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Abstract— We present an algorithm for efficiently generating
collision-free force-closure grasps for dexterous hands in cluttered
environments. Computing a grasp is complicated by the high
dimensionality of the hand configuration space, and the high cost
of validating a candidate grasp by collision-checking and testing
for force-closure. When an object is placed in a new scene, we
use a novel cost function to focus our search to good regions
of hand pose space for a given preshape. The proposed cost
function is fast to compute and encapsulates aspects of the object,
the scene, and the force-closure of the ensuing grasp. The low-
cost candidate grasps produced by the search are then validated.
We demonstrate the generality of our approach by testing on
the 3-fingered 4DOF Barrett hand and the anthropomorphic
22DOF Shadow hand. We also propose an extension of the
algorithm for two-handed grasps and demonstrate it on the HRP3
hands. Our results show that the candidate grasps generated by
our algorithm consistently have high probability of being valid
for various hands, objects and scenes. Finally, we describe an
implementation on a WAM arm with a Barrett Hand.

I. INTRODUCTION

A prime application for humanoid robots is to perform a
variety of manipulation tasks in the home. However, household
environments are often filled with clutter. When we reach to
pick up a mug on a dish rack or on a table full of mugs (Fig.1),
the direction we approach, the shape of our hand, and the grasp
that we choose are acutely affected by the surrounding clutter.
It is often necessary to chose grasps which would rarely have
been chosen in the absence of clutter.

In this paper, we present an algorithm, illustrated in Fig.1,
that enables a dexterous hand or hands to reach in and pick up
an object in a cluttered scene without touching the surrounding
clutter. Our algorithm is based on three observations. First,
we realize that while there might be an ideal grasp for the
mug, we must allow the algorithm to adapt that grasp to fit
the environment. Second, to reach in and grasp the object, the
hand must have a clear approach direction to the object. Third,
there must be enough clearance around each contact point to
allow the fingers to curl in and make contact.

We compute a novel cost function that encapsulates all three
observations. The cost function guides a search in the pose
space of the hand and produces a set of grasp candidates that
have a high probability of being easy to approach, collision-
free as the fingers curl in, and fit the preshape well. Most
importantly, the entire process takes, on average, as much time
as testing about 8 grasps. Furthermore, the resulting grasp set
has a success rate of over 80% in most tested scenes.

For best performance our algorithm requires the complete
geometry of the scene but such information is rarely available.
Instead, the algorithm can be given rough models of obstacle

Fig. 1. Outline of the algorithm and implementation on the Barrett, Shadow, and
HRP3 hands.

regions in the scene derived from vision or laser data without
a significant change in performance. However, the algorithm is
sensitive to the geometry and pose of the object being grasped
so its model and pose should be fairly accurate.

II. BACKGROUND AND TERMINOLOGY

Autonomous manipulation has been a major goal in robotics
for many years and has spawned numerous platforms such
as the ARMAR [1], Dexter [2], Domo [3], El-E [4], HRP2
[5], Justin [6], the NASA Robonaut [7], STAIR [8], and
UMan [9]. There is renewed interest in moving away from
tele-operation, manually-scripted grasps, and simple scenes,
to autonomous grasping with dexterous hands in unstructured
human environments.

Early research on grasp synthesis focused on finding place-
ments of contact points on an object’s surface to optimize a
given grasp metric [10, 11]. However, the applicability of these
techniques to dexterous hands with complex kinematics and
geometry is an open problem. Recently, [8, 12] have applied
machine learning techniques to find grasps of novel objects
using information about grasps of already-known objects.

Regardless of the method used for grasp selection, much
previous research has focused on finding grasps for the object
when it is isolated in the environment or in simple environ-



ments. Grasps are often generated as if the object is alone in
the environment and then collision-checked, as in [13]. While
this approach works well in simple or carefully constructed
environments, it is understandably limited as it does not adapt
to the environment. As a result, in environments with a great
deal of clutter (see Figure 1) this method may take a very long
time to find a successful grasp if one can be found at all. This
highlights the problem that validating a grasp in a cluttered
scene is expensive: with a state-of-the-art implementation, we
can evaluate only about 2 grasps per second.

In previous work [14], we proposed an algorithm where a
large number of force-closure grasps for an object were gen-
erated offline. When placed in a scene, the grasps were ranked
online based on the environment and then evaluated in order
of rank. While successful for many objects and environments,
this method proved problematic for certain environment-object
combinations because the algorithm is “locked in” to pre-
computed grasps; it cannot generate new grasps even if all that
is required is to move the wrist slightly to avoid an obstacle.

