
Pose-Constrained Whole-Body Planning using
Task Space Region Chains

Dmitry Berenson1 Joel Chestnutt2 Siddhartha S. Srinivasa1,3 James J. Kuffner1,2 Satoshi Kagami2

1The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA [dberenso, kuffner]@cs.cmu.edu
2Digital Human Research Center, AIST, Tokyo, Japan [joel.chestnutt, s.kagami]@aist.go.jp

3Intel Research Pittsburgh, Pittsburgh, PA, 15213, USA siddhartha.srinivasa@intel.com

Abstract— We present an efficient approach to generating
paths for humanoids and other robotic manipulators that uses
the Task Space Region (TSR) framework to specify manipulation
tasks. TSRs can define acceptable goal poses of an end-effector
or constraints on the end-effector’s pose during the path, or both.
First presented as a method for goal-specification [1], TSRs are
a straightforward representation of sets of end-effector poses
which can be sampled and which entail a clear distance metric.
This makes TSRs ideal for sampling-based motion planning.
However, a finite set of TSRs is sometimes insufficient to capture
the pose constraints of a given task. To describe more complex
constraints, we present TSR Chains, which are defined by linking
a series of TSRs. Though the sampling for TSR Chains follows
clearly from that of TSRs, the distance metric for TSR Chains
is radically different. We also present a new version of our
Constrained Bidirectional RRT (CBiRRT2) planner, which is
capable of planning with TSR chains as well as other constraints.
We demonstrate our approach on the HRP3 robot by performing
a variety of whole-body manipulation tasks.

I. INTRODUCTION

Many practical manipulation tasks, like moving a large
box or opening a refrigerator door, impose constraints on the
motion of a robot’s end-effector. Many such tasks also afford
significant freedom in the acceptable goal pose of the end-
effector. For example in Figure 1, although the humanoid
HRP3’s hands are constained to grasp the box during ma-
nipulation, the task of placing the box on the table affords
a wide range of box placements and robot configurations
that achieve the goal. We propose a novel framework for
pose-constrained manipulation planning which is capable of
satisfying constraints and affordances to produce manipulation
plans for high DOF robots, like humanoids, in a few seconds.

Our framework comprises of two parts: a novel unifying
representation of constraints and affordances which we term
Task Space Regions (TSRs), and a sampling-based planner,
the CBiRRT2, that exploits the unique properties of TSRs.
Building on prior work [1][2], TSRs describe goal and con-
straint sets as volumes in SE(3), the space of rigid spatial
transformations. We showed that such volumes are particularly
useful for specifying manipulation tasks such as reaching to
grasp an object, or manipulating objects with pose constraints.

While we showed that TSRs are intuitive to specify, can be
quickly sampled, and the distance to TSRs can be evaluated
efficiently [1], a single TSR, or even a finite set of TSRs,
is sometimes insufficient to capture the pose constraints of

Fig. 1. HRP3 performing a box stacking task. The closed-chain kinematics of the feet
and the hands constrain the poses of the robot’s end-effectors.

a given task. To describe more complex constraints such as
closed chain kinematics and manipulating articulated objects,
this paper introduces the concept of TSR Chains, which are
defined by linking a series of TSRs (Section IV). Though the
sampling for TSR Chains follows clearly from that of TSRs,
the distance metric for TSR Chains is radically different.

We also present the CBiRRT2 planner, which is partly a
combination of the IKBiRRT [1] and CBiRRT [2] planners
that works with TSR Chains among other constraints (Section
V). CBiRRT2 samples end-effectors goal poses to discover
goal configurations of the robot and satisfies end-effector pose
constraints through a process we call IK handshaking.

We demonstrate the efficiency and versatility of this planner
and the TSR framework through planning for a diverse set of
manipulation tasks for 28DOF of the HRP3 (Section VI).

