
Manipulation Planning with Workspace Goal Regions

Dmitry Berenson† Siddhartha S. Srinivasa‡† Dave Ferguson‡† Alvaro Collet† James J. Kuffner†

†The Robotics Institute, Carnegie Mellon University ‡Intel Research Pittsburgh
5000 Forbes Ave., Pittsburgh, PA, 15213, USA Pittsburgh, PA, 15213, USA

[dberenso, acollet, kuffner]@cs.cmu.edu [siddhartha.srinivasa, dave.ferguson]@intel.com

Abstract— We present an approach to path planning for
manipulators that uses Workspace Goal Regions (WGRs) to
specify goal end-effector poses. Instead of specifying a discrete set
of goals in the manipulator’s configuration space, we specify goals
more intuitively as volumes in the manipulator’s workspace. We
show that WGRs provide a common framework for describing
goal regions that are useful for grasping and manipulation. We
also describe two randomized planning algorithms capable of
planning with WGRs. The first is an extension of RRT-JT that
interleaves exploration using a Rapidly-exploring Random Tree
(RRT) with exploitation using Jacobian-based gradient descent
toward WGR samples. The second is the IKBiRRT algorithm,
which uses a forward-searching tree rooted at the start and
a backward-searching tree that is seeded by WGR samples.
We demonstrate both simulation and experimental results for
a 7DOF WAM arm with a mobile base performing reaching and
pick-and-place tasks. Our results show that planning with WGRs
provides an intuitive and powerful method of specifying goals
for a variety of tasks without sacrificing efficiency or desirable
completeness properties.

I. INTRODUCTION

Many practical manipulation tasks afford a large amount of
freedom in the choice of grasps, arm configurations, and goal
locations. For example, when we pick up a coffee mug and
place it in the sink, we can choose from a wide range of hand
configurations to grasp the mug securely, as well as a wide
range of goal locations in the sink to place the mug. If robots
are to perform the same tasks as humans, they must also be
able to take advantage of the freedom afforded by such task
requirements.

In this paper we introduce the concept of Workspace Goal
Regions (WGRs), which allows the specification of continuous
regions in the six-dimensional workspace of end-effector poses
as goals for a planner. A given task can entail any number
of WGRs, each of which encompasses a subspace of any
dimension less than or equal to six.

In previous work [1, 2], researchers have tackled this
problem by sampling some number of end-effector poses from
the goal regions and using inverse kinematics(IK) to find joint
configurations which place the end-effector at the sampled
locations. These configurations are then set as goals for a
randomized planner, such as an RRT or BiRRT [3, 4]. While
often capable of solving the problem at hand, this approach
is neither probabilistically complete nor efficient. The issue is
that some number of samples from the goal regions are chosen
a-priori as goal configurations, and the planner is forced to
use only these goals. If the chosen goal configurations are
unreachable, the planner will fail (even given infinite time)

Fig. 1. Top: Depiction of the IKBiRRT and RRT-JT algorithms searching in c-space.
The blue regions are obstacles, the forward-searching tree is shown with green nodes,
and the backward-searching tree is shown with orange nodes. Bottom: Snapshots of the
IKBiRRT running on the WAM arm in real and simulated environments. Left: Reaching
to grasp a soda can. Center: Throwing away a box. Right: Trajectory for putting a bottle
onto a cluttered refrigerator shelf.

though it may have succeeded if some other samples had
been drawn from the goal regions. Even if some of the goal
configurations are reachable, it may be very difficult to find
a path to those configurations, necessitating a long planning
time. Again, if some other samples are drawn from the goal
region, the planning time may be very short.

