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ABSTRACT

This thesis proposes a framework for autonomous robotic perception and planning

for manipulation tasks in unknown environments by leveraging information from pur-

poseful contacts and explicitly reasoning about uncertainty. The high-level goal is to

enhance the amount of information that can be extracted from contacts, enabling

greater utilization of this sensing modality. We focus on challenging tasks where ob-

jects to be manipulated are occluded by the environment, other objects, or themselves,

which limits the applicability of purely visual sensing and necessitates contact-based

information gathering.

Each chapter of our work tackles a specific challenge arising from collecting infor-

mation through contact, with the goal of enabling robots to explore autonomously.

The first challenge we considered is the limited applicability of long-horizon planning

when global perception is lacking. Traps may arise where the state remains in a cy-

cle without accomplishing the goal, and we develop a hierarchical control scheme to

detect and escape from traps.

Contact-based exploration is also challenging due to the ambiguity of associating

contact points to specific objects in multi-object environments. To resolve this, we

present a method that maintains a belief over both current and past contact points

without relying on rigid associations. This flexibility allows for the correction of

erroneous estimates.

Building on these contact point estimates, we infer the plausible poses of known

objects. A key component in our method is the use of negative information—data

indicating observed free space—which constrains possible object poses by measuring

the discrepancy between these potential poses and the observed point clouds. This

approach is especially effective in highly-occluded environments where visual object

segmentation often fails.

To integrate our pose estimates into real-time decision-making, we formulate a

conditional probability on object poses given the disparity with observed point clouds.

ix



We derive a cost function from the mutual information between the object’s pose and

the occupancy of the workspace points, facilitating its application in closed-loop model

predictive control (MPC). Our method also includes a reachability cost function to

prevent objects from being pushed out of the robot’s workspace and incorporates

a stochastic dynamics model to predict information gain changes as the object is

manipulated.

The algorithms developed in this thesis emphasize efficient parallel computation

and are evaluated using both simulated and real experiments. All implementations

are made publicly available as open-source libraries.

x



CHAPTER I

Introduction

1.1 Introduction

A major trend in modern robotics is to move away from static, controlled envi-

ronments such as factories towards dynamic, unknown environments such as homes.

This is exemplified in the recent Amazon Picking Challenge, where robots competed

to perceive, pick, and place household items from well-lit shelves. Despite having

fore-knowledge of the environment and the relatively controlled conditions, competi-

tors noted that occlusion was a major limitation to their visual perception Morrison

et al. (2018) Zeng et al. (2022). In home environments, occlusion and poor lighting

conditions, as well as the presence of unknown objects confound vision systems (e.g.

cameras and LiDARs). To overcome visual limitations, robots can use contact-rich

interactions to gather information.

This thesis focuses on how to effectively use the information gathered through

contacts to perceive objects and to plan for their manipulation. We first distinguish

contact from tactile information. We use tactile to refer to any information collected

from touch, including the presence of contact at a point or patch (contact informa-

tion), texture, and temperature. As most robots are not equipped with specialized

tactile sensors, this thesis focuses on using only contact information. We consider

tasks where visual perception is significantly occluded, missing, or can only be used

as a weak prior and where contact is an essential source of information. For exam-

ple, rummaging inside a cabinet cluttered with objects presents many occlusions that

limit visual perception and necessitates making contact to determine the location of a

target object. We restrict our consideration to rigid household objects, such as those

from the YCB dataset Calli et al. (2017). Knowing the position of contact points for a

rigid object can be sufficient to localize the object, but this is not true for deformable

1



objects due to their increased degrees of freedom. Thus the methods in this thesis

are designed to apply to rigid-body localization and manipulation tasks.

1.1.1 Challenges for Novel Environments

Deploying a robot to novel environments requires adapting to new dynamics and

an overall more reactive approach. Rather than generating start-to-goal trajectories

formed using classic motion planning techniques, creating finite horizon trajectories

with model predictive control may be more appropriate. However, dynamics accuracy,

particularly in contact-rich tasks, is often limited outside of the experienced trajec-

tory. A limited control horizon combined with unknown dynamics can often lead to

poor local minima, intuitively termed “traps” that are developed more rigorously in

Chapter II.

1.1.2 Challenges for Using Contact

There are many challenges to using contact information, contributing to vision

as the preferred and predominant sensor modality. These include the coupling of

perception and manipulation, and the sparse and local nature of the information

collected from contact.

The coupling refers to how each contact potentially changes the environment as

objects are moved. Apart from the object directly in contact, other objects may be

indirectly moved. Sensors may not be sensitive enough to detect contact without

simultaneously moving the object.

Despite advances in tactile sensors such as the Soft-bubble Alspach et al. (2019)

and the Gelsight Yuan et al. (2017) sensors, by nature the robot only makes contact

with one part of an object at a time. Conversely, if the robot makes contact with

more than one object, as is common in cluttered environments, it is challenging to

associate contacts with objects, and to further track this association through extended

interaction. Being able to perceive only a local part of an object is a significant

challenge for traditional pose estimation algorithms such as iterative closest point

(ICP) and its variants Bouaziz et al. (2013).

The challenges from having sparse and local information is amplified by the fact

that gathering information via contact may move the object. To address these chal-

lenges, we explicitly reason about and represent the uncertainty of quantities we

estimate, including contact point positions and object poses. We develop efficient

methods to evaluate, predict, and update our beliefs.

2



We assume the robot can accurate detect external contacts and localize them to

positions on the surface of the robot. This is either sensed directly such as through

the Soft-bubble, or from estimated applied external wrench at the end effector origin

and applying the Contact Particle Filter Koval et al. (2015). Applied external wrench

can be measured directly with a wrist-mounted force-torque sensor, or estimated by

comparing the measured joint torques against expected torques.

1.2 Related Work

In this section, I broadly review recent work related to the high level goal of

my thesis. More detailed related works are reviewed in each chapter for the specific

challenges and methods therein.

Much work has been done on contact modelling and learning specific tactile tasks,

such as in-hand manipulation Andrychowicz et al. (2020), and planar-pushing Bauza

and Rodriguez (2017). However, in these cases the robot or object to be manipulated

is well known, and the interaction occurs in isolation. Perception is often given (and

performed through vision) while the focus is on the manipulation task.

For works more closely related to our goal of contact-based object perception,

they often assume the object is stationary throughout the interaction Driess et al.

(2019); Xu et al. (2022); Suresh et al. (2022). This critically enables their methods to

trivially combine observations from multiple contacts. On the task of object recogni-

tion, many work assume additional sensor capabilities, such as detecting texture and

temperature Kaboli and Cheng (2016); Liu et al. (2017). With another assumption of

having a controller that can slide along the object’s surface, work has been done on

shape exploration while implicitly modelling the shape as a Gaussian Process Driess

et al. (2017); Suresh et al. (2021).

On the other hand, work has also been done on relaxing assumptions. In partic-

ular, for robots that do not have specialized tactile sensors, the Contact Particle Fil-

ter Manuelli and Tedrake (2016) localizes contact to points on the robot surface from

experienced external wrench. In a situation with an unknown number of objects and

unknown association of contact to objects, the probability hypothesis density (PHD)

filter Vo and Ma (2006) has been developed to track objects across time, albeit with

dense sensor information such as vision and sonar.

The methods we develop most closely align with the interactive perception Bohg

et al. (2017) problem, where perception is intrinsically tied to manipulating the en-

vironment itself.
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1.3 Contributions

This thesis will make the following contributions, each focused on a specific chal-

lenge presented above and in their own chapter:

• [Completed] Chapter II TAMPC: a hierarchical controller that detects traps,

escapes traps, and prevents re-entry of traps on novel environments.

• [Completed] Chapter III STUCCO: an algorithm for propagating the belief of

contact point positions over across a sequence of contacts.

• [Completed] Chapter IV CHSEL: an algorithm for estimating object poses given

free space information that characterizes the pose uncertainty.

• [Completed] Chapter V RUMI: an information theoretic rummaging method to

estimate object pose based on the mutual information between the pose and

the robot trajectory.

Collectively, these contributions provide a robust approach to overcoming the

limitations of visual perception and contact perception in dynamic environments,

enhancing the robot’s ability to interact with and manipulate movable objects.
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CHAPTER II

Adaptation to Novel Environments and Escaping

Traps

This chapter considers the problem of adapting dynamics to novel environments

for contact-rich tasks. It first considers how a state representation can generalize

outside of its training data by extracting invariances inherent to the dynamics. Then

it considers “traps” that inevitably arises from finite-horizon planning with partially-

known dynamics. Specifically, how to detect traps, escape traps, and avoid re-entering

them in the future.

2.1 Introduction

In this chapter, we study the problem of controlling robots in environments with

unforeseen traps. Informally, traps are states in which the robot’s controller fails to

make progress towards its goal and gets “stuck”. Traps are common in robotics and

can arise due to many factors including geometric constraints imposed by obstacles,

frictional locking effects, and nonholonomic dynamics leading to dropped degrees of

freedom Borenstein et al. (2005); Fantoni and Lozano (2012); Koditschek et al. (2004).

In this chapter, we consider instances of trap dynamics in planar pushing with walls

and peg-in-hole with unmodeled obstructions to the goal.

Developing generalizable algorithms that rapidly adapt to handle the wide variety

of traps encountered by robots is important to their deployment in the real-world.

Two central challenges in online adaptation to environments with traps are the data-

efficiency requirements and the lack of progress towards the goal for actions inside

of traps. In this chapter, our key insight is that we can address these challenges by

explicitly reasoning over different dynamic modes, in particular traps, together with

contingent recovery policies, organized as a hierarchical controller. We introduce an
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online modeling and controls method that balances naive optimism and pessimism

when encountering novel dynamics. Our method learns a dynamics representation

that infers underlying invariances and exploits it when possible (optimism) while

treading carefully to escape and avoid potential traps in non-nominal dynamics (pes-

simism). Specifically, we:

1. Introduce a novel representation learning approach that effectively generalizes

dynamics and show its efficacy for task execution on out-of-distribution data

when used with our proposed controller;

2. Introduce Trap-Aware Model Predictive Control (TAMPC), a novel control al-

gorithm that reasons about non-nominal dynamics and traps to reach goals in

novel environments with traps;

3. Evaluate our method on real robot and simulated peg-in-hole, and simulated

planar pushing tasks with traps where adaptive control and reinforcement learn-

ing baselines achieve 0% success rate. These include difficult tasks where trap-

handling baselines achieve less than 50% success, while our method achieves at

least 60% success on all tasks.

We show that state-of-the-art techniques Fu et al. (2016); Haarnoja et al. (2018),

while capable of adapting to novel dynamics, are insufficient for escaping traps that

our approach handles by their explicit consideration. Additionally, our method per-

forms well on tasks that prior trap-handling methods struggle on.

2.2 Problem Statement

Let x ∈ X and u ∈ U denote the Nx dimensional state and Nu dimensional

control. Under test conditions the system follows novel dynamics ∆x = fv(x,u).

The objective of our method is to reach a goal x ∈ G ⊂ X as quickly as possible:

argmin
u0,...,uT−1

T

s.t. xt+1 = xt + fv(xt,ut), t = 0, ..., T − 1

xT ∈ G

(2.1)

This problem is difficult because the novel dynamics fv are not known. Instead,

we assume we have access to a dataset of sampled transitions with random actions,

which can be used to learn an approximate dynamics model f̂ of the system under
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Figure 2.1: TAMPC on peg-in-hole tasks with obstacles near the goal. The robot
has no visual sensing (cannot anticipate walls) and has not encountered walls in
the training data. Path segments show (1) the initial direct trajectory to goal, (2)
detecting non-nominal dynamics from reaction forces and exploration of it by sliding
along the wall, (3) detecting a trap due to the inability to make progress using non-
nominal dynamics, (4) recovery to nominal dynamics, (5) going around seen traps to
goal, (6) spiraling to find the precise location of the hole, and (7) sliding against the
wall (non-nominal) towards the goal.

nominal dynamics f where:

fv(x,u) = f(x,u) + e(x,u) (2.2)

We assume the error dynamics e are relatively small (w.r.t. nominal) except for

non-nominal regions X̄ ⊂ X for which:

|e(x,u)| ∼ |f(x,u)|, ∀x ∈ X̄ , ∃ u ∈ U (2.3)

In nominal regions where f̂ ≈ f ≈ fv a Model Predictive Controller (MPC) can

provide high quality solutions without direct access to fv. Using a specified cost

function C : X ×U → [0,∞), following the MPC policy u = MPC(x, f̂ , C) creates the

dynamical system:

∆x = fv(x,MPC(x, f̂ , C)) (2.4)

This dynamical system may have attractors Milnor (1985), which are subsets

A ⊆ X where:

• xt0 ∈ A =⇒ xt ∈ A ∀t ≥ t0
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• A has a basin of attraction

B(A) ⊆ X = {x | x0 = x, ∃ t ≥ 0, xt ∈ A}

• A has no non-empty subset with the first two properties

We define a trap as an attractor A such that A∩G = ∅, and the trap set T ⊆ X as the

union of all traps. Escaping a trap requires altering the dynamical system (Eq. 2.4)

by altering f̂ , C, or the MPC function. Traps can be avoided in nominal regions with

a sufficiently-powerful and long-horizon MPC, and a sufficiently-accurate dynamics

approximation f̂ . This work addresses detecting, recovering from, and avoiding traps

caused by non-nominal dynamics. To aid in trap detection, recovery, and avoidance

we assume a state distance function d : X × X → [0,∞) and a control similarity

function s : U × U → [0, 1] are given.

2.3 Related Work

In this section, we review related work to the two main components of this chapter:

handling traps and generalizing models to out-of-distribution (OOD) dynamics.

Handling Traps: Traps can arise due to many factors including nonholonomic

dynamics, frictional locking, and geometric constraints Borenstein et al. (2005); Fan-

toni and Lozano (2012); Koditschek et al. (2004). In particular, they can occur when

the environment is partially unknown, as in the case of online path planning.

Traps have been considered in methods based on Artificial Potential Fields (APF)

Khatib (1986); Lee and Park (2003). Traps are local minima in the potential field

under the policy of following the gradient of the field. In the case where the envi-

ronment is only partially known a priori, local minima escape (LME) methods such

as Lee and Park (2003); Fedele et al. (2018) can be used to first detect then escape

local minima. Our method uses similar ideas to virtual obstacles (VO) Lee and Park

(2003) for detecting traps and avoiding revisits while addressing weaknesses common

to APF-LME methods. Specifically, we are able to handle traps near goals by as-

sociating actions with trap states (using s) to penalize similar actions to the one

previously entering the trap while near it, rather than penalize being near the trap

altogether. We also avoid blocking off paths to the goal with virtual obstacles by

shrinking their effect over time. Lastly, having an explicit recovery policy and using

a controller that plans ahead lets us more efficiently escape traps with “deep” basins

(many actions are required to leave the basin). We compare against two APF-LME

methods in our experiments.
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Another way to handle traps is with exploration, such as through intrinsic curios-

ity (based on model predictability) Pathak et al. (2017); Burda et al. (2018), state

counting Bellemare et al. (2016), or stochastic policies Osband et al. (2016). However,

trap dynamics can be difficult to escape from and can require returning to dynamics

the model predicts well (so receives little exploration reward). We show in an ablation

test how random actions are insufficient for escaping traps in some tasks we consider.

Similar to Ecoffet et al. (2019), we remember interesting past states. While they

design domain-specific state interest scores, we effectively allow for online adaptation

of the state score based on how much movement the induced policy generates while

inside a trap. We use this score to direct our recovery policy.

Adapting to trap dynamics is another possible approach. Actor-critic methods

have been used to control nonlinear systems with unknown dynamics online Dierks

and Jagannathan (2012), and we evaluate this approach on our tasks. Another ap-

proach is with locally-fitted models which Fu et al. (2016) showed could be mixed

with a global model and used in MPC. Similar to this approach, our method adapts

a nominal model to local dynamics; however, we do not always exploit the dynamics

to reach the goal.

Generalizing models to OOD Dynamics: One goal of our method is to

generalize the nominal dynamics to OOD novel environments. A popular approach for

doing this is explicitly learning to be robust to expected variations across training and

test environments. This includes methods such as meta-learning Finn et al. (2017);

Li et al. (2018), domain randomization Tobin et al. (2017); Pan et al. (2010), Sim-

to-real Peng et al. (2018), and other transfer learning Zhang et al. (2018) methods.

These methods are unsuitable for this problem because our training data contains

only nominal dynamics, whereas they need a diverse set of non-nominal dynamics.

Instead, we learn a robust, or “disentangled” representation Chen et al. (2016) of the

system under which models can generalize. This idea is active in computer vision,

where learning based on invariance has become popular Krueger et al. (2020). Using

similar ideas, we present a novel architecture for learning invariant representations

for dynamics models.
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Figure 2.2: Architecture for learning (left) and using (right) an invariant represen-
tation f̂ . Grey = given data, green = parameterized transforms, white = computed
values, and red dotted lines = losses.

2.4 Methods

Our approach is composed of two components: offline representation learning and

online control. First, we present how we learn a representation that allows for gen-

eralization by exploiting inherent invariances inferred from the nominal data, shown

in Fig. 2.2. Second, we present Trap-Aware Model Predictive Control (TAMPC),

a two-level hierarchical MPC method shown in Fig. 2.3. The high-level controller

explicitly reasons about non-nominal dynamics and traps, deciding when to exploit

the dynamics and when to recover to familiar ones by outputting the model and cost

function the low-level controller uses to compute control signals.

2.4.1 Offline: Invariant Representation for Dynamics

In this section, our objective is to learn f̂ while exploiting potential underlying

invariances in X ×U to achieve better generalization to unseen data. More formally,

our representation consists of an invariant transform hϕ and a predictive module g,

shown in Fig. 2.2. hϕ maps X × U to a latent space (z ∈ RNz) that g maps to latent

output (v ∈ RNv) that is then mapped back to X using hρ. We parameterize the

transforms with neural networks and build in two mechanisms to promote meaningful

latent spaces:

First, we impose Nz < Nx+Nu to create an information bottleneck which encour-

ages z to ignore information not relevant for predicting dynamics. Typically, Nz can

be iteratively decreased until predictive performance on τ drops significantly com-
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pared to a model in the original space. Further, we limit the size of g to be smaller

than that of hϕ such that the dynamics take on a simple form.

Second, to reduce compounding errors when x,u is OOD, we partially decouple z

and v by learning v in an autoencoder fashion from x,∆x with encoder hη and decoder

hρ. Our innovation is to match the encoded v with the v̂ output from the dynamics

predictor. To further improve generalization, we restrict information passed from x

to v with a dimension reducing transform hω : X → Rn
ω. These two mechanisms yield

the following expressions:

∆x ≈ ∆̂x = hρ(v, hω(x)) v = hη(∆x, hω(x)) ≈ v̂ = g(z)

and their associated batch reconstruction and matching loss:

Lr =
E ∥∆x− hρ(v, hω(x))∥2

E ∥∆x∥2
Lm =

E ∥v− v̂∥2
E ∥v∥2

Lb(τi) = λrLr(τi) + λmLm(τi)

These losses are ratios relative to the norm of the quantity we are trying to match to

avoid decreasing loss by scaling the representation. In addition to these two losses,

we apply Variance Risk Extrapolation (V-REx Krueger et al. (2020)) to explicitly

penalize the variance in loss across the M trajectories:

L(τ ) = β var {Lb(τ1), ...,Lb(τM)}+
M∑
i=1

Lb(τi) (2.5)

We train on Eq. (2.5) using gradient descent.

After learning the transforms, we replace g with a higher capacity model and fine-

tune it on the nominal data with just Lm. For further details, please see App. C.

Since we have no access to ∆x online, we pass v̂ to hρ instead of v:

f̂(x,u) = hρ(g(hϕ(x,u)), hω(x)) (2.6)

2.4.2 Online: Trap-Aware MPC

Online, we require a controller that has two important properties. First, it should

incorporate strategies to escape from and avoid detected traps. Second, it should

iteratively improve its dynamics representation, in particular when encountering pre-

viously unseen modes. To address these challenges, our approach uses a two-level
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Figure 2.3: High-level control architecture.

hierarchical controller where the high-level controller is described in Alg. 1.

TAMPC operates in either an exploit or recovery mode, depending on dynam-

ics encountered. When in nominal dynamics, the algorithm exploits its confidence

in predictions. When encountering non-nominal dynamics, it attempts to exploit a

local approximation built online until it detects entering a trap, at which time re-

covery is triggered. This approach attempts to balance between a potentially overly-

conservative treatment of all non-nominal dynamics as traps and an overly-optimistic

approach of exploiting all non-nominal dynamics assuming goal progress is always

possible.

The first step in striking this balance is identifying non-nominal dynamics. Here,

we evaluate the nominal model prediction error against observed states (“nominal

model accuracy” block in Fig. 2.3 and lines 5 and 13 from Alg. 1):

∥(∆x− f̂(x,u))/E∥2 > ϵN (2.7)

where ϵN is a designed tolerance threshold and E is the expected model error per

dimension computed on the training data. To handle jitter, we consider transitions

from Nn consecutive time steps.

When in non-nominal dynamics, the controller needs to differentiate between dy-

namics it can navigate to reach the goal vs. traps and adapt its dynamics models
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accordingly. Similar to Lee and Park (2003), we detect this as when we are un-

able to make progress towards the goal by considering the latest window of states.

To be robust to cost function shape, we consider the state distance instead of cost.

Specifically, we monitor the maximum one-step state distance d(xt,xt−1) in nomi-

nal dynamics, d0, and compare it against the average state distance to recent states:

d(xt,xa)/(t−a) < ϵTd0 (depicted in “movement fast enough” block of Fig. 2.3). Here,

t is the time from task start. We consider a = t0, ..., t − Nd, where t0 is the start

of non-nominal dynamics or the end of last recovery, whichever is more recent. We

ensure state distances are measured over windows of at least size Nd to handle jitter.

ϵT is how much slower the controller tolerates moving in non-nominal dynamics. For

more details see Alg. 2.

Our model adaptation strategy, for both non-nominal dynamics and traps, is to

mix the nominal model with an online fitted local model. Rather than the linear

models considered in prior work Fu et al. (2016), we add an estimate of the error dy-

namics ê represented as a Gaussian Process (GP) to the output of the nominal model.

Using a GP provides a sample-efficient model that captures non-linear dynamics. To

mitigate over-generalizing local non-nominal dynamics to where nominal dynamics

holds, we fit it to only the last Ne points since entering non-nominal dynamics. We

also avoid over-generalizing the invariance that holds in nominal dynamics by con-

structing the GP model in the original state-control space. Our total dynamics is

then

f̂v(x,u) = f̂(x,u) + ê(x,u) (2.8)

fv(x,u) ≈ E[f̂v(x,u)] (2.9)

When exploiting dynamics to navigate towards the goal, we regularize the goal-

directed cost C with a trap set cost CT to avoid previously seen traps (line 27 from

Alg. 1). This trap set Tc is expanded whenever we detect entering a trap. We add to

it the transition with the lowest ratio of actual to expected movement (from one-step

prediction, x̂) since the end of last recovery:

b = argmin
a

d(xa,xa+1)

d(xa, x̂a+1)
, Tc ← Tc ∪ {(xb,ub)} (2.10)

To handle traps close to the goal, we only penalize revisiting trap states if similar

actions are to be taken. With the control similarity function s : U × U → [0, 1] we
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formulate the cost, similar to the virtual obstacles of Lee and Park (2003):

CT (x,u) =
∑

x′,u′∈Tc

s(u,u′)

d(x,x′)2
(2.11)

The costs are combined as C+αCT (line 27 from Alg. 1), where α ∈ (0,∞) is annealed

by αa ∈ (0, 1) each step in nominal dynamics (line 9 from Alg. 1). Annealing the

cost avoids assigning a fixed radius to the traps, which if small results in inefficiency

as we encounter many adjacent traps, and if large results in removing many paths to

the goal set.

