Bounds constraint: Bounds constraints can, in principle,

be handled as general inequality constraints as described in the
above section. However, since this involves adding additional
slack variables incorporating bounds constraints involves an
additional T×2(du+dx) decision variables in the optimization,
where dx and du are the state and control dimensionalities,
respectively. It is more computationally convenient to use a
simple approach where at every iteration we directly project
the trajectory to satisfy the bound constraints. This is done by

τ∗ = min(max(τmin, τ), τmax). (50)

9

7) Initialization: As introduced in section IV, we have a
user-specified prior on controls p(U). To initialize CSVTO
on a new problem, we proceed by sampling from this prior
p(U) and using the dynamics f(xt, ut) to generate sampled
trajectories. In this way, we ensure that the initial trajectory
satisfies the dynamics constraints.

We use a different initialization scheme when running
trajectory optimization online in a receding horizon fashion as
in Algorithm 2, as it is typical to warm-start the optimization
with the solution from the previous timestep. For a single par-
ticle, the trajectory consists of τ = (x1, ...,xT ,u0, ...,uT−1)).
The shift operation computes τ ′ = (x2, ...,x

′
T+1,u1, ...,u

′
T).

Here x′
T+1,u

′
T is the initialization for the newly considered

future timestep. The initializations x′
T+1,u

′
T may be chosen

in a problem-specific way. In our approach, we choose them
by duplicating the previous timestep’s state and control, i.e.
(x′

T+1,u
′
T) = (xT ,uT−1).

When running the algorithm with inequality constraints, for
both the online and warm-start optimizations we initialize
the slack variable z with z =

√
2|g(τ)| so that trajectories

satisfying the inequality constraint are initialized to satisfy the
transformed equality constraint.

The above heuristic is motivated by the assumption that the
solution should not vary much between timesteps. However, the
fact that we have a set of trajectories rather than a single one
can invalidate this assumption, since we can only take a single
action. Trajectories that have very different first actions from
the action taken can end up being quite poor initializations,
particularly in the presence of constraints that can render them
infeasible. Over time these poor initializations can lead to the
degradation in the quality of the particles, which motivates the
next section in which we discuss a re-sampling technique to
prevent sample impoverishment.

8) Re-sampling: As discussed above, the shift operation can
lead to trajectories that are not executed becoming infeasible
and rendering those particles useless for trajectory optimization.
In addition, our cost and constraints are not necessarily
convex, so, as with any local optimization method, poor
initializations can lead to infeasibility. We take inspiration
from the Particle Filter literature [66] and incorporate a re-
sampling step which is executed when performing online re-
planning. Every resample_steps timesteps we re-sample
after performing the shift operation on the previous trajectory
particles. To perform re-sampling, we compute weights using
the penalty function

wi =
exp(− Ĉλ(τ̂i)

β)∑N
j exp(− Ĉλ(τ̂j)

β)
, (51)

where β is a temperature parameter. We then re-sample a new
set of particles according to weights wi. It is common in the
particle filter literature to additionally add noise, to prevent
re-sampled particles collapsing. However, in our case, it is
undesirable to add random noise to a constraint-satisfying
trajectory as it may lead to constraint violation. We avoid this
issue by sampling noise and projecting the noise to only have
components in the tangent space of the constraints for a given
trajectory. Suppose we have sampled trajectory τi from the set

of particles. We first sample ϵ ∼ N (0, σ2
resampleI), and then

update the trajectory with

τnew = τi + P (τi)ϵ, (52)

where P (τi) is the projection matrix from equation (29).

Algorithm 1 A single step of CSVTO, this will run every
timestep.

1: function CSVTO(x0, τ,K,anneal)
2: z←

√
2|g(τ)|

3: τ̂ ← [τ, z]T

4: for k ∈ {1, ...,K} do
5: for i ∈ {i, ...,N} do
6: ϕiC ← via eq. 40
7: if anneal then
8: γ ← k

K
9: ϕi⊥ ← via eq. 47

10: else
11: ϕi⊥ ← via eq. 39
12: τ̂ i ← τ̂ i + αJϕ

i
⊥ + αCϕ

i
C

13: τ̂ i ← PROJECTINBOUNDS(τ̂ i).
14: ▷ Get the best trajectory according to penalty function
15: τ̂∗ ← argminτ Ĉλ(τ̂)
16: ▷ Discard slack variables
17: τ∗, τ ← τ̂∗, τ̂
18: return τ∗, τ

Algorithm 2 CSVTO running with online re-planning
1: function CSVTO MPC(x0, τ0)
2: for t ∈ {1, ...,T} do
3: ▷ Resample
4: if MOD(t, resample_steps) = 0 then
5: τt ← RESAMPLE(τt)
6: if t = 1 then
7: K ← Kw

8: anneal← True
9: else

10: K ← Ko

11: anneal← False
12: τ∗t , τt ← CSVTO(xt, τt,K,anneal)
13: ▷ Select first control from the best trajectory
14: ut ← τ∗
15: xt ← STEPENV(ut)
16: ▷ Shift operation
17: τt+1 ← SHIFT(τt)

VIII. EVALUATION

We evaluate our approach in three experiments. The first
is a constrained 12DoF quadrotor task which has nonlinear
underactuated dynamics. The second experiment is a 7DoF
robot manipulator task, where the aim is to move the robot
end-effector to a goal location while being constrained to move
along the surface of a table. The third experiment is also a
7DoF robot manipulator task, where the aim is to manipulate

10

a wrench to a goal angle. Both of these 7DoF manipulator
tasks involve planning in highly constrained domains. We
perform the manipulator experiments in IsaacGym [67]. The
hyperparameters we use in all experiments are shown in Table
I. For all experiments, the costs and constraint functions are
written using PyTorch [68], and automatic differentiation is
used to evaluate all relevant first and second derivatives.

A. Baselines

We compare our trajectory optimization approach to both
sampling-based and gradient-based methods. We compare
against IPOPT [24], a general non-linear constrained optimiza-
tion solver, which has been widely used for robot trajectory
optimization [4], [25]. We use the MUMPS [69] linear solver
for IPOPT. When running IPOPT, where second derivatives
are available we use exact derivatives computed via automatic
differentiation in PyTorch, where they are not available we
use the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
algorithm (L-BFGS) [70] to approximate the Hessian. The
method used will be indicated for each experiment. For CSVTO
and IPOPT, we use a direct transcription scheme; IPOPT solves
the optimization problem as expressed in problem (1). For
IPOPT we use the open-source implementation provided by
[24].