Another approach to planning with certain types of
workspace goals is to explore the configuration space (hence-
forth, c-space) of the robot with a single search tree that uses
heuristics to bias the exploration toward a goal region [5].
However, the goal regions and heuristics defined in [5] are
highly problem-specific and difficult to tune. Drumwright and
Ng-Thow-Hing[6] employ a similar strategy of extending to-
ward a randomly-generated IK solution for a workspace point.
In [7], Vande Weghe et al. present the RRT-JT algorithm,
which uses a forward-searching tree to explore the C-space and
a gradient-descent heuristic based on the Jacobian-transpose to
bias the tree toward a workspace goal point.

In this paper, we present two probabilistically complete
planners: an extension of RRT-JT, and a new algorithm called
IKBiRRT (see Figure 1). Both algorithms function by inter-
leaving exploration of the robot’s c-space with exploitation
of WGRs. The IKBiRRT is intended for robots that have
analytical or pseudo-analytical inverse-kinematics algorithms.

The extended RRT-JT is designed for robots that do not have
such algorithms.

In the following sections we motivate and introduce WGRs
and show how they can be used for randomized path planning.
We describe each algorithm’s implementation as well as our
approach to inverse kinematics. We then demonstrate the algo-
rithms on several example problems. To our knowledge these
algorithms are the first probabilistically complete planners that
handle a workspace goal representation as broad as WGRs.

II. INTRODUCING WORKSPACE GOAL REGIONS

In general a set of workspace goals for a manipulator’s end-
effector can consist of an arbitrary number of six-dimensional
points spread in an arbitrary way throughout the workspace.
However, such a broad representation lacks three fundamental
properties that are necessary for randomized planning.

First, the set of goal points must be relatively easy to specify
for the user. Consider the task of placing an object onto a
table. The set of all valid end-effector positions that achieve
the placement of the object produces a complex volume which
may be difficult and/or computationally expensive to discretize
and input into a planner.

Second, sampling from the set of goal points must be
efficient and cover the entire goal set. If the set is discretized,
some interpolation scheme between points must be used for
sampling, which could involve greater computational cost.

Third, the distance to the goal set must be easily measurable
when searching with a forward-only strategy. In order to bias
the search toward the goal set, we must be able to compute a
distance to that set from any point in the configuration space
of the robot. Computing the shortest distance to any point in
the set may be too time consuming if there are many points.

WGRs approach the problem of specifying goal sets by
describing 6-dimensional volumes in the workspace. These
volumes are particularly useful for manipulation tasks such as
reaching to grasp an object or placing an object onto some 2D
surface or into some 3D volume. WGRs are also intuitive to
specify, can be efficiently sampled, and the distance to a WGR
can be evaluated very quickly. A set of WGRs can describe any
arbitrary set of goal points by, in the extreme case, assigning
one WGR to every point, though this is clearly undesirable
in practice because the specification, sampling, and distance
checking problems will re-emerge. However, for the types of
grasping and object placement problems we are interested in,
we typically need to use less than 20 WGRs to specify our
workspace goals.

WGRs specify goal poses of a robot’s end-effector but they
can equivalently specify the goal placements of an object that
the robot is holding. Thus we will consider these two tasks
equivalent in the rest of this paper.

A. WGR Definition

Throughout this paper, we will be using transformation
matrices of the form Ta

b , which specifies the pose of b in
the coordinates of frame a. Ta

b , written in homogeneous

Fig. 2. Depiction of the transforms and coordinate frames involved in computing
the distance to WGRs. The robot is in a sample configuration which has end-effector
transform s and the hand near the soda can at transform e represents the end-effector
offset transform defined by the WGR.

coordinates, consists of a 3×3 rotation matrix Ra
b and a 3×1

translation vector tab .

Ta
b =

[
Ra

b tab
0 1

]
(1)

A WGR consists of three parts:
• T0

w: reference transform of the WGR in world coordinates
• Tw

e : end-effector offset transform in the coordinates of w
• Bw: 6× 2 matrix of bounds in the coordinates of w:

Bw =


xmin xmax

ymin ymax

zmin zmax

ψmin ψmax

θmin θmax

φmin φmax

 (2)

The first three rows of Bw bound the allowable translation
along the x, y, and z axes (in meters) and the last three bound
the allowable rotations about those axes (in radians), all in the
w frame. Note that this assumes the Roll-Pitch-Yaw (RPY)
Euler angle convention, which is used because it allows bounds
on rotation to be intuitively specified.