The contributions of this paper are:
• A unified framework for specifying end-effector goals

and pose constraints
• TSR Chains for specifying complex pose goals and

constraints
• CBiRRT2 planner for planning with TSR Chains and

other constraints

II. BACKGROUND

A key feature of Task Space Regions is that they can be
sampled to produce goal configurations for a sampling-based
planner. Other researchers have approached the problem of
ambiguous goal specification by sampling some number of
configuration space (C-space) goals before running the planner
[3][4], which limits the planner to a small set of solutions
from a region that is really continuous. Another approach is
to bias a single-tree planner toward the goal regions, however
this approach usually considers only single points [5][6] in the
task space or is hand-tuned for specialized goal regions [7].

The CBiRRT2 algorithm is partly a fusion of previously-
proposed algorithms [1][2], which are based on the RRT [8].
It uses iterative inverse-kinematics techniques [9][10] to meet
pose constraints and sample goal configurations. The algorithm
plans in the C-space, which implicitly allows it to search
the null-space of pose constraints, unlike task-space planners
[11][12][13], which assign a single configuration to each task-
space point (from a potentially infinite number of possible
configurations). Exploration of the null-space can be useful
for satisfying other constraints, such as avoiding obstacles
or maintaining balance, however our constraint representation
could be incorporated into task-space planners as well. Stilman
[14] and Yakey et al. [15] proposed single-tree RRT planners
that use various projection methods to meet certain types of
pose constraints. Our approach is similar to Stilman’s, however
we differ in the planning method and provide a more general
constraint representation, which is central to this paper.

III. TASK SPACE REGIONS

This section briefly reviews the definition of TSRs. Sam-
pling and distance checking methods for single TSRs can be
found in our previous work [1].

Throughout this paper, we will be using transformation
matrices of the form Ta

b ∈ SE(3), which specifies the pose of
b in the coordinates of frame a. Ta

b , written in homogeneous
coordinates, consists of a 3×3 rotation matrix Ra

b and a 3×1
translation vector tab .

Ta
b =

[
Ra

b tab
0 1

]
(1)

A TSR consists of three parts:

• T0
w: reference transform of the TSR

• Tw
e : offset transform in the coordinates of w

• Bw: 6× 2 matrix of bounds in the coordinates of w

In previous work [1] the 0 frame corresponded to the world
origin, thus defining the TSR relative to that frame. However,
in this paper we show how defining a TSR relative to a link
of the robot can be useful for representing constraints such as
closed-chain kinematics (see Section VI-B).

Bw =

xmin xmax

ymin ymax

zmin zmax

ψmin ψmax

θmin θmax

φmin φmax

 (2)

The first three rows of Bw bound the allowable translation
along the x, y, and z axes (in meters) and the last three bound
the allowable rotations about those axes (in radians), all in
the w frame. We use the Roll-Pitch-Yaw (RPY) Euler angle
convention, which is employed because it allows bounds on
rotation to be intuitively specified.

IV. TASK SPACE REGION CHAINS

Though TSRs can represent a broad range of useful pose
constraints and goal poses, some constraints and goals cannot
be well-described by a finite set of TSRs. For instance,
consider the task of opening a door while allowing the end-
effector to rotate about the door handle. It is straightforward to
specify the rotation of the door about its hinge as a single TSR
and to specify the rotation of the end-effector about the door’s
handle as a single TSR if the door’s position is fixed. However,
the product of these two constraints (allowing the end-effector
to rotate about the handle while the door is moving) cannot
be completely specified with a finite set of TSRs. In order
to allow more complex constraint representations in the TSR
framework, we present TSR Chains, which are constructed by
linking a series of TSRs.