We additionally compare against MPPI [37] and SVMPC
[20]. MPPI and SVMPC are methods for performing uncon-
strained trajectory optimization, with constraints commonly
incorporated with penalties. For these methods we use the
penalty function Ĉ(λ,µ)(τ) = C(τ)+λ

∑
|h(τ)|+µ

∑
|g(τ)|+,

where |g(τ)|+ is a vector consisting of only the positive values
of g(τ). We use separate penalty weights for equality and
inequality constraints. We evaluate each of these baselines
on two different magnitudes of penalty weights on equality
constraints λ. In the SVMPC paper, the authors show that
their method can be used both with and without gradients. We
evaluate against two versions of SVMPC, one using a sample-
based approximation to the gradient and another using the true
gradient. For SVMPC and MPPI we use a shooting scheme
since they can only handle constraints via penalties, which can
lead to poor satisfaction of the dynamics constraint. We use
our own implementations for MPPI and SVMPC in PyTorch.

B. 12DoF Quadrotor

We evaluate our method on a 12DoF underactuated quadro-
tor problem. The goal is to navigate the quadrotor from
a start state to a goal state. We chose this problem to
demonstrate our approach on a problem with complex non-
linear underactuated dynamics. The experimental setup is
shown in Figures 3 and 4. The state of the quadrotor is
x = [x, y, z, p, q, r, ẋ, ẏ, ż, ṗ, q̇, ṙ]T , where (x, y, z) is the 3D
position and (p, q, r) are the Euler angles. The control is
the thrust u = [u1, u2, u3, u4]

T ∈ R4. We place bounds
constraints on the (x, y) location of the quadrotor to be within
a 10m× 10m area centred at (0, 0). The goal is to travel from
start locations sampled uniformly from x, y ∈ [3.0m, 4.5m]
to a goal location of (4, 4) within 100 time steps. We place
an equality constraint that the quadrotor must travel along a

nonlinear surface z = fsurf (x, y). For this surface, we sample
z values from a Gaussian Process (GP) prior with an RBF
kernel and zero mean function on a 10×10 grid of (x, y) points.
We use the sampled values as observations for a GP with the
same kernel and mean function and use the corresponding
posterior mean function as the equality constraint. We sample
a single surface in this way and use it for all experiments. The
dynamics for the 12DoF quadrotor are from [71] and are given
by

x
y
z
p
q
r
ẋ
ẏ
ż
ṗ
q̇
ṙ

t+1

=

x
y
z
p
q
r
ẋ
ẏ
ż
ṗ
q̇
ṙ

t

+∆t

ẋ
ẏ
ż

ṗ+ q̇s(p)t(q) + ṙc(p)t(q)
q̇c(p)− ṙsṗ

q̇
s(p)

c(q)
+ ṙ

c(p))

c(q)
−(s(p)s(r) + c(r)c(p)s(q))K u1

m
−(c(r)s(p)− c(p)s(r)s(q))K u1

m
g − c(p)s(q))K u1

m
(Iy−Iz)q̇ṙ+Ku2

Ix
(Iz−Ix)ṗṙ+Ku3

Iy
(Ix−Iy)ṗq̇+Ku4

Iz

t

(53)
where c(p), s(p), t(p) are cos, sin, tan functions, respectively.
We use parameters m = 1kg, Ix = 0.5kg ·m2, Iy = 0.1kg ·
m2, Iz = 0.3kg ·m2,K = 5, g = −9.81m · s−2. We use the
same dynamics both for planning and for simulation.

We consider three variants of this task with different
obstacle avoidance constraints: 1) We consider the case with
no obstacles; 2) We consider the case of static obstacles. For
the static obstacles case, we wish to demonstrate our method
in a cluttered environment with arbitrarily shaped obstacles.
We do this by generating the obstacles similarly to the surface
constraint, which results in a smooth obstacle constraint. We
consider a constraint function fobs(x, y), where the obstacle-
free region is {(x, y), fobs(x, y) ≤ 0}. We sample values for
fobs(x, y) from a GP prior with an RBF kernel and a constant
mean function of −0.5, so that there is a bias towards being
obstacle-free, on a 10× 10 grid of (x, y) points. We then use
these points as the observations for a GP with the same mean
function and kernel as the GP prior. We also add observations
at (−4,−4) and (4, 4) of −2, to ensure the start and goal
regions are obstacle free. We use the resulting GP posterior
mean function as fobs(x, y). We do this once and keep the
same obstacle constraint for all trials. The resulting obstacle
constraint is shown in Figure 4; 3) Finally, we consider a
cylindrical obstacle in the x-y plane that moves during the trial
in a path that is unknown to the planner; at every timestep, the
planner plans assuming the obstacle will remain fixed. If the
quadrotor collides with an obstacle during execution then we
consider the task failed.

The planning horizon is 12. The posterior log p(τ |o) for this

11

(a) CSVTO t=1 (b) CSVTO t=5 (c) CSVTO t=10 (d) CSVTO t=15

(e) IPOPT t=1 (f) IPOPT t=5 (g) IPOPT t=10 (h) IPOPT t=15

Fig. 3. Experimental setup for the quadrotor task. The quadrotor must travel to the goal location, avoiding the obstacle in red while remaining on the blue
manifold. The fading yellow shows the path of the obstacle from previous timesteps. a-d) CSVTO maintains a set of trajectories (dashed), with the selected
trajectory shown as a solid curve. CSVTO can keep a diverse set of trajectories and switches between them to avoid the moving obstacle. e-f) IPOPT generates
an initial trajectory that makes good progress toward the goal and obeys the manifold constraint. However, even after the first timestep the obstacle has moved
to render this trajectory infeasible. As the obstacle moves further IPOPT is unable to find an alternative trajectory and ends in a collision.

problem is a quadratic cost given by

log p(τ |o) = (xT − xgoal)TP (xT − xgoal)+
T−1∑
t=1

(xt − xgoal)TQ(xt − xgoal) + uTt−1Rut−1.

(54)

The control cost is equivalent to the prior on controls p(ut) =
N (0, 2R−1). The values we use for the costs are

Q = Diag(5, 5, 0.5, 2.5, 2.5, 0.025, 1.25, 1.25, 1.25, 2.5, 2.5, 2.5)

(55)
P = 2Q (56)
R = Diag(0.5, 128, 128, 128). (57)

For this problem, we use automatic differentiation to compute
all required second derivatives for both IPOPT and CSVTO.
We run IPOPT with two different maximum iteration settings.
For the first, we limit the maximum number of iterations to
100 for the initial warm start and to 10 for subsequent time
steps. We limit the number of iterations so that IPOPT has
a comparable computation time to other baselines. The next
setting is to set the maximum iterations to 1000, which allows
IPOPT to run until convergence for most queries. We refer to
this method as IPOPT-1000. As we will show in Section VIII-E,
this method is substantially slower than other baselines and
prohibitively slow for MPC applications, but we included this
baseline to see how well IPOPT performs when computation
time is not an issue. For the baselines using a penalty method
we use µ = 2000 and test two variants for λ: λ = 100 and
λ = 1000.