In practice, the w frame is usually centered at the origin of
an object held by the hand or at a location on an object that
is useful for grasping. We use an end-effector offset transform
Tw

e , because we do not assume that w directly encodes the
pose of the end-effector. Tw

e allows the user to specify an
offset from w to the origin of the end-effector e, which is
extremely useful when we wish to specify a WGR for an
object held by the hand or a grasping location which is offset

from e; for instance in between the fingers. For some example
Tw

e transforms, see Figure 2 and Figure 4.

III. USING WGRS IN RANDOMIZED PLANNING

In order to use WGRs in a randomized planner, we must be
able to sample from a set of WGRs efficiently and, in the case
of forward-only search, evaluate the distance of a configuration
in the robot’s c-space to the nearest WGR.

A. Distance to Workspace Goal Regions

In the RRT-JT algorithm, it will be necessary to find the
distance from a given configuration qs to a WGR (see Figure
2). Given a qs, we use forward kinematics to get the position
of the end-effector at this configuration T0

s. We then apply the
inverse of the offset Tw

e to get T0
s′ , which is the pose of the

grasp location or the pose of the object held by the hand in
world coordinates.

T0
s′ = T0

s(Tw
e)−1 (3)

We then convert this pose from world coordinates to the
coordinates of w.

Tw
s′ = (T0

w)−1T0
s′ (4)

Now we convert the transform Tw
s′ into a 6×1 displacement

vector from the origin of the w frame. This displacement
represents rotation in the RPY convention so it is consistent
with the definition of Bw.

dw =


tws′

arctan 2(Rw
s′
32
,Rw

s′
33

)
− arcsin(Rw

s′
31

)
arctan 2(Rw

s′
21
,Rw

s′
11

)

 (5)

Taking into account the bounds of Bw, we get the 6 × 1
displacement vector to the WGR ∆x

∆xi =


dw

i − Bw
i,1 if dw

i < Bw
i,1

dw
i − Bw

i,2 if dw
i > Bw

i,2

0 otherwise
(6)

where i indexes through the six rows of Bw and six elements
of ∆x and dw. ‖∆x‖ is the distance to the WGR. Note that we
implicitly weight rotation in radians and translation in meters
equally when computing ‖∆x‖ but the two types of units can
be weighted in an arbitrary way to produce a distance metric
that considers one or the other more important.

B. Sampling From Workspace Goal Regions

Both the IKBiRRT and the RRT-JT require that samples
be drawn from WGRs so that they can be used for inverse
kinematics or gradient-descent. Sampling from a single WGR
is done by first sampling a random value between each of the
bounds defined by Bw with uniform probability. These values
are then compiled in a displacement dw

sample and converted
into the transformation Tw

sample. We can then convert this
sample into world coordinates after applying the end-effector
transformation.

Algorithm 1: IKBiRRT(qs, W)

Ta.Init(qs); Tb.Init(NULL);1

while TimeRemaining() do2

Tgoal = GetBackwardTree(Ta, Tb);3

if Tgoal.size = 0 or rand(0, 1) < Psample then4

AddIKSolutions(Tgoal, W);5

else6

qrand ← RandConfig();7

qa
near ← NearestNeighbor(Ta, qrand);8

qa
reached ← Extend(Ta, qa

near, qrand);9

qb
near ← NearestNeighbor(Tb, qa

reached);10

qb
reached ← Extend(Tb, qb

near, qa
reached);11

if qa
reached = qb

reached then12

P ← ExtractPath(Ta, qa
reached, Tb, qb

reached);13

return SmoothPath(P);14

else15

Swap(Ta, Tb);16

end17

end18

end19

return NULL;20

T0
sample′ = T0

wTw
sampleTw

e (7)

However, in the case of multiple WGRs, we must first
decide which WGR to sample from. If all WGRs enclose
six-dimensional volumes, we can choose among WGRs in
proportion to their volume. However a volume-proportional
sampling will ignore WGRs that encompass volumes of less
than six dimensions because they have no volume in the
six-dimensional space. To address this issue we propose a
weighted sampling scheme that samples WGRs proportional
to the sum of the differences between their bounds.