We switch from exploit to recovery mode when detecting a trap, but it is not

obvious what the recovery policy should be. Driven by the online setting and our

objective of data-efficiency: First, we restrict the recovery policy to be one induced by

running the low-level MPC on some cost function other than one used in exploit mode.

Second, we propose hypothesis cost functions and consider only convex combinations

of them. Without domain knowledge, one hypothesis is to return to one of the last

visited nominal states. However, the dynamics may not always allow this. Another

hypothesis is to return to a state that allowed for the most one-step movement. Both

of these are implemented in terms of the following cost, where S is a state set and

we pass in either X0, the set of last visited nominal states, or Xf , the set of Nf states

that allowed for the most single step movement since entering non-nominal dynamics:

CR(x,u, S) = min
x′∈S

d(x,x′)2 (2.12)

Third, we formulate learning the recovery policy online as a non-stationary multi-

arm bandit (MAB) problem. We initialize Na bandit arms, each a random convex

combination of our hypothesis cost functions. Every Nm steps in recovery mode, we

pull an arm to select and execute a recovery policy. After executing Nm control steps,

we update that arm’s estimated value with a movement reward: d(xt,xt−Nm)/Nmd0.

When in a trap, we assume any movement is good, even away from the goal. The

normalization makes tuning easier across environments. To accelerate learning, we

exploit the correlation between arms, calculated as the cosine similarity between the

cost weights. Our formulation fits the problem fromMcConachie and Berenson (2020)

and we implement their framework for non-stationary correlated multi-arm bandits.

Finally, we return to exploit mode after a fixed number of steps NR, if we returned

to nominal dynamics, or if we stopped moving after leaving the initial trap state. For

details see Alg. 3.
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Figure 2.4: Annotated simulation environments of (left) planar pushing, and (right)
peg-in-hole.

2.5 Experiments

In this section, we first evaluate our dynamics representation learning approach,

in particular how well it generalizes out-of-distribution. Second, we compare TAMPC

against baselines on tasks with traps in two environments.

2.5.1 Experiment Environments

Our two tasks are quasi-static planar pushing and peg-in-hole. Both tasks are

evaluated in simulation using PyBullet Coumans and Bai (2016–2021) and the latter

is additionally evaluated empirically using a 7DoF KUKA LBR iiwa arm depicted in

Fig. 2.1. Our simulation time step is 1/240s, however each control step waits until

reaction forces are stable. The action size for each control step is described in App B.

In planar pushing, the goal is to push a block to a known desired position. In peg-in-

hole, the goal is to place the peg into a hole with approximately known location. In

both environments, the robot has access to its own pose and senses the reaction force

at the end-effector. Thus the robot cannot perceive the obstacle geometry

visually, it only perceives contact through reaction force. During offline

learning of nominal dynamics, there are no obstacles or traps. During online

task completion, obstacles are introduced in the environment, inducing unforeseen

traps. See Fig. 2.4 for a depiction of the environments and Fig. 2.6 for typical traps

from tasks in these environments, and App. B for environment details.

In planar pushing, the robot controls a cylindrical pusher restricted to push a

square block from a fixed side. Fig. 2.6 shows traps introduced by walls. Frictional

contact with a wall limits sliding along it and causes most actions to rotate the

block into the wall. State is x = (x, y, θ, rx, ry) where (x, y, θ) is the block pose,

and (rx, ry) is the reaction force the pusher feels, both in world frame. Control is

u = (p, δ, α), where p is where along the side to push, δ is the push distance, and α
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is the push direction relative to side normal. The state distance is the 2-norm of the

pose, with yaw normalized by the block’s radius of gyration. The control similarity

is s(u1,u2) = max(0, cossim((p1, α1), (p2, α2))) where cossim is cosine similarity.

In peg-in-hole, we control a gripper holding a peg (square in simulation and circu-

lar on the real robot) that is constrained to slide along a surface. Traps in this environ-

ment geometrically block the shortest path to the hole. The state is x = (x, y, z, rx, ry)

and control is u = (δx, δy), the distance to move in x and y. We execute these on the

real robot using a Cartesian impedance controller. The state distance is the 2-norm

of the position and the control similarity is s(u1,u2) = max(0, cossim(u1,u2)). The

goal-directed cost for both environments is in the form C(x,u) = xTQx+uTRu. The

MPC assigns a terminal multiplier of 50 at the end of the horizon on the state cost.

See Tab. 2.4 for the cost parameters of each environment.

τ for simulated environments consists of M = 200 trajectories with T = 50

transitions (all collision-free). For the real robot, we use M = 20, T = 30. We

generate them by uniform randomly sampling starts from [−1, 1] × [−1, 1] (θ for

planar pushing is also uniformly sampled; for the real robot we start each randomly

inside the robot workspace) and applying actions uniformly sampled from U .

2.5.2 Offline: Learning Invariant Representations

In this section we evaluate if our representation can learn useful invariances from

offline training on τ . We expect nominal dynamics in freespace in our environments

to be invariant to translation. Since τ has positions around [−1, 1]× [−1, 1], we eval-
uate translational invariance translating the validation set by (10, 10). We evaluate

relative MSE ∥∆̂x−∆x∥2/E ∥∆x∥2 (we do not directly optimize this) against a fully

connected baseline of comparable size mapping x,u to ∆̂x learned on relative MSE.

As Fig. 2.5b shows, our performance on the translated set is better than the baseline,

and trends toward the original set’s performance. Note that we expect our method

to have higher validation MSE since V-REx sacrifices in-distribution loss for lower

variance across trajectories. We use Nz = 5, Nv = 5, nω = 2, and implement the

transforms with fully connected networks. For network sizes and learning details see

App. C.
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Figure 2.5: Learning curves on validation and OOD data sets for planar pushing
representation. Mean across 10 runs is solid while 1 std. is shaded.

Figure 2.6: (top) Initial condition and (bottom) typical traps for planar pushing
and peg-in-hole tasks. Our method has no visual sensing and is pre-trained only on
environments with no obstacles.

2.5.3 Online: Tasks in Novel Environments

We evaluate TAMPC against baselines and ablations on the tasks shown in Fig. 2.1

and Fig. 2.6. For TAMPC’s low-level MPC, we use a modified model predictive path

integral controller (MPPI) Williams et al. (2017b) where we take the expected cost

across R = 10 rollouts for each control trajectory sample to account for stochastic

dynamics. See Alg. 4 for our modifications to MPPI. TAMPC takes less than 1s to

compute each control step for all tasks. We run for 500 steps (300 for Real Peg-T).

Baselines: We compare against five baselines. The first is the APF-VO method

from Lee and Park (2003), which uses the gradient on an APF to select actions. The

potential field is populated with repulsive balls in X based on d as we encounter local

minima. We estimate the gradient by sampling 5000 single-step actions and feeding

through f̂ . Second is an APF-LME method from Fedele et al. (2018) (APF-SP) using

switched potentials between the attractive global potential, and a helicoid obstacle
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Figure 2.7: Minimum distance to goal after 500 steps (300 for Real Peg-T) accounting
for walls (computed with Djikstra’s algorithm). Median across 10 runs is plotted with
error bars representing 20–80th percentile. Task success is achieving lower distance
than the dotted red line.

potential, suitable for 2D obstacles. The APF methods use the f̂ learned with our

proposed method (Section 2.4.1) for next-state prediction. Third is online adaptive

MPC from Fu et al. (2016) (“adaptive MPC++”), which does MPC on a linearized

global model mixed with a locally-fitted linear model. iLQR (code provided by Fu

et al. (2016)’s author) performs poorly in freespace of the planar pushing environ-

ment. We instead use MPPI with a locally-fitted GP model (effectively an ablation

of TAMPC with control mode fixed to NONNOM). Next is model-free reinforcement

learning with Soft Actor-Critic (SAC) Haarnoja et al. (2018). Here, a nominal policy

is learned offline for 1000000 steps on the nominal environment, which is used to

initialize the policy at test time. Online, the policy is retrained after every control

on the dense environment reward. Lastly, our “non-adaptive” baseline runs MPPI on

the nominal model.

We also evaluated ablations to demonstrate the value of TAMPC components.

“TAMPC rand. rec.” takes uniform random actions until dynamics is nominal instead

of using our recovery policy. “TAMPC original space” uses a dynamics model learned

in the original X ×U (only for Peg-T(T)). Lastly, “TAMPC e = 0” does not estimate

error dynamics.
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2.6 Discussion

2.6.1 Task Performance Analysis

Fig. 2.7 and Tab. 2.1 summarizes the results. For Fig. 2.7, ideal controller perfor-

mance would approach the lower left corners. We see that TAMPC outperforms all

baselines on the block pushing tasks and Peg-U, with slightly worse performance on

the other peg tasks compared to APF baselines. APF baselines struggled with block

pushing since turning when the goal is behind the block is also a trap for APF meth-

ods, because any action increases immediate cost and they do not plan ahead. On

the real robot, joint limits were handled naturally as traps by TAMPC and APF-VO.

Note that the APF baselines were tuned to each task, thus it is fair to compare

against tuning TAMPC to each task. However, we highlight that our method is

empirically robust to parameter value choices, as we achieve high success even when

using the same parameter values across tasks and environments, listed in Tab. 2.3.

Peg-U and Peg-I were difficult tasks that benefited from independently tuning only

three important parameters, which we give intuition for: We control the exploration

of non-nominal dynamics with Nd. For cases like Peg-U where the goal is surrounded

by non-nominal dynamics, we increase exploration by increasing Nd with the trade-off

of staying longer in traps. Independently, we control the expected trap basin depth

(steps required to escape traps) with the MPC horizon H. Intuitively, we increase

H to match deeper basins, as in Peg-I, at the cost of more computation. Lastly,

αa ∈ (0, 1) controls the trap cost annealing rate. Too low a value prevents escape

from difficult traps while values close to 1 leads to waiting longer in cost function

local minima. We used Nd = 15, H = 15 for Peg-U, and H = 20, αa = 0.95 for Peg-I.

For APF-VO, Peg-U was difficult as the narrow top of the U could be blocked off

if the square peg caught on a corner at the entrance. In these cases, TAMPC was

able to revisit close to the trap state by applying dissimilar actions to before. This

was less an issue in Real Peg-U as we used a round peg, but a different complicating

factor is that the walls are thinner (compared to simulation) relative to single-step

action size. This meant that virtual obstacles were placed even closer to the goal.

APF-SP often oscillated in Peg-U due to traps on either side of the U while inside it.

The non-TAMPC and non-APF baselines tend to cluster around the top left cor-

ner in Fig. 2.7, indicating that they entered a trap quickly and never escaped. Indeed,

we see that they all never succeed. For adaptive MPC, this may be due to a combi-

nation of insufficient knowledge of dynamics around traps, over-generalization of trap

dynamics, and using too short of a MPC horizon. SAC likely stays inside of traps
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because no action immediately decreases cost, and action sequences that eventually

decrease cost have high short-term cost and are thus unlikely to be sampled in 500

steps.

2.6.2 Ablation Studies

Pushing task performance degraded on both TAMPC rand. rec. and TAMPC

e = 0, suggesting value from both the recovery policy and local error estimation.

This is likely because trap escape requires long action sequences exploiting the local

non-nominal dynamics to rotate the block against the wall. This is unlike the peg

environment where the gripper can directly move away from the wall and where

TAMPC rand. rec. performs well. Note that ablations used the parameter values

in Tab. 2.3 for Peg-I and Peg-U, instead of the tuned parameters from Section 2.6.1.

This may explain their decreased performance on them. The Peg-T(T) task (copy

of Peg-T translated 10 units in x, y) highlights our learned dynamics representation.

Using our representation, we maintain closer performance to Peg-T than TAMPC

original space (3 successes). This is because annealing the trap set cost requires

being in recognized nominal dynamics, without which it is easy to get stuck in local

minima.

2.7 Additional Details

Making U-turns in planar pushing requires H ≥ 25. We shorten the horizon

to 5 and remove the terminal state cost of 50 when in recovery mode to encourage

immediate progress.

ρ ∈ (0,∞) depends on how accurately we need to model trap dynamics to escape

them. Increasing ρ leads to selecting only the best sampled action while a lower value

leads to more exploration by taking sub-optimal actions.

Nominal error tolerance ϵN depends on the variance of the model prediction error

in nominal dynamics. A higher variance requires a higher ϵN . We use a higher value

for peg-in-hole because of simulation quirks in measuring reaction force from the two

fingers gripping the peg.

2.7.1 Environment details

The planar pusher is a cylinder with radius 0.02m to push a square with side length

a = 0.3m. We have θ ∈ [−π, π], p ∈ [−a/2, a/2], δ ∈ [0, a/8], and α ∈ [−π/4, π/4].
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All distances are in meters and all angles are in radians. The state distance function

is the 2-norm of the pose, where yaw is normalized by the block’s radius of gyration.

d(x1,x2) =
√
(x1 − x2)2 + (y1 − y2)2 +

√
a2/6(θ1 − θ2)2. The sim peg-in-hole peg is

square with side length 0.03m, and control is limited to δx, δy ∈ [0, 0.03]. These values

are internally normalized so MPPI outputs control in the range [−1, 1].

2.7.2 Representation learning & GP

Each of the transforms is represented by 2 hidden layer multilayer perceptrons

(MLP) activated by LeakyReLU and implemented in PyTorch. They each have (16,

32) hidden units except for the simple dynamics g which has (16, 16) hidden units,

which is replaced with (32, 32) for fine-tuning. The feedforward baseline has (16, 32,

32, 32, 16, 32) hidden units to have comparable capacity. We optimize for 3000 epochs

using Adam with default settings (learning rate 0.001), λr = λm = 1, and β = 1. For

training with V-REx, we use a batch size of 2048, and a batch size of 500 otherwise.

We use the GP implementation of gpytorch with an RBF kernel, zero mean, and

independent output dimensions. For the GP, on every transition, we retrain for 15

iterations on the last 50 transitions since entering non-nominal dynamics to only fit

non-nominal data.

2.8 Conclusion

This chapter presented TAMPC, a controller that escapes traps in novel environ-

ments, and showed that it performs well on a variety of tasks with traps in simulation

and on a real robot. Specifically, it is capable of handling cases where traps are close

to the goal, and when the system dynamics require many control steps to escape

traps. In contrast, we showed that trap-handling baselines struggle in these scenarios.

Additionally, we presented and validated a novel approach to learning an invariant

representation. Through the ablation studies, we demonstrated the individual value

of TAMPC components: learning an invariant representation of dynamics to general-

ize to out-of-distribution data, estimating error dynamics online with a local model,

and executing trap recovery with a multi-arm-bandit based policy. Finally, the failure

of adaptive control and reinforcement learning baselines on our tasks suggests that it

is beneficial to explicitly consider traps. Future work will explore higher-dimensional

problems where the state space could be computationally challenging for the local

GP model.
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Algorithm 1: TAMPC high-level control loop

Given : C(x,u) cost, x0, MPC, parameters from Tab. 2.3
1 s← NOM, t← 0, d0 ← 0, x← x0, Tc ← {}, α← 1, w ← 0
2 MAB arms ← Na random convex combs.
3 while C(x, 0) > acceptable threshold do
4 if s is NOM then
5 if not nominal from Eq. 2.7 then
6 s← NONNOM
7 initialize GP ê with (xt−1,ut−1,∆xt−1)

8 else
9 α← α · αa // anneal

10 d0 ← max(d0, d(xt−Nd
,x)/Nd)

11 else
12 fit ê to include (xt−1,ut−1,∆xt−1)
13 n← was nominal last Nn steps // Eq. 2.7

14 if EnteringTrap(d0) then
15 s← REC
16 expand Tc according to Eq. 2.10

17 if s is REC then
18 if n or Recovered(d0) then
19 s← NONNOM
20 α← normalize α so |CT | ∼ |C|
21 else if Nm steps since last arm pull then
22 reward last arm pulled with d(xt,xt−Nm)/Nmd0
23 w ← Thompson sample an arm

24 if n then
25 s← NOM

26 MPC.model ← f̂ if s is NOM else f̂ + ê
27 MPC.cost ← ρ · (w1CR(X0) + w2CR(Xf )) if s is REC else C + αCT

// Eq. 2.12 and 2.11

28 u← MPC(x), t← t+ 1
29 x← apply u and observe from env

Algorithm 2: EnteringTrap
Given: t0 time since end of last recovery or start of local dynamics,

whichever is more recent, xt0 , ...,xt, d0, Nd, ϵT
1 for a← t0 to t−Nd do
2 if d(xt,xa)/(t− a) < ϵTd0 then
3 return True

4 return False
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Table 2.1: Success counts across all tasks, as defined by achieving distance below the
thresholds in Fig. 2.7.

Method
Success over 10 trials
B-H B-D P-U P-I P-T P-T(T) RP-T RP-U

TAMPC 8 9 7 7 9 6 10 6
TAMPC e=0 6 1 5 0 9 7 9 3
TAMPC rand. rec. 1 4 5 0 9 7 - -
APF-VO 0 1 4 10 10 10 8 2
APF-SP 1 0 5 10 10 8 10 4
adaptive MPC++ 0 0 0 0 0 0 0 0
non-adaptive 0 0 0 0 0 0 0 0
SAC 0 0 0 0 0 0 - -

Table 2.2: MPPI parameters for different environments.

Parameter block peg real peg
K samples 500 500 500
H horizon 40 10 15
R rollouts 10 10 10
λ 0.01 0.01 0.01
u′ [0, 0.5, 0] [0, 0] [0, 0]
µ [0, 0.1, 0] [0, 0] [0, 0]
Σ diag [0.2, 0.4, 0.7] diag [0.2, 0.2] diag [0.2, 0.2]

Table 2.3: TAMPC parameters across environments.

Parameter block peg real peg
αa trap cost annealing rate 0.97 0.9 0.8
ρ recovery cost weight 2000 1 1
ϵN nominal error tolerance 8.77 12.3 15
ϵT trap tolerance 0.6 0.6 0.6
Nd min dynamics window 5 5 2
Nn nominal window 3 3 3
Nm steps for bandit arm pulls 3 3 3
Na number of bandit arms 100 100 100
NR max steps for recovery 20 20 20
Ne local model window 50 50 50
ϵc converged threshold 0.05ϵT 0.05ϵT 0.05ϵT
ϵm move threshold 1 1 1
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Table 2.4: Goal cost parameters for each environment.

Term block peg real peg
Q diag [10, 10, 0, 0, 0] diag [1, 1, 0, 0, 0] diag [1, 1, 0, 0, 0]
R diag [0.1, 0.1, 0.1] diag [1, 1] diag [1, 1]

Algorithm 3: Recovered
Given: x0, ...,xt since start recovery, d0, parameters from Tab.2.3

1 if t < Nd then
2 return False
3 else if t > NR then
4 return True
5 converged ← d(xt,xt−Nd

)/Nd < ϵcd0
6 away ← d(xt,x0) > ϵmd0
7 return converged and away

Algorithm 4: MPC Implementation: multi-rollout MPPI. Differences from
MPPI Zhong and Power (2019) are highlighted.

Given: cost, model, x, Ũ, Tab. 2.2 parameters
1 ϵ← N (µ,Σ) // u perturbation for H steps

2 U, ϵ← clip Ũ to control bounds
3 X0 ← x
4 c← 0 // R×K

5 for r ← 0 to R− 1 do
6 for t← 0 to H − 1 do
7 Xt+1 ← model(Xt,Ut) // sample rollout

8 cr,t ← cost(Xt+1,Ut)
9 cr ← cr + cr,t

10 c← mean c across R
11 U← softmax mix perturbations
12 return U
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CHAPTER III

Tracking Contact Points in Cluttered

Environments

The previous chapter presented a hierarchical controller suitable for contact-rich

tasks in novel environments. However, it is only applicable for static environments

since traps are associated with state-action pairs. Environments with movable obsta-

cles and objects are much more difficult. As introduced in Chapter 1.1.2, a significant

part of the challenge in using contact information in these environments is the diffi-

culty of associating contact points and objects when there are an unknown number

of objects in the workspace.

This chapter addresses this problem by proposing to track the belief of the contact

point positions without assignment of association. We make the assumption that

contact points closer together are more likely to come from the same object. Based

on this, we update the belief by sampling associations to any newly detected contact

and applying a given dynamics model on the associated contact points. To correct for

error that may arise from incorrect associations and inaccurate dynamics modelling,

we use an observation model based on the assumption that contact can only occur

on object-robot surfaces to weigh particles.

Compared to methods that explicitly label object-contact associations through

clustering, our probabilistic approach allows for corrections in hindsight. Empirically

in simulation and in a real robot experiment, this translated to significantly better

performance for our method on object retrieval tasks in clutter, where the robot must

recognize an object and estimate its pose amongst other objects.
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Figure 3.1: Initial (top) and after rummaging (bot) cluttered environment with
STUCCO allowing us to successfully estimate the pose of the cracker box and grasp
it without visual perception. The segmented tracked contact points are shown in
different colors.

3.1 Introduction

This chapter considers the problem of tracking objects in cluttered environments

without visual feedback. Applications such as rummaging through a cupboard, re-

frigerator, or bin for a target object require tracking objects to estimate the pose of

the target with limited or no visual sensing. In these scenarios contact feedback is

necessary to estimate the poses of objects. A key difficulty is that the objects in these

scenarios are movable, requiring the robot to estimate the poses of objects as they

move. This is especially challenging because we do not assume we know the shapes

of, or even the number of, objects in the environment a priori. Thus when two nearby

contacts are detected, it is not clear if we have contacted two objects once or one ob-

ject twice. This ambiguous data association makes tracking much more difficult, as

we may need to change the association of past contacts with objects when we observe

new data.
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Previous work in this area has focused either on single target tracking from contact

Koval et al. (2015) or on visual tracking of objects Betke et al. (2007); Schwarz et al.

(2018). Work on tracking multiple targets with lidar/sonar/visual data is relevant,

but relies on receiving long-range information at high frequency to be effective, which

is not the case for contact. To our knowledge, this is the first work to address the

problem of tracking multiple objects using only contact feedback.

The key insight that allows us to tackle this problem is that we can efficiently

propagate a belief over contact points without explicit object assignments. We can

then sample from that belief to generate hypotheses of contact points and associa-

tions. We term this approach “soft tracking” to emphasize its difference with tracking

explicit “hard” associations.

Given a model of the pushing dynamics (which can be very simplistic) and an ex-

isting method for localizing contact on the surface of the robot Manuelli and Tedrake

(2016) (contact isolation), our method, which we call Soft Tracking Using Contacts for

Cluttered Objects (STUCCO), tracks the belief over contact point locations and im-

plicit associations using a particle filter. We propagate the belief by sampling whether

each contact point moved with probability inversely proportional to its distance to

the latest contact point, then updating the particles to enforce that contact points

could not have occurred inside the robot. The best estimate of contact points and a

hard association of them to objects, useful for downstream tasks, can be extracted

from the belief through our segmentation process.