In Figure 5 we compare CSVTO and IPOPT run for 200
iterations for a single planning query with multiple different

Fig. 4. Experimental set-up for the quadrotor with static obstacles task. The
quadrotor must travel to the goal location, avoiding the obstacles in red while
remaining on the blue manifold.

initializations, indicating that for the same initializations,
CSVTO finds a lower cost local minimum. To generate these
initializations, we sample a nominal control sequence from the
prior p(U) and use small Gaussian perturbations with σ = 0.01
around this nominal control sequence as the initialization. The
initial state sequence is found by applying these controls with
the dynamics. We repeat this process 10 times for a different
nominal control sequence. The results demonstrate that parallel
trajectory optimization with CSVTO is beneficial even when
the initial trajectory distribution is not diverse.

We ran the quadrotor experiments for the three different
obstacle cases for 20 trials with randomly sampled starts. The
results are shown in Figure 6. CSVTO succeeds for 20/20 trials
for the no obstacles and dynamic obstacles cases, and 19/20 for
the static obstacle case, all with a goal threshold of 0.3m. For
the static-obstacle and dynamic-obstacle experiments, IPOPT
is the next best performing with 20/20 trials for no-obstacles
at a goal threshold of 0.4m, but success falls to 15/20 for both
the static-obstacles and dynamic-obstacle case. We see that
running IPOPT with more iterations improves performance

12

0 50 100 150 200
Iterations

104

3 × 103

4 × 103

6 × 103

Co
st

CSVTO
IPOPT

Fig. 5. Comparison between CSVTO and IPOPT with multiple initializations
on the quadrotor task with static obstacles. We compare CSVTO with 8
trajectory samples vs. 8 runs of IPOPT, both from the same initializations and
record the minimum cost achieved from the 8 trajectories over 200 iterations
of both. We run 10 trials for each method. The shaded regions show the range
of the minimum cost achieved over the 10 trials. We see that from the same
initializations, CSVTO finds a solution with a lower cost.

for the static obstacles case, but in the other two cases, there
is no significant difference in performance when allowing
IPOPT to run until convergence. However, running IPOPT to
convergence has substantially higher computation time, which
we will discuss further in section VIII-E. For the no-obstacles
and dynamic-obstacle cases, we see that sample-based methods
perform well according to the task success rate, however, they
fail to satisfy the surface equality constraint. In addition, both
MPPI and SVMPC fail for the static obstacles case.

Trajectories generated from IPOPT vs CSVTO for the
dynamic obstacles case are shown in Figure 3, IPOPT generates
a trajectory aiming to go around the obstacle, but the movement
of the obstacle renders that trajectory infeasible as time
progresses. IPOPT is not able to adapt the trajectory to
go around the obstacle. In contrast, CSVTO generates a
multimodal set of trajectories that go either way around the
obstacle. It is then able to update the trajectories effectively,
avoiding the obstacle and reaching the goal. We do see that
IPOPT achieves the lowest constraint violation in the case of
no obstacle or a static obstacle, while CSVTO achieves the
lowest constraint violation when there is a dynamic obstacle.

C. Robot Manipulator on Surface

In this task, we consider a 7DoF robot manipulator where the
end effector is constrained to move in SE(2) along the surface of
a table. The robot must move to a goal location while avoiding
obstacles on the surface. The setup is shown in Figure 7. This
system’s state space is the robot’s joint configuration q ∈ Rd.
The actions are the joint velocity q̇ and the dynamics are given
by Euler integration qt+1 = qt + q̇t dt, with dt = 0.1. The
prior distribution over actions is p(U) = N (0, σ2I), where
σ = 0.5. The planning horizon is 15. The cost is C(τ) =
2500||pxyT − p

xy
goal||2 + 250

∑T−1
t=1 ||p

xy
t − p

xy
goal||2, where pxyt

is the end effector x, y position which is computed from the

forward kinematics. The equality constraints on this system
are pzt = 0.8, which is the height of the table, and additionally,
there is an orientation constraint that the z-axis of the robot end
effector must be orthogonal to the table, i.e. the inner product
of the table z-axis and the robot z-axis should be equal to -1.

While obeying the table constraint the robot must also avoid
3 obstacles from the Yale-CMU-Berkeley (YCB) object dataset
[72]. We enforce this with a constraint that the signed distance
to the obstacles must be positive, which we compute from
the meshes of the objects. Since signed distance functions
(SDFs) are composable via the min operator, we combine the
SDFs of the three obstacles into a single inequality constraint
per timestep rather than an inequality constraint per obstacle.
This is to reduce the total number of inequality constraints, as
introducing more inequality constraints results in more slack
variables and a higher dimensional problem. To evaluate this
constraint, offline we generate points on the surface of the robot.
Online, we use forward kinematics to map all of these points
to the world frame and evaluate their SDF value, selecting
the minimum SDF value as the value of the constraint. To
compute the gradient of the constraint, consider that for any
surface point we can compute the gradient of the SDF value
with respect to the point from the object mesh. We then use
automatic differentiation to backpropagate this gradient through
the forward kinematics to compute a gradient of the SDF value
with respect to the joint configuration. Finally, to calculate
an overall gradient, we use a weighted combination of the
gradients for each surface point, with the weight computed via
a softmin operation on the SDF values.

The resulting inequality constraint is not twice differentiable,
both because of non-smooth object geometries and because
of composing SDFs with the min operator. Due to this, for
CSVTO we omit the second-order term in equation (33) for
the inequality constraint, and for IPOPT we use L-BFGS to
approximate second-order information. Computing the SDF
value and gradient is a computationally expensive operation, so
we pre-compute grids of the SDF values and the SDF gradients
and do a look-up when performing the optimization. We use a
320× 320× 480 grid with a resolution of 2.5mm. There are
also joint limit constraints on all of the robot joints.

For the penalty-based baselines, we use penalty parameters
of µ = 2000 and variants with λ = 100 and λ = 1000.
For IPOPT, we found that running until convergence was
prohibitively costly, taking several minutes to converge per
optimization. For this reason, we limited the maximum number
of iterations for IPOPT to be the same as CSVTO, resulting in
a similar computation time. This is discussed further in Section
VIII-E.

Due to contact with the table, the dynamics of the system
used for planning can deviate from those in the simulation.
When computing the constraint violation, we use the actual
constraint violation in the simulator rather than the planned
constraint violation.