ζi =
6∑

j=1

(
Bwi

j,2 − Bwi
j,1

)
(8)

where ζi and Bwi are the weight and bounds of the ith
WGR, respectively. Sampling proportional to ζi allows us to
sample from WGRs of any dimension except 0 while giving
preference to WGRs that encompass more volume. WGRs of
dimension 0, i.e. points, are given an ε probability of being
sampled. In general, any sampling scheme for selecting a
WGR can be used along with either algorithm as long as there
is a non-zero probability of selecting any WGR.

IV. THE IKBIRRT ALGORITHM

The IKBiRRT (see Algorithm 1) is an extension of the
Bidirectional RRT (BiRRT) algorithm that grows trees from
both the start and goal configurations. At each iteration,
IKBiRRT chooses between one of two modes: exploration of
the c-space using a standard BiRRT and sampling from the set
of WGRs W . The probability of choosing the sampling mode
is controlled by the parameter Psample.

The Extend function moves incrementally from a given
starting configuration toward a target configuration in fixed
step sizes, stopping only when it encounters a collision or
when the target configuration has been reached. The nodes
generated through this process are added to the tree passed
in to the Extend function. If both trees meet at some con-
figuration, a path from the start to a goal configuration has
been found and the algorithm extracts the path and smooths
it. Smoothing is performed using the shortcut heuristic[8];
however, any smoothing method is acceptable.

The AddIKSolutions function injects goal configurations
into the backward tree Tgoal. To do this, we first sample
a point in W using the method described in section III-
B, which gives us the transform T0

sample′ . This transform
is passed to the IK solver of the given manipulator. The
manipulator then generates some number of IK solutions for
this transform and checks each one for collision. The collision-
free solutions are added as goal configurations into Tgoal. Note
that no extra processing is needed to manage the multiple goal
configurations, they are simply added as root nodes in the
backward tree and treated the same as all other nodes in the
tree when computing nearest-neighbors.

Probabilistic completeness of the IKBiRRT algorithm fol-
lows from the property that, as time goes to infinity, every
possible configuration in the WGRs is added to the backwards
search tree. This is because, as time goes to infinity, every
point in these workspace regions will be sampled, and have
a set of its IK solutions added to the tree an infinite number
of times. As long as the IK solver used is also probabilis-
tically complete (i.e. will return all possible IK solutions as
the number of times it is invoked approaches infinity), this
guarantees that all possible goal configurations will be added
to the backwards search tree. Since the BiRRT algorithm is
also probabilistically complete, as time goes to infinity the
forwards and backwards trees will thus connect and return a
solution involving one of these goal configurations.

A. Generating IK Solutions

The IKBiRRT relies on the ability of the IK solver to
quickly generate solutions when given a target transform
for the manipulator’s end-effector. In theory a general IK
solver based on Jacobian pseudo-inverse or Jacobian-transpose
methods[9] can accomplish this task, however we have found
that such solvers frequently encounter problems with joint lim-
its and that they often require many iterations, and thus signif-
icant computation time, to converge. For 6DOF manipulators
such as the Puma arm, an analytical solution to the inverse
kinematics problem is available and ideal for the IKBiRRT.
However, for redundant robots such the 7DOF WAM arm,
there are a potentially infinite number of IK solutions for a
given end-effector transformation and no analytical algorithm
can be used. To deal with this issue we use a pseudo-analytical
IK solver, which discretizes the first joint of the WAM arm
into a series of joint positions and computes the analytical
IK solutions for the remaining 6DOF for each of these joint
positions.