A. TSR Chain Definition
A TSR chain C consists of a set of n TSRs: C =

{TSR1,TSR2, ...TSRn}. The TSRs in C have the property

Ci.T0
w = (Ci−1.T0

w)(Ci−1.Tw
sample)(Ci−1.Tw

e) (3)

for i = {2...n} where Ci corresponds to the ith TSR in the
chain and Ci.{·} refers to an element of the ith TSR. Of course
a TSR Chain can consist of only one TSR, in which case it is
identical to a normal TSR. Ci.Tw

sample can be any transform
obtained by sampling from inside the bounds of Ci.Bw. Thus
we do not know Ci.T0

w until we have determined Tw
sample

values for all previous TSRs in the chain.
In this way, a TSR chain can be thought of as a virtual

serial-chain manipulator. Again consider the door example.
To define the TSR chain for this example, we can imagine
a virtual manipulator that is rooted at the door’s hinge. The
first link of the manipulator rotates about the hinge and extends
from the hinge to the handle. At the handle, we define another
link that rotates about the handle and extends to where a
robot’s end-effector would be if the robot were grasping the
handle (see Figure 2). C1.Tw

sample would be a rotation about
the door’s hinge corresponding to how much the door had
been opened. In this way the Tw

sample values for each TSR
are analogous to transforms induced by the “joint angles” of
the virtual manipulator. The joint limits of these virtual joints
are defined by the values in Bw.

Fig. 2. Depiction of the virtual manipulator for the door example. The red dot and
arrow represent the virtual end-effector which is at transform T0

vee.

B. Sampling From TSR Chains

To determine root configurations for a bi-directional
sampling-based planner, we will need to draw samples from a
given TSR Chain. To do this, we first sample from within
C1.Bw to obtain C1.Tw

sample. This is done by sampling
uniformly between the bounds in Bw, compiling the sampled
values into a displacement dwsample = [x y z ψ θ φ] and
converting that displacement into the transform C1.Tw

sample.
We then use this sample to determine C2.T0

w via Equation 3.
We repeat this process for each TSR in the chain until we
reach the nth TSR. We then obtain a sample in the 0 frame:

T0
sample′ = (Cn.T0

w)(Cn.Tw
sample)(Cn.Tw

e) (4)

Note that the sampling of TSR chains in this way is biased
but the sampling will cover the entire set. If there is more than
one TSR Chain defined for a single manipulator, this means
that we have the option of drawing a sample from any of
these TSR Chains. We choose a TSR Chain for sampling with
probability proportional to the sum of the differences between
the bounds of all TSRs in that chain.

C. Distance to TSR Chains

Though the sampling method for TSR Chains follows di-
rectly from the sampling method for TSRs, evaluating distance
to a TSR Chain is far different from evaluating distance to
a TSR. This is because we do not know which Tw

sample

values for each TSR in the chain yield the minimum distance
to a query transform T0

s, which is derived from a query
configuration qs using forward kinematics.

To approach this problem, it is again useful to think of the
TSR chain as a virtual manipulator (See Figure 3a). Finding
the correct Tw

sample values for each TSR is equivalent to
finding the joint angles of the virtual manipulator that bring
its virtual end-effector as close to T0

s as possible. Thus we can
see this distance-checking problem as a form of the standard
Inverse Kinematics (IK) problem, which is to find the set of
joint angles that brings an end-effector to a given transform.

(a) (b) (c)

Fig. 3. Depiction of the IK handshaking procedure. (a) The virtual manipulator starts
in some configuration. (b) Finding the closest configuration of the virtual manipulator.
(c) The robot’s manipulator moves to meet the constraint.

Depending on the TSR Chain definition and T0
s, the virtual

manipulator may not be able to reach the desired transform,
in which case we want the virtual end-effector to get as close
as possible. Thus we can apply standard iterative IK techniques
based on the Jacobian pseudo-inverse [9] to move the virtual
end-effector to a transform that is as close as possible to T0

s

(see Figure 3b). Once we obtain the joint angles of the virtual
manipulator, we convert them to Tw

sample values and forward-
chain to obtain the virtual end-effector position T0

vee. We then
compute T0

s in the virtual end-effector’s frame:

Tvee
s = (T0

vee)
−1T0

s (5)

and then convert to the displacement form:

dvees =

tvees

arctan 2(Rvee
s32 ,R

vee
s33)

− arcsin(Rvee
s31)

arctan 2(Rvee
s21 ,R

vee
s11)

 (6)

‖dvees ‖ is the distance between T0
s and T0

vee. Note the equal
weighting of rotation in radians and translation in meters.