We run this experiment for 20 trials with random goals and
show the results in Figure 8. Our results show that CSVTO
succeeds in all 20 trials with a goal threshold 0f 0.1m and
achieves the lowest constraint violation of all methods. The
next closest baseline, IPOPT succeeds 19/20 times, with the

13

0.0 0.2 0.4 0.6 0.8 1.0
Goal threshold

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

No Obstacle

CSVTO (Ours)
IPOPT
IPOPT-1000

MPPI = 100
MPPI = 1000

SVMPC = 100
SVMPC = 1000

SVMPC-grad = 100
SVMPC-grad = 1000

0.0 0.2 0.4 0.6 0.8 1.0
Goal threshold

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Static Obstacles

0.0 0.2 0.4 0.6 0.8 1.0
Goal threshold

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Dynamic Obstacle

0 20 40 60 80 100
Time step

10 6

10 4

10 2

100

Av
er

ag
e

co
ns

tra
in

t v
io

la
tio

n

0 20 40 60 80 100
Time step

10 6

10 4

10 2

100

102

Av
er

ag
e

co
ns

tra
in

t v
io

la
tio

n

0 20 40 60 80 100
Time step

10 6

10 4

10 2

100

Av
er

ag
e

co
ns

tra
in

t v
io

la
tio

n

Fig. 6. Results for quadrotor experiments. The top row shows the success rate as we increase the size of the goal region. The bottom row shows the average
surface constraint violation as a function of time. Left) No obstacle. Middle) Static obstacles. Right) Dynamic obstacle.

TABLE I
HYPERPARAMETER VALUES FOR THE THREE EXPERIMENTS

Experiment # particles αJ αC ϵ Kw Ko resample_steps β σresample λ W
Quadrotor 8 0.05 1 0.5 100 10 10 0.55 0.1 1000 3

Manipulator on Surface 8 0.01 1 0.1 100 10 1 0.1 0.01 1000 3
Manipulator wrench 4 0.01 1 0.25 100 10 1 0.1 0.01 1000 3

Fig. 7. Snapshots from CSVTO used for the robot manipulator on a surface
experiment. The robot must move the end-effector to a goal location while
remaining on the surface of the table and avoiding the obstacles. CSVTO
generates trajectories that explore different routes to the goal.

failure case resulting from a poor local minima with qt and
qt+1 on either side of an obstacle, but a large distance from
one another. This resulted in the robot becoming stuck on the
obstacle and unable to make progress.

D. Robot Manipulator using wrench

In this task, we consider a 7DoF robot manipulator in which
the goal is to manipulate a wrench to a goal angle. To turn the
wrench, the robot must be able to supply at least 1Nm of torque.
The setup is shown in Figure 9. The state space is [q ϕ θ]T .
q ∈ R7 is the configuration space of the robot. ϕ parameterizes
the distance between the robot end-effector and the wrench
in the x-y plane as l + ϕ where l is a nominal distance. θ

0.00 0.02 0.04 0.06 0.08 0.10
Goal threshold

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

0 5 10 15 20 25

10 3

10 1

Vi
ol

at
io

n

Height

CSVTO (Ours)
IPOPT
MPPI = 100

MPPI = 1000
SVMPC = 100
SVMPC = 1000

SVMPC-grad = 100
SVMPC-grad = 1000

0 5 10 15 20 25
Timestep

10 3

10 1

Vi
ol

at
io

n

Orientation

Fig. 8. Results for robot manipulator on surface experiments Left column
shows success rate as we increase the size of the goal region. Right column
shows average constraint violation as a function of time for both the height
constraint and the orientation constraint.

is the wrench angle. The actions are the joint velocities q̇.
The dynamics of the joint configuration are given by Euler
integration qt+1 = qt + q̇t dt, with dt = 0.1. We use a simple
geometric model for dynamics of ϕ and θ. Assuming that the
robot end-effector remains grasping the wrench we compute
the next ϕ as ϕ = ||pxyee − pxywrench||2 − l. To compute the
next joint angle θ we use θt+1 = θt + tan ∆xee

∆yee
. The prior

distribution over actions is p(U) = N (0, σ2I), where σ = 1.

14

The equality constraints of the system are that pzee should
be at a fixed height, and additionally that θT = θgoal. There is
also a constraint that the end-effector orientation of the robot
remains fixed relative to the wrench. To do this we compute
the desired end-effector orientation from the wrench angle, and
compute the relative rotation between the desired and actual
end-effector orientation in axis-angle form, constraining the
angle to be zero. In total, combining the dynamics constraints
for ϕ and θ with the other equality constraints there are four
equality constraints on the pose of the end-effector per time
step. When reporting the constraint violation, we report the
maximum violation of these four constraints. The inequality
constraints of the system are that the desired torque should
be achievable within the robot joint limits. This constraint
is min_torque ≤ J(q)T (l + ϕ) ≤ max_torque where J
is the manipulator jacobian. There are also joint limit bound
constraints, and a bound constraint on ϕ. Computing the second
derivative of this constraint requires computing the second
derivative of the manipulator Jacobian, which is costly. To
avoid this, for CSVTO we omit the second-order terms in
equation (33) and for IPOPT we use L-BFGS. There is no cost
C for this experiment, instead, the inference problem reduces to
conditioning the prior on constraint satisfaction. The planning
horizon is 12.

For the penalty-based methods we use µ = 1000 and variants
with λ = 1000 and λ = 10000. We run IPOPT both until
convergence with a max number of iterations of 1000 and
additionally with a max iterations of 200 at warmup and 20
online, which results in a similar computation time to CSVTO.

We run this experiment for 20 trials with random initial-
izations and show the results in the bottom row of Figure
10. This problem is challenging because the dynamics are
based on a simple inaccurate geometric model. Compliance
in the gripper causes deviation from this geometric model,
and the model is only accurate so long as all constraints hold.
Our results show that CSVTO can succeed in all 20 trials
with a goal threshold of 0.06 radians and achieves the lowest
constraint violation. The next closest baseline, SVMPC-grad
with λ = 10000 succeeds 19/20 times with a goal threshold of
0.09 radians, dropping to 11/20 at 0.06 radians. We find that
running IPOPT to convergence leads to poor performance, as
the solver is unable to converge to a feasible solution. Limiting
the maximum iterations to 200 for the initial warm-start and
20 for subsequent online iterations leads to improved task
performance, achieving a success rate of 12/20.

We also demonstrate CSVTO on real hardware for the robot
manipulator manipulating a wrench task, shown in Figure 1.
After generating a configuration-space trajectory using CSVTO,
we command the robot to move to the first configuration
waypoint of that trajectory using a joint impedance controller.
Once the robot has reached the desired waypoint, we perform
re-planning to generate a new configuration-space trajectory.
We use the same hyperparameters as those in the simulator
for this experiment. During execution, we applied disturbances
by perturbing the robot end-effector. The impedance controller
can reject small disturbances, but larger disturbances require
re-planning from the perturbed location. Figure 1 shows one
such perturbation. Despite large disturbances, our method was

able to readjust the grasp and complete the task successfully.