To show the utility of STUCCO, we demonstrate how it can be used to solve

the Blind Object Retrieval (BOR) problem, where a target object of known shape

must be retrieved from a planar cluttered environment. We evaluate our method and

baselines on both simulated and real (Fig. 3.1) instances of this type of problem and

find that our method achieves at least 65% grasp success on all environments while

no baseline achieves more than 5% grasp success on all of them.

3.2 Related Work

When we know the number of objects in the environment and the mapping be-

tween sensing and object is unambiguous, single target tracking methods can be used,

such as ones from Wu et al. (2013) when vision is available, or the Manifold Parti-

cle Filter Koval et al. (2015) when contact feedback is available. For single isolated

objects, pose and shape estimation has been demonstrated using tactile feedback Yu

and Rodriguez (2018); Suresh et al. (2020). Here, we focus on the much more difficult
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problem when data association is ambiguous and there are an unknown number of

objects.

For this problem, computer vision methods have traditionally been used. The

relevant problem is termed Multiple Object Tracking, with Luo et al. (2020) providing

a comprehensive survey of modern methods. In cases where vision is available, its

information density makes it attractive as the primary method for object detection

and tracking. Our method could be used in conjunction to resolve ambiguities and

provide information around occlusions. Indeed, often the robot will occlude the target

as it approaches for manipulation.

Outside of computer vision, Multiple Target Tracking is a more common term

to refer to the problem and is associated with methods that are agnostic to the

information source Stone et al. (2013). Classically, Multiple Hypothesis Tracking

(MHT) Blackman (2004) propagates hypotheses on associations of observations (con-

tacts) to specific targets (objects). A relaxation of allowing association probabilities,

instead of fixed associations, is Joint Probabilistic Data Association (JPDA) Fort-

mann et al. (1983). While there are ways to limit the combinatorial number of hy-

potheses to make these methods tractable, in the context of unknown object shapes,

the explicit association of contact to objects is difficult. Often only much later do we

have sufficient data to discriminate previous associations, so many hypotheses must

be kept.

An alternative to explicitly considering associations is propagating the intensity

(first-order moment) of the posterior on the number of targets and their states. This

class of methods is called intensity filters Stone et al. (2013), with the Probability

Hypothesis Density (PHD) filter Vo and Ma (2006) being a notable special case. We

compare against an implementation of the PHD filter as a baseline. All these methods

were designed with dense information sources in mind (radar, sonar, or cameras),

and their assumptions are problematic in the context of blind manipulation. Most

significantly, their observation models assume each target generates an observation

at each step with some state-independent probability. This is clearly not the case

for contact, since we can only observe contact from objects close to the robot. Our

method takes inspiration from intensity filters and propagates a belief without explicit

associations that exploits the local nature of contact.

Several methods have been proposed for manipulation in cluttered environments.

An RGB-D approach Schwarz et al. (2018) demonstrated success in visually segment-

ing then retrieving objects in clutter. However, the environments they showed allow

immediate segmentation of the target object without needing to rummage; addition-
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ally, the objects were often well separated from each other. A haptic approach with

whole-arm tactile sensing was demonstrated in Jain et al. (2013) to successfully reach

in clutter. In contrast to their focus on robot control for navigation, allowing them to

push movable objects out of the way, we focus on perceiving the objects themselves

for downstream manipulation tasks. Similar to Jain et al. (2013), our approach ben-

efits from making numerous contacts, as each contact gives us information. While we

do not have accurate localization of contact points from whole-arm tactile feedback

(which is limited to very few current robots) we are able to perform our tasks using

only the estimate of the external wrench at the end-effector.

3.3 Problem Statement

Let x ∈ SE(3) denote the robot end-effector pose. We are given a trajectory

x0, ...,xT , during which the robot has made contacts with some objects. We assume

that the robot is the only agent in the environment, so objects only move in direct or

indirect contact with the robot. Additionally we assume that the robot moves rigidly

with no compliance, the robot’s geometry is known, the clutter is rigid, and that we

are given a dynamics model of how objects transform for some robot motion. Our

objective is to track the contact points such that they stay close to object surfaces

and are segmented corresponding to the objects they belong to.

Concretely, we define contact error (CE) on a contact point to be the smallest

euclidean distance from the tracked point to any object surface. The contact error

on the trajectory is the average over all contact points. Additionally, we evaluate

the segmentation quality using the Fowlkes-Mallows index (FMI) Fowlkes and Mal-

lows (1983), which approaches 0 for random assignments (with increasing number of

points) and 1 for perfect assignments.

3.4 Method

At a high level, our approach enables downstream tasks such as object tracking

and retrieval for robots “rummaging” in environments with only tactile feedback. To

this end, our approach takes as input the robot trajectory x0, ...,xT and a set of

contact points (each one denoted p ∈ R3) detected during motion. The output is

the tracked set of contact points segmented based on object motions. Our method

is composed of three elements: contact detection and isolation, soft tracking, and

contact point segmentation, of which contact detection and isolation uses prior work
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Figure 3.2: Prediction (a-c) and update (d) step of one particle. (a) Initial observation
of the latest contact point, end-effector pose, and change in end-effector pose. (b)
Compute connection probability based on distance to pt and sample that connection;
point 1 was not connected. (c) Apply dynamics to all connected points. (d) Update
step assigns this particle low probability due to p1 penetrating x3 and x7.

while the rest are our contributions. In the following, we provide the details of each

component.

3.4.1 Contact Detection and Isolation

To detect contact, we utilize the momentum observer De Luca and Mattone

(2005). This observer estimates the external wrench applied to the robot (γ) us-

ing the robot’s joint torques and dynamics model. We detect contact if a specified

threshold ϵ̄ is exceeded, similar to Manuelli and Tedrake (2016); Haddadin et al.

(2017):

γTΣ−1
measγ > ϵ̄ (3.1)

where Σ−1
meas is the precision matrix of the residual, measured by executing random

actions in free space.

Once detected, we localize contact on the robot’s surface using the Contact Par-

ticle Filter (CPF) Manuelli and Tedrake (2016). This filter iteratively solves for the

contact location on the robot’s surface assuming a point contact that can transmit

forces but no torques – commonly referred to as the Hard Finger approximation

Prattichizzo and Trinkle (2016). We note that the remainder of our method does

not depend on the details of the contact detection and isolation algorithm. As such,

advances in this area can be used to extend the functionality of our approach.

3.4.2 Soft Tracking

STUCCO maintains a belief over the positions of all contact points. One possi-

bility is to track each contact point independently (e.g. a Kalman Filter to estimate

each contact point’s position); however, this approach ignores the dependence be-
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Algorithm 5: Soft Tracking Using Contacts for Cluttered Objects

Given: N number of particles, l characteristic length, lp penetration length,
pxpen point to robot penetration, pxdyn object dynamics for
change in end-effector pose

1 P1..N ← {} // particles

2 t← 0
3 while robot is in execution do
4 robot executes action ut

5 t← t+ 1
6 observe xt and dxt, change in end-effector pose while in contact
7 if in contact from Eq. 3.1 then
8 pt ← get latest contact point
9 for n← 1 to N do

10 Pn ← Pn ∪ {(pt,xt)}
11 d0..t ← ∥pn,0..t − pt∥2
12 pconnect,0..t = e−d20..t/l

13 psample,0..t ∼ U(0, 1) indep.
14 adj ← psample,0..t < pconnect,0..t

// predict step

15 Pn,adj ← pxdyn(Pn,adj, dxt)
// update step

16 ϵ←
∑|Pn|

i=1

∑|Pn|
j=1 pxpen(xn,i,pn,j)

17 pobs,n ← e−ϵ2/lp ;

18 else
19 for n← 1 to N do

20 ϵ←
∑|Pn|

j=1 pxpen(xt,pn,j)

21 pobs,n ← e−ϵ2/lp ;

22 ImportanceResample(P, pobs)
23 ReplaceInconsistentPoints(P , pxpen)

tween contact points that stems from the connectivity between points that belong to

the same object. To utilize this basic assumption and represent the belief, we use a

particle filter where each particle represents the set of all contact point positions and

associated end-effector poses for those contacts. For convenience, we refer to the pair

(p,x) as a point. Alg. 5 shows how we propagate this belief while Fig. 3.2 depicts

one step of our method for a single particle.

Our algorithm is structured in alternating prediction and update steps typical of

Bayesian filters. Each particle is propagated independently, thus for simplicity we

describe the process in terms of a single particle. However, in practice the process
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can be parallelized across particles and points.

Our method does not explicitly track point to object associations, like the iFilter

from Stone et al. (2013) and PHD filter from Vo and Ma (2006). Instead, at each step

we sample associations to predict motion, the source of the “soft tracking” name. In-

correct associations are propagated forward, resulting in low likelihood for the particle

when the update step detects inconsistencies arising from some past mistake.

In detail, the prediction step (lines 11 to 15 in Alg. 5) estimates how each contact

point moves for an observed change in robot end-effector pose dx. Since we assume

that the robot is the only agent in the environment, we only predict motion when

in contact. Contact points belong to objects; however, the likelihood of two contact

points belonging to the same object scales inversely w.r.t. their relative distance.

Line 12 from Alg. 5 encodes this using a characteristic length l parameter. To de-

termine each contact point’s adjacency (belonging to the same object) to the most

recently encountered one, we randomly sample proportional to the likelihood provided

by their relative distance. Contact points on the same object and their associated

end-effector poses move together according to the given dynamics function pxdyn

on line 15. Thus a single contact point pn,i at time i < t would only move if it is

adjacent to pt.

The update step in lines 21 and 17 evaluates the likelihood of each particle in

realizing the most recent observation, pobs,n. We utilize the fact that contact can only

occur on the robot surface to evaluate each particle. To this effect, we define the

function pxpen(x,p) which outputs 0 if p is outside the robot when the end-effector

is in pose x, and otherwise minps∈S(x)∥p − ps∥2, where S(x) is the set of points on

the robot surface at x.

When in contact, the predicted movement of the contact points may result in

penetration between any pair of x and p. Thus in line 16 we sum the penetration

between all pairs in the particle. In contrast, in line 20 when out of contact, we only

need to evaluate the observed xt against all contact points since there is no predicted

movement.

In both cases, the computation of pobs,n parallels our computation for adjacency

during the prediction step, with a separate length parameter lp scaling with the

expected contact isolation error (actual contact point’s distance to the estimated

contact point). A lower value will result in more false positives of penetration while

a higher value will result in more false negatives. With pobs, we perform the standard

particle filter importance resampling (line 22 of Alg. 5).

Even after resampling, particles may still have penetration inconsistencies. This
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Algorithm 6: ReplaceInconsistentPoints
Given: P1..N particles, pxpen point to robot penetration

1 for n← 1 to N do
2 for j ← 1 to |Pn| do

// how inconsistent each point is

3 ϵj ←
∑|Pn|

i=1 pxpen(xn,i,pn,j)

4 incon← ϵ > 0 // indices

5 for j ∈ incon do
6 k ← argmini∈¬incon∥pn,i,pn,j∥2
7 Pn,j ← {pn,k,xn,k} // as well as weight

could be due to none of the particles sampling a consistent prediction, or from errors

in the contact isolation or contact dynamics. To address this, we call

ReplaceInconsistentPoints after resampling, detailed in Alg. 6. A point is

inconsistent and discarded if its p incurs any penetration, and replaced with the

closest consistent point in terms of p Euclidean distance in lines 6 and 7 of Alg. 6.

3.4.3 Segmenting into Objects

Many useful applications of tracking require a single estimate of the contact points

as well as hard assignments to objects. To achieve this, our method selects the most

likely particle (MAP) according to the particle weights (updated each step with pobs).

Alg. 7 details how the MAP particle is segmented into groups of contact points that

are estimated to belong to the same object.

Similar to line 12 from Alg. 5, we compute the connection probability and compare

it against a threshold α to determine if an edge between two points exists. The

resulting adjacency matrix A describes a graph over all the points, from which we find

connected components. Each connected component is an object. Our segmentation

is a form of agglomerative clustering (such as with BIRCH Zhang et al. (1996) or

DBSCAN Schubert et al. (2017)), which is well suited for irregular and elongated

shapes, such as the set of points belonging to surfaces of objects. A common weakness

of these methods is combining two clusters when noise or an error creates a data

point between them. Our update process mitigates this weakness when the robot’s

configuration overlaps with the erroneous contact point (depicted in Fig. 3.7) and it

is deemed inconsistent, but it remains an issue if our robot does not explore that

location.
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Algorithm 7: Segment a particle into objects

Given: Pn a single particle, l characteristic length, α probability threshold
for each edge

1 for i← 1 to |Pn| do
2 for j ← 1 to |Pn| do
3 d← ∥pn,i − pn,j∥2
4 Ai,j = e−d2/l > α

5 return connected components of adjacency matrix A

3.5 Results

In this section, we evaluate and benchmark the performance of our approach on:

i) tracking and segmentation of contact points under a “blind rummaging” policy;

and ii) a downstream task of Blind Object Retrieval (BOR) – both in cluttered

environments. To this end, we first describe our baselines. Next, we describe the

robot environment and training data. Then, we formalize the downstream BOR

task that uses contact tracking. Lastly, we quantitatively evaluate our method and

baselines on BOR in simulated and real-world cluttered environments.

For all tasks, we used the following pxdyn:

pxdyn(Pn, dx) = {(p+ F (dx),x+ dx)|(p,x) ∈ Pn} (3.2)

where F extracts the linear translation of the pose change. This motion model implic-

itly assumes that objects translate together with the robot when in contact without

rotation. A more sophisticated motion model may be used if object properties such

as size, shape, or pressure distribution are known a priori ; however, this is not the

case in our experiments. Here, we demonstrate that our method is able to partially

mitigate errors from this approximation since some of its predictions result in contact

point penetration.

To speed up our method, we implemented Alg. 5 to process each particle in par-

allel. In particular, pxpen was implemented as a parallel lookup of a pre-computed

discretized (resolution 1mm) signed distance field of the end-effector in link frame.

The transform of contact points from world to link frame was also implemented to

be parallel.

For contact isolation, we used the Single-CPF from Manuelli and Tedrake (2016)

which assumes each detected contact occurred at only one contact point. We note

that while there are inherent ambiguities in isolating contact from externally-applied
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wrenches, our method is robust to these errors. On the real robot, we addition-

ally consider contacts detected by each of the two soft-bubble sensors Kuppuswamy

et al. (2020) (seen in Fig. 3.1). This distributed tactile sensing modality significantly

mitigates ambiguities from using only wrench estimates.

3.5.1 Baselines

We compare against baselines that maintain a single estimate of all p, clustering on

p at each step in contact, and applying the dynamics function to all points in the same

cluster as pt. The baselines differ in their clustering methods, with BIRCH Zhang

et al. (1996) and DBSCAN Schubert et al. (2017) by default not needing to specify

the number of clusters. A k-means baseline was implemented that starts with a single

cluster and increases the cluster number by 1 if doing so reduces the inertia (what

k-means minimizes) sufficiently. Additionally, we consider a Gaussian Mixture (GM)

implementation of the PHD filter Vo and Ma (2006). As introduced in Section 3.2,

this method propagates the intensity (first-order moment) of the posterior on the

number of objects and their positions. The intensity is integrated over to extract

discrete targets (objects), which we clustered the contact points to using nearest

neighbours then propagated in the same way as the clustering methods.

3.5.2 Training Set for Tuning

For simulation, we use a floating Franka Emika (FE) gripper from the PANDA

arm (see Fig. 3.4) with a fixed height and constrained orientation. The gripper is

simulated in PyBullet Coumans and Bai (2016–2021) and takes discrete action steps

in the form of desired dx, dy, with a maximum per step movement of 0.03m along

each dimension. Each simulation time step is 1/240s, and we moved slowly to avoid

bouncing objects off the robot. The residual γ used for contact detection and isolation

here is the measured force torque on the gripper provided by the simulator.

Note that our method takes contact points as input and is not limited to planar

systems. However, restricting to planar motion simplifies the data collection, contact

isolation, and the downstream task of BOR.

Our training set consists of 40 trials of randomized start and goal positions for

each of the 4 environments depicted in Fig. 3.3. We generated trajectories using a

greedy controller that entered a random walk of length 6 upon contact. Trajectories

that were in contact less than 5% of the time were discarded without replacement,

yielding a total of 129 valid trajectories.
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Figure 3.3: Training environments in simulation. Immovable walls are colored grey
while the darker the movable object is, the more massive it is.

Table 3.1: STUCCO parameters for Blind Object Retrieval.

Parameter sim real
l characteristic length 0.02 0.006
lp penetration length 0.002 0.002
ϵ̄ residual threshold 1 5
N number of particles 100 100
α connection threshold 0.4 0.4

Tuning consisted of parameter sweeping to maximize median FMI and minimize

median CE on the whole training set. For our method, the primary parameter to

tune was the characteristic length l, which was larger on the real robot to handle

a large kettle. See Tab. 3.1 for our tuned parameters. BIRCH was tuned to have

threshold 0.08, DBSCAN was tuned to have eps 0.05 and minimum neighbourhood

size of 1, k-means was tuned to need an inertia improvement of 5 times to increase

the number of clusters, and the GMPHD filter was tuned to have birth probability of

0.001, spawn probability of 0, and detection probability of 0.3.

The tuned performances of all methods on the training set are shown in Fig. 3.5

(top), where our method outperforms all baselines in CE. Since we are interested in

manipulation in clutter, Fig. 3.5 (bottom) shows the performance on runs that had

ambiguous contact assignments. For each step, this was computed using the minimum

distance from the robot to the second closest object, with an ambiguity score of 1

corresponding to a distance of 0 and a score of 0 corresponding to a distance of 0.15m

or more. The bottom figure shows runs with an average ambiguity of at least 0.3. On

these, our method outperforms the baselines in both FMI and CE by an even larger

margin, demonstrating that our method is well suited for clutter.
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Figure 3.4: Simulated BOR task in 4 different environments, with each starting con-
dition (top) and after executing actions (bottom), with the trail in blue. Overlaid
is STUCCO’s best estimate of segmented objects, with propagated contact points as
crosses and associated actions taken with a different color for each object. The pose
estimate of the target object is represented by a blue outline.

3.5.3 Blind Object Retrieval

We present the problem of Blind Object Retrieval: pose estimation and grasping

of a target object with known geometry using no visual perception. To perform this

task, the robot rummages in clutter to collect contact points that it can segment

into objects using our method. Using the segmented objects, the robot runs iterative

closest point (ICP) Arun et al. (1987) between the set of contact points of each object

and model points sampled from the known surface of the target object. ICP is run 30

times from random initial poses and the object with the lowest variance in position

estimation is selected (see Fig. 3.6). An important source of variance is uncertainty in

orientation due to contacts being unevenly distributed across the object surface. From

the ICP estimates of the selected object, we further select the one that penetrates xt

the least, and on ties choose the lowest ICP matching error.

To evaluate success, we attempt a grasp at the estimated pose after executing

a given rummaging policy. Grasp success is an important metric to evaluate on for

two reasons. First, it avoids the need to combine position and orientation errors.

These metrics are typically combined using radius of gyrations which may not be

available during run time. Second, it does not penalize small pose errors that may

not be relevant to the task and can safely be ignored while penalizing those beyond

a gripper dependent threshold that will always result in grasp failure.
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Figure 3.5: Tracking metrics evaluated on the training set, with the median plotted
and error bars indicating 20-80th percentile. (top) Results for the whole data set, and
(bot) results for only runs with an ambiguity score of at least 0.3. Ideal performance
is an FMI of 1 and CE of 0 corresponding to points in the upper left.

3.5.4 Blind Object Retrieval in Simulation

In simulation, we designed 4 cluttered environments (see Fig. 3.4) with YCB

objects Calli et al. (2017), with the target being the cracker box in FB, BC, and IB,

and the tomato can in TC. A grasp was successful if it closed on the two long sides

of the box and not on a corner, or around more than half of the tomato can. The

control sequence was manually created to make contact with multiple objects that

were initially close together, while making sufficient contacts to identify the target.

When replayed, each action was perturbed with uniformly random noise of up to

±0.5mm (compared to max action step of 30mm).

We performed 20 runs of each task (same random seed used for each baseline so

they are evaluated under the same actions), with the statistical comparison of our

method against baselines summarized in Tab. 3.2. Our method was the only one that

achieved 65% grasp success or higher on all tasks, and achieved significantly lower

contact error than all baselines.

Our method also achieved better FMI than baselines. The overall lower FMI

scores compared to the training set seen in Fig. 3.5 attests to the difficulty of the

BOR tasks. Importantly, the lowered FMI (indicating more assignment errors) for
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Figure 3.6: Iterative closest point pose estimates from 30 random starts plotted in
green. ICP run on the left set of points (corresponding to the cracker box) result in
lower positional variance in the estimate than the ICP results run on the set of points
corresponding to the can (right).

Figure 3.7: Steps during a BOR run with (left) initially wrong associations of contact
points to objects, (mid) moving to right before entering the gap between the objects,
and (right) resolving the previous ambiguity from moving through the gap and pe-
nalizing particles with points in between. Tracked contact points are in orange for
the first object and green for the second one.

our method did not translate to increased CE. This is a key strength of our method

and can be attributed to the particle update penalizing contact penetration and also

the ReplaceInconsistentPoints function. Specifically, the action sequences

often moved back and forth between two objects, eventually opening a gap and mov-

ing through it, as captured in Fig. 3.7. The oscillatory motion initially left particles

with contact points between the gap, but after moving through it, the update pro-

cess assigned high likelihood to particles that separated the contact points to either

side. Additionally, ReplaceInconsistentPoints replaced remaining points in

between with points on a side while occasionally making an assignment error.

The baselines have no mechanisms for correcting associations in hindsight, so the

lower FMI translated to higher CE and lower grasp success. However, despite the

high errors in CE, the baselines sometimes achieved grasp success due to the ICP

eliminating many wrong pose estimates.
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Table 3.2: Quantitative comparison of our method against baselines on 20 runs of
blind object retrieval in different simulated cluttered environments and 5 runs on the
real environment in Fig. 3.1. GS is grasp success (%), and CE is contact error (cm).
Top values per category are in bold while standard deviations are in parentheses. FB,
BC, IB, and TC are depicted in Fig. 3.4.

task ours BIRCH DBSCAN k-means GMPHD

FB
GS 70 5 5 45 25
FMI 0.69 (0.08) 0.62 (0.07) 0.66 (0.10) 0.63 (0.05) 0.56 (0.05)
CE 0.72 (0.25) 4.63 (0.53) 3.52 (1.54) 1.49 (0.40) 3.90 (0.61)

BC
GS 80 0 10 5 0
FMI 0.92 (0.05) 0.84 (0.09) 0.89 (0.02) 0.83 (0.04) 0.57 (0.04)
CE 1.33 (0.13) 6.49 (0.36) 6.56 (0.31) 7.04 (0.41) 7.33 (0.44)

IB
GS 65 0 60 10 0
FMI 0.78 (0.07) 0.71 (0.05) 0.75 (0.06) 0.47 (0.23) 0.46 (0.06)
CE 1.04 (0.33) 3.27 (0.36) 2.31 (0.58) 4.84 (1.81) 5.62 (0.85)

TC
GS 85 0 0 25 20
FMI 1.00 (0.00) 0.79 (0.07) 1.00 (0.00) 0.54 (0.17) 0.54 (0.17)
CE 0.31 (0.90) 4.20 (0.22) 4.14 (0.09) 6.23 (0.72) 8.09 (0.22)

Real GS 100 20 0 20 0

3.5.5 Real Robot Blind Object Retrieval

We applied our method on a real 7DoF KUKA LBR iiwa arm with two soft-bubble

tactile sensors Kuppuswamy et al. (2020) on the gripper for the BOR task depicted

in Fig. 3.1. Similar to simulation, we restricted our motion to be planar, with a max

step of 20mm implemented using a Cartesian impedance controller. KUKA’s on-

board software estimated the externally applied wrench at the end-effector using the

measured joint torques. To accommodate the limited sensitivity of this measurement,

We filled the YCB objects to increase their mass and reduce the effect of measurement

noise.