Algorithm 2: Extended RRT-JT(qs, W)

T .Init(qs);1

while TimeRemaining() do2

if rand(0, 1) < Psample then3

qsample ← WeightedSampleNode(T);4

Wi ← DistWeightedSampleWGR(qsample, W);5

T0
sample′ ← SampleWGR(Wi);6

Qnew ← GradientExtend(qsample, T 0
sample′);7

else8

qrand ← RandConfig();9

qnear ← NearestNeighbor(T , qrand);10

Qnew ← Extend(qnear, qrand);11

end12

D ← DistanceToNearestWGR(Qnew, W);13

T .AddNodes(Qnew, D);14

for i = 1,2,. . . D.size do15

if Di = 0 then16

P ← T .extractPath(Qnewi
);17

return SmoothPath(P);18

end19

end20

end21

return NULL;22

Algorithm 3: GradientExtend(qsample, T 0
sample′)

Qnew ← {};1

while true do2

qold
s ← qs;3

T0
s ← ForwardKinematics(qsample);4

∆x ← TransformDifference(T0
s, T0

sample′);5

T0
step ← GetIntermediateTransform(T0

s, T0
sample′);6

qs ← GradientDescent(qs, T0
step);7

if qs 6= NULL and CollisionFree(qold
s , qs) then8

Qnew ← Qnew ∪ qs;9

else10

return Qnew;11

end12

if ‖∆x‖ = 0 then13

return Qnew;14

end15

In the case of a mobile base, our IK solver first samples
a base position within a circle of the given end-effector
transform. The radius of the circle is the length of the
arm when it is fully outstretched. Once the base position is
sampled, the above pseudo-analytical inverse kinematics solver
is called. Note that such a strategy preserves the probabilistic
completeness of the IKBiRRT because, as time goes to infinity,
every IK solution (up to the discretization used in the pseudo-
analytical solver) will be generated for every point in W .

V. THE EXTENDED RRT-JT ALGORITHM

The extended RRT-JT (see Algorithm 2) works by using
similar principles to the IKBiRRT but is intended for manip-
ulators where an analytical or pseudo-analytical IK solution
is not available or too time consuming. Unlike the IKBiRRT
which grows two trees, RRT-JT grows a single tree in the
c-space, which alternates between exploring the c-space and
gradient-descending toward a sample from W . Again, Psample

controls how often the gradient descent step is executed in
proportion to the exploration step.

When not gradient-descending, RRT-JT uses the same Ex-
tend function as the IKBiRRT except that this function returns
the nodes along the path toward qrand (Qnew) instead of
adding them to the tree within the function. Scores (D) are
assigned to these nodes by measuring the distance squared
to each WGR in W and taking the smallest. The distance is
measured using the process described in section III-A. If the
distance from any node to a WGR is 0, the algorithm has
found a path to a goal configuration and this path is smoothed
and returned as with the IKBiRRT.

When the gradient-descent step is chosen, the Weighted-
SampleNode function samples a random node from T with
probability inversely proportional to its score, thus favoring
nodes that are closer to WGRs. The DistWeightedSampleWGR
function then samples a WGR from W with probability
inversely proportional to that WGR’s squared distance from
qsample. Finally, the SampleWGR function samples a trans-
form from Wi using the methods in III-B to generate T0

sample′ .
The GradientExtend function (see Algorithm 3) works by

iteratively generating intermediate transformations between
the end-effector position specified by executing forward kine-
matics on qsample and T 0

sample′ . For each intermediate trans-
formation, we run an iterative Jacobian pseudo-inverse gra-
dient descent[9] to move the end-effector to that transform
(see Algorithm 4). This process terminates when the gradient
descent fails because it reaches a joint limit, a collision occurs,
or the distance to T0

sample′ is less than ε. Again, the distance
from nodes generated by GradientExtend (Qnew) to the nearest
WGR is computed and if that distance is 0, the algorithm has
found a path.