E. Computation Time
To determine the computation times for CSVTO and each

baseline, we ran 10 trials for each experiment on a computer
with an Intel i9-11900KF Processor with an NVIDIA RTX
3090 GPU. We record the average computation times for the
initial trajectory as well as subsequent online trajectories, which
we refer to as tw and to, respectively. We also record the
standard deviations of the computation times. The number of
iterations used for the warm-up and online phase is Kw and
Ko, respectively. For IPOPT this is a maximum number of
iterations, and the solver may terminate early. For all other
methods, all iterations are used.

1) 12DoF Quadrotor: The average computation time of
CSVTO compared to baselines for all quadrotor experiments
is shown in Table II. For this experiment, computing the
gradient was a major computational bottleneck, thus for the
sample-based methods we allowed them more iterations. We
see that MPPI and SVMPC are faster than CSVTO with online
trajectory computation times of 0.366s, 0.439s, and 0.589s,
respectively. For the no-obstacles and dynamic-obstacle cases,
IPOPT is also faster than CSVTO with an average online
computation time of 0.429s and 0.479s due to early termination.
However, for the static obstacles case, this rises to 0.768s
compared to CSVTO at 0.650s. When running IPOPT to
convergence, the solving time is substantially larger, with an
average computation time for the static obstacle case of 15.8s.
We also see that the standard deviations are very large, due to
the variability in how quickly the solver converges. Combining
these with the results from Section VIII-B, we see that CSVTO
outperforms IPOPT to convergence with substantially faster
computation times.

2) Robot 7DoF Manipulator: The computation times for all
methods on both 7DoF manipulation experiments are shown
in Table III. For the manipulator on a surface experiment,
the difference in computation speed of the sample-based vs
gradient-based algorithms per iteration was less pronounced
than for the quadrotor experiment. We thus kept the number
of iterations the same for all experiments, with 100 warm-up
iterations and 10 online iterations. CSVTO and IPOPT have
similar computation times at 1.12s and 1.14s to compute a
trajectory online. MPPI is again the fastest algorithm at 0.691s
to generate a trajectory online, though the performance is lower
both in terms of task success and constraint violation. Initial
attempts to run IPOPT with a maximum of 1000 iterations
took several minutes to solve, which rendered it impractical.

For the wrench task, CSVTO and SVMPC-grad have similar
computation times. While CSVTO requires the computation
of the second derivative of the constraints, the cost evaluation
of SVMPC-grad requires a loop through the time horizon,
slowing down both cost and gradient evaluation. Since CSVTO
employs a collocation scheme this process is vectorized.
Whether CSVTO or SVMPC-grad is faster depends on the
relative cost of computing the second derivatives vs. looping
through the time horizon. Each iteration of IPOPT was faster
than CSVTO for this experiment, as IPOPT using the L-
BFGS approximation computes no second derivatives, whereas

15

TABLE II
MEAN AND STANDARD DEVIATION OF COMPUTATION TIMES FOR CSVTO AND ALL BASELINE METHODS FOR THE 12DOF QUADROTOR EXPERIMENTS. tw

AND to ARE THE AVERAGE TIMES TAKEN TO GENERATE THE TRAJECTORIES FOR THE WARM-UP PHASE AND ONLINE PHASE, RESPECTIVELY

No Obstacles Static Obstacles Dynamic Obstacle
Method Kw Ko tw (s) to (s) tw (s) to (s) tw (s) to (s)

CSVTO (Ours) 100 10 5.92± 0.235 0.589± 0.003 6.56± 0.39 0.650± 0.025 6.47± 0.344 0.643± 0.021
IPOPT 100 10 4.36± 2.29 0.429± 0.008 7.19± 2.48 0.768± 0.069 3.19± 1.89 0.479± 0.097

IPOPT-1000 1000 1000 17.5± 30.2 2.40± 1.10 39.2± 32.0 15.8± 10.1 10.8± 24.5 2.45± 2.26
SVMPC-grad 100 10 8.25± 0.080 0.771± 0.217 8.24± 0.061 0.765± 0.23 8.28± 0.054 0.850± 0.014

SVMPC 250 25 4.26± 0.030 0.439± 0.002 6.07± 0.031 0.621± 0.003 4.35± 0.24 0.449± 0.017
MPPI 250 25 3.63± 0.021 0.366± 0.0019 5.45± 0.039 0.55± 0.003 3.66± 0.13 0.373± 0.016

TABLE III
AVERAGE COMPUTATION TIMES FOR CSVTO AND ALL BASELINE METHODS FOR THE 7DOF ROBOT MANIPULATOR EXPERIMENTS. tw AND to ARE THE

AVERAGE TIMES TAKEN TO GENERATE THE TRAJECTORIES FOR THE WARM-UP PHASE AND ONLINE PHASE, RESPECTIVELY

Surface Wrench
Method Kw Ko tw (s) to (s) Kw Ko tw (s) to

CSVTO (Ours) 100 10 9.41± 0.42 1.12± 0.19 100 10 9.62± 0.84 0.64± 0.004
IPOPT 100 10 10.26± 3.5 1.14± 0.27 200 20 5.82± 0.54 0.493± 0.028

IPOPT-1000 1000 1000 — — 1000 1000 30.8± 2.51 22.7± 2.84
SVMPC-grad 100 10 8.55± 0.072 1.10± 0.27 100 10 9.54± 0.071 0.732± 0.004

SVMPC 100 10 7.27± 0.097 0.758± 0.010 100 10 7.44± 0.15 0.571± 0.007
MPPI 100 10 6.91± 0.12 0.691± 0.028 100 10 7.05± 0.11 0.506± 0.006

Fig. 9. The robot manipulator turning a wrench experimental set-up. The
goal is to turn the wrench by 90 degrees. End-effector planned path at the
first time-step visualized for three different initial trajectories generated by
CSVTO (Top) and IPOPT (Bottom). CSVTO’s end-effector path traces an arc
around the wrench center to turn the wrench, while IPOPT paths are often
poor, containing very large steps and lacking smoothness.

CSVTO only neglected the second derivatives of the force
inequality constraint. We thus allowed IPOPT more iterations,
as seen in Table III. Attempting to allow IPOPT to run with
a much larger maximum iteration number resulted in much
slower solving times and worse performance.

IX. DISCUSSION

In this section we will discuss some of the advantages of
CSVTO over baselines, and then discuss some limitations and
finally highlight areas for future work.