Once the distance is evaluated, our planner calls the iterative
IK algorithm for the robot’s manipulator to move the robot’s
end-effector to T0

vee to meet the constraint specified by this
TSR Chain. We term this process of calling IK for the virtual
manipulator and the robot in sequence IK handshaking.

Just as with TSR Chains used for sampling, we may
define more than one TSR Chain as a constraint for a single
manipulator. This means that we have the option of satisfying
any of these TSR Chains to produce a valid configuration. To
find which chain to satisfy, we perform the distance check
from our current configuration to each chain and choose the
one with the smallest distance.

D. Physical Constraints

In the door example, the first TSR corresponds to a physical
joint of a body in the environment but the second one is purely
virtual; i.e. defining a relation between two frames that is not
enforced by a joint in the environment (in this case the relation
is between the robot’s end-effector and the handle of the door).

Algorithm 1: CBiRRT2(Qs, Qg)

Ta.Init(Qs); Tb.Init(Qg);1

while TimeRemaining() do2

Tgoal = GetBackwardTree(Ta, Tb);3

if Tgoal.size = 0 or rand(0, 1) < Psample then4

AddRoot(Tgoal);5

else6

qrand ← RandomConfig();7

qanear ← NearestNeighbor(Ta, qrand);8

qareach ← ConstrainedExtend(Ta, qanear, qrand);9

qbnear ← NearestNeighbor(Tb, qareached);10

qbreach ← ConstrainedExtend(Tb, qbnear, qareach);11

if qareach = qbreach then12

P ← ExtractPath(Ta, qareach, Tb, qbreach);13

return SmoothPath(P);14

else15

Swap(Ta, Tb);16

end17

end18

end19

return NULL;20

It is important to note that TSR Chains inherently accom-
modate such mixing of real and virtual constraints. In fact
a TSR Chain can consist of purely virtual or purely physical
constraints. However, when planning with TSR Chains, special
care must be taken to ensure that any physical joints (such
as the door’s hinge) be synchronized with their TSR Chain
counterparts. This is done by including the configuration of
any physical joints corresponding to elements of TSR Chains
in the C-space searched by the planner (see Section V-C).

In the case that the physical constraints included in the
TSR Chain form a redundant manipulator, we recommend a
physical simulation of the movement of the end-effector from
it’s initial pose to T0

vee as it is being pulled by the robot to
find the resting configuration of the chain.

E. Notes on Implementation

Whenever we create a TSR Chain, we also create its virtual
manipulator in simulation so that we can perform IK and get
the location of the virtual end-effector. When we refer to the
joint values of a TSR Chain, we are actually referring to the
joint values of that TSR Chain’s virtual manipulator. Also, to
differentiate whether a TSR Chain should be used for sampling
goals or constraining configurations or both, we specify how
the chain should be used in its definition. When inputing TSR
Chains into our planner, we specify which manipulator of the
robot they correspond to as well as any physical DOF that
correspond to elements of the chain.

V. THE CBIRRT2 ALGORITHM

The CBiRRT2 algorithm is partly a combination of the
CBiRRT algorithm [2] and the IKBiRRT algorithm [1].
CBiRRT2 (see Algorithm 1) takes into account constraints

Algorithm 2: ConstrainedExtend(T , qnear, qtarget)

qs ← qnear; qolds ← qnear;1

while true do2

if qtarget = qs then3

return qs;4

else if |qtarget − qs| >
∣∣qolds − qtarget

∣∣ then5

return qolds ;6

end7

qolds ← qs;8

qs ← qs + min(∆qstep, |qtarget − qs|) (qtarget−qs)
|qtarget−qs| ;9

c ← GetConstraintValues(T , qolds);10

{qs, c} ← ConstrainConfig(qolds , qs, c, NULL);11

if qs 6= NULL then12

T .AddVertex(qs, c);13

T .AddEdge(qolds , qs);14

else15

return qolds ;16

end17

end18

Fig. 4. Depiction of one ConstrainedExtend operation that moves across two
constraint manifolds. The operation starts at qnear, which is a node of a search tree
on constraint manifold C1 and iteratively moves toward qtarget, which is a randomly-
sampled configuration in C-space. Each step toward qtarget is constrained using the
ConstrainConfig function to lie on the closest constraint manifold.