Contact isolation was performed independently by the left and right soft-bubble

sensors, then by the CPF if neither of them detected contact. Each bubble had a

depth camera inside that measured surface deformation. Pixels with deformations

greater than 4mm were considered deformed. We then averaged all deformed pixel

coordinates and projected that point to the camera frame then rigidly transformed it

to produce a contact point in the world frame. Due to the deformable nature of the

sensors, we adjusted pxpen to ignore the first 10mm of penetration.

To extend Alg. 5 to multiple contact points per step, each contact point’s distance

in line 11 is measured against their closest new contact point, and dynamics in line 15
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is performed with their associated dx. Note that dx for each new contact point may

be distinct due to making contact at different times during the action.

3.6 Discussion

Proprioceptive and tactile driven object state-estimation is an important func-

tionality for autonomous robotic systems in highly unstructured environments. Here,

we discuss important extensions that can further generalize our method to more chal-

lenging instances of “blind” object state-estimation for downstream tasks such as

object retrieval. These extensions include generalizing beyond point contacts and

generating the rummaging policies.

3.6.1 Generalizing Beyond Object Translation

Our update step can use inconsistency in object motion to correct for errors in the

dynamics function, such as assuming that objects translate without rotation. How-

ever, it is unable to handle higher dimensional pose changes such as those induced by

toppling or deforming. To address this, more rich information beyond point contacts

can be extracted from each contact (e.g., incipient slip from the soft-bubbles) together

with more sophisticated object dynamics models.

3.6.2 Generalization Beyond Single Point Contacts

Alg. 5 can generalize beyond single point contacts without major changes. Indeed,

as shown in our real robot experiment with essentially three contact detectors, we can

easily generalize to multiple contacts per step. The soft-bubble sensors provide rich

contact information that we hope to exploit in future work. Advanced representations

of contact patches such as meshes and non-uniform rational B-splines (NURBS) Piegl

and Tiller (1996) could directly replace or exist alongside contact points in Alg. 5 as

long as we have efficient pairwise distance functions between them.

3.6.3 Rummaging Policy

In this chapter, our method assumed a prescribed action sequence that makes

sufficient contact with our target object to uniquely identify it. Chapter V generates

this policy using active perception.
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3.7 Conclusion

We presented STUCCO, a contact tracking method that maintains a belief over

contact point locations to enable corrections in hindsight. The method is based on the

basic assumptions that points closer together are more likely to be on the same object,

and that contact only occurs on the surface of the robot. We showed that it performs

well on a variety of Blind Object Retrieval tasks in clutter and demonstrated its

application on a real robot. Specifically, it is capable of handling cases where contact

is initially made on different objects close together, and later correct their tracking

when they are moved apart. In contrast, we showed that clustering and the PHD filter

baselines struggle in these scenarios. Finally, the failure of baselines that maintain

a single estimate of the contact points on our tasks suggests that it is beneficial to

maintain a belief over them to allow corrections in hindsight. Future work will focus

on representing rich contact patches and generating the rummaging policy.
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CHAPTER IV

Diverse Plausible Object Registration

The previous chapter introduced the blind object retrieval task (BOR), which

involves tracking the contact points through a contact-rich trajectory, segmenting the

contact points into objects, the performing object pose estimation with each object’s

segmented points. The target object was identified as the set of contact points that

had the least matching error in the ICP process for pose estimation. We verified it in

simulation and on a real world set-up, but both problems were planar and required

many contacts before we had a sufficiently good pose estimation. Compared to vision,

contact provides few surface points, and those are localized to the same part of the

object. Additionally, most methods produce single, best estimates. However, the

comparative lack of information from contacts results in a lack of constraints on the

set of plausible poses for the object. In such cases, estimating the set of plausible

poses is more useful than producing a single best estimate.

This chapter addresses this through 1) using volumetric information, such as

whether a point is known to be outside the object (free space) through the virtue

of being swept by the robot or from vision, and 2) leveraging Quality Diversity (QD)

optimization Pugh et al. (2016); Fontaine and Nikolaidis (2021) to simultaneously

search for a diverse set of plausible poses. To our knowledge, it is the first application

of QD to pose estimation.

4.1 Introduction

Pose registration—the process of estimating the pose of a given rigid object from

sensor data, is a fundamental problem in robotics, as it is necessary for manipulation

and reasoning. Much research has been done in estimating object pose from visual

data, especially laser-range data Collet et al. (2009); Cheng et al. (2018). However,

a clear view of the object may not always be available (e.g. an object in a cupboard,
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as in Fig. 4.1, or grocery bag) or the material properties of the object may make it

difficult to perceive visually (e.g. transparency).

target

partially-occluded camera

robot

cabinet workspace

occlusion

estimated set of diverse 
plausible poses

Figure 4.1: Left: Set up of a real-world probing experiment where the goal is to
estimate the drill’s pose. Middle: input to CHSEL, made of known free points in
pink (from the camera and swept robot volume) and known surface points in red
(from contact). Right: CHSEL uses these points and the object model to estimate a
diverse set of plausible poses.

Partial occlusion in manipulation tasks motivates for rummaging, and researchers

have investigated the use of tactile and force feedback for pose registration Sipos

and Fazeli (2022); Dikhale et al. (2022). However, the nature of this data is quite

different from the point-clouds produced by laser-scanners. While point-cloud data

is information-dense (e.g. many points on the surface of the object), tactile and force

data arising from contact contain much less information (e.g. one contact point per

motion) in addition to being time-consuming to collect. This lack of information can

be partially mitigated by assuming that a contact sensor moves along the surface of

the object Suresh et al. (2022); Driess et al. (2017). However, creating controllers

that can do this without moving the object is challenging.

In the context of pose registration problems, the lack of informative data results

in a lack of constraints on the set of plausible poses of the object. In such cases,

producing an accurate estimate of the true pose is very unlikely, and it is more useful

to estimate the set of plausible poses. Especially towards the beginning of contact-

based tasks, uncertainty in the object pose is high due to insufficient data, sensor

noise, and inherent object symmetries. Characterizing this uncertainty, such as in

the form of a set of plausible poses, is useful for object recognition Xu et al. (2022),

active perception Eidenberger and Scharinger (2010), and simultaneous localization

and mapping (SLAM) Arras et al. (2003); Fu et al. (2021).
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The most common methods for pose registration are based on the Iterative Clos-

est Point (ICP) algorithm Segal et al. (2009); Wang and Zhao (2017), which outputs

a single pose estimate for a given initial pose. These methods can be effective for

point-cloud data, but producing a set of estimates from random initialization does

not yield good coverage of the set of plausible poses for contact data. Bayesian

methods that aim to capture the full distribution of plausible object poses use ap-

proximation techniques such as Markov Chain Monte Carlo (MCMC) and variational

inference Maken et al. (2021). However, such variational methods depend heavily on

informative priors, which we do not assume are available.

To overcome the above limitations, we present Constrained pose Hypothesis Set

Elimination (CHSEL), which has three key attributes: First, we go beyond only

considering points on the surface of the object, considering volumetric information

instead (similar to Slavcheva et al. (2016) and Haugo and Stahl (2020)). This allows

us to infer more data (and thus more constraints on the pose) from robot motion. For

example, when a robot moves into contact with an object, we observe contact points,

as well as all the free space the robot traversed before and during contact. Note that

this representation can also include free space and object surface points observed by

a visual sensor.

Second, to take advantage of powerful gradient-based optimization tools, we con-

struct a differentiable cost function that can be used to efficiently optimize a given

pose based on volumetric information. Finally, and most importantly, to estimate

a diverse set of poses simultaneously, we adapt methods from the Quality Diversity

(QD) optimization literature. To our knowledge, this work is the first application of

QD methods to the problem of pose registration. QD methods explicitly optimize

for a set of solutions which are both diverse and high-quality, making them a natural

choice for pose registration problems that seek to capture the set of plausible poses.

We also show how to update our set of estimates online as more data is gathered by

the robot.

Our experiments suggest that CHSEL has large performance improvements over

several baseline methods for both simulated and real-world contact data. Addition-

ally, we compare against alternatives and show that our cost function is a good QD

objective. We also show that real-world visual data can be incorporated seamlessly

into our cost function while demonstrating similar performance improvements.
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4.2 Related Work

While our work is the first to use known free space to produce a diverse set of pose

registrations, prior work has been done separately in using free space in registration

and diverse set (also known as multi-hypothesis) registration. Geometric registration

has been extensively studied in robotics and computer vision (see Tam et al. (2012)

for an overview). In particular, the distinction between free space and surface points

can be framed as point semantics or features, and methods such as the 3D Normal

Distribution Transform (3D NDT) Magnusson et al. (2007) and its continuous gener-

alization Continuous Visual Odometry (CVO) Zhang et al. (2021) have been designed

with them in mind. We compare against CVO as a baseline. Haugo and Stahl (2020)

considers free space explicitly, filling it with balls via the medial axis transformation.

They then formulate a cost penalizing object-ball penetration while requiring points

to lie on the surface. This is a baseline in our experiments.

Specific to SE(2) pose estimation in planar contact problems, the Manifold Particle

Filter Koval et al. (2015) exploits a robot’s contact manifold to estimate an pose.

However, it struggles to scale to full SE(3) pose estimation as it is expected to require

exponentially more particles.

Deep learning based methods such as SegICP Wong et al. (2017) and MHPE Fu

et al. (2021) have been developed to produce a plausible set of pose estimates. How-

ever, they can only use points from the object surface and require relatively dense

information.

Related to registration is the problem of object reconstruction. SDF-2-SDF-

Slavcheva et al. (2016) minimizes the difference between pairs of signed distance

fields (SDFs). They construct an SDF using observed RGBD images and match it

against the target SDF. In cases where a dense view of surface points is not available,

such as when the camera is occluded or if the sensing is performed via contact, the

constructed SDF will be invalid. Similar to them, we directly work with the target

object’s SDF, but importantly do not assign SDF values to observed free points. In-

stead, we only require that known free points be outside the surface (SDF 0-level

set).

Diversity in registration has mainly been explored as characterizing the pose un-

certainty. Censi (2007) provides a closed form estimate for ICP based methods, but

require that the initial point-correspondences are correct and that the minimization

procedure does not get caught in local minima. This is unlikely to be valid with par-

tial information, and does not utilize known free space. Buch et al. (2017) produces
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high quality uncertainty estimates through MCMC simulation of a depth camera,

which is computationally expensive while being restricted in input modality. Maken

et al. (2021) performs Stein Variational Gradient Descent (SVGD) on a differentiable

formulation of the ICP objective. They approximate the distribution of poses by

running ICP from different starts, which in general is not the distribution of poses

consistent with the data. We compare against SVGD optimization as a baseline.

Generating diverse sets of high quality solutions has been explored explicitly in

recent research on evolutionary optimization techniques. In particular, Quality Diver-

sity (QD) Pugh et al. (2016) techniques such as MAP-Elites Mouret and Clune (2015)

and CMA-MEGA Fontaine and Nikolaidis (2021) have been developed to optimize

objectives while enforcing diversity in some aspect of the solutions. We leverage QD

optimization methods with our proposed differentiable cost function to estimate a set

of plausible diverse transforms.

4.3 Problem Statement

For a target object, we have its precomputed object frame signed distance function

(SDF) derived from its 3D model, sdf : R3 → R , and are given a set of points

X = {(x1, s1), ..., (xN , sN)} with known world positions xn ∈ R3 and semantics sn

(described below). X is produced from sensor data. Object registration is the problem

of finding transforms T ∈ SE(3) that satisfy constraints imposed by X . Let T∗ be

the true object transform, then the semantics are

sn =


free implies sdf(T∗xn) > 0

occupied implies sdf(T∗xn) < 0

vn implies sdf(T∗xn) = vn

(4.1)

We quantify the degree to which the constraints of X are satisfied by using a cost

function (lower is better) C(X ,T) =
∑N

n=1 c(Txn, sn) where cm ≫ 0 and

c(x, s) =


cm1(sdf(x) ≤ 0) if s = free

cm1(sdf(x) ≥ 0) if s = occupied

|v − sdf(x)| else

(4.2)

1 is the indicator function that evaluates to 1 if the argument is true and otherwise
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evaluates to 0. We then define the plausible set Tϵ = {T | C(X ,T)− C(X ,T∗) < ϵ}
where ϵ > 0 is the degree of violation we allow in considering the constraints satisfied.

Our goal is to produce a hypothesis transform set T̂ that covers Tϵ. To quantify how

well we cover this set, we use the Plausible Diversity metric Saund and Berenson

(2021) Saund and Berenson (2022):

Mc =
1

|Tϵ|
∑
T∈Tϵ

min
T̂∈T̂

d(T, T̂) coverage (4.3)

Mp =
1

|T̂ |

∑
T̂∈T̂

min
T∈Tϵ

d(T, T̂) plausibility (4.4)

Mpd = Mc +Mp plausible diversity (4.5)

where d is a distance function on transforms, such as Chamfer Distance between the

resulting transformed objects. This metric penalizes T̂ if 1) it does not include a

transform that is close to each transform in the plausible set (a lack of coverage);

or 2) includes transforms that are far from any transform in the plausible set (such

transforms are implausible).

4.4 Method
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Figure 4.2: Ĉ(X ,T) negative gradients with respect to sampled points shown for a
X-Z cross section of the YCB drill. Red points are known free space and −∇ĉf pushes
them outside the object. Purple points are known occupied and −∇ĉo pushes them
inside the object. Black points have known SDF values (here they are known surface
points, sdf(x̃) = 0) and −∇ĉk pushes them towards the corresponding SDF level
set.

This section presents CHSEL, which consists of a differentiable cost function (re-

laxation of Eq. 4.2) that enables gradient-based methods to reduce a transform’s cost,

and a quality diversity optimization scheme, which uses that cost to estimate the set
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of plausible transforms. We also show how to update CHSEL’s T̂ estimates online as

more points are perceived.

4.4.1 Relaxation of Semantic Constraints

Eq. 4.2 has discrete components and is not differentiable. We would like a relax-

ation Ĉ(X ,T) of C(X ,T) that is differentiable to be more amenable to optimization.

For convenience, when the T used is unambiguous, we denote point positions in the

world frame transformed to an estimated object frame as x̃, where x̃ = Tx in ho-

mogeneous coordinates (append 1 to x̃ and x). Specifically, we want to efficiently

compute the gradient ∇TĈ(X ,T). For better geometric intuition, we consider the

gradient contributed by each known point:

∇TĈ(X ,T) =
N∑

n=1

∇Tĉ(Txn, sn) =
N∑

n=1

∇x̃ĉ(x̃, sn) (4.6)

This gradient is spatial and with respect to the transformed point. Intuitively, gra-

dient descent will move the points spatially along their negative gradients through

adjusting T. This is visualized in Fig. 4.2. As it is clear what each gradient is with

respect to, we drop the subscript in future usage.

The separate semantic classes motivate us to consider each case separately. We

partition X into Xf = {(x, s) | s = free}, Xo = {(x, s) | s = occupied}, and
Xk = {(x, s) | s ∈ R}. We then decompose the gradient:

∇Ĉ(X ,T) =
∑

x,s∈Xf

∇ĉf (x̃) +
∑

x,s∈Xo

∇ĉo(x̃) +
∑

x,s∈Xk

∇ĉk(x̃, s) (4.7)

At each point, the cost arises from an SDF value mismatch and thus the gradient must

be along the direction of greatest SDF value change. This is provided precisely by

∇x̃sdf(x̃), the gradient (normalized such that ∥∇sdf(x̃)∥2 = 1) of the SDF at that

point. Thus all cost gradients must be parallel or anti-parallel to the SDF gradient.

See Section 4.4.2 for how we achieve efficient lookup of SDF values and gradients.

Fig. 4.2 shows our cost applied to points of each semantic class. Arrows indicate the

negative cost gradient experienced by that point, which is the spatial direction the

points will move along when we perform gradient descent on the cost. We define the

gradients directly and assign its magnitude as the cost value.
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4.4.1.1 Free space cost

From Eq. 4.2, points in Xf achieve 0 cost when sdf(x̃) > 0. When sdf(x̃) ≤ 0

the negative gradient points towards the SDF 0-level set (surface of the object). To

tolerate small degrees of violation due to uncertainty in the point positions, we aim

for the α-level set where α < 0. We define the magnitude of free space violation as

max(0, α−sdf(x̃)). This has the effect of only giving non-zero gradients to violations

beyond α. Thus we have

∇ĉf (x̃) = −Cmax(0, α− sdf(x̃))∇sdf(x̃) (4.8)

where C > 0 is a scaling parameter. In a sense, it controls the degree of relaxation

since using smaller values will lead to a smoother optimization path, particularly

near the start of the optimization, while a higher value is needed to enforce the high

cost from Eq. 4.2. This scaling parameter can be annealed during the optimization

process, i.e. starting with a small value and increasing over optimization iterations.

4.4.1.2 Occupied space cost

Symmetric to the free space cost, violating occupied points moves along −∇ĉo to
the −α-level set. In this case, violation occurs when sdf(x̃) > −α and has magnitude

−min(0,−α− sdf(x̃)):

∇ĉo(x̃) = −Cmin(0,−α− sdf(x̃))∇sdf(x̃) (4.9)

= Cmax(0, α+ sdf(x̃))∇sdf(x̃)

4.4.1.3 Known SDF cost

This cost is a generalization of surface matching present in many registration

methods. Known surface points are a special case of s = 0, and is commonly perceived

through contact and visual perception. The cost’s structure is similar to the previous

costs, with the difference being that instead of α and −α, each point has a separate

desired level set given by its semantic value:

∇ĉk(x̃, s) = (sdf(x̃)− s)∇sdf(x̃) (4.10)
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4.4.2 SDF Query Improvements

Evaluating ∇ĉ(X ,T) requires computing sdf(x̃) and ∇sdf(x̃) for N known

points. Regardless of the structure and efficiency of the given sdf, we precompute

a voxel-grid approximation of it to enable fast parallel lookup. Each voxel reports

the SDF value and gradient at the center of it. Each voxel is cubic with side length

(resolution) rt, with the whole grid being the object’s bounding box padded by γ > 0

on all sides. Queries of points outside the voxel-grid are deferred to the original

sdf, with sdf(x̃) = ||x̃ − x′||2 and ∇x̃(x̃) = (1 − 21(x̃ insideM))(x̃ − x′). Where

x′ = argminx∈M ||x̃− x||2 is the closest point on the mesh to x̃, and a ray is traced

from the inside of the object (assuming object-centered origin is interior) to x̃, with

an even number of mesh surface crossings indicating it is inside. Lower rt (a denser

grid) trades higher memory usage for more accurate representation.

Another challenge to the efficiency of evaluating ∇Ĉ(X ,T) is the representation

of known free points Xf . This is typically a volume, such as the space swept out by a

robot’s motion or derived from visual data. Representing this volume as a dense set

of points makes ∇ĉf prohibitively expensive to evaluate. Similar to the 3D Normal

Distribution Transform Magnusson (2009), we discretize the free space into a voxel-

grid. The voxel-grid has resolution rf , and the whole grid expands to the range of

free points. rf allows us to set the maximum point density.

4.4.3 Quality Diversity Optimization

With Eq. 4.7 we can optimize an initialT using stochastic gradient descent (SGD).

The optimized T depends on the starting T and will achieve a local minima of Ĉ. A

naive approach to creating the estimated plausible transform set T̂ is to start with

a set of transforms T̂0 and perform SGD on each T ∈ T̂0 separately. We compare

to this approach as an ablation in our experiments, where we find that this method

often produces T̂ with poor plausible diversity as it relies only on the diversity of

local minima for coverage.

Instead, we turn to Quality Diversity (QD) optimization. At a high level, in

addition to the Rm solution space to search over to maximize an objective f : Rm →
R, there are k behavior (also known as measure) functions Bi : Rm → R, jointly
B : Rm → Rk. For the behavior space B = B(Rm) (image of B), the QD objective is

to find for each b ∈ B a solution θ ∈ Rm such that B(θ) = b and f(θ) is maximized.

See Pugh et al. (2016) for an overview of the field.

For our problem, f(θ) = −Ĉ(X ,T), and we search over the transforms repre-
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sented in R9, with 3 translational components and the 6 dimensional representation

of rotation suggested by Zhou et al. (2019). Our B extracts the translational com-

ponents of the pose. In a sense, we are searching for the best rotation given some

translation to minimize Ĉ. Intuitively, QD’s enforced diversity over B will prevent

the collapse of T̂ when X does not sufficiently constrain our estimation.

In particular, we use CMA-MEGA Fontaine and Nikolaidis (2021) optimization

to take advantage of our cost’s differentiability to more efficiently search for good

solutions. B is discretized into a regularly spaced grid, called the archive, with each

cell holding the best solution for that cell. Diversity in T̂ is enforced by requiring

each T ∈ T̂ to come from a different cell in B. This is an evolutionary method in that

the lowest cost transforms from different cells are iteratively combined to generate

new transforms. Thus, it is valuable to populate the archive with low cost transforms

T̂l to initialize the search. If no prior estimate is available, T̂l = {}, but when we

run CHSEL iteratively, T̂l contains the estimates from the previous iteration (see Sec.

4.4.4).

Algorithm 8 describes how we use QD optimization. First, we run SGD on the

given initial transform set T̂0 using Eq. 4.7 to create an T̂ ′. We extract its translation

components B(T̂ ) = P . Using the mean µ and standard deviation σ of P along each

dimension, we size the grid B between [µ− bσσ,µ+ bσσ]. The grid is centered on the

mean µ with extents scaled by the standard deviation σ along each dimension. A

large σ suggests that there are low cost solutions with very different values along that

dimension, motivating a wider search range. The parameter bσ > 0 adjusts how many

standard deviations out we search for solutions. We initialize B with known low cost

transforms from T̂l, along with the SGD solutions T̂ ′ to seed the QD optimization.

Note that sizing the archive defines the region of the behavior space to search over

while initializing it populates some grid cells with transform values. We then run

CMA-MEGA on B for no iterations to populate B with the lowest cost T for each

cell. Finally, we select the T from the |T̂0| lowest cost cells as T̂ .
Since we initialize B with T̂ ′ ∪ T̂l, the QD optimization can be seen as a fine-

tuning process. Initially, each T ∈ T̂ ′ ∪ T̂l is the best solution for their respective

cells (assuming they fall into different cells of B). If a lower cost transform exists for

a cell, QD optimization will eventually find it and replace the original T from T̂ ′∪T̂l.
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Algorithm 8: CHSEL: QD optimization for T̂
Given: X known points, T̂0 initial transform set, T̂l low cost transform set,

bσ number of standard deviations to consider, no number of QD
iterations

1 T̂ ′ ← SGD on T̂0 with Ĉ(X ,T)

2 P ← B(T̂ ′)
3 µ← mean(P), σ ← std(P)
4 B ← grid with dimensions [µ− bσσ,µ+ bσσ]

5 B ← UpdateCells(B, T̂ ′ ∪ T̂l) // initialize the search with low cost

transforms

6 B ← CMA-MEGA(B, Ĉ, no)

7 T̂ ← {T|T ∈ cells from B with |T̂0| lowest costs }

4.4.4 Online Updates to T̂

Registration can be performed iteratively as new sensor data are added to X .
Information from the previous registration allows us to more efficiently search for T̂ .
Our update process is described in Algorithm 9. First, we consider the generation and

update of the initial transform set T̂0. Before any registration, we sample uniformly at

random (both position and rotation), within the given workspaceW where the object

could possibly be. Assuming the object has not moved, we update T̂0 as |T̂0| pertur-
bations around the best T of the previous estimated set, T′ = argminT∈T̂ Ĉ(X ,T).