A. Local minima

CSVTO produces diverse approximately constraint-satisfying
trajectories. By encouraging diversity through the course of

0.00 0.02 0.04 0.06 0.08 0.10
Goal threshold

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

0.0 2.5 5.0 7.5 10.0
Time step

10 1

100

Co
ns

tra
in

t V
io

la
tio

n

CSVTO (Ours)
IPOPT
IPOPT-1000

MPPI = 1000
MPPI = 10000
SVMPC = 1000

SVMPC = 10000
SVMPC-grad = 1000
SVMPC-grad = 10000

Fig. 10. Results for the robot manipulator using the wrench. Left column
shows the success rate as we increase the size of the goal region. The right
column shows the average constraint violation as a function of time time,
where we compute the constraint violation at a given time via the maximum
violation among the equality constraints.

the optimization the algorithm searches the solution space
more widely and can result in multi-modal sets of solutions,
for example, see Figure 3. We found that this behavior is
beneficial for escaping from local minima. This was most
clearly demonstrated in the 12DoF Quadrotor experiment. We
found that in the case of no obstacles, IPOPT was consistently
able to get relatively close to the goal, achieving a 100% success
rate at a goal region of 0.4m. However, it was unable to escape
a local minimum in the vicinity of the goal region. This local
minimum appears to be induced by the surface constraint, as
IPOPT frequently became stuck at a position where it needed to
climb in height to reach the goal while satisfying the constraint,
incurring a large control cost. In contrast, CSVTO was able to
achieve a 100% success with a much smaller goal region of
0.2m.

16

B. Initialization

CSVTO optimizes a set of trajectories in parallel. Each of
these trajectories has a different random initialization, and, as
mentioned, the objective encourages trajectory diversity. We
find that this approach is effective at making the algorithm
more robust to poor initialization. This is most clearly seen in
the 7DoF wrench manipulation experiment, shown in Figure 9.
This system is highly constrained, and we can see from figure
9 that the trajectories generated by IPOPT can be very low
quality when poorly initialized. This is reflected in the success
rates, where in our experiments CSVTO succeeds for 20/20 of
the trials vs. 12/20 for IPOPT.

C. Limitations & Future Work

a) Differentiability: Our method requires that all costs and
constraints are differentiable. This is a restrictive assumption,
particularly when treating dynamics as a constraint. Many
contact-rich robot manipulation tasks exhibit discontinuities
that invalidate this assumption.

b) Slack variables: Our approach converts inequality
constraints to equality constraints by introducing slack vari-
ables. While this is a natural way of incorporating inequality
constraints into our method, it results in increasing the number
of decision variables by the number of inequality constraints.
This is likely to be problematic for long-horizon planning tasks
with many inequality constraints. A possible solution would be
solving a QP subproblem at every iteration to determine the
active inequality constraints as in [56], however, this has the
issue that we would need to solve an individual QP subproblem
for every particle.

c) Computation time inadequate for real-time control:
We note from Table II, in the dynamic obstacle quadrotor task
the average computation time for online trajectory generation
is 0.643s for CSVTO, compared to MPPI, the fastest baseline,
taking 0.373s. In this case, the solve times for the current
implementation of CSVTO and all baselines are insufficient for
real-time reactive control. Our method, all baselines other than
IPOPT, and all cost and constraint functions were implemented
in Python, using automatic differentiation in PyTorch to
compute the relevant first and second derivatives. Implementing
these methods in C++, using a library such as CasADI [73] for
automatic differentiation, may enable real-time performance
on these systems in future work.

d) Kernel selection: While our approach decomposes the
kernel into a sum of kernels operating on sub-trajectories, each
of these kernels is an RBF kernel. While the RBF has attractive
properties, such as strict positive-definiteness and smoothness,
we believe that exploring task-specific kernels for trajectory
optimization is an interesting avenue for future work.

X. CONCLUSION

In this article, we presented Constrained Stein Variational
Trajectory Optimization (CSVTO), an algorithm for performing
constrained trajectory optimization on a set of trajectories
in parallel. To develop CSVTO we formulated constrained
trajectory optimization as a Bayesian inference problem, and
proposed a constrained Stein Variational Gradient Descent

(SVGD) algorithm inspired by O-SVGD [23] for approximating
the posterior over trajectories with a set of particles. Our results
demonstrate that CSVTO outperforms baselines in challenging
highly-constrained tasks, such as a 7DoF wrench manipulation
task, where CSVTO succeeds in 20/20 trials vs 12/20 for
IPOPT. Additionally, our results demonstrate that generating
diverse constraint-satisfying trajectories improves robustness
to disturbances, such as changes in the environment, as well
as robustness to initialization.

APPENDIX
MATRIX DERIVATIVE OF P (τ)

In Equation (33) we showed that the repulsive gradient
is split into two terms, one of which contains the matrix
derivative ∇[τ]kP (τ). In this section, we show how to compute
this derivative. For notational convenience, let τ ∈ RN (thus
P (τ) ∈ RN×N), h(τ) ∈ RM (where M is the number of
constraints), and we omit the dependence on τ when writing
the constraint derivative ∇h(τ). ∇[τ]kP (τ) is a matrix of
shape N × N . We refer to the second derivative of the lth
constraint ∇2hl(τ) as Hl, which is an N × N matrix. The
matrix derivative ∇[τ]kP (τ), as defined in Equation (33), can
be expanded into three terms:

∇[τ]k [P (τ)]i,k = 2Ai,k −Bi,k, (58)

where A,B ∈ RN×N and i, k ∈ {1, ..., N}. Ai,k is given by

Ai,k =

M∑
l

[Hl]k,i[
(
∇h∇hT

)−1∇h]l,k. (59)

To compute Bi,k, we first consider the matrix Dk ∈ RM×M :

[Dk]l,m =

N∑
j

([Hl]k,j [∇h]l,j + [Hm]j,k[∇h]m,j) , (60)

for l,m ∈ {1, ...,M}. We then finally compute Bi,k as

Bi,k =
M∑
l

M∑
m

[Dk]l,m[∇hT
(
∇h∇hT

)−1
]i,l[

(
∇h∇hT

)−1∇h]m,k.

(61)

When neglecting second-order terms for the lth constraint
hl(τ) (as discussed in Section VII-A1a), we set Hl = 0 when
computing Ai,k and Bi,k.

REFERENCES

[1] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “Gusto: Guaranteed
sequential trajectory optimization via sequential convex programming,”
in Proc. IEEE Int. Conf. Robot. Autom., 2019, pp. 6741–6747.

[2] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” Int. J. Rob. Res.,
vol. 33, no. 9, pp. 1251–1270, 2014.

[3] T. A. Howell, B. E. Jackson, and Z. Manchester, “Altro: A fast solver
for constrained trajectory optimization,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2019, pp. 7674–7679.

[4] M. S. Phoon, P. S. Schmitt, and G. V. Wichert, “Constraint-based task
specification and trajectory optimization for sequential manipulation,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 197–202.

17

[5] C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov, and P.-B. Wieber, “A
robust linear mpc approach to online generation of 3d biped walking
motion,” in Proc. 15th IEEE-RAS Int. Conf. Humanoid Robots, 2015, p.
595–601.

[6] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 2,
2000, pp. 995–1001 vol.2.