on the configuration of the robot during its path as well as
constraints on the robot’s goal configuration. The algorithm
meets end-effector goal constraints by adding sampled roots
to the backward tree. It meets end-effector pose constraints by
projecting samples to the manifold corresponding to a given
pose constraint. Constraints on the poses and goal locations
of the end-effectors are specified as TSR Chains, which
entails several important modifications from our previous work
(Section V-B).

A. Planner Operation

CBiRRT2 operates by growing two trees in the C-space of
the robot. At each iteration, CBiRRT2 chooses between one

Algorithm 3: AddRoot(T)

for i = 1...m do1

C← GetTSRChainsForManipulator(i);2

{T0
targ, c} ← SampleFromTSRChains(C);3

Targets.AddTarget(T0
targ, i);4

end5

{qs, c} ← GetInitialGuess();6

{qs, c} ← ConstrainConfig(NULL, qs, c, Targets);7

if qs 6= NULL then8

T .AddVertex(qs, c);9

end10

of two modes: exploration of the C-space using the two trees
or sampling from a set of goal TSR Chains. The probability
of choosing to sample is defined by the parameter Psample.

If the algorithm chooses to sample, it calls the AddRoot
function, which tries to inject a goal configuration into the
backward tree Tgoal. If the algorithm chooses to explore the
C-space, one of the trees grows a branch toward a randomly-
sampled configuration qrand using the ConstrainedExtend
function. The branch grows as far as possible toward qrand but
may be stalled due to constraint violation and will terminate
at qareach. The other tree then grows a branch toward qareach,
again growing as far as possible toward this configuration. If
the other tree reaches qareach, the trees have connected and a
path has been found. If not, the trees are swapped and the
above process is repeated.

The ConstrainedExtend function (see Algorithm 2) works
by iteratively moving from a configuration qnear toward a
configuration qtarget with a step size of ∆qstep. After each step
toward qtarget, the function checks if the new configuration qs
has reached qtarget or if it is moving farther from qtarget, in
either case the function terminates. If the above conditions
are not true then the algorithm takes a step toward qtarget and
passes the new qs to the ConstrainConfig function, which is
problem-specific. If ConstrainConfig is able to project qs to a
constraint manifold, the new qs is added to the tree and the
stepping process is repeated. Otherwise, ConstrainedExtend
terminates (see Figure 4). ConstrainedExtend always returns
the last configuration reached by the extension operation. The c
vector is a vector of TSR Chain joint values of all TSR Chains.
Every qs has a corresponding c which is stored along with qs
in the tree. We store the c vector so that the ConstrainConfig
function has a good initial guess of the TSR chain joint values
when taking subsequent steps. This greatly decreases the time
used by the inverse-kinematics solver inside ConstrainConfig.

The SmoothPath function uses the “short-cut” smoothing
method to iteratively shorten the path using the ConstrainedEx-
tend function. It is the same as that used in CBiRRT [2].

Note that CBiRRT2 can also be seeded with multiple start
and goal configurations (Qs/Qg). If no goals are specified, the
AddRoot function will insert the first goal into the backward
tree. In fact, the AddRoot function can be called for both the
start and the goal trees, if this is desired.