We perturb its translational components with Gaussian noise σt > 0 along each

dimension. Then, in line 12, we uniformly sample a rotation axis, scaled with an

angle sampled as Gaussian noise with σR > 0. We take the exponential map of this

axis-angle representation and multiply it by the rotational component of T′. This

sampling based update of T̂0 helps with escaping bad local minima.

Secondly, the data update changes X and invalidates the previously computed

B, but the solutions in each cell of the B may still have low cost with respect to the

updated X . We select them as T̂l and use them to initialize the next QD optimization

in line 5 of Algorithm 8.

4.5 Results

In this section, we first describe our simulated and real robot environments, and

how we estimate X from sensor data. Next, we describe how we generate the plausible

set. Then, we describe our baselines and ablations and how we quantitatively evaluate

each method on probing experiments of objects in simulation and in the real world.
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Algorithm 9: Online update of T̂
Given: W workspace dimension, σt translation noise, σR rotation noise

1 T̂0 ← P ∼ U(W)× U(SO(3))

2 T̂l ← {}
3 while register do
4 X ← perceived from environment

5 T̂ ← CHSEL(X , T̂0, T̂l)
6 T̂l ← T̂
7 T′ ← argminT∈T̂ Ĉ(X ,T)

8 T̂ ′
0 ← {}

9 for i← 1 to |T̂0| do
10 ∆t ∼ N (0, diag([σt, σt, σt])
11 θ ∼ N (0, σR)
12 e ∼ U({x | ∥x∥2 = 1,x ∈ R3})
13 ∆R← eθe// axis angle to matrix

14 T̂ ′
0 ← T̂ ′

0 ∪ {(∆t+ trans(T′),∆R · rot(T′))}
15 T̂0 ← T̂ ′

0

Lastly, we evaluate the value of our cost as a QD objective.

In these experiments, a target object is in a fixed pose inside an occluded cabinet,

and we estimate its pose through a fixed sequence of probing actions by a robot (some

of which will result in contact). We run all methods after each probe, updating our set

of pose estimates using Algorithm 9. Note that all methods receive the same known

points X after each probe. Each probe extends the robot straight into the cabinet

for a fixed distance or until contact. The probing locations are configuration specific

and designed such that at least some contacts are made. We use YCB objects Calli

et al. (2017) for both simulated and real experiments as their meshes are readily

available. We precompute the object-frame SDF from these meshes as described in

Section 4.4.2. In all cases, we are estimating a set of 30 transforms (|T̂ | = 30), and

use parameters α = −10mm, bσ = 3, C = 20, σt = 0.05m,σR = 0.3. In the sim

experiments we use no = 100 and in the real world no = 500. For the Plausible

Diversity distance function d(T, T̂), we sample 200 points on the object surface and

evaluate the Chamfer Distance between them after being transformed. Note that the

200 points sampled are different per trial. We extract the x and y components of the

pose using B - we found no significant difference in performance from also extracting

z.
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Figure 4.3: Real probing configurations for the drill and mustard.

Figure 4.4: Simulated probing configurations for multiple YCB objects.
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Figure 4.5: Unreliable RGBD readings inside the partially occluded cabinet, viewed
from both sides, with an approximate pose of the mustard bottle in purple.
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Figure 4.6: Plausible Diversity for real drill (left) and mustard (right) probing ex-
periments across 2 configurations and 6 trials each. The bars indicate the 25 to 75
percentile while the whiskers are the min and max with outliers as diamonds. Lower
is better.

4.5.1 Simulated Environment

We use PyBullet Coumans and Bai (2016–2021) to simulate a Franka Emika

(FE) gripper (see Fig. 4.4) that is position controlled. The workspace is voxelized

with resolution rf = 25mm and spans [−0.1, 0.5] × [−0.3, 0.3] × [−0.075, 0.625] in
meters. We label the boundary of the workspace as free space. The SDF is voxelized

with resolution rt = 10mm with padding γ = 50mm. The robot sweeps out voxels

in the workspace grid during its probing motions, and Xf is given by the center of

the swept voxels. Xo is empty as we have have no sensors that detect non-surface

occupancy, though such information can be added if available. Xk is given by the

contact points, with each having semantics s = 0 since contact can only occur on
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Figure 4.7: Plausible Diversity for simulated probing experiments across different
YCB objects, with 2 to 4 configurations from Fig. 4.4 over 10 trials each. The median
is in bold while the shaded region represents 25 to 75 percentile. Lower is better.

the object surface. Both the gripper and object are rigid and so only make single-

point contacts which we retrieve from the simulator. For different trials, we seed the

random number generator with different values.

4.5.2 Real Environment

For our real world experiment, we equip a 7DoF KUKA LBR iiwa arm with two

soft-bubble tactile sensors Kuppuswamy et al. (2020) on the gripper (see Fig. 4.1 and

Fig. 4.3). The soft-bubble sensors allow us to detect patch contact, which we consider

as any point with deformation beyond 4mm and being in the top 10th percentile of

deformations. We use a mean filter to remove noise and downsample such that each

contact produces at most 50 surface points.

The workspace is a physical cabinet mock-up and is voxelized with resolution

rf = 10mm, spanning [0.7, 1.1]× [−0.2, 0.2]× [0.31, 0.6] meters. The SDF is voxelized

with resolution rt = 5mm with padding γ = 50mm. In addition to populating Xf

with robot swept volume, we utilize a RealSense RGBD camera, partially occluded

by the cabinet. The camera is unreliable near occluding edges (see Fig. 4.5), thus we

do not assume the object can be reliably segmented from the camera view, so we only

use the free space information derived from the depth data. To that effect, we trace

rays from the camera to 95% of each pixel’s detected depth and add them to Xf .
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Object ϵ
Real Drill 0.001
Real Mustard Bottle 0.0003
Sim Drill 0.001
Sim Mustard Bottle 0.0003
Sim Hammer 0.001
Sim Cracker Box 0.0005
Sim Spam Can 0.0003
Sim Clamp 0.0007

Table 4.1: ϵ used to generate the plausible set for each objects.

4.5.3 Computing Plausible Set

In order to evaluate our method, we need to compute Tϵ, which is very compu-

tationally intensive. We compute Tϵ by densely sampling transforms around T∗ and

evaluate each using Eq. 4.2 with cm = 100000. Specifically, we search over a grid

spanning [−0.1, 0.15] × [−0.2, 0.2] × [0, 0.1] meters with 15 cells along each dimen-

sion. We also uniformly random sample 10000 rotations which we combine with each

translation cell. See Table 4.1 for the ϵ used to generate the plausible set of each

object. They were selected such that most probe trials have around 30 members in

Tϵ halfway through.

In simulation, we retrieve T∗ from the simulator, while on the real robot we first

manually specify an approximate pose, then search in two passes. The first pass

searches around the specified pose to find the optimal transform, which is then used

as T∗ for the second pass.

4.5.4 Baselines

We compare against ICP as a weak baseline that does not use free space infor-

mation. ICP registers the known surface points against another point set, which we

provide as 500 points randomly sampled from the object surface. Note that these

points are different for each trial. ICP is run until convergence.

Secondly, we compare against Continuous Visual Odometry (CVO) Zhang et al.

(2021), the state of the art in semantic point set registration, and a continuous gen-

eralization of 3D NDT. We use 2 dimensional semantics to represent free points as

[0.9, 0.1] and surface points as [0.1, 0.9]. CVO registers the free and surface points

against another semantic point set, which we provide as the center of the precom-

puted SDF voxels. Voxels with SDF value between [−rt, rt] are labelled with surface
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semantics, and voxels with SDF value greater than rt are labelled as free. Note that

there are many more free points than surface points (≈ 125 : 1).

Next, we consider using Stein Variational Gradient Descent (SVGD) Liu and

Wang (2016) of Eq. 4.7 to enforce diversity. We formulate p(T|X ) ∝ e−βĈ(X ,T), and

select β = 5 as a scaling term for how peaked the distribution is. We have |T̂0| stein
particles, each one initalized with a separate T ∈ T̂0, implicitly defining the prior.

We use an RBF kernel with scale 0.01.

Lastly, we compare against Haugo and Stahl (2020), which forms free space

constraints by covering the free space using balls along the volume’s medial axis

(we refer to this baseline as Medial Constraint). For each ball we have cost

max(0, Br−sdf(B̃c))
2 where Br is its radius and Bc is the center position of the ball.

For each surface point we have cost sdf(x̃)2. The total cost is the sum of the mean

ball cost and the mean point costs. We optimize this cost using CMA-ES Hansen

et al. (2003), a gradient-free evolutionary optimization technique.

4.5.5 Ablations

We ablate components of our method starting with how useful the gradient is for

accelerating QD optimization. Instead of CMA-MEGA, we use CMA-ME Fontaine

et al. (2020) which does not explore using gradients.

We also consider just gradient descent on Eq. 4.7 to evaluate the value of additional

optimization. We run Adam for 500 iterations with learning rate 0.01, reset to 0.01

every 50 iterations. These are also the parameters used for initializing CMA-ME and

CMA-MEGA.

4.5.6 Probing Experiments

Qualitatively, we see the progress of a probing experiment and the elimination

of hypothesis transforms through gaining known free space points in Fig. 4.8. From

the initial probes along the back of the drill, it could take on many possible upright

orientations. Note that after the probe in the second row, the contact points constrain

the pose such that the contacts must lie on the back of the drill. As we probe the left

side of the drill, without making contact, we eliminate transforms that would conflict

with the new free space points. Probing the other side further narrows down the

plausible transforms. Note the lack of diversity from the Medial Constraint baseline

and the poor estimation from ICP since it cannot use free space information.

Fig. 4.6 summarizes the results of the real probing experiments on the YCB drill
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CHSEL CHSEL without QD Medial Constraint ICP

Figure 4.8: Reducing uncertainty in estimated pose as a result of additional free space
points for selected methods, obtained by probing to the sides of the YCB drill. T̂
is represented as transformed copies of the mesh while contact points are drawn in
orange, with the line indicating the direction of the probe.

and mustard bottle, each in two different configurations (see Fig. 4.3) over 6 trials.

Fig. 4.7 summarizes the results of the simulation probing experiments on the YCB

drill, mustard bottle, hammer, cracker box, spam can, and clamp. Additionally,

we show the average time it takes for each method to perform registration on the

real experiments in Fig. 4.9. This involves producing 30 transforms with |X | ∈
[13000, 21000], and |Xk| ∈ [0, 150]. Note that all methods apart from CVO use

parallelized implementations. Computations were performed on a NVIDIA GeForce

RTX 2080 Ti with 11GB of VRAM.

From Fig. 4.6 and Fig. 4.7, we see that applying QD optimization to Ĉ in general

outperforms baselines and the ablations. This is particularly true on more irregular

objects such as the drill and hammer, and when we have noisy data in the real

experiment. Even without QD optimization, gradient descent on Ĉ outperforms the

Medial Constraint baseline. This may be due to the ability of CMA-ES to escape

local minima, leading to low coverage, as seen in Fig. 4.8. All methods, including

ICP, outperform CVO. We suspect this is due to the large imbalance of |Xf | to |Xk|
(≈ 125 : 1). See Appendix 4.5.9 for an investigation of CVO’s performance.

4.5.7 QD Method Comparison

We investigate the value of our formulated cost’s differentiability by considering

the QD optimization process in further detail. In Fig. 4.10, we compare the T̂ per-

formance of using CMA-MEGA and CMA-ME as we increase the number of QD

optimization iterations. The results are from the front-facing real drill experiment
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Figure 4.9: Average time per registration of 30 transforms on the real probing exper-
iments. Error bars indicate one standard deviation.

(Fig. 4.3 top left), averaged over probes 5 and 6, and across the 6 trials. Both methods

are initialized with the same T̂0 and T̂l each trial and probe (see Algorithm 8). We

see that CMA-MEGA is able to use our gradients to reach lower Plausible Diversity

and average cost of the best cells in fewer iterations, and that they converge and

reach parity after around 500 iterations (fewer in simulation due to lack of noise).

In Fig. 4.6 and Fig. 4.7, both methods have run for enough iterations to converge.

On average, each CMA-ME iteration takes 8.37ms while each CMA-MEGA iteration

takes 11.5ms.

4.5.8 QD Objective Comparison

Lastly, we investigate how well QD optimization works with other objectives.

We perform CMA-ME optimization using the Medial Constraint objective, with B
initialized and sized from the T̂ estimated by Medial Constraint using CMA-ES.

Fig. 4.11 shows results on the real mustard bottle experiments, where we see that

while QD optimization improves the Medial Constraint performance, our method still

significantly outperforms it. This demonstrates the value of Ĉ as a QD objective.
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Figure 4.10: Comparison of QD optimization progress using Ĉ on the real drill ex-
periment. Results are averaged across 6 trials and probe numbers 5 and 6. Median
is in bold while the shaded region represents 25 to 75 percentile.
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62



4.5.9 CVO Performance

Qualitatively, we noticed that CVO’s estimated transforms tend to place the ob-

ject such that Xf is in concentrated regions of observed free points. To check if this

free/surface imbalance was the cause of CVO’s poor performance, we ran CVO while

ignoring Xf on the real mustard bottle experiments (results shown in Fig. 4.12). We

see that CVO performs comparably to ICP when ignoring Xf . This is significantly

better than when considering Xf , suggesting that CVO is not able to effectively use

the free space information.
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Figure 4.12: Plausible Diversity on the two real mustard bottle experiments with
a focus on the improvement the CVO baseline receives from ignoring Xf . Lower is
better.

4.6 Discussion

In sequential registration problems such as our probing experiments, we assume

that the object is stationary and that the updated semantic points are given. However,

keeping the object still while probing it is not trivial, as every contact has the potential
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to move the object. Rapid force and tactile feedback could minimize this issue.

Contact could also be made with other objects during the probing motions. Contact

point tracking and reasoning over object-contact associations is not within the scope

of this chapter. However, in future work we will explore using a method such as

STUCCO Zhong et al. (2022) to estimate object-contact associations and add the

proper contacts to X .
The experiments in this chapter used a fixed sequence of probing motions. This

makes for a fair comparison between methods, since the sequence is not dependent on

any method’s pose estimates. However, in practice, the next probing motion should

depend on the current pose estimate. In Chapter V we explore how to reason over

the plausible set of poses and plan trajectories that efficiently disambiguate between

them, so as to localize the object with as few probing motions as possible.

4.7 Conclusion

We presented CHSEL, a pose registration method that utilizes point semantics,

such as whether a point is in free space or on the object surface, to impose additional

constraints and reduce pose ambiguity. Rather than a single best estimate, it pro-

duces a set of diverse plausible estimates given the observed data. We showed that

it performs well on both simulated and real data collected from robot probing exper-

iments. In particular, we separately demonstrated the value of performing Quality

Diversity (QD) optimization for registration, and the strength of our proposed dif-

ferentiable cost function as a QD objective. Additionally, we showed how to update

the estimated transform set online with updated data, that CHSEL performs well on

data with few contact points, and that it is seamless to integrate vision as an input

modality.
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CHAPTER V

Rummaging Using Mutual Information

The previous chapter introduced a method for estimating an object pose and char-

acterizing its uncertainty from a point cloud with volumetric semantics information.

In the experiments, the probing trajectory was predetermined, and this work is to

create a method to generating these probing trajectories. The goal is to do so in a way

that gives the most information about the object’s pose as possible within a certain

number of actions. Concretely, it is to maximize the mutual information between a

fixed-length trajectory and the object’s pose distribution.

5.1 Introduction

Active exploration, the process of autonomously planning actions to gather more

information about a target quantity, is a core problem in robotics, particularly when

dealing with unknown environments Bajcsy et al. (2018). This problem encompasses

a range of scenarios, differentiated by the type of robot (e.g., mobile vs. stationary),

the primary sensor modality (often vision), and the specific quantity to be estimated.

As robotics applications have transitioned from known, structured environments

like factories to the unknown, dynamic environments of homes, new challenges have

emerged. One critical application area is object manipulation, where visual perception

is often hindered by occlusions caused by both the environment and the objects

themselves Zhong et al. (2023). To address these challenges, we focus on actively

exploring to estimate the pose of a movable object with a known shape through

contact-rich interactions, commonly referred to as rummaging.

Occlusions of the target object, both from itself and from other objects, moti-

vate the need to use contact to determine the object’s pose. Our prior work has

investigated how to track the position of contact points during rummaging with an
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Figure 5.1: (a) Set up of a real-world active exploration experiment where the goal
is to estimate the pose of a movable target object. The object pose remains am-
biguous due to self occlusion. (b) The initial point cloud view of the scene from the
camera perspective. (c) RUMI maintains a belief over object pose using a particle
filter, where the pose particles are shown as overlaid objects with how red they are
indicating likelihood. Observed surface points are in red. From the pose particles
and observations, RUMI generates an information gain field to plan over, shown as a
heat map. Only the most interesting workspace points are shown. (d) Even without
making contact with the handle, the robot sweeps out free space that constrains the
pose. (e) Finally making contact accurately estimates the mug pose.

unknown number of objects Zhong et al. (2022), and how to estimate the plausi-

ble set of object poses given observed contact and free space points Zhong et al.

(2023). However, the problem of how to plan information-gathering trajectories to

estimate a movable object’s pose is still under-explored. A primary challenge is the

object’s mobility, coupled with the requirement for contact-based information collec-

tion. Without careful planning, making contact can inadvertently push the object

out of the robot’s workspace, as evidenced in our experiments.

Active exploration is often framed from an information-theoretic perspective,

where the quantity to be estimated is treated as a random variable, and actions are

selected to minimize its uncertainty. This approach can be computationally expen-

66



sive, necessitating a trade-off between accuracy and speed or limiting the exploration

to a single next best action. Additionally, some methods restrict the action space

to movements along the object’s surface Suresh et al. (2022), Driess et al. (2017).

While this restriction simplifies the problem, it also limits the robot’s capabilities.

Instead, we aim to enable robots to make and break contact dynamically throughout

the rummaging process, enhancing their exploratory capabilities.

To address the above challenges, we present Rummaging Using Mutual Informa-

tion (RUMI), an active exploration method. Specifically, our contributions are:

1. a framework for creating and updating a belief over poses given observed point

clouds, augmented with volumetric semantics such as whether each point is in

free space or on the surface of the object, based on the discrepancy formulated

in CHSEL Zhong et al. (2023)

2. a measure of information gain based on the mutual information between the

object pose and volumetric semantics at the positions that the robot trajectory

will cover, and show that it can be efficiently computed in parallel for dense

workspace points in real time

3. a closed loop MPC planning framework using cost functions based on the in-

formation gain and maintaining object reachability, and a stochastic object

dynamics model

In our experiments, we show that RUMI is the only method to achieve consistent

success in simulated and real robot rummaging tasks across various objects.

5.2 Related Work

In a broad sense, we focus on the problem of actively exploring an unknown en-

vironment to reduce the uncertainty of some quantity. There are many variants and

names for the problem, including active sensing Ryan and Hedrick (2010), sensor path

planning Cai and Ferrari (2009), active perception Bajcsy et al. (2018), and interac-

tive perception Bohg et al. (2017). The variants differ primarily by the robot type

(mobile vs stationary base), sensing modality, and by the quantity to be estimated;

e.g. the map of the environment Lluvia et al. (2021), Popović et al. (2020), Jadidi

et al. (2015), the shape of an object Driess et al. (2017), Yi et al. (2016), the pose of

an object (object localization) Danielczuk et al. (2019), Andreopoulos et al. (2010),

or the pose of effective grasps for objects Kahn et al. (2015), Ottenhaus et al. (2019).
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In the case of unknown object shape, or reconstruction from a set of objects, the

problem is also known as active shape completion Rustler et al. (2022). This paper

focuses on estimating the pose of a movable rigid object with a known shape.

In general, active exploration is the iterative process of:

1. forming a belief over state given observations

2. computing expected information gain over a workspace

3. planning an action sequence

4. executing some of the action sequence and collecting observations

5.2.1 Representing Belief

Representations suitable for active exploration have been studied extensively. In

many cases, parametric filters like the extended Kalman Filter (EKF) Sim and Roy

(2005), Leung et al. (2006) may be used when the posterior of the quantity of measure

should be approximately Gaussian. Otherwise, non-parametric methods like particle

filters Deng et al. (2021), Koval et al. (2015) are often used. Occupancy grids have also

been popular, e.g. used in the simultaneous localization and mapping (SLAM) variant

of active exploration Meyer-Delius et al. (2012), Vespa et al. (2018), Carrillo et al.

(2015). In particular, when assuming each grid cell is independent, information gain

based on the entropy of all the cells may be efficiently computed on an occupancy grid.

We make a similar assumption that enables efficient computation of our information

gain.

Recently, Gaussian processes (GPs) Jadidi et al. (2015) have also been used for

estimating object shape. GP implicit surfaces (GPIS) have shown strong represen-

tation power Dragiev et al. (2011), Driess et al. (2017). GPIS uses a GP to output

a field in which the 0-level set represents the surface of the object. In our method,

we do not need the full representation power of a GP since we have a known object

shape. Instead, we use a particle filter to represent the pose distribution, and present

a novel way to evaluate the particle probabilities given an observed point cloud.

5.2.2 Information Gain

The information gain can be formulated in many ways, often depending on the

belief representation. For GPIS the variance of the GP Driess et al. (2017), or the

differential entropy of the GP for adding a new data point Driess et al. (2019) can
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be evaluated directly and used. However, despite work on geometric shape priors for

GPIS Martens et al. (2016), there remains no satisfactory way to condition a GP on a

known shape with unknown pose. We implement a GPIS baseline and condition it on

the shape by augmenting the input data. Mutual information between observations

and the estimated quantity is also common Jadidi et al. (2015),MacDonald and Smith

(2019), which measures the reduction in uncertainty of the estimated quantity given

the observations. Thus, we formulate our information gain function based on the

mutual information between the object pose and the occupancy at points a robot

trajectory would sweep out.

5.2.3 Planning

Searching for an optimally-informative trajectory is usually computationally in-

tensive. GP-based methods in particular are limited by inference times that grow

rapidly with increasing number of data points, often addressed by using sparse GPs

or downsampling to trade off accuracy Snelson and Ghahramani (2005). Some meth-

ods greedily selects the optimal next configuration, and additionally constrain the

action space to slide along the surface of the object Suresh et al. (2022), Driess et al.

(2017). Our formulation of the information gain allows us to efficiently evaluate it for

many query trajectories in parallel, enabling us to use longer-horizon planning meth-

ods such as sampling-based model predictive control in a closed loop. We consider

difficult tasks which necessitate long horizon planning.

Active exploration problems also differs by sensing modality. In the context of

object shape and pose estimation, the most common modality is visual perception,

with the common framing of the problem as finding the next best view Krainin et al.