We define the configuration of the hand by its internal shape,
which we term preshape, and its pose. For our algorithm
[15], a preshape is the ideal set of joint values of the hand
for grasping a particular object. Pose is described as a 6D
Hand Position and Orientation (HPO), comprising of position
HPOp ∈ R3, and orientation HPOo ∈ H represented as a
quaternion. A Grasp consists of two parts: A preshape and
a HPO. We also define a Directed Point, which consists of
a 3D position(in meters) and a 3D unit vector representing
orientation.

We implemented a grasping controller, in simulation and on
the real Barrett hand, which allows the fingers to wrap around
objects. The hand starts at a certain set of joint values and
each finger is curled in until it collides with any obstacle or
reaches a joint limit. If a finger is controlled by more than one
joint, the distal joints follow the motion of the proximal joint
of the finger. If the proximal link collides with an obstacle,
the distal joints continue to curl in.

The act of grasping is completely described by the preshape
and HPO of the hand, and the action of the grasping controller.
We define a grasp to be valid if

1) The hand does not collide with the scene during execu-
tion of the grasping controller.

2) The ensuing grasp is in force-closure.

III. PRESHAPES

Methods for determining a preshape for a given object
have been intensely studied in robotics and neuroscience
literature for many years and are outside the scope of this
paper. Preshapes can be selected from a preshape set based
on nearest-neighbor algorithms [16] or through analysis of
the affordances of an object [17]. Also, rule-based [18] and
heuristic methods [13] can be used to determine a class of
grasp to use, which can then be translated into a preshape. In
practice, we use the technique of [16] combined with a manual
selection of preshapes for more difficult objects.

Fig. 2. (a) Sampling on the contacting surface of the Barrett Hand in a certain preshape.
(b) The sampled surface of a mug. (c) The sampled surface of that mug’s convex hull.
(d) The combined mug samples.

For a given preshape, the contacting surface of the hand is
sampled using a set of directed points, see Figure 2(a) for an
example of such a sampling. This is necessary as subsequent
steps of the framework will rely on these points to quickly
match shapes and evaluate potential grasps. We also impose
the constraint that the directed points on the fingertips must
be in force-closure for the preshape to be admissible. The
preshape is meant to be a rough guess of the joint values of
the desired grasp based only on the properties of the object
and the hand. However, to determine the HPO of the grasp,
we must take into account the object’s local environment.

IV. FINDING A SET OF HPOS

This section describes the computation of a set of valid
HPOs given a preshape and the environment geometry. We
define a HPO to be valid if it produces a valid grasp. The
computation necessary to validate an HPO consists of running
the grasp controller, collision checking with the scene at every
time step, and evaluating force-closure.

In our experiments with the Barrett Hand, this process took
roughly 0.45 seconds for a single grasp using PQP[19], a state
of the art collision checker, and MATLAB’s linprog, a state
of the art linear program solver used to evaluate force-closure.
Given these run times, only about 2 HPOs can be validated in
one second, necessitating techniques to focus search in the 6
dimensional HPO space.

Our algorithm quickly finds likely HPOs which are then
passed on to the expensive validation step. The algorithm
has two main parts. First, we sample promising HPOs using
information about the object’s local environment and seed an
optimizer with this initial sampling. Second, the optimizer uses
a novel cost function which attempts to predict the validity of
a given HPO, thereby bypassing the expensive validation step.
It is only the optimized HPOs that are then validated. Fig.1
provides an outline of the algorithm.

A. Generating an Initial Seed

We use the Cylindrical Clearance Map(CylCM) to generate
good initial seeds for the optimizer. The CylCM scores the
likelihood of the hand being in collision with the scene at a
given HPO using inexpensive ray-collision checking.

To compute the CylCM, we use pre-computed samples of
the surface of the object and its convex hull (Fig.2). We denote
the set of sample points by Odp. The CylCM at each point in
Odp is defined as the length of the longest cylinder that can
be placed at the point and oriented along the outward surface
normal, without colliding with the scene(Fig.3a).



Fig. 3. Depiction of computing clearance for one point on an object using cones
and cylinders. The cone/cylinder is oriented along the outward-facing surface normal
of a point on the surface of the object. The length of the longest cone/cylinder that is
collision-free is the clearance score assigned to that point.

The radius of the cylinder is the radius of the bounding
cylinder of the fixed part of the hand. This fixed part, termed
so because it is not controlled by any joints in the hand, usually
consists of the palm and portions of the wrist. The fixed part
is guaranteed to be collision free if the CylCM score is larger
than the length of the bounding cylinder. Note that this is a
conservative estimate.