The extended RRT-JT algorithm is also probabilistically
complete. This follows because, by randomly sampling con-
figurations and extending the tree toward these configurations
some fraction of the time (lines 9 through 11 of Algorithm
2), the extended RRT-JT algorithm retains the probabilistic
completeness property inherent in the original RRT algorithm.

VI. RESULTS

To illustrate the effectiveness and compare the performance
of the proposed algorithms, we tested them on four example
problems in simulation as well as on our robot. We consider
both the fixed-base case of the robot, where we plan for the
7DOF of the arm, as well as the mobile-base case where we
plan for the 7DOF of the arm and 2DOF of translation, i.e. in
9DOF. No non-holonomic constraints are placed on the base,
though such constraints could be incorporated into the planner,

Algorithm 4: GradientDescent(qs, T0
step)

while true do1

T0
s ← ForwardKinematics(qs);2

∆x ← TransformDifference(T0
step, T0

s);3

if ‖∆x‖ < ε then return qs;4

J ← GetJacobian(qs);5

∆qerror ← JT (JJT)−1∆x;6

qs ← (qs −∆qerror);7

if OutsideJointLimit(qs) then return NULL;8

end9

as in [10]. The four problems and examples of trajectories
found by the algorithms are shown in Figure 3.

A. Problem 1: Reaching to Grasp an Object

Our goal in this problem is to grasp an object for which we
can define a continuum of acceptable grasp poses. These grasp
poses can be encoded into WGRs and passed to either planner.
We define four WGRs for the pitcher we wish to grasp (see
Figure 3(a)): two for the top of the pitcher and two for the
handle. The T0

w and Tw
e transforms of these WGRs are shown

in Figure 4. The two bounds for the top WGRs are identical,
as are the two bounds for the handle WGRs.

Bw
top =

[
05×2

−0.3 0.3

]
Bw

handle =

 02×2

−0.03 0.02
03×2

 (9)

The top WGRs allow the robot to grasp the pitcher from
the top with limited hand rotation about the z-axis. The handle
WGRs allow the robot to grasp the pitcher anywhere along
the handle but do not allow any offset in hand rotation.
Trajectories produced by our planners are shown in Figure
3(a).

B. Problem 2: Reaching to Grasp Multiple Objects

In this problem the robot’s task is to reach and grasp one of
seven randomly-placed soda cans on a table (see Figure 3(b)).
Each soda can is treated as a cylinder and two WGRs are
defined for each can. The T0

w and Tw
e transforms are shown

in Figure 4. Both WGRs for each can have identical bounds:

Bw =
[

05×2

−π π

]
(10)

These bounds allow the grasp to rotate about the z-axis of
the can, thus allowing it to grasp the can from any direction
in the plane defined by the x and y coordinates of the can’s
center. Note that we do not specify which soda can to grasp,
this choice is made within the planner when sampling from
the WGRs. Trajectories produced by our planners are shown
in Figure 3(b).

(a) Problem 1 (b) Problem 2 (c) Problem 3 (d) Problem 4

Fig. 3. Trajectories of the end-effector produced by the planners for the four simulation problems. (a)-(c) Reaching to grasp a pitcher, reaching to grasp a soda can, and throwing
away a soda can, left: IKBiRRT trajectory, right: RRT-JT trajectory. (d) Placing a bottle into the refrigerator using IKBiRRT, left: fixed base, right: mobile base. The trajectories
shown have been smoothed with 500 iterations of the shortcut smoothing algorithm.