(2011). Tactile approaches have also demonstrated success Yi et al. (2016), Driess

et al. (2017), as well as hybrid approaches Rustler et al. (2022), Smith et al. (2021).

Tightly coupled with sensing modality is the distinction of whether the robot is pas-

sively observing the environment or actively interacting with and changing the en-

vironment as in the interactive perception problem Bohg et al. (2017). RUMI is a

hybrid approach for interactive perception, primarily relying on contact-rich inter-

actions using tactile sensors, but also leveraging visual perception to initialize pose

estimates. Visual perception in our case is weakened by environmental occlusion or

object self-occlusion. Unlike most other methods for object pose or shape estimation,

we do not assume the object is stationary, which accounts for a large part of the dif-

ficulty. The closest method to ours is Act-VH Rustler et al. (2022), which trains an

implicit surface neural network to output hypothesis voxel grids of seen objects given
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a partially observed point cloud and selects the best point to probe next. One major

weakness of this method is the need to either retrain their network on all candidate

objects whenever there is a new target object, or to train a network per object and

assume object identity is known. Our method can be applied to new known objects

without any training. Additionally, their object is in between the robot and visual

perception, meaning that the visually-occluded region is highly reachable, bypassing

a major challenge that we address. Lastly, we consider the information gain from full

robot trajectories rather than a single next point to probe.

5.3 Problem Statement

Let q ∈ RNq denote the robot configuration, and u ∈ RNu denote control. We

study a single robot exploring an unmodeled environment, using limited visual per-

ception and contact-heavy rummaging to estimate the pose of a single movable rigid

target object of known shape. A rigid object’s configuration is defined by its pose,

a transform T ∈ SE(3). Every T can be identified with a R4×4 homogeneous trans-

formation matrix, and for convenience, we use x̃ = Tx to denote the homogeneous

transform of point x ∈ R3 from world frame coordinates to the object frame of T (ho-

mogeneous coordinates have 1 appended). There is an underlying dynamics function

f : RNq × RNu → RNq that we do not know, but are given the free space dynamics

function ff : RNq × RNu → RNq . The difference in dynamics is primarily due to

contact between the robot and the target object. We are interested in generating a

fixed length trajectory of T actions, u1, ...,uT to actively explore and estimate the

target object’s pose.

Specifically, we have the target object’s precomputed object frame signed distance

function (SDF) derived from its 3D model, sdf : R3 → R. After each action, sensors

observe a set of points at time t : X ′
t = {(x1, s1), ..., (xN , sN)}t with observed world

positions xn ∈ R3 and semantics sn (described below). For convenience, we refer to a

pair of position and semantics as a geometric feature. Let Xt denote the accumulated

set of geometric features up to and including time t. Sensors may include but are not

limited to robot proprioception, end-effector mounted tactile sensors, and external

cameras.

We treat the pose of the target object as a random variable and define p(T|Xt) as

the posterior probability distribution over poses given Xt. Observation noise, object

symmetry, and the partial nature of Xt results in pose uncertainty.
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Let T∗ be the true object transform, then the observed semantics are

sn =


free implies sdf(T∗xn) > 0

occupied implies sdf(T∗xn) < 0

surface implies sdf(T∗xn) = 0

For a workspace point x that we have not observed, its semantics is a discrete ran-

dom variable Sx with the shorthand p(Sx) = p(s|x). We are given a sensor model

p(Sx|T) = p(Sx|sdf(Tx)) such as in Fig. 5.2 that gives the probability of observing

each s value given an SDF value. The sensor model does not consider uncertainty

over the position, and we assume we are given exact positions with only uncertainty

over semantics Sx.

Given a prior p(T), and starting at q1, our goal is to estimate the pose of the

object by maximizing the expected information gain after T actions:

argmax
u1,...,uT

EXT
[DKL(p(θ|XT )||p(θ))]

s.t. qt+1 = f(qt,ut), t = 1, ..., T
(5.1)

The expectation is over the semantics of each point in XT . Note that this is

equivalent to the mutual information between T and XT , I(T;XT ) Murphy (2012).

The challenge of this problem comes from the need for contact-based perception

due to limited sensing capabilities, coupled with the fact that the target object is

movable. Moreover, an ineffective action sequence can result in undesirable contacts,

potentially pushing the object out of the robot’s reachable workspace.

We evaluate the quality of the estimated pose distribution by evaluating the like-

lihood of the ground truth pose L(T∗|Xt), or equivalently its negative log likelihood

(NLL). Low NLL indicates both certainty and correctness of the pose distribution.

We do so by sampling a set of surface points in the object frame and transforming

them by T∗ to produce world positions X. We then evaluate the NLL of all of the

points having surface semantics:

nll(X ) = − log p(
⋂
x∈X

Sx = surface|X ) (5.2)

We use this metric as well as computational efficiency to evaluate our method

against baselines and ablations.
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Figure 5.2: Example sensor model that gives a probability of observing each semantics
class given a SDF value.

5.4 Method

Previous pose 
particles

Previous 
observations

Compute 
information gain

Estimate 
semantics

Select good 
trajectory

Execute single 
action

Dynamics 
function

Reachability cost

Information gain 
cost

New 
observations

Estimated object 
pose change

Updated pose 
particles

New robot 
configuration

Predicted robot 
configuration

Predicted object 
displacement

Evaluation Planning using MPC

Execution

Workspace 
query positions

Robot 
configuration

Figure 5.3: Flow chart showing one time step of RUMI’s approach for solving Eq. 5.1.
Beige blocks are inputs to this time step while green ones are outputs of this time
step. The process is also into evaluating current information gain, planning into the
future using the information gain, and executing one step of the plan and updating
observations.

Our high level approach to addressing the problem in Eq. 5.1 is depicted in Fig. 5.3.

We represent the pose posterior p(T|X ) with a particle filter and describe how to

evaluate p(T|X ). Next, we present a tractable surrogate for information gain that

we develop into a cost function for model predictive control (MPC). To discourage

trajectories that move the target object out of the robot’s reachable area, we develop

an additional reachability cost function. Furthermore, to estimate the displacement

of the target object given an action trajectory, we implement a stochastic dynamics

model f̂ . We use the cost functions and the dynamics function inside MPC, which
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executes in a closed loop for T steps. During this process, we detail how to merge

current observations with previous ones and update the pose posterior p(T|X ).

5.4.1 Representing Pose Posterior

We maintain a belief over the pose posterior p(T|Xt) using a particle filter, where

each particle is a pose. We have N particles T1..N , with weights w1..N such that∑N
i=1 wi = 1. Our choice of a particle filter over alternative representations is moti-

vated by the potential multi-modality of the posterior and the ability to process each

particle in parallel.

A major obstacle to the tractability of solving Eq. 5.1 is the information correlation

between geometric features. Observing one decreases the information gain from others

in a non-trivial manner, and it is a common long-standing assumption to consider

the information gain from each point independently Cao et al. (2013), Stachniss and

Burgard (2003). Thus, we assume the conditional mutual independence of Sx for all

query positions x given observed Xt.

Critical to our method is a way to evaluate the posterior p(T|X ). Our prior work

CHSEL Zhong et al. (2023) formulated a differentiable cost function Ĉ(X ,T) that

evaluates the discrepancy between X and T. It bears similarity to hydroelastic, or

pressure field contact modelling Elandt et al. (2019), Masterjohn et al. (2022), except

in addition to the pressure field penalizing object penetration, there are pressure fields

that penalize semantics violation, such as observed free space geometric features being

inside objects.

We simplify the third semantics class from CHSEL, which represented known

SDF of any value. We restrict it to s = 0, which refers to surface points. The cost

is formulated by first partitioning the observed X into Xf = {(x, s) | s = free},
Xo = {(x, s) | s = occupied}, and Xs = {(x, s) | s = surface}.

Ĉ(X ,T) =
∑

x,s∈Xf

ĉf (x̃) +
∑

x,s∈Xo

ĉo(x̃) +
∑

x,s∈Xs

ĉk(x̃, 0) (5.3)

ĉf (x̃) = Cmax(0, α− sdf(x̃)) (5.4)

ĉo(x̃) = Cmax(0, α+ sdf(x̃)) (5.5)

ĉk(x̃, s) = |sdf(x̃)− s| (5.6)

where C > 0 is a scaling parameter and α > 0 allows for small degrees of violation

due to uncertainty in the positions.
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Their gradients are defined as

∇ĉf (x̃) = Cmax(0, α− sdf(x̃))(−∇sdf(x̃)) (5.7)

∇ĉo(x̃) = Cmax(0, α+ sdf(x̃))∇sdf(x̃) (5.8)

∇ĉk(x̃, s) = (sdf(x̃)− s)∇sdf(x̃) (5.9)

where ∇sdf(x̃) is the object SDF gradient with respect to an object-frame position

x̃ and normalized such that ∥∇sdf(x̃)∥2 = 1.

Similar to energy-based methods, we use the Boltzmann distribution Haarnoja

et al. (2017), Teh et al. (2003) to interpret Eq. 5.3 as the posterior pose probability:

p(T|X ) = ηe−λĈ(X ,θ) (5.10)

where λ > 0 selects how peaky the distribution should be and η is the normalization

constant such that
∫
ηe−λĈ(X ,θ)dT = 1.

We observe that the cost in Eq. 5.3 is additive in the sense

Ĉ(X ∪ (x, s),T) = Ĉ(X ,T) + Ĉ((x, s),T) (5.11)

This is an important property that enables us to efficiently evaluate information gain

of all workspace positions in parallel.

5.4.2 Mutual Information Surrogate

Our conditional mutual independence assumption of p(Sx|X ) lets us consider the
information gain from knowing the semantics at a single new position, which we

denote the information gain field Ĩ(x|X ). This is much simpler than considering the

information gain of a robot trajectory directly because there is no time component

or correlation between the semantics of neighbouring geometric features. Suppose we

have observed X and want to evaluate the information gain from observing some new

geometric feature (x, s). Note that here we are querying a specific given value of x,

but Sx is still a random variable, so the expectation is over p(s|X ,x) = p(Sx|X ):

If (x|X ) = E
s∼p(Sx|X )

[DKL(p(θ|X ∪ (x, s))||p(θ|X ))] (5.12)

= E
s
[ E
θ∼p(θ|X∪(x,s))

[log
p(θ|X ∪ (x, s))

p(θ|X )
]] (5.13)
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The forward KL divergence results in an expectation over p(θ|X ∪ (x, s)). Since

we need to evaluate the information gain for many positions in the workspace, this

becomes intractable.

To address this challenge, we use the reverse KL divergence, since the expec-

tation is over p(θ|X ) for all queried positions. In general, KL divergence is not

symmetric. However, when two distributions are close together the KL divergence

is approximately symmetric Zhang et al. (2024), Kullback (1997). In our case the

KL divergence is between p(θ|X ) and p(θ|X ∪ (x, s)) with all having SE(3) support,

avoiding infinite divergences. As we increase |X | during exploration, we expect the

two distributions to become closer and the reverse KL to better approximate the

forward KL divergence.

Intuitively, a geometric feature has high reverse KL divergence if it has high p(θ|X )
and low p(θ|X ∪(x, s)). These correspond to geometric features that would invalidate

currently high-probability poses i.e. these are positions we would like to explore.

Using reverse KL, We now have

Ir(x|X ) = E
s
[DKL(p(θ|X )||p(θ|X ∪ (x, s)))] (5.14)

= E
s
[ E
θ∼p(θ|X )

[log
p(θ|X )

p(θ|X ∪ (x, s))
]] (5.15)

Substituting Eq. 5.10 in

Ir(x|X ) = E
s
[E
T
[log

p(X|T)

p(X ∪ (x, s)|T)
]] (5.16)

= E
s
[E
θ
[log

η1e
−λĈ(X ,θ)

η2e−λĈ(X∪(x,s),θ)
]] (5.17)

= E
s
[E
θ
[log

e−λĈ(X ,θ)

e−λĈ(X∪(x,s),θ)
]] + log

η1
η2

(5.18)

= λE
s
[E
θ
[−Ĉ(X ,θ) + Ĉ(X ∪ (x, s),θ))] + log

η1
η2

(5.19)

where η1 and η2 are the normalizing constants for p(T|X ) and p(T|X ∪ (x, s)), re-

spectively. First we simplify using the additive property of Ĉ (Eq. 5.11) then consider

the normalizing constants,

Ir(x|X ) = λE
s
[E
T
[Ĉ((x, s),θ)]] + log

η1
η2

(5.20)
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Figure 5.4: (left) Example mug object with (middle) X rendered from a pinhole
camera on one side, not seeing where the handle is. The ground truth object surface is
outlined in dotted black, observed surface geometric features are in red, and observed
free space is in blue. (right) The information gain field estimated with N = 100 is
darker where there is more information, where the handles could be.

We note that η2 depends on the querying position x because each x induces a

different p(T|X ∪(x, s)). This normalizing constant is intractable to compute because

it involves an integral over T, so we instead optimize the approximation

Ĩ(x|X ) = λE
s
[E
θ
[Ĉ((x, s),θ)]] (5.21)

= λ
∑
s

p(Sx = s|X )E
θ
[Ĉ((x, s),θ)] (5.22)

Selecting λ too high leads to the pose particle weights dominated by a few, causing

particle degeneracy.

We approximate the expectation over the posterior by taking the weighted sum

over the pose particles

Ĩ(x|X ) ≈ λ
∑
s

N∑
i=1

p(Sx = s|X )wiĈ((x, s),Ti) (5.23)

Finally, we consider how we can approximate the conditional semantics distribu-

tion p(Sx|X ) which is the last term required for fully computing Ĩ(x|X ). We use the

law of total probability

p(Sx|X ) =
∫

p(Sx|θ,X )p(T|X )dT (5.24)
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Figure 5.5: Computed information gain field Ĩ(x|X ) from Fig. 5.4 with (left) N = 30,
(middle) N = 100, and (right) N = 1000.

Here again we approximate the expectation over the posterior by taking the weighted

sum over the pose particles

p(Sx|X ) ≈
N∑
i=1

wip(Sx|Ti,X ) (5.25)

we assume the conditional independence of Sx and X when given T, so

p(Sx|X ) ≈
N∑
i=1

wip(Sx|Ti)) (5.26)

=
N∑
i=1

wip(Sx|sdf(Tix)) (5.27)

where p(Sx|sdf(Tix)) is given by the sensor model.

Note that all the terms in Eq. 5.23 only query x and T1..N , without needing to

directly consider X ∪(x, s). This enables us to evaluate Ĩ(x|X ) for all positions inside
a workspace x ∈ W ⊂ R3 in parallel.

5.4.3 Illustrative Example

To develop intuition, we consider a mug as the target object, depicted in Fig. 5.4

(left). Initially, a camera observes one side of the mug, narrowing down its position.

However, since it cannot observe the handle and there is partial rotational symmetry,

there is uncertainty in the orientation of the object. Fig. 5.4 (right) is the com-

puted information gain Ĩ(x|X ) over the entire workspace, showing that most of the
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Figure 5.6: Resampling during a pybullet simulated mug task with partial initial
observation like in Fig. 5.4. (left) Before contact pose particles, and (middle) pose
particles after contact with many receiving low likelihood indicated by the dark color
due to discrepancy with the newly observed surface geometric features. This leads to
resampling, and (right) resampled particles that are all high likelihood and centered
around the ground truth pose.

information gain is concentrated where the handle could be.

Intuitively, we expect a smooth dark band where the handles could be but observe

unevenness. This is due to the approximation error of p(θ|X ) being represented by

finitely many pose particles and the approximation of Ir with Ĩ. This is illustrated by

Fig. 5.5. With larger N , the trade off for gaining a more accurate approximation of

p(θ|X ) is increased memory usage. Since we process the particles and query positions

in parallel, memory becomes the bottleneck and they have to be processed in batches,

turning the memory trade off into a runtime one.

5.4.4 Posterior Update Process

So far, we have developed the information gain field given some observed X at

one time step. We now describe the active rummaging process in Algorithm 10 to

update the posterior.

Before any actions, we are given the pose prior p(T) in the form of N initial poses

T0,1..N . Note that given a fixed set of geometric features X , the posterior probability
of poses can be compared using Eq. 5.10. With the relative posterior probability and

samples from the prior, we can theoretically draw samples from the posterior using

techniques such as Markov Chain Monte Carlo (MCMC) Geyer (1992), Casella and

George (1992). However, MCMC tend to struggle with the high dimensionality of

poses (T ∈ SE(3)). With the interpretation of Eq. 5.3 as the posterior (Eq. 5.10),

optimization of Eq. 5.3 on prior pose particles can naturally be interpreted as approxi-

mately sampling from the posterior. Thus we apply CHSEL (Algorithm 1 from Zhong

et al. (2023)) to produce the initial pose particles in Algorithm 10 line 2. CHSEL

performs Quality Diversity (QD) optimization Pugh et al. (2016) on Eq. 5.3 to find
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Algorithm 10: Particle filter posterior update

Given: N number of particles,
T0,1..N initial poses,
q1 initial robot configuration,
σt translation noise,
σR rotation noise,
lr resample discrepancy threshold,
W workspace set of query positions

1 X0 ← sensors observe at q1

2 T1..N ← CHSEL(T0,1..N ,X0)
3 w1..N ← WeighParticles(T1..N ,X0)
4 for t← 1 to T do

5 compute p(Sx|Xt−1) using Eq. 5.27 and Ĩ(x|Xt−1) using Eq. 5.23 for
x ∈ W and cache in voxel grids

6 ut ← Plan(Ĩ(x|Xt−1), p(Sx|Xt−1),qt)
7 robot executes action ut to arrive at qt+1

8 X ′
t ← sensors observe at qt+1

9 ∆Tr ← sensors observe change in robot end-effector pose while in contact
10 ∆T,∆Tw ← ObjMove(Xt−1,X ′

t ,T1..N ,∆Tr)
11 if ∆T not 0 then

// predict step

12 for i← 1 to N do
13 ∆Tσ ← PerturbTransform(σt, σR) Ti ← ∆Tσ ·∆T ·Ti

14 Xt ← MergeObs(Xt−1,X ′
t ,T1..N ,∆Tw)

// update step, even when not in contact

15 l1..N ← Ĉ(X ,T1..N)
16 if max(l1..N) > lr then
17 T1..N ← Resample(T1..N , w1..N ,Xt)
18 w1..N ← 1/N

19 else
20 w1..N ← WeighParticles(T1..N ,Xt)

poses that have low discrepancy while maintaining diversity across some measure of

pose space. We use the orientation component of T, or just the yaw when restricting

the pose search space to SE(2) as the measure.

We then assign weights to each pose particle as described in Algorithm 11. These

weights represent the relative posterior probability of each particle. We normalize the

weights so that
∑N

i=1 wi = 1. Normalizing is important so that the use of weights in

approximating expectations over the pose posterior in Eq. 5.23 and Eq. 5.25 remain

valid. A side benefit of normalization is that we can omit the normalizing constant η

from Eq. 5.10 in Algorithm 11 line 2.
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Algorithm 11: WeighParticles assign pose particle weights

Given: T1..N pose particles,
X set of observed geometric features,
λ peakiness

1 l1..N ← Ĉ(X ,T1..N)
2 w1..N ← e−λl1..N

3 w1..N ← w1..N/
∑N

i=1wi // normalize sum to 1

Then for each time step t, we first compute p(Sx|Xt−1) and Ĩ(x|Xt−1) using Eq. 5.27

and Eq. 5.23, respectively, for x ∈ W and cache the results in voxel grids. These

voxel grids allow linear interpolation querying and return 0 for Ĩ(x|Xt−1) and free

for p(Sx|Xt−1) when x is outside W . They are used to plan a robot trajectory,

as described in Subsection 5.4.5. The robot executes the first action in the planned

trajectory and sensors observe both a new set of geometric features X ′
t and the change

in robot end effector pose while in contact ∆Tr.

In Algorithm 10 line 10 we estimate the change in pose ∆T of the target object

given Xt−1, X ′
t , T1..N , and ∆Tr. Some end-effectors can either enforce sticking con-

tact Jaiswal and Kumar (2017) or measure slip (such as in Melchiorri (2000), Romeo

and Zollo (2020)) to estimate ∆T directly. Not all robots have these sensors, so we

present an optimization based method in Algorithm 14. The main idea is to find a

∆T that transforms Xt−1 such that it is consistent with the most recently observed

X ′
t . Our prior is that contact was sticking; that is ∆T = ∆Tr in Algorithm 14 line 1.

We select a representative pose particle Ti with the lowest discrepancy to apply ∆T

to. For No optimization steps, we evaluate Ĉ on X ′ and the hypothesis new pose

∆T · Ti. Ĉ is differentiable with respect to ∆T · Ti, and we back propagate gra-

dients to ∆T and perform stochastic gradient descent (SGD). We then produce the

world frame change in pose ∆Tw = T−1
i ·∆T ·Ti that can be applied to world frame

positions.

Typically in particle filters we update the posterior via alternating prediction

(via forward dynamics) and correction (from sensor data) steps. If the object did

not move, then we also predict the pose particles remain stationary. If the object did

move (∆T not 0) then our forward dynamics predicts movement Ti ← ∆Tσ ·∆T ·Ti,

where ∆Tσ is a transform perturbation sampled with the process in Algorithm 12

that adds diversity to the particles.

Before we can perform the correction step, we first merge the previous observations

Xt−1 with the current observations X ′
t , as described in Algorithm 15. The object

geometric features are transformed by ∆Tw while the free geometric features remain
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stationary. However, the move might have invalidated some previous free ones and so

we check whether sdf(Tix) > 0, ∀i = 1..N for each (x,free) ∈ X in Algorithm 15

line 3. We then take the union of the transformed Xo, validated X ′
f , and newly

observed X ′. To avoid duplicate data, we voxel downsample by creating voxel grids,

one per semantics value, that spans the range of the positions with resolution rd. We

assign the voxel grids with the positions then extract the center of voxel cells that

received any assignment as new positions. We denote this downsampling process as

D : R3 × R+ → R3.

With updated observations Xt, we can update the weights of the pose particles.

Importantly, we update even when not making contact because observing s = free

geometric features provides information about where the object is not. This process

is described in Algorithm 11, where Eq. 5.3 is applied to get discrepancies l1..N . We

then apply Eq. 5.10 to convert it to an unnormalized probability. For numerical

stability, we subtract the minimum l from all of them to get relative discrepancy.

This is without loss of generality since the normalization forces the weights to sum

to 1.

In addition to the update step, we resample the pose particles to avoid degeneracy

and maintain diversity as is typical of particle filters. Many heuristics exist for decid-

ing when to resample Li et al. (2015) based mostly on removing low weight particles.

However, the particle weights only represent their relative probability with respect to

other particles, and we have a more direct signal in the discrepancy l1..N = Ĉ(X ,T1..N)

to evaluate when the pose particles have low likelihood. We use this in Algorithm 10

line 16 by comparing the maximum discrepancy of the particles to a threshold lr > 0.

For better robustness against outlier pose samples, a percentile of the discrepancy

instead of the max can be used. This process is visualized in Fig. 5.6, where a contact

made with the handle at the back of the mug forces a resample due to the previous

pose particles’ discrepancy with the observed surface geometric features.

Finally, the resampling process is described in Algorithm 13. We first perform

the well known sampling importance resampling Li et al. (2015), then like in the

prediction step we perturb the pose particles to generate diversity. We then ensure

the pose particles have high probability by performing SGD on Ĉ(X ,T1..N).