Using the above check, we extract those sample points p
that are guaranteed to be collision-free for the fixed part. Given
a certain number of desired seeds, N , we sample points from
p proportional to their CylCM score. Eqn.1 is used to generate
HPOp from these points.

HPOp = p + hlmaxn̂ (1)

where h is chosen uniformly from [0, 1], lmax is the length
of the fingers when they are fully extended, and n̂ is the
outward-facing surface normal at p. At each p, Eqn.1 produces
HPOs that range uniformly from the hand’s palm being flush
in contact with the object (h = 0) to being barely able to touch
it with the fingertips (h = 1).

To generate HPOo, we point the hand along −n̂ and add
a random rotation about n̂ to randomize the roll of the hand.
The hand’s origin is assumed to be the center of the palm
and the hand’s orientation is the hand’s typical direction of
approach when grasping. For the Barrett Hand, this direction
is normal to the palm surface, while for the Shadow hand this
direction is the palm normal offset by 45◦ toward the fingers.

B. Cost Function

An optimizer takes as input the initial seed and outputs a set
of HPOs that is likely to be valid. The cost function used by the
optimizer must accurately predict hand-scene collisions during
the execution of the grasp controller as well as the force-
closure of the ensuing grasp. We combine three individual
cost functions to produce the cost of an HPO for object O in
environment E:

1) Approximate Collision - X(HPO, E) - measures the
likelihood of the fixed part being in collision.

2) Fit Cost - F (HPO, O) - measures the error of the fit
between the preshape and the object. The larger the
error, the larger the likelihood of the grasp not being
in force-closure.

Fig. 4. Matching preshape points to their nearest neighbors on the object. The
green lines represent nearest neighbor pairings and the average length of these lines
is F (HPO, O). Samples on the convex hull of the mug are not shown.

3) Contact Safety Cost - S(HPO, O,E) - measures the
likelihood of collision when the grasp controller curls
in the fingers.

The combined cost function C(HPO, O,E) is given by

C(HPO, O,E) =
F (HPO, O) + ζS(HPO, O)

X(HPO, E)
(2)

where ζ is the tradeoff between fit and contact safety costs.
To compute X(HPO, E), we place the bounding cylinder

for the fixed part of the hand at the HPO and check collision
with environment obstacles. If the approximating cylinder is
not in collision X(HPO, E) = 1, otherwise X(HPO, E) = 0
making C(HPO, O,E) =∞. We do not check collision with
O, allowing the optimizer to utilize the fixed part of the hand
for the grasp.

To compute F (HPO, O), we transform the directed points
on the surface of the hand to the HPO. We denote the trans-
formed points as Pdp. We then perform a nearest-neighbors1

query to find directed points in Odp that are closest2 to the
directed points in Pdp. The distances to the closest points are
averaged as F (HPO, O), which is a measure of how well
the preshape fits the object at that HPO, see Figure 4. If the
preshape and HPO are not compatible, the grasp controller is
unlikely to end up in a configuration similar to the preshape
(as it curls in the fingers until all have collided), thus making
it hard to predict if the ensuing grasp will be in force-closure.

In our experiments, we found that requiring all points on
the hand surface to match to points on the surface of the
object produced undesirable results. The hand was unable
to grasp objects in many scenes because the entire hand
was required to be close to the object, which requires a lot
of clearance around the object. Furthermore, we found that
fingertip contact was often sufficient for force-closure. Thus,
we compute F (HPO, O) for the set of surface points on the
distal links of the fingers as well as for the entire set of surface
points of the hand and choose the minimum.

To motivate our approximation of S(HPO, O,E), recall
that no part of the hand is allowed to collide with obstacles
in the environment during the grasping process. To prevent

1We use the OpenTSTool nearest-neighbor library which uses KD-Trees to
efficiently find nearest neighbors along with their distances to the queries.

2 We use an artificial discount factor α for directions, performing all
nearest-neighbor queries on sets of directed points using the Euclidean metric
on (p, αd), with α = 0.01



the fingers from colliding with the object prematurely while
approaching it, they must first be spread out from their target
preshape. Once the HPO is reached, the grasp controller closes
the fingers, making contact. If the fingers are to be opened to
some degree and the position of the hand in the preshape is
to be reached by a planner, it is clear that there must by free
space around where the object is to be contacted. Thus it is
more likely that the hand will be able to safely contact an
object at a point surrounded by free space than it is to contact
the object at a point close to other obstacles.

To compute the cost of contacting the object at each of
the sample points, we use a procedure similar to that used
to compute the CylCM. At each of the sample points of the
object, we compute the Conical Clearance Map (ConCM),
which uses the same procedure as the CylCM except with
cones instead of cylinders. The height of the longest collision-
free cone directed along the outward-facing surface normal
at a point on the surface of the object becomes that point’s
score (see Figure 3b). Again, ray-collision checking is used
to compute this score efficiently. The angle of the cone(φ) is
chosen experimentally.