[7] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, 1996.

[8] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Rob. Res., vol. 30, no. 7, pp. 846–894, 2011.

[9] S. M. Lavalle, Planning Algorithms. Cambridge University Press, 2006.
[10] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A

framework for pose-constrained manipulation planning,” Int. J. Rob.
Res., vol. 30, no. 12, pp. 1435–1460, 2011.

[11] J. Mirabel, S. Tonneau, P. Fernbach, A.-K. Seppälä, M. Campana,
N. Mansard, and F. Lamiraux, “Hpp: A new software for constrained
motion planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016,
pp. 383–389.

[12] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints
by rapidly exploring manifolds,” IEEE Trans. Robot., vol. 29, no. 1, pp.
105–117, 2013.

[13] J. M. Porta, L. Jaillet, and O. Bohigas, “Randomized path planning on
manifolds based on higher-dimensional continuation,” Int. J. Rob. Res.,
vol. 31, no. 2, pp. 201–215, 2012.

[14] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-
based kinodynamic planning,” Int. J. Rob. Res., vol. 35, no. 5, pp.
528–564, 2016.

[15] D. J. Webb and J. van den Berg, “Kinodynamic rrt*: Asymptotically
optimal motion planning for robots with linear dynamics,” in Proc. IEEE
Int. Conf. Robot. Autom., 2013, pp. 5054–5061.

[16] A. Lambert and B. Boots, “Entropy regularized motion planning via
stein variational inference,” 2021, arxiv.2107.05146.

[17] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” J. Am. Stat. Assoc., vol. 112, no. 518, pp.
859–877, 2017.

[18] H. Yu and Y. Chen, “A gaussian variational inference approach to motion
planning,” IEEE Robot. Autom. Lett., vol. 8, no. 5, pp. 2518–2525, 2023.

[19] M. Mukadam, X. Yan, and B. Boots, “Gaussian process motion planning,”
in Proc. IEEE Int. Conf. Robot. Autom., 2016, pp. 9–15.

[20] A. Lambert, A. Fishman, D. Fox, B. Boots, and F. Ramos, “Stein
variational model predictive control,” in Proc. Conf. Robot Learn., 2020.

[21] J. Hauser and A. Saccon, “A barrier function method for the optimization
of trajectory functionals with constraints,” in IEEE 45th Conf. Decision
and Control, 2006, pp. 864–869.

[22] R. Ni, T. Schneider, D. Panozzo, Z. Pan, and X. Gao, “Robust &
asymptotically locally optimal uav-trajectory generation based on spline
subdivision,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 7715–
7721.

[23] R. Zhang, Q. Liu, and X. Tong, “Sampling in constrained domains with
orthogonal-space variational gradient descent,” Proc. Int. Conf. Neural
Information Processing Systems, vol. 35, pp. 37 108–37 120, 2022.

[24] A. Wächter and L. T. Biegler, “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,” Math.
Program., vol. 106, no. 1, p. 25–57, March 2006.

[25] T. Apgar, P. Clary, K. Green, A. Fern, and J. W. Hurst, “Fast online
trajectory optimization for the bipedal robot cassie,” in Robot.: Sci. Syst.,
2018.

[26] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM Rev., vol. 47, no. 1, p.
99–131, Jan 2005.

[27] D. Q. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” Int. J. Control, vol. 3,
pp. 85–95, 1966.

[28] W. Li and E. Todorov, “Iterative linear quadratic regulator design
for nonlinear biological movement systems,” in Proc. IEEE Int. Conf.
Informat. Control. Autom. Robot., 2004.

[29] M. Giftthaler and J. Buchli, “A projection approach to equality constrained
iterative linear quadratic optimal control,” in Proc. 17th IEEE-RAS Int.
Conf. Humanoid Robotics, 2017, p. 61–66.

[30] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming
with nonlinear constraints,” in Proc. IEEE Int. Conf. Robot. Autom., 2017,
pp. 695–702.

[31] O. Von Stryk and R. Bulirsch, “Direct and indirect methods for trajectory
optimization,” Annals of operations research, vol. 37, pp. 357–373, 1992.

[32] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time gaussian process motion planning via probabilistic inference,” Int.
J. Rob. Res., vol. 37, no. 11, pp. 1319–1340, 2018.

[33] M. Toussaint and A. Storkey, “Probabilistic inference for solving discrete
and continuous state markov decision processes,” in Proc. Int. Conf.
Mach. Learn., 2006, p. 945–952.

[34] K. Rawlik, M. Toussaint, and S. Vijayakumar, “On stochastic optimal
control and reinforcement learning by approximate inference,” in Robot.:
Sci. Syst., 2013.

[35] J. Watson, H. Abdulsamad, and J. Peters, “Stochastic optimal control
as approximate input inference,” in Proc. Conf. Robot Learn., vol. 100,
2020, pp. 697–716.

[36] J.-S. Ha, D. Driess, and M. Toussaint, “A probabilistic framework
for constrained manipulations and task and motion planning under
uncertainty,” in Proc. IEEE Int. Conf. Robot. Autom. IEEE, 2020,
pp. 6745–6751.

[37] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applications
to autonomous driving,” IEEE Trans. Robot., vol. 34, no. 6, p. 1603–1622,
Dec 2018.

[38] M. Kobilarov, “Cross-entropy motion planning,” Int. J. Rob. Res., vol. 31,
no. 7, pp. 855–871, 2012.

[39] Z. Wang, O. So, J. Gibson, B. Vlahov, M. Gandhi, G.-H. Liu, and
E. Theodorou, “Variational Inference MPC using Tsallis Divergence,” in
Robot.: Sci. Syst., 2021.

[40] J. Watson and J. Peters, “Inferring smooth control: Monte carlo posterior
policy iteration with gaussian processes,” in Proc. Conf. Robot. Learn.,
2023, pp. 67–79.

[41] C. Pinneri, S. Sawant, S. Blaes, J. Achterhold, J. Stueckler, M. Rolinek,
and G. Martius, “Sample-efficient cross-entropy method for real-time
planning,” in Proc. Conf. Robot Learn., vol. 155, 2021, pp. 1049–1065.

[42] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,
F. Ramos, and B. Boots, “Storm: An integrated framework for fast joint-
space model-predictive control for reactive manipulation,” in Proc. Conf.
Robot. Learn., 2022, pp. 750–759.

[43] T. Power and D. Berenson, “Variational inference mpc using normalizing
flows and out-of-distribution projection,” in Robot.: Sci. Syst., 2022.

[44] J. Sacks and B. Boots, “Learning sampling distributions for model
predictive control,” in Proc. Conf. Robot. Learn., 2023, pp. 1733–1742.