5.4.5 Planning Problem

We use model predictive path integral (MPPI) control Williams et al. (2017a) to

plan a H horizon length trajectory and execute the first step of it in Algorithm 10

line 6. H may be less than T due to computation limitations. Without loss of gen-
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Algorithm 12: PerturbTransform generate a random delta transforma-
tion
Given: σt translation noise, σR rotation noise
Output: ∆Tσ delta transformation
// sample process noise

1 ∆t ∼ N (0, diag([σt, σt, σt])
2 θ ∼ N (0, σR)
3 e ∼ U({x | ∥x∥2 = 1,x ∈ R3})
4 ∆R← eθe// axis angle to matrix

5 ∆Tσ ←
[
∆t ∆R
0 1

]

Algorithm 13: Resample pose particles to avoid degeneracy and high
discrepancy

Given: T1..N pose particles,
w1..N particle weights,
X set of observed geometric features,
σt translation noise,
σR rotation noise
No resample optimization steps
// well known sampling importance resampling

1 T1..N ← ImportanceResample(T1..N , w1..N)
2 for i← 1 to N do
3 ∆Tσ ← PerturbTransform(σt, σR) Ti ← ∆Tσ ·Ti

4 for j ← 1 to No do

5 differentiate Ĉ(X ,T1..N) to get T1..N gradients
6 SGD to optimize T1..N

Algorithm 14: ObjMove estimate change in object pose while in contact

Given: X set of previously observed geometric features
X ′ set of just observed geometric features
T1..N pose particles,
∆Tr change in end-effector pose during contact
No number of optimization steps

1 ∆T← ∆Tr // sticking contact prior

2 l1..N ← Ĉ(X ,T1..N)
3 i← argmin l1..N
4 for j ← 1 to No do

// hypothesis moved object pose

5 differentiate Ĉ(X ′,∆T ·Ti) to get ∆T gradients
6 SGD to optimize ∆T

7 ∆Tw ← T−1
i ·∆T ·Ti
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Algorithm 15: MergeObs merge observations

Given: X set of previously observed geometric features,
X ′ set of just observed geometric features,
T1..N pose particles,
∆Tw world frame change in object pose
rd downsample resolution

1 Xo ← {(∆Twx, s) | (x, s) ∈ X , s ̸= free}
2 Xf ← {(x, s) | (x, s) ∈ X , s = free} // stationary

// remove all that may be occupied now

3 X ′
f ← {(x, s) | (x, s) ∈ Xf ,sdf(Tix) > 0, ∀i = 1..N}

4 X ← Xo ∪ X ′
f ∪ X ′

5 voxel downsample X with resolution rd

erality, consider t = 1 at planning time for notation simplification. MPPI samples

many Gaussian action perturbations around a nominal action trajectory to produce

u1..H , rolls out the robot configuration from q0 to get q1..H with a dynamics function,

and evaluates each configuration trajectory with a cost function to weigh how the

action trajectories should be combined. We initialize the nominal trajectory with

noise, warm start it by running MPPI without actually executing the planned trajec-

tory for several iterations. Then when executing u1, we use u2..H ,0 as the nominal

trajectory for the next step. By convention, MPPI minimizes cost, and so we present

costs where lower values are better.

5.4.6 Information Gain Cost

We assume we have the robot model such that we can map h(q) → R where

R is the set of world coordinate points inside or on the surface of the robot. Note

that when observing X ′
t in Algorithm 10 line 8, {(x,free) | x ∈ h(qt+1)} should at

least be in X ′
t since the object cannot be inside the robot. Additionally, we assume

we can identify hI(q) ⊂ h(q) that selects the points of the robot that can observe

information through contact. For example, the wrist of the end effector may be much

less effective at reliably localizing contact than the tactile sensor. We only consider

hI for gathering information but the full h for the dynamics model.

For a rolled-out configuration trajectory q1..H we define the information gain cost

C ′
I(q1..H) =

∑
x∈D(

⋃H
i=1 hI(qi),rd)

−Ĩ(x|X ) (5.28)

which is the information gain field at every robot interior point in the rolled out
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trajectory, downsampled to avoid double-counting.

This cost function develops naturally from Ĩ(x|X ), however it does not take into

account that the object can move, and in doing so, can change Ĩ(x|X ). Consider a

trajectory where a robot moves into contact with the target object then continues in

a straight line with the target object remaining in sticking contact. While it would

traverse the workspace and gather high C ′
I as a result, relative to the object it has not

moved after coming into contact, and so should collect no new information. Indeed,

Ĩ(x|X ) is better seen as an object frame field, as only motion relative to the object

should collect information.

To address this, we introduce predicted object displacement d ∈ R3, and define

the adjusted information gain cost

CI(q1..H ,d1..H) =
∑

x∈D(
⋃H

i=1[hI(qi)−di],rd)

−Ĩ(x|X ) (5.29)

where h(qi)−di ∀i = 1..H transforms the world query positions to be in the displaced

object frame.

5.4.7 Dynamics Model

We predict the displacement d in our dynamics model f̂ in addition to q. We

assume the difference of the true dynamics f from the given free space dynamics ff is

only due to making contact with the target object, and use the precomputed p(Sx|X )
voxel grid to predict when that occurs. One step of f̂ is described in Algorithm 16

and below:

First we apply free space dynamics to get candidate configuration q′. We then

sample if this configuration leads to contact by considering the least likely to be free

position xi from h(q′) − dt in Algorithm 16 line 3. We randomly sample from the

categorical distribution s ∼ p(Sxi
|X ). If we sample s = free, then the candidate

configuration is used as the next one and the object is not displaced. Otherwise, we

need to consider if it is a pushing contact. We compute this action’s displacement d′

by considering the change in position from where xi was before the action. Then, we

estimate the surface normal n̂ at this point in line 11 by taking the weighted sum of

the SDF gradient of the contact position transformed by each of the pose particles. If

the angle between n̂ and −d′ is less than some threshold θp based on an estimation of

the friction cone between the robot and the object, then it is considered pushing. If it

is a pushing contact, we increase object displacement and move the robot normally.
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Otherwise, the robot is predicted to remain in its previous configuration to discourage

non-pushing contacts, and no further object displacement is produced.

Note that qt+1,dt+1 ∼ f̂(qt,dt; ...) is stochastic since we sample contacts. To

reduce variance, for a single action trajectory u1..H we roll out multiple configuration

trajectories by applying f̂ on copies of the starting configuration q1 and u1..H . The

cost of u1..H is the average cost across the multiple q1..H+1. Practically, if the object

has thin walls relative to the distance a single action could move the robot, as in

the case of mugs, each action could be divided up and applied sequentially to avoid

dynamics predicting the robot penetrating the object walls.

5.4.8 Reachability Cost

For manipulator arms with immobile bases, it is important to explicitly penalize

when actions could move the object outside of its reachable region. Under just the

information gain cost from Eq. 5.29, an action trajectory pushing the object out of

reach will evaluate to have equal or better cost than a trajectory doing nothing. If

the object is at the edge of the robot’s reachability, such as a mug with sides that

are within reach but the occluded handle at the back being out of reach, sampling

a H step trajectory that first displaces the mug then collects the high information

gain at the back of the mug is very unlikely. H may also be too short to allow such

a trajectory to exist.

To address this, we introduce reachability r(x) ∈ [0, 1] and the reachability cost

CR(d1..H) which encodes the desired behaviour of pushing object frame points x with

high Ĩ(x|X ) to where they are reachable.

Reachability r(x) represents the capability of the robot to gather information at x,

similar to checking ∃q s.t. x ∈ h(q). This can be approximated by performing inverse

kinematics (IK) with x set as the goal position relative to the robot end effector frame.

We also consider how robust x is to reach with different configurations, and evaluate

the average IK performance with a fixed set of goal orientations Ri ∈ R ⊂ SO(3)

in addition to the goal position x. Let ex(x, Ri) and eR(x, Ri) be the position and

rotation errors from running IK with the goal set to (x, Ri). We weigh eR against

ex with αR ≥ 0 and define an error tolerance threshold em such that any error at or

above this value receives r(x) = 0. Thus we define

r(x) =
1

em
max(0, em −

1

|R|
∑
Ri∈R

[ex(x, Ri) + αReR(x, Ri)]) (5.30)
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Algorithm 16: f̂ estimated robot and object displacement dynamics

Given: qt current robot configuration,
ut action,
dt current object displacement,
T1..N pose particles, w1..N particle weights
p(Sx|X ) semantics probability voxel grid,
ff given free space dynamics,
∇sdf object frame SDF gradient,
h robot interior points model,
θp pushing angle threshold
Output: qt+1 new robot configuration,

dt+1 new object displacement
1 q′ ← ff (qt,ut) // candidate config

2 R ← h(q′)− dt

// find most likely contact

3 i← argminxi∈R p(Sxi
= free|X )

4 s ∼ p(Sxi
|X ) // sample semantics

5 if s = free then
6 qt+1 ← q′

7 dt+1 ← dt

8 else
// determine displacement

9 Rb ← h(qt)
10 d′ ← xi −Rb[i]// corresponding ith position

// estimate object surface normal

11 n̂←
∑N

j=1wj∇sdf(Tjxi)

12 if angle between n̂ and −d′ < θp then
// pushing or not

13 qt+1 ← q′

14 dt+1 ← dt + d′

15 else
// discourage non-pushing contact

16 qt+1 ← qt

17 dt+1 ← dt
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Figure 5.7: (left) Reachability of workspace positions for the (right) simulated KUKA
arm and workspace. Red corresponds to r(x) = 0 and dark blue corresponds to
r(x) = 1. The workspace in sim is drawn as a box around the object.

We precompute this for x ∈ W and store the results in a voxel grid that al-

lows linear interpolation. This only has to be done once per robot and workspace

combination. See Fig. 5.7 for an example visualization of r(W).

The reachability cost CR(d1..H) is then the total reachable information within the

workspace after displacement. We compute it according to Algorithm 17. First we

compute ¯̃I(x), the average information gain at every displaced workspace position

over the planning horizon. Note that Ĩ(x|X ) can be interpreted as the object frame

information gain field at the time of planning, and so stationary workspace positions

are effectively displaced by −d1..H during planning. The reachable information is

just the product ¯̃I(x)r(x) which we sum across all the workspace points. This is then

compared against the total information in the workspace to produce a negative ratio

CR ∈ [−1, 0]. Because CI and CR are in different units, having CR be a ratio allows

easier tuning of the total trajectory cost:

C(q1..H ,d1..H) = βICI(q1..H ,d1..H) + βRCR(d1..H) (5.31)
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Algorithm 17: CR reachability cost

Given: d1..H object displacement trajectory,
W workspace,
Ĩ(x|X ) information gain voxel grid,

1
¯̃I(x)← 1

H

∑H
t Ĩ(W − dt|X ) // average info

2 RI ←
∑

x∈W
¯̃I(x)r(x) // reachable info

3 RIm ←
∑

x∈W Ĩ(x|X ) // max info possible

4 CR(d1..H)← −RI/RIm

5.4.9 Kernel Interpolated MPPI

The total cost from Eq. 5.31 does not include any explicit smoothing terms. To

improve the smoothness of produced trajectories, we perform interpolation similar

to Miura et al. (2024). The idea is to sample Hv < H control points vi ∈ RNu , then

use a kernel K : RNu × RNu → R to interpolate the u1..H in between v1..Hv . We

call this method Kernel Interpolated MPPI (KMPPI). This is more general than the

B-spline interpolation of Miura et al. (2024) since it can be accomplished by using a

B-spline kernel.

LetHu = [0, 1, ..., H−1] denote the time coordinate of each u along the trajectory.

We assume v1..Hv are evenly spread out along the trajectory, and since there are Hv

of them, subsequent ones increase their time coordinate by (H−1)
(Hv−1)

to give Hv =

[0, (H−1)
(Hv−1)

, 2(H−1)
(Hv−1)

, ..., H − 1]. The even assignment of Hv is not necessary; any can

be given as long as the first term is 0 and the last term is H − 1. Given a control

sequence v1..Hv we then convert it to u1..H

u1..H = K(Hu,Hv)K(Hv,Hv)
−1v1..Hv (5.32)

This allows smoothing in the action space, rather than in the robot configuration

space, and we observe that it works well on our tasks. See Fig. 5.8 for a qualitative

evaluation of the smoothing property on a toy 2D problem.

With the interpolated u1..H , KMPPI’s subsequent steps are the same as MPPI’s in

that it generates configuration rollouts by applying the dynamics function qt+1,dt+1 ∼
f̂(qt,dt; ...), t = 1..H, evaluates the cost of each u1..H with Eq. 5.31, then combines

the trajectory samples with a softmax based on the cost.
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Figure 5.8: Planned trajectories on a toy 2D linear integrator environment. The cost
contour map is represented, with the cost of the trajectory being the accumulated
cost experienced at each state. There is additionally a quadratic action penalty at
each step uT0.1Iu. Dark blue is the starting state. Each trajectory has H = 20, with
our KMPPI having Hv = 5 and using the radial basis function kernel with scale 2.

5.4.10 Termination Condition

In actual execution, we do not have access to T∗ to evaluate nll(X ) and need

another signal to terminate execution. We use the convergence of the pose particles,

with the hypothesis that pose particles likely only converges when p(T∗|X ) is high,

i.e. the pose particles do not randomly converge to an incorrect estimate. We evaluate

convergence using the average square root pairwise Chamfer distance between the pose

particles (APC). Similar to the nll(X ) evaluation, we evaluate this on a sampled set

of object frame surface positions x̃ ∈ X̃.

APC(T1..N) =
1

N2|Xo|

N∑
i=1

N∑
j=1

∑
x̃∈X̃

|sdf(T−1
i Tjx̃)| (5.33)

We terminate execution when APC(T1..N) < βtlc, where lc is the diagonal length of

the object’s bounding box, and βt is a ratio that selects for a desired level of pose

particle convergence. A lower value means rummaging will continue for longer, but

may produce a more accurate pose estimate.
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Figure 5.9: Visualization of interior robot points h(q) as green and red points, and
the information gathering subset hI(q) as just the red points for the robot gripper
mounted with two soft-bubble tactile sensors seen in Fig. 5.1.

5.5 Experiments

In this section, we first describe our simulated and real robot environments. We

then detail the experiments to estimate the pose of a movable target object. We

introduce our baselines and ablations and how we quantitatively evaluate the methods

on the experiment. Lastly, we present results that show RUMI is the only method to

perform consistently well across all the experiments.

5.5.1 Sim Environment

Common to all the experiments, we have a single movable object on a flat surface

starting within reach of a single 7DoF KUKA LBR iiwa arm with two soft-bubble

tactile sensors Kuppuswamy et al. (2020). This is modelled in sim in Fig. 5.7. Due

to the complexity of modelling deformable objects, we model the soft-bubble tactile

sensors as rigid bodies and observe the surface points of any object penetrating them

after each simulation step. We also include a fixed external depth camera to reduce

the initial exploration required, but we also show that our method works without a

good initial view of the object in some sim experiments.

For observing s = surface points at qt, we select {x| x ∈ hI(qt), |sdf(T∗x)| <
3mm}. This simulates some observation noise which we show that RUMI is robust to,

despite assuming no noise in the observed positions. We assume we can only gather

contact information from the front of the gripper, where the two soft-bubble tactile

sensors are mounted. In planning, this is the difference between h(q) and hI(q) for

our end effector shown in Fig. 5.9.

The X ′ provided by the depth camera includes s = free points generated by
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Figure 5.10: Starting poses for labelled sim tasks.

tracing rays from the camera to 95% of each pixel’s detected depth, and s = surface

from segmented object surfaces. See Fig. 5.4 (middle), and Fig. 5.11 for example

observation point clouds. We only use vision to provide the initial X0 to demonstrate

the viability of tactile based rummaging.

To highlight the difference between other components of all methods, we directly

observe ∆T in Algorithm 10 line 9. Note that this also applies to all baselines and

ablations, and so does not provide an unfair advantage to RUMI. This is equivalent

to assuming we can accurately measure slip between the end effector and object.

5.5.2 Sim Tasks

In simulation, we experiment on 3 different objects: a mug, a YCB Calli et al.

(2017) power drill, and a YCB cracker box, each with 3 different initial poses depicted

in Fig. 5.10. For each, we perform 10 runs of T = 40 steps, using a different fixed

random seed for each run that is shared across baselines and ablations. We terminated

tasks early if the pose particles converged as measured by APC(T1..N) < 0.03lc, where

lc is the diagonal distance of each object’s bounding box.

In each experiment, the robot’s end effector is position and yaw controlled, with

the action space either being u = [dx, dy, dθ] (planar) or u = [dx, dy, dz, dθ] (3D) with

ranges from [-1,1] for each dimension. The action spaces are scaled to allow the use of

consistent KMPPI parameters across experiments. We scale these to physical units

by translating a control value of 1 to 80mm or 0.5 radians, carried out in many mini

steps. We perform inverse kinematics to convert these to joint position commands.
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Figure 5.11: Comparison of the rendered X0 given to (left) the sim mug 0 task and
(right) sim box 2 task. s = free points are in orange, and s = surface points are
in blue. There are no initially observed surface points on the box.

We used regular grids with resolutions (grid square side length) rw as the workspaces.

Note that other sets of worldspace points that are not necessarily regular grids could

be used. We used W = [0, 0.8] × [−0.4, 0.4] in meters for planar action spaces, and

W = [0, 0.8]× [−0.4, 0.4]× [0, 0.2] for 3D action spaces. rw for each task can be found

in Tab. 5.1.

Each object is intended to illustrate a different aspect of exploration. For the

mug and power drill, we assume the object stays upright and search for their pose

in SE(2) instead of SE(3). The mug tasks evaluates how well Ĩ(x|X ) conforms to

our intuition, since we expect the most information to be where the handle could be.

The sim drill task evaluates how well our planner extends to objects with complex

geometry. The sim box task tests how well the pose particles can represent full SE(3)

and the necessary 3D exploration to identify the which side of the box is lying against

the floor. Additionally, for the drill and box tasks, we increase the difficulty in terms

of environmental occlusions by placing the camera at an angle such that it cannot

directly observe the object. The camera configurations and the initial object pose

are depicted in Fig. 5.11. For SE(3) pose search in the box experiments, we add

free points where the floor is to avoid pose estimates that penetrate the floor. The

different task setups are summarized in Tab. 5.1.

We use different T0,1..N , the prior pose particles, for the mug tasks where we

initially observe the front of it, to the other tasks where we initially cannot see it. For

mugs, we first estimate the position of the center of the mug, then T0,1..N is sampled
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with uniformly random yaw and the same center. For the other tasks, we sample

T0,1..N with random positions sampled from N (0, 0.05) × N (0, 0.05) × 0, and also

uniformly random yaw (assuming upright).

5.5.3 Real Environment

The real robot setup is seen in Fig. 5.1 and Fig. 5.10, the same robot we modelled

in simulation. The soft-bubble sensors are compliant to contact and have a depth

camera inside to estimate dense contact patches. Similar to prior work Zhong et al.

(2023), we consider points on the soft bubble surface with deformation beyond 4mm

and being in the top 10th percentile of all deformations to be in contact. We apply

a mean filter to remove noise. We use a RealSense L515 lidar camera as the fixed

external camera. For evaluating ground truth object pose, we have a RealSense D435

camera mounted looking top-down on the workspace.

The mug had distinct colors from the shelf and so we segmented it with a color

filter. To improve segmentation, we used a robot self-filter and an edge filter to

remove unreliable points, and used a temporal filter to only accept surface points

that persists over a 0.4s window. See Fig. 5.1 for example observation point clouds.

We re-observe the scene after each action. Due to self-occlusion and object symmetry,

visual observations do not uniquely identify object pose. Same as for the simulated

box, the real box task has occluded vision that prevented direct observation of it,

seen in the top of Fig. 5.12.

For the real mug task, we do not assume we can accurately measure slip between

the end effector and object. Instead, we estimate ∆T with Algorithm 14 for all

methods. For the real box task, we observe the change in object pose from the ground

truth since we cannot directly observe the object to estimate ∆T with Algorithm 14.

5.5.4 Real Task

On the real robot we estimate the pose of a mug and box starting in a single con-

figuration depicted in Fig. 5.12 and execute T = 15 steps of each method. The robot’s

action space is seen in Tab. 5.1, and a control value of 1 corresponds to 50mm or 0.4

radians. The workspace wasW = [0.55, 1.1]× [−0.33, 0.33]× [0.23, 0.47] in meters (for

planar action space, a fixed height of 0.305m was used). The T0,1..N initialization pro-

cess is similar to sim for each corresponding task. T1..N after sampling from CHSEL

in Algorithm 10 line 2 is shown at the bottom of Fig. 5.12. Note that the box’s initial

T1..N covers the workspace since vision was occluded. We terminated tasks early if
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Figure 5.12: Initial configuration of the real mug and box tasks (top) and example
initialized pose particles (bottom). In the box task, the workspace is occluded and the
box cannot be directly observed. Point cloud observations from an external side view
(accessible to the robot) are overlaid on a top-down raw camera view (inaccessible to
the robot).

Object action space pose search space resolution rw (m)
Sim mug planar SE(2) 0.01
Sim drill 3D SE(2) 0.02
Sim box 3D SE(3) 0.02
Real mug planar SE(2) 0.01
Real box 3D SE(2) 0.02

Table 5.1: Task setup for different objects.

the pose particles converged as measured by APC(T1..N) < 0.05lc, where lc is the

diagonal distance of the mug’s bounding box.

5.5.5 Sensor Model

We use the sensor model depicted in Fig. 5.2. Let v = sdf(Tx) be the SDF value

of a given query position x, then p(Sx|T) = p(Sx|sdf(Tx)) = p(Sx|v) is defined by

p(Sx|v) =


max(0, 1− e−αv) free

max(0, 1− eαv) occupied

e−α|v| surface

with α = 100 where v is in meters. This model represents some of the ambiguities

of detecting contact with the soft-bubble and similar tactile sensors. Due to the

94



compliance of the membrane, even when a point is in free space, contact elsewhere

could make it appear like this point is also in contact. Similarly, contact could

also be missed, particularly around the edges of the soft-bubble. This sensor model

performed well enough both in sim and on the real task that no calibration to the

real soft-bubbles was needed.

5.5.6 KMPPI Parameters

We used a planning horizon of H = 15 and Hv = 8 number of control points. This

is lower than the number of sim steps T = 40 because increasing horizon resulted in

poorer-quality trajectories. This is due to the cost from Eq. 5.31 being a terminal cost

for the whole trajectory, without distinguishing between steps inside the trajectory.

We used the radial basis function (RBF) kernel with a scale of 2.

We planned using 500 action trajectory samples, each rolled out 5 times with f̂

due to its stochastic nature. Additionally, to avoid contacts that penetrate the object,

we split each action up into 4 sequentially applied actions that are 4 times lower in

magnitude. We then use the average trajectory cost across the 5 rollouts.

For the inner MPPI parameters, we used λ = 0.01 for the temperature parameter

from Williams et al. (2017a), with 0 noise mean and 1.5I as the noise covariance.

5.5.7 Evaluation

We sample 500 positions x̃ ∈ X̃ uniformly on the surface of the object, and

transform them to world positions with T∗, the ground truth pose, to produce X.