Algorithm 4: ConstrainConfig(qolds , qs, c, Targets)

CheckDist = false;1

if Targets = NULL then2

CheckDist = true;3

for i = 1...m do4

C← GetTSRChainsForManipulator(i);5

T0
s ← GetEndEffectorTransform(qs, i);6

{T0
targ, c} ← GetClosestTransform(C, T0

s, c);7

Targets.AddTarget(T0
targ, i);8

end9

end10

qs ← UpdatePhysicalConstraintDOF(qs, c);11

qs ← ProjectConfig(qs, Targets);12

if (qs = NULL or13

(CheckDist and
∣∣qs − qolds

∣∣ > 2∆qstep) then14

return NULL;15

end16

return {qs, c};17

B. Accounting for TSR Chains

Accounting for TSR chains is done in the AddRoot and
ConstrainConfig functions. When CBiRRT2 chooses to sample
a goal configuration, it calls the AddRoot function (see Algo-
rithm 3). This function retrieves the relevant set of TSR Chains
for each manipulator and samples a target transform for each
manipulator using the SampleFromTSRChain function, which
is an implementation of the methods described in Section IV-
B. It then forms an initial guess of the robot’s joint values
and c and calls the ConstrainConfig function. In practice we
usually use the initial configuration of the robot and vector of
zeros for c as the guess but these can be randomized as well.
If the ConstrainConfig does not return null, the resulting qs
and corresponding c are added to the tree.

The ConstrainConfig function is problem-specific, an ex-
ample of a ConstrainConfig function that considers only TSR
Chains is given in Algorithm 4. If ConstrainConfig is not
passed a set of targets (i.e. it is called from ConstrainedExtend
instead of AddRoot), then it generates a set of targets for each
manipulator using the GetClosestTransform function, which is
an implementation of the first two steps of the IK handshaking
method described in Section IV-C. Note that this function
also updates the c vector with the joint values of the TSR
Chain that generated the closest transform. The c values for the
TSR Chains that did not yield the closest transform to T0

s are
not updated. After the target transforms for each manipulator
are obtained, ProjectConfig projects the configuration of the
robot using standard inverse-kinematics algorithms based on
the Jacobian pseudo-inverse to produce a qs which meets the
constraints posed by the TSR Chains. This completes the third
and final step of the IK handshaking process.

If ConstrainConfig was called by AddRoot, the distance
between qolds and qs is irrelevant. However we do not wish
for qs to be too far from qolds when extending using Con-

(a) (b) (c)

Fig. 5. Snapshots from paths for the three examples. (a) Closed chain kinematics. (b) Simultaneous constraints and goal sampling. (c) Manipulating a passive chain.

strainedExtend because configurations between qolds and qs are
likely to violate the constraints. Thus we enforce a small step
size to reduce deviation from the constraints between nodes.

In most situations, we are also interested in satisfying other
constrains such as balance and collision. Checks for these
constraints should be inserted at line 14 of ConstrainConfig.

C. Augmenting Configuration with States of Physical DOF

Because TSR chains can specify constraints corresponding
to physical degrees of freedom of objects in the world (such
as the hinge of a door), we have to account for physical
DOF when checking collision and measuring distances in
the C-space. To achieve this, we include the configuration
of all physical DOF in the configuration vector q. We set
these DOF by extracting their values from c using the Up-
datePhysicalConstraintDOF function. This done on line 11 of
the ConstrainConfig function. Note that these DOF are not
affected by the subsequent ProjectConfig function.

VI. RESULTS

We conducted several experiments to demonstrate the versa-
tility of the TSR framework and to measure the performance
of CBiRRT2 in a variety of situations. We used the HRP3
robot, which has two 6DOF legs, two 7DOF arms, and 2DOF
in the waist, for a total of 28DOF. The kinematic tree of the
robot was rooted at the right leg. We used the ConstrainConfig
function of Algorithm 4 and include balance and collision
constraints on line 14 so all paths produced by the planner are
guaranteed to be collision-free and quasi-statically balanced
(the projection of the center of mass is in the support polygon).
All experiments were conducted on a 2.4GHz CPU with 4GB
of RAM and runtimes for 30 runs of each problem are shown
in Table 1. Please see a video of the experiments at:

http://www.cs.cmu.edu/%7edberenso/tsrplanning.mp4

A. Closed Chain Kinematics

Some researchers approach the problem of planning with
closed-chain kinematics by implementing specialized projec-
tion operators [15] [16] or sampling algorithms [17]. However,
in the TSR framework no special additions are required.