C. Problem 3: Throwing Away an Object

The goal of this problem is to show the planners’ per-
formance on tasks where there is a large WGR. The robot
must place the soda can it is holding into a region above the
recycling bin and then release its grasp (see Figure 3(c)). T0

w

is defined at the center of the upper rim of the recycling bin
and Tw

e is defined as an end-effector position pointing along
x (away from the robot) that is holding the can at T0

w.

Bw =


−0.15 0.15
−0.1 0.1
−0.03 0.03
−π π
−π π
−π π

 (11)

This Bw defines a box above the recycling bin where all
rotations of the object are allowed.

D. Problem 4: Placing an Object into a Constrained Space

This problem differs from the previous one conceptually
in that the object held by the robot must be placed into a
very cluttered location (see Figure 3(d)). The bottles in the
refrigerator and the upper refrigerator shelf make it difficult
for the robot to find a path that places the large bottle it is
holding onto the middle refrigerator shelf. T0

w is defined at
the center of the middle shelf and Tw

e is defined as an end-
effector position pointing along y (away from the robot) that
is holding the bottle at T0

w.

Bw =

 −0.24 0.24
−0.34 0.34

04×2

 (12)

This Bw defines a plane on the shelf where the bottle can
be placed.

E. Runtimes and Parameter-Tuning

Both the IKBiRRT and the RRT-JT rely on the Psample

parameter to determine how often to sample from or gradient-
descend toward a WGR. To determine an acceptable value
for this parameter, we iterate over ten values, Psample =
0.05, 0.15,, 0.95. For each value of Psample and each
problem, we run both algorithms 15 times for the fixed-base
robot and another 15 times for the mobile-base robot. The
resulting runtimes are shown in Figure 5. These runtimes do

Fig. 4. Depiction of the w and e frames which are used to get the T0
w and Tw

e
transforms for the soda can and pitcher when reaching to grasp.

not include smoothing because it is limited to a constant time
defined by the user.

From the data in Figure 5 we can surmise that, in general,
Psample for the IKBiRRT algorithm should be somewhere
between 0.05 and 0.45. Psample in this range yielded values
close to the minimum run times for each problem. The best
Psample values for the RRT-JT were in the 0.45 to 0.65 range.

It is important to note that the RRT-JT was not able to
reliably solve the fixed-base and the mobile-base cases of
Problem 4 for any Psample value. This is because almost all of
the straight-line gradient-descents chosen by RRT-JT toward
the shelf result in collision with a bottle on the shelf or with
the upper shelf. This highlights the usefulness of a backward
tree (like in the IKBiRRT) for escaping from a constrained
goal region.

Overall, the IKBiRRT clearly outperformed RRT-JT on the
four simulation problems with average runtimes of 0.035s,
0.140s, 0.050s, and 22.1s for the best Psample values for
Problems 1-4 (fixed base). The RRT-JT achieved average
runtimes of 1.07s, 10.8s, 2.19s, and 273.4s for the best Psample

values for Problems 1-4 (fixed base). This gap in performance
is explained by the fact that the IKBiRRT uses an IK solver
to create roots for the backward searching tree. Since the IK-
solver is very fast, creating the backward tree can be done
quickly and it is well known that searching bidirectionally

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-2

10
-1

10
0

10
1

10
2

10
3

(a) Problem 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-2

10
-1

10
0

10
1

10
2

10
3

(b) Problem 2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-2

10
-1

10
0

10
1

10
2

10
3

(c) Problem 3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-2

10
-1

10
0

10
1

10
2

10
3

IKBiRRT Fixed-Base

IKBiRRT Mobile-Base

RRT-JT Fixed-Base

RRT-JT Mobile-Base

(d) Problem 4

Fig. 5. Average runtimes plotted on a log scale for ten values of Psample. Solid data points represent tests where all 15 runs took less than 5 minutes each, hollow data points
represent tests where at least one run exceeded the 5 minute time-limit and was terminated. A terminated run counted as a run of 5 minutes when computing the averages. The
legend in the right-most graph applies to all graphs.

will tend to be faster than a single-tree approach. The one ad-
vantage the RRT-JT possess is that it does not require any kind
of IK solver and thus can be applied to problems for robots
with large numbers of degrees of freedom where computing a
pseudo-analytical solution to the IK is too inefficient.