[45] Q. Liu and D. Wang, “Stein variational gradient descent: A general
purpose bayesian inference algorithm,” in Proc. Int. Conf. Neural
Information Processing Systems, 2016, p. 2378–2386.

[46] L. Barcelos, A. Lambert, R. Oliveira, P. Borges, B. Boots, and F. Ramos,
“Dual Online Stein Variational Inference for Control and Dynamics,” in
Robot.: Sci. Syst., 2021.

[47] A. Lambert, B. Hou, R. Scalise, S. S. Srinivasa, and B. Boots, “Stein
variational probabilistic roadmaps,” in Proc. IEEE Int. Conf. Robot.
Autom., 2022, pp. 11 094–11 101.

[48] J. Pavlasek, S. R. Lewis, B. Sundaralingam, F. Ramos, and T. Hermans,
“Ready, set, plan! planning to goal sets using generalized bayesian
inference,” in Proc. Conf. Robot. Learn., 06–09 Nov 2023, pp. 3672–
3686.

[49] I. M. Balci, E. Bakolas, B. Vlahov, and E. A. Theodorou, “Constrained
covariance steering based tube-mppi,” in 2022 American Control Con-
ference (ACC), 2022, pp. 4197–4202.

[50] T. Osa, “Multimodal trajectory optimization for motion planning,” Int. J.
Rob. Res., vol. 39, no. 8, pp. 983–1001, 2020.

[51] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” Int. J. Rob. Res., vol. 32,
no. 9-10, pp. 1164–1193, 2013.

[52] H. Yamashita, “A differential equation approach to nonlinear program-
ming,” Math. Program., vol. 18, no. 1, pp. 155–168, 1980.

[53] J. Schropp and I. Singer, “A dynamical systems approach to constrained
minimization,” Numer. Funct. Anal. Optim., vol. 21, no. 3-4, pp. 537–551,
2000.

[54] V. Shikhman and O. Stein, “Constrained optimization: projected gradient
flows,” J. Optim. Theory. Appl., vol. 140, no. 1, pp. 117–130, 2009.

[55] H. T. Jongen and O. Stein, “Constrained global optimization: Adaptive
gradient flows,” in Frontiers in Global Optimization, C. A. Floudas and
P. Pardalos, Eds., 2004, p. 223–236.

[56] Feppon, F., Allaire, G., and Dapogny, C., “Null space gradient flows
for constrained optimization with applications to shape optimization,”
ESAIM: COCV, vol. 26, p. 90, 2020.

[57] Q. Liu, “Stein variational gradient descent as gradient flow,” in Proc. Int.
Conf. Neural Information Processing Systems, I. Guyon, U. V. Luxburg,

18

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.,
2017.

[58] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in Proc. Int. Conf. Mach. Learn., 2009, p. 1049–1056.

[59] M. Okada and T. Taniguchi, “Variational inference mpc for bayesian
model-based reinforcement learning,” in Proc. Conf. Robot Learn., 2020,
pp. 258–272.

[60] J. Urain, A. T. Le, A. Lambert, G. Chalvatzaki, B. Boots, and J. Peters,
“Learning implicit priors for motion optimization,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2022, pp. 7672–7679.

[61] H. Attias, “Planning by probabilistic inference,” in Proc. 9th Int.
Workshop on Artificial Intelligence and Statistics, 2003, pp. 9–16.

[62] Q. Liu, J. D. Lee, and M. Jordan, “A kernelized stein discrepancy for
goodness-of-fit tests,” in Proc. Int. Conf. Mach. Learn., 2016, p. 276–284.

[63] D. Wang, Z. Tang, C. Bajaj, and Q. Liu, “Stein variational gradient
descent with matrix-valued kernels,” Proc. Int. Conf. Neural Information
Processing Systems, vol. 32, 2019.

[64] P. Armand and D. Orban, “The squared slacks transformation in nonlinear
programming,” Sultan Qaboos University Journal for Science [SQUJS],
vol. 17, 01 2007.

[65] F. D’Angelo and V. Fortuin, “Annealed stein variational gradient descent,”
2021, arxiv.2101.09815.

[66] J. D. Hol, T. B. Schon, and F. Gustafsson, “On resampling algorithms
for particle filters,” in 2006 IEEE Nonlinear Statistical Signal Processing
Workshop, 2006, pp. 79–82.

[67] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac gym:
High performance gpu-based physics simulation for robot learning,” 2021,
arxiv.2108.10470.

[68] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Proc. Int. Conf. Neural Information
Processing Systems, 2019.

[69] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, “Hybrid
scheduling for the parallel solution of linear systems,” Parallel Computing,
vol. 32, no. 2, pp. 136–156, 2006.

[70] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[71] F. Sabatino, “Quadrotor control: modeling, nonlinear control design, and
simulation,” Master’s thesis, KTH Royal Institute of Technology, 2015.

[72] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in Int. Conf. on Advanced Robotics. IEEE,
2015, pp. 510–517.

[73] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 2019.

Thomas Power received the M.Eng. degree in me-
chanical engineering from Imperial College London,
London, UK, in 2016, and the M.S. and Ph.D. degrees
in Robotics from the University of Michigan, Ann
Arbor, MI, USA, in 2020 and 2024 respectively.
His current research interests include trajectory op-
timization and machine learning applied to robotic
manipulation.

Dmitry Berenson is an Associate Professor in the
Robotics Department at the University of Michigan,
where he has been since 2016. Before coming to
University of Michigan, he was an Assistant Professor
at WPI (2012-2016). He received a BS in Electrical
Engineering from Cornell University in 2005 and
received his Ph.D. degree from the Robotics Institute
at Carnegie Mellon University in 2011. He was also
a post-doc at UC Berkeley (2011-2012). He has
received the IEEE RAS Early Career Award and the
NSF CAREER award. His current research focuses

on robotic manipulation, robot learning, and motion planning.

	Introduction
	Related Work
	Trajectory optimization
	Sample-based Motion Planning
	Planning & Control as Inference
	Gradient Flows for constrained optimization

	Trajectory Optimization
	Variational Inference for Trajectory Optimization
	Problem Statement
	Stein Variational Gradient Descent
	Orthogonal-Space Stein Variational Gradient Descent

	Methods
	Constrained Stein Trajectory Optimization
	Equality constraints
	Extension to Inequality Constraints
	Analysis
	Annealed SVGD for improved diversity
	Trajectory Kernel
	Bounds constraint
	Initialization
	Re-sampling

	Evaluation
	Baselines
	12DoF Quadrotor
	Robot Manipulator on Surface
	Robot Manipulator using wrench
	Computation Time
	12DoF Quadrotor
	Robot 7DoF Manipulator

	Discussion
	Local minima
	Initialization
	Limitations & Future Work

	Conclusion
	Appendix: Matrix Derivative of Projection
	References
	Biographies
	Thomas Power
	Dmitry Berenson