Consider the problem shown in Figure 5a. The task is for
the robot to pick up the box from the bottom shelf of the
book shelf and place it on top of the book shelf. There are
two closed chains which must be enforced by the planner; the
legs and arms. In this problem we get the goal-configuration
of the robot from IK on the box target.

We define three TSR Chains, each containing one TSR. The
first TSR is assigned to the left leg of the robot and allows no
deviation from the current left-foot location (i.e. Bw = 06×2).
The second and third TSRs are assigned to the left and right
arms and are defined relative to the location of the box (i.e.
the 0 frame of T0

w is the frame of the box). The bounds are
defined such that the hands will always be holding the sides
of the box at the same locations (Bw = 06×2). The geometry
of the box is “attached” to the right hand.

The result of this construction is the following: When
ConstrainedExtend generates a new qs, the box moves with the
right hand and the frame of the box changes thus breaking the
closed-chain constraint. This qs is passed to ConstrainConfig,
which projects qs to meet the constraint (i.e. moving the left
arm). The same process happens simultaneously for the left
leg of the robot as well.

We implemented this example in simulation and on the real
HRP3 robot. On the real robot, the task was to stack two
boxes in succession, snapshots from the execution of the plan
can be seen in Figure 6. The experiments on the robot show
that we can enforce stringent closed-chain constraints using
the CBiRRT2 planner and the TSR framework.

B. Simultaneous Constraints and Goal Sampling

The task in this problem is to place a bottle held by the robot
into a refrigerator (see Figure 5b). The use of TSR Chains is
important here, because it allows the right arm of the robot
to rotate about the handle of the refrigerator, which gives the
robot more freedom when opening the door. We assume that
the grasp cages the door handle (as in [18]) so the end-effector
can rotate about the handle without the door escaping. Psample

was set to 0.1 for this problem.
There are four TSR Chains defined for this problem. The

first is the TSR Chain(1 element) for the left leg, which
is the same as in Example A. This TSR Chain is marked
for both sampling goal configurations and constraining the
configuration of the robot. The second TSR Chain(2 element)
is defined for the right arm and is described in Section
IV-A. This chain is also marked for both sampling goal
configurations and constraining the configuration of the robot.
The third TSR Chain(1 element) is defined for the left arm and
constrains the robot to disallow titling of the bottle during the
robot’s motion. This chain is used only for constraining the
robot’s configuration. The final TSR Chain(1 element) is also
defined for the left arm and represents allowable placements

Fig. 6. Snapshots from the execution of the box stacking task using the HRP3 robot.

of the bottle inside the refrigerator. Its Bw has freedom in x
and y equal to the refrigerator width and length, and no other
freedoms. This chain is only used for sampling goals.

The result of this construction is that the robot simultane-
ously samples a target bottle location and wrist position for its
right arm when sampling goal configurations. It is important
to note is that we can be rather sloppy when defining TSRs
for goal sampling. Observe that many samples from the right
arm’s TSR chain will leave the door closed or marginally open,
thus placing the left arm into collision if it is reaching inside
the refrigerator. However, this is not an issue for the planner
because it can always sample more goal configurations and
the collision constraint is included in ConstrainConfig.

C. Manipulating a Passive Chain
The task in this problem is for the robot to assist in placing a

disabled person into bed (see Figure 5c). The robot is to move
the person’s right hand to a specified point near his body. The
person’s arm is assumed to be completely passive and the
kinematics of the arm (as well as joint limits) are assumed to
be known. In this problem, we get the goal-configuration of
the robot from IK on the target pose of the person’s hand. The
robot’s grasp of the person’s hand is assumed to be rigid.

There are two TSR Chains defined for this problem, both
of which are used to constrain the robot’s configuration. The
first is the TSR Chain(1 element) for the left leg, which is
the same as in Example A. The second is a TSR Chain(6
element) defined for the person’s arm. Every element of this
chain corresponds to a physical DOF of the person’s arm. Note
that since the arm is not redundant, we do not need to perform
any special IK to ensure that the configuration of the person
matches what it would be in the real world.