We then evaluate the negative log likelihood of x ∈ X being surface points from

Eq. 5.2. Because we assume Sx is conditionally mutually independent to every other

Sx given X , we can simplify Eq. 5.2

nll(X ) = − log p(
⋂
x∈X

Sx = surface|X ) (5.34)

= −
∑
x∈X

log p(Sx = surface|X ) (5.35)

We substitute Eq. 5.27 in for p(Sx|X ) to approximate nll with our pose particles

nll(X ) ≈ −
∑
x∈X

log
N∑
i=1

wip(Sx = surface|sdf(Tix)) (5.36)

For the sim tasks, we have the ground truth object pose T∗, while for the real
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Task
sim mug sim drill sim box
0 1 2 0 1 2 0 1 2

cor(nll, APC) 0.93 0.82 0.84 0.74 0.94 0.94 0.58 0.80 0.49

Table 5.2: Linear correlation between nll(X ) and APC(T1..N) across all sim tasks.
Runs from all methods were considered in its calculation.

Object success nll threshold
Sim mug 20
Sim drill 100
Sim box 150
Real mug 35
Real box 250

Table 5.3: Maximum nll threshold for success for each task.

tasks, we observe T∗ from a camera mounted above the workspace. We evaluated

nll after each step as an effective exploration rate. Additionally, we specify a nll

threshold below which we qualitatively observe to be a good enough quality to be

considered a success, seen in Tab. 5.3. A run is counted a success if it achieves a

minimum nll below the threshold at any step. This is typically, but not always, the

last step. This is because, due to observation noise and moving the object outside of

the observed region, the pose estimates could become less certain.

We also use the same x̃ ∈ X̃ to evaluate APC from Eq. 5.33. We used βt = 0.03

for the sim tasks, meaning we terminated exploration when the average square root

chamfer distance between all pairs of T1..N is less than 3% of the object’s bounding

box diagonal length. For the real experiment we used βt = 0.05.

Since we do not assume a ground-truth pose of the object is available in the

real world, we needed a way to evaluate performance that does not rely on nll(X )
(which assumes knowledge of T∗). We can, however, compute APC(T1..N) without

privileged information.

First, we evaluated our hypothesis of APC(T1..N) as a good proxy for nll(X ) by
computing the linear correlation between the two across all the tasks. The runs from

all methods were used. This is shown in Tab. 5.2 and Fig. 5.13 for the sim mug 0

and sim mug 1 tasks, which can be compared to the nll(X ) shown in the top left and

top middle of Fig. 5.16. We see that there is an especially strong positive correlation

for SE(2) particles of the sim mug and sim drill tasks, averaging to a correlation of

0.87. The correlation for the SE(3) sim box tasks is not as strong.
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Figure 5.13: Convergence of pose particles measured by APC(T1..N) for the sim mug
0 and sim mug 1 tasks. The median over 10 runs is plotted, with the 25th to 75th

percentile shaded. There is strong correlation with the nll(X ) in the top left and top
middle of Fig. 5.16.

5.5.8 Baselines and Ablations

Our full method parameters are summarized in Tab. 5.4. These parameters were

used for all simulated and real tasks (except for βt in deciding when to terminate),

demonstrating the robustness of RUMI. For downsampling the observations in Al-

gorithm. 15, we used different resolutions for the free space (rd,f ) and surface (rd,s)

points; we did not observe any occupied points. The baselines also required the cre-

ation and update of the p(T|X) pose particles, and we use the same parameters to

do so.

We present two ablations to our full method, InfoOnly which sets CR to 0 and

ReachOnly which sets CI to 0. They share all other parameters with the full method

and evaluate the usefulness of each individual cost.

For baselines, we first present the Slide heuristic inspired by Driess et al. (2017).

This method has two modes of operation - if it is currently in contact, then it moves

tangentially to the estimated surface normal to slide along it. It moves parallel to

the shelf, and for each run randomly decides at the start of the run whether to slide

clockwise or counterclockwise around contact. If it is not in contact, then it moves

towards the estimated center of the object. Estimating the object center requires our

pose particles, so we still update p(T|X ) using Algorithm 10.

We also consider a Gaussian Process Implicit Surface baseline (GPIS) Caccamo

et al. (2016), Driess et al. (2017), Lee et al. (2019) that uses the variance of the GP as

the exploration signal that we call GP Variance Reduction (GPVR). The GP is fit

on {(x, 0)| (x, s) ∈ Xt, s = surface} ∪ {(x, 1)| (x, s) ∈ Xt, s = free}. As typical
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Figure 5.14: (left) Gaussian Process fit to initial observations X0 of the sim mug 0
task. Free space observed points are shown as blue dots, surface observed points as
red dots, and the ground truth object surface as black dotted lines. The GP output is
overlayed as a contour map, with the red line indicating the 0-level set, corresponding
to where the GPIS surface is. (right) var(x|X) contour map for the same GP, with
green indicating higher variance.

for GPIS, surface points are labelled 0 and free points are labelled 1. It is refit on Xt

until convergence after every robot execution step. We use the ν = 1.5 Matern kernel

as recommended by Lee et al. (2019). See Fig. 5.14 for a visualization of the fitted

GP as well as its variance var(x|X ) on the sim mug 0 task given X0.

For GPVR to be competitive, we had to make several modifications. Firstly, we

needed to encode object shape as that is given information to RUMI. This is non-

trivial to do by modifying the kernel, so we instead augmented the input data with

{(x, 1)| x ∈ W , p(Sx = free|Xt) > 0.99}. For augmenting points, we used a version

of each workspace with 7 times the resolution from Tab. 5.1 to avoid extremely slow

inference from the number of data points. Again, this baseline requires the compu-

tation and maintenance of p(T|X ) with the pose particles to enable the estimation

of p(Sx = free|Xt). Without the above data augmentation, GPVR explores the

unobserved corners of the workspace, despite seeing parts of the object elsewhere.

Secondly, we needed to plan further than just the next step. Otherwise, because we

start in and are surrounded by free space, the method goes in initially random direc-

tions. Instead of the greedy policy of maximizing the GP variance var(x) at the next

position from Driess et al. (2017), we formulated a cost function based on variance

98



Parameter value
N number of pose particles 100
λ peakiness 2
lr discrepancy resample threshold 5
C CHSEL freespace discrepancy scale 10
H planning horizon 15
θp pushing angle threshold 45 degrees
CI information gain cost scale 1
CR reachability cost scale 200
em reachability IK error threshold 0.4
αR reachability IK rotation error scale 0.1
rd,f downsample resolution free space 10mm
rd,s downsample resolution surface 2mm
σt pose translation noise 10mm
σR pose rotation noise 0
βt chamfer distance convergence ratio 0.03 (0.05 for real)
No number of optimization steps 10

Table 5.4: Our full method parameters across the different tasks.

reduction similar in form to Eq. 5.29 for use inside KMPPI.

CGP (q1..H ,d1..H) =
∑

x∈D(
⋃H

i=1[hI(qi)−di],rd)

−var(x|X ) (5.37)

Instead of Ĩ(x|X ), we used var(x|X ) which is the variance of the GP evaluated

at x. Similarly, before each planning step we precomputed var(x|X ) ∀x ∈ W to

store in a voxel grid for faster repeated lookup. We normalized var(x|X ) such that

maxx∈W var(x|X ) = 1.

See Fig. 5.15 for a comparison of Ĩ(x|X ) against var(x|X ) to be planned over in

a similar manner. From the figure, we see that var(x|X ) is low at where the handle

could be. This is because X includes the inside back of the mug, and the Matern

kernel does not directly encode object shape but is just based on the Euclidean

distance between points. It cannot disambiguate the certainty of the back surface of

the mug from the uncertainty of where the handle is, because it cannot know that a

handle exists. Instead, var(x|X ) is highest farther behind the mug, where we have

observed no data due to occlusion. This is contrasted with Ĩ(x|X ), which is highest

where the handle could be because those regions are where the pose particles disagree

the most.
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5.5.9 Results

The simulated task results are in Fig. 5.16 and the real task results are in Fig. 5.17.

The number of successful trials out of 10 for each task is compared in Tab. 5.5.

Additionally, the median over the cumulative nll(X ) of each run are in Tab. 5.6. For

the sim and real tasks, cumulative nll(X ) over time is a good indicator of exploration

speed; however, for the sim drill and box tasks, cumulative nll(X ) is dominated by

the initial search for the first surface points of the object since they do not start with

the object in view. Thus, for those tasks it is more a measure of how quickly the

different methods make first contact with the object.

We observe that RUMI is the only method to achieve consistently good perfor-

mance, if not the most number of successes, across all the sim and real tasks. On

the sim mug tasks, it also had the lowest cumulative nll(X ), meaning it was the

most efficient. The ablations show that both CI and CR are important for this task,

although individually they can also perform well on certain tasks. For example on

the sim mug task, ReachOnly achieved a high number of successes by itself. This

was likely due to the handle being close to where the robot needed to push from to

increase reachability. However even in this case, adding CI improves efficiency be-

cause the mug could be pushed into more reachable regions without contacting the

handle. This explains the occasional failures of the ReachOnly method on the mug

tasks. On the drill tasks, pushing the object to be more reachable did not reliably

lead to contact that was informative about the pose, and it did much worse than our

full method and the InfoOnly baseline.

The major failure case for all the methods was pushing the object to be outside

the robot’s reachable region. The performance gain of the full method against the

InfoOnly ablation can be mostly attributed to preventing this. As long as the object

was kept within reach and contacts kept being made with the object at different loca-

tions, the pose estimation was gradually improved. This is illustrated in ReachOnly’s

performance on the sim box tasks, where it is one of the slowest methods to reduce

nll, but was still able to achieve a relatively high number of successful trials.

The Slide baseline exhibited behavior that in some ways was the opposite of

ReachOnly’s. It always pushed the object away from the robot, and it became a race

of it gathering enough pose-identifying information from those contacts before the

object moved out of reach. On the real robot, sometimes it did not register that a

contact was made and would continue pushing forward. This strategy’s success was

highly configuration-dependent, seen in Tab. 5.5, where it can either achieve reliable

success (since there is only randomness in the sliding direction), or no success. It
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Figure 5.15: Comparison of the fields to plan over evaluated at each x ∈ W for (left)
our method using Ĩ(x|X ) against the (right) GPVR baseline using var(x|X ). x with
too low Ĩ or var are omitted.

achieved 5 successes on sim drill because there was a 50% chance of it sliding clockwise

or counterclockwise, with only one direction leading to success. This strategy however

does often lead to it being the quickest method to make contact with the object, giving

it low cumulative nll(X ) for the sim drill and box tasks.

The GPVR baseline’s performance can be compared against the InfoOnly abla-

tion’s, as neither have an explicit cost for avoiding the object from being pushed out.

As seen in Fig. 5.15, the highest var(x|X ), even when given points augmented using

shape information, does not match where intuitively information about the shape

might be held. This suggests that augmenting points is not a satisfactory way of

conditioning on known object shape.

5.5.10 Runtime Comparison

We also recorded the average computation time per step in the sim mug task and

sim box task to highlight RUMI’s computational efficiency in Fig. 5.18. The activities

are divided into ones that all methods performed (blue), those that only ours did

(orange), and those that only the GPVR baseline did (green). The Slide baseline’s

runtime was negligible. All methods were implemented in PyTorch and accelerated

by running on a modern computer with a NVIDIA RTX 4090 GPU. Computing

p(Sx|X ) and Ĩ(x|X ) for x ∈ W took around 0.01s per step, while evaluating our

cost inside the MPC took around 0.1s for the sim mug. The time was dominated by
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Figure 5.16: nll(X ) after each execution step for simulation tasks depicted in Fig. 5.10.
The median over 10 runs is plotted, with the 25th to 75th percentile shaded. From
top to bottom we have the sim mug, sim drill, and sim box tasks. From left to right
we have configuration 0, 1, and 2.

evaluating f̂ because it is stochastic and so benefited from sampling multiple state

rollouts, in addition to dividing each step into 4 sequentially applied mini steps to

avoid over-penetration. The GP fitting process took around 0.3s and involved caching

var(x|X ) ∀x ∈ W in a voxel grid to speed up inference inside the cost.

In addition, we consider how well the methods scale to the full 3D sim box task.

The main challenge is the increased W size, with approximately 2.24 times more

total points. Caching p(Sx|X ) and Ĩ(x|X ) slowed down to 0.076s, or an increase of

7.6 times, while our cost evaluation increased around 4 times to 0.4s. The GPVR

cost only doubled because we were down sampling the workspace by 7 (each voxel

grid is 7 times larger) to augment the GP with.

Reducing the step size to no longer require dynamics mini steps would effectively

improve the whole method’s efficiency. Currently, RUMI can be run at around 1Hz,

which was more than sufficient for quasi-static rummaging.
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Figure 5.17: nll(X ) after each execution step for the (left) real mug and (right) real
box tasks depicted in Fig. 5.12. The median over 10 runs is plotted, with the 25th to
75th percentile shaded.

5.6 Discussion and Future Work

5.6.1 Single Object Assumption

In this work we made the major assumption that there was only a single known

movable target object in the workspace, with everything else being immovable and

known. While this was necessary for us to tackle the other difficulties of the problem—

namely limited visual perception, object symmetry, and gathering information by

making contact with a movable object—realistic shelf environments are often clut-

tered with other movable objects. Additionally, we may not have the exact object

mesh despite knowing its class (e.g. we are looking for some mug, but don’t know

it’s exact shape). This introduces contact assignment ambiguity—any new contact

points observed could belong to previously-observed objects, or a new object. Our

prior work, STUCCO Zhong et al. (2022), tackled this problem by maintaining a be-

lief over all the contact point positions, without any hard assignments to objects. The

most likely estimate (MLE) of the contact positions is then passed to downstream

tasks, including a process to segment the contact points into objects in a manner sim-

ilar to agglomerative clustering. In future work, RUMI might be extended to handle

multiple movable objects by evaluating Ĩ(x|X ) =
∑O

i Ĩ(x|Xi) where O is the number

of segmented objects, and Xi is the segmented X (free geometric features are shared

across objects, in addition to other objects’ surface positions being considered free

for this object), treating all as candidate target objects.

On the sim tasks, we assumed we could accurately estimate slip between the

object and the robot during contact. This is reasonable given known object shape,
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Figure 5.18: Average computation time per execution step of the (top) planar sim
mug 0 task and the (bot) 3D sim box 0 task with one standard deviation as the
error bar. Blue represents activities that were performed by all methods, orange
represents just our method, and green represent activities that were only performed
by the GPVR baseline.

mass distribution, and the coefficient of friction of interacting surfaces. However,

this becomes unreasonable if the object is unknown. Additionally, Algorithm 14 for

estimating slip on the real task requires knowledge of the object SDF. Thus one of

the biggest challenges for extending RUMI to multiple, unknown objects in the scene

will be estimating ∆T from each contact. A reasonably accurate visual perception

system could help significantly, particularly if it could identify which clustered Xi

belongs to the target object.

5.6.2 Unknown Object Shape

The last point of improvement is to relax our knowledge of the object from hav-

ing its SDF to just having a class label. One naive approach is to use a template

SDF for each object class and absorb the SDF uncertainty into the sensor model

p(Sx|sdf(Tx)). However, this would fair poorly to classes that have high geometric

variation inside each class, like mugs. One possible approach would be to extend the

pose posterior particle filter to also represent object shape, such that each particle is

both a pose and a shape. The shape could be parameterized by recent advances in

3D geometry representations, such as the Deformed Implicit Field Lee et al. (2022)

that allows shape editing by constraining on surface points.
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5.7 Conclusion

We presented RUMI, an active exploration method based on the mutual informa-

tion between a movable target object’s uncertain pose and the robot trajectory. It

maintains an explicit belief over the object pose using a particle filter, updating it

with observed point clouds augmented with semantics, such as whether a point is in

free space or on the object surface. Given object SDF, we formulated an information

gain cost function evaluating the expected KL divergence between the pose distribu-

tion before and after executing a robot trajectory. In addition, we implemented a

reachability cost function and showed that it was necessary to prevent pushing the

object outside the robot’s reachable region. Through comparison with baselines in

real and simulated experiments, we showed that RUMI could effectively and efficiently

condition on object shape to explore and estimate object pose.
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Table 5.5: Number of successful trials after 10 runs of active rummaging for pose
estimation in different tasks in Fig. 5.10 and Fig. 5.12. Success is defined as the run
achieving a minimum nll below the threshold defined in Tab. 5.3. The most and 1
success below the most successes in each section are bolded.

Task Ours InfoOnly ReachOnly GPVR Slide
sim mug 0 10 7 8 6 0
sim mug 1 9 4 10 1 0
sim mug 2 10 4 7 0 0
mug total 29 15 25 7 0
sim drill 0 10 7 8 4 5
sim drill 1 9 10 5 7 10
sim drill 2 8 5 4 0 10
drill total 27 22 17 11 25
sim box 0 8 9 8 6 0
sim box 1 10 9 10 9 10
sim box 2 7 5 4 2 1
box total 25 23 22 17 11
real mug 7 0 4 0 1
real box 7 3 0 2 3

Table 5.6: Median cumulative nll(X ) for 10 runs of active rummaging for pose esti-
mation in different tasks in Fig. 5.10 and Fig. 5.12. The best and any 5% within the
best are bolded.

Task Ours InfoOnly ReachOnly GPVR Slide
sim mug 0 823 1246 1162 1678 2478
sim mug 1 1048 1918 1521 2459 2610
sim mug 2 841 2859 1502 2973 2467
mug total 2712 6023 4185 7110 7555
sim drill 0 9797 12860 16100 12516 6328
sim drill 1 9637 8423 22666 13636 5617
sim drill 2 27121 26761 25452 35090 10200
drill total 46555 48044 64218 61242 22145
sim box 0 8776 8182 20537 11734 15497
sim box 1 7004 7067 8075 7499 5129
sim box 2 24028 24839 33705 15979 17653
box total 39808 40088 62317 35212 38279
real mug 640 1330 946 1145 4652
real box 9177 8341 8762 9994 7717
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rényi entropy, in 2015 IEEE international conference on robotics and automation
(ICRA), pp. 487–494, IEEE.

Casella, G., and E. I. George (1992), Explaining the gibbs sampler, The American
Statistician, 46 (3), 167–174.

Censi, A. (2007), An accurate closed-form estimate of icp’s covariance, in Proceedings
2007 IEEE international conference on robotics and automation, pp. 3167–3172,
IEEE.

Chen, X., Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel (2016),
Infogan: Interpretable representation learning by information maximizing genera-
tive adversarial nets, in NeurIPS.

108



Cheng, L., S. Chen, X. Liu, H. Xu, Y. Wu, M. Li, and Y. Chen (2018), Registration
of laser scanning point clouds: A review, Sensors, 18 (5), 1641.

Collet, A., D. Berenson, S. S. Srinivasa, and D. Ferguson (2009), Object recognition
and full pose registration from a single image for robotic manipulation, in 2009
IEEE International Conference on Robotics and Automation, pp. 48–55, IEEE.

Coumans, E., and Y. Bai (2016–2021), Pybullet, a python module for physics simu-
lation for games, robotics and machine learning, http://pybullet.org.

Danielczuk, M., A. Kurenkov, A. Balakrishna, M. Matl, D. Wang, R. Mart́ın-Mart́ın,
A. Garg, S. Savarese, and K. Goldberg (2019), Mechanical search: Multi-step re-
trieval of a target object occluded by clutter, in 2019 International Conference on
Robotics and Automation (ICRA), pp. 1614–1621, IEEE.

De Luca, A., and R. Mattone (2005), Sensorless robot collision detection and hybrid
force/motion control, in Proceedings of the 2005 IEEE international conference on
robotics and automation, pp. 999–1004, IEEE.

Deng, X., A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox (2021), Poserbpf:
A rao–blackwellized particle filter for 6-d object pose tracking, IEEE Transactions
on Robotics, 37 (5), 1328–1342.

Dierks, T., and S. Jagannathan (2012), Online optimal control of affine nonlinear
discrete-time systems with unknown internal dynamics by using time-based policy
update, IEEE Trans Neural Netw Learn Syst, 23 (7), 1118–1129.

Dikhale, S., K. Patel, D. Dhingra, I. Naramura, A. Hayashi, S. Iba, and N. Jamali
(2022), Visuotactile 6d pose estimation of an in-hand object using vision and tactile
sensor data, IEEE Robotics and Automation Letters, 7 (2), 2148–2155.

Dragiev, S., M. Toussaint, and M. Gienger (2011), Gaussian process implicit sur-
faces for shape estimation and grasping, in 2011 IEEE International Conference
on Robotics and Automation, pp. 2845–2850, IEEE.

Driess, D., P. Englert, and M. Toussaint (2017), Active learning with query paths for
tactile object shape exploration, in 2017 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pp. 65–72, IEEE.

Driess, D., D. Hennes, and M. Toussaint (2019), Active multi-contact continuous
tactile exploration with gaussian process differential entropy, in 2019 International
Conference on Robotics and Automation (ICRA), pp. 7844–7850, IEEE.

Ecoffet, A., J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune (2019), Go-explore:
a new approach for hard-exploration problems, arXiv preprint arXiv:1901.10995.

Eidenberger, R., and J. Scharinger (2010), Active perception and scene modeling
by planning with probabilistic 6d object poses, in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1036–1043, IEEE.

109

http://pybullet.org


Elandt, R., E. Drumwright, M. Sherman, and A. Ruina (2019), A pressure field model
for fast, robust approximation of net contact force and moment between nominally
rigid objects, in 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 8238–8245, IEEE.

Fantoni, I., and R. Lozano (2012), Non-linear control for underactuated mechanical
systems, Springer Science & Business Media.

Fedele, G., L. D’Alfonso, F. Chiaravalloti, and G. D’Aquila (2018), Obstacles avoid-
ance based on switching potential functions, Journal of Intelligent & Robotic Sys-
tems, 90 (3-4), 387–405.

Finn, C., P. Abbeel, and S. Levine (2017), Model-agnostic meta-learning for fast
adaptation of deep networks, in ICML.

Fontaine, M., and S. Nikolaidis (2021), Differentiable quality diversity, Advances in
Neural Information Processing Systems, 34, 10,040–10,052.

Fontaine, M. C., J. Togelius, S. Nikolaidis, and A. K. Hoover (2020), Covariance
matrix adaptation for the rapid illumination of behavior space, in Proceedings of
the 2020 genetic and evolutionary computation conference, pp. 94–102.

Fortmann, T., Y. Bar-Shalom, and M. Scheffe (1983), Sonar tracking of multiple
targets using joint probabilistic data association, IEEE journal of Oceanic Engi-
neering, 8 (3), 173–184.

Fowlkes, E. B., and C. L. Mallows (1983), A method for comparing two hierarchical
clusterings, Journal of the American statistical association, 78 (383), 553–569.

Fu, J., S. Levine, and P. Abbeel (2016), One-shot learning of manipulation skills with
online dynamics adaptation and neural network priors, in IROS.

Fu, J., Q. Huang, K. Doherty, Y. Wang, and J. J. Leonard (2021), A multi-hypothesis
approach to pose ambiguity in object-based slam, in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7639–7646, IEEE.

Geyer, C. J. (1992), Practical markov chain monte carlo, Statistical science, pp. 473–
483.

Haarnoja, T., H. Tang, P. Abbeel, and S. Levine (2017), Reinforcement learning with
deep energy-based policies, in International conference on machine learning, pp.
1352–1361, PMLR.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine (2018), Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, in ICML,
pp. 1861–1870.

Haddadin, S., A. De Luca, and A. Albu-Schäffer (2017), Robot collisions: A survey
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