F. Experiments on Robot
To demonstrate the effectiveness of the IKBiRRT on our

robot, we ran several experiments on our physical WAM arm.
The arm’s task was to reach and grasp a series of objects
placed in a cluttered arrangement on a table and throw them
in a trash bin. Conceptually, this task is a combination of the
tasks in problems 2 and 3.

The 6D poses of the objects on the table were determined
using a camera mounted on the robot. The algorithm for
determining their poses is described in [11]. Each object is
approximated as either a box or a cylinder for the purposes of
determining the grasp pose and multiple WGRs are assigned
to each object as with the pitcher and soda cans in problems 1
and 2. No order is specified for grasping the objects, all WGRs
for all objects are input into the IKBiRRT, which returns the
first valid trajectory found. Several snapshots of the execution
of this task are shown in Figure 6. Please see our video for
several runs of this experiment:

http://www.cs.cmu.edu/%7edberenso/wgrplanning.mp4

VII. CONCLUSION

We have presented planning with Workspace Goal Re-
gions as an intuitive yet powerful method for manipulator
path planning. We have also presented two probabilistically-
complete algorithms, the IKBiRRT and an extended version
of the RRT-JT, that use WGRs to plan c-space trajectories for
a variety of tasks. Both planners interleave exploring the c-
space and exploiting the WGRs by using only one parameter
Psample. The planners were demonstrated on four example
problems in simulation and their results were compared in
terms of runtimes. The IKBiRRT outperformed the RRT-JT
on all example problems because of its ability to search
bidirectionally and its use of a fast IK solver, however the
RRT-JT can be used when there is no such solver available.
The IKBiRRT was also implemented on a 7DOF WAM arm,
where it was used to perform a typical clean-up task.

VIII. ACKNOWLEDGEMENTS

Dmitry Berenson and Alvaro Collet were partially supported
by the Intel Summer Fellowship awarded by Intel Research

Fig. 6. Snapshots from three runs of the IKBiRRT planner in cluttered scenes. Top
Row: Grasping and throwing a way a box of rice. Middle Row: Grasping and throwing
away a juice bottle. Bottom Row: Grasping and throwing away a soda can.

Pittsburgh and by the National Science Foundation under
Grant No. EEC-0540865.

REFERENCES

[1] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in IROS, 2007.

[2] Y. Hirano, K. Kitahama, and S. Yoshizawa, “Image-based object recog-
nition and dexterous hand/arm motion planning using rrts for grasping
in cluttered scene,” in IROS, 2005.

[3] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” in WAFR, 2000.

[4] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[5] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated
approach to inverse kinematics and path planning for redundant ma-
nipulators,” in ICRA, 2006.

[6] E. Drumwright and V. Ng-Thow-Hing, “Toward interactive reaching in
static environments for humanoid robots,” in Proc. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2006, pp. 846–851.

[7] M. Vande Weghe, D. Ferguson, and S. Srinivasa, “Randomized path
planning for redundant manipulators without inverse kinematics,” in
Humanoids, 2007.

[8] P. Chen and Y. Hwang, “SANDROS: a dynamic graph search algorithm
for motion planning,” Robotics and Automation, IEEE Transactions on,
vol. 14, no. 3, pp. 390–403, Jun 1998.

[9] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manipu-
lators, 2nd ed. Springer, 2000, pp. 96–100.

[10] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” Inter-
nation Journal of Robotics Research, vol. 20, Jun 2001.

[11] A. Collet, D. Berenson, S. Srinivasa, and D. Ferguson, “Object recog-
nition and full pose registration from a single image for robotic manip-
ulation,” in ICRA, 2009.