The result is that the person’s arm will track the robot’s left
hand. Since the configuration of the person’s arm is included
in q, there cannot be large discontinuities in the person’s
arm configuration (i.e. elbow-up to elbow-down) because such
configurations are distant in C-space.

Mean Std. Dev

Closed Chain Kinematics 4.21s 2.00s
Simultaneous Constraints and Goal Sampling 1.54s 0.841s
Manipulating a Passive Chain 1.03s 0.696s

TABLE I: RUNTIMES FOR EXAMPLE PROBLEMS

VII. CONCLUSION

We have presented an efficient approach to generating paths
for humanoids and other robotic manipulators that uses TSR

Chains to specify manipulation tasks. A given task can entail
any number of TSR Chains, which can consists of any number
of TSRs. TSR Chains can be sampled and the distance to them
can be determined efficiently, which allows them to represent
both constraints on and goal poses of a robot’s end-effector.
The CBiRRT2 planner uses TSR Chains to plan for a variety
of pose-constrained manipulation tasks. It takes only several
seconds to plan for complex manipulation tasks, demonstrating
the efficiency of the CBiRRT2 and the TSR framework.

VIII. ACKNOWLEDGEMENTS

Dmitry Berenson was partially supported by Intel Labs
Pittsburgh and by NSF Grant No. EEC-0540865.

REFERENCES

[1] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. Kuffner,
“Manipulation planning with workspace goal regions,” in ICRA, 2009.

[2] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. Kuffner, “Manipulation
planning on constraint manifolds,” in ICRA, 2009.

[3] M. Stilman, J. U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in ICRA, 2007, pp. 3327–3332.

[4] Y. Hirano, K. Kitahama, and S. Yoshizawa, “Image-based object recog-
nition and dexterous hand/arm motion planning using rrts for grasping
in cluttered scene,” in IROS, 2005, pp. 2041–2046.

[5] E. Drumwright and V. Ng-Thow-Hing, “Toward interactive reaching in
static environments for humanoid robots,” in IROS, 2006, pp. 846–851.

[6] M. Vande Weghe, D. Ferguson, and S. S. Srinivasa, “Randomized path
planning for redundant manipulators without inverse kinematics,” in
Humanoids, 2007, pp. 477–482.

[7] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated
approach to inverse kinematics and path planning for redundant ma-
nipulators,” in ICRA, 2006, pp. 1874–1879.

[8] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” in WAFR, 2000.

[9] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manipu-
lators, 2nd ed. Springer, 2000, pp. 96–100.

[10] S. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” International Journal of
Humanoid Robotics, vol. 2, pp. 505–518, December 2005.

[11] Y. Koga, K. Kondo, J. Kuffner, and J. claude Latombe, “Planning
motions with intentions,” in SIGGRAPH, 1994.

[12] K. Yamane, J. Kuffner, and J. Hodgins, “Synthesizing animations of
human manipulation tasks,” in SIGGRAPH, 2004.

[13] Z. Yao and K. Gupta, “Path planning with general end-effector con-
straints: using task space to guide configuration space search,” in IROS,
2005, pp. 1875–1880.

[14] M. Stilman, “Task constrained motion planning in robot joint space,” in
IROS, 2007, pp. 3074–3081.

[15] J. H. Yakey, S. M. LaValle, and L. E. Kavraki, “Randomized path
planning for linkages with closed kinematic chains,” ICRA, vol. 17,
no. 6, pp. 951–958, 2001.

[16] K. Hauser, “Motion planning for legged and humanoid robots,” Ph.D.
dissertation, Stanford University, September 2008.

[17] J. Cortes and T. Simeon, “Sampling-based motion planning under
kinematic loop-closure constraints,” in WAFR, 2004.

[18] R. Diankov, S. S. Srinivasa, D. Ferguson, and J. Kuffner, “Manipulation
planning with caging grasps,” in Humanoids, 2008, pp. 285–292.