The choice of a cone is motivated by the grasp controller.
Imagine fingers curling in toward a particular contact point
from many HPOs. As they curl in, they will arc toward their
final destinations and a set of arcs starting above the plane of
a point (as defined by the surface normal) and terminating at
that point can be enveloped by a cone. The larger the cone,
the more arcs are feasible for that contact point and thus the
higher the probability that a grasp will be able to contact the
object at the given point without colliding with obstacles.

Once the ConCM score is computed for every sample on
the surface of the object, the scores are thresholded, giving
points lower than the threshold a cost of 1 and points higher
than the threshold a cost of 0. We term these costs as point
safety costs. The threshold(β) regulates how much free space
is desired around a contact point. Note that point safety costs
are computed once per scene (as opposed to once per HPO).

We reuse the F (HPO, O) nearest-neighbors query and sum
the point safety costs of the samples in Odp nearer than a
distance γ to those in Pdp. S(HPO, O,E) is set to this sum.
γ defines how far apart a preshape point and a hand point can
be while still being considered matched.

C. Optimization

Once we have generated an initial seed of HPOs, we need
to decide how to use it to generate grasps for validation. One
approach is to generate a large number of initial samples,
determine their cost using the cost function described above,
and pass some number of the top HPOs on to the validation
step. However, most of the HPOs in the initial sampling will
not be useful and an optimizer is needed to focus on and
explore good regions of HPO space.

We use a nonlinear optimizer to refine the samples prior
to the expensive validation step. We use a Genetic Algo-
rithm(GA), which starts with a small initial sample as the seed
population and runs until convergence. The top HPOs of the

Fig. 5. Grasp refinement process for an example grasp. (a) An example grasp, as
passed to the validation step. Note the interpentration of the palm. (b) First, the fingers
are uncurled until they reach collision or a joint limit and then curled until they are
halfway between their starting position and the obstacle with which they collided. (c) If
the hand is not in collision with the object at this step, this step is skipped. Otherwise,
the hand is moved backward along the line defined by HPOo until the hand is no longer
in collision with the object and then moved forward slightly so that the hand is barely
colliding with the object. This is done mainly to preserve palm contact with minimal
interpenetration. (d) The fingers are curled in until each finger collides or joint limit.

final population are then passed on to the validation step.
Specifically, for each generation of the GA, the top 50% of

individuals in the population are selected as parents and the
rest are discarded. The GA uses two operators, crossover and
mutation, to generate new individuals from pairs of parents.
For crossover, two random parents are combined to create two
children. The first child takes the HPOo of the first parent and
the HPOp of the second parent and vice versa for the second
child. The children are then mutated by randomly perturbing
individual values in HPOo and HPOp. Each value has a 25%
chance of being perturbed, the magnitude of the perturbations
is uniformly random between ±0.1 for values in HPOo and
±3cm. for values in HPOp. To preserve quaternion validity,
HPOo is re-normalized after mutation. Once generated, chil-
dren are added to the population and their costs are evaluated.
This process iterates until the cost of the best individual does
not change significantly for four generations.

The goal of both of the optimizer is to find a set of
HPOs which move the hand into acceptable neighborhoods,
i.e., where the points of the preshape are close to a set of
points on the object with low contact-safety cost and low
fit cost. To refine the HPOs further, before being validated
an HPO is “snapped” into place by aligning the preshape
points with their nearest-neighbors on the object. To do this,
we use the first technique discussed in [20]. This technique
uses Singular Value Decomposition (SVD) to find the least-
squares-best transform matrix to align two sets of points. This
transform matrix is then converted into an HPO and passed to
the validation step.

V. VALIDATION

There are two parts to the validation of grasps returned by
the optimizer: grasp refinement and force-closure testing.

Because the hand, when placed at the HPO of the grasp with
the corresponding preshape, may be interpenetrating with the
object, we must determine where the fingers would actually
collide with the object when running the grasping controller
before evaluating force closure and checking collision with en-
vironment obstacles. Interpenetration is dangerous, especially
at the palm, because it can cause the collision checker to give
spurious contacts which will disrupt the force-closure test. The



Fig. 6. Depiction of two-handed grasping extension. A pair of sampled directed points
(red) is shown along with the distance between them (blue). Virtual prismatic joints and
the virtual wrist are shown for the HRP3 hands.

refinement process is described in Figure 5.
A force-closure grasp is able to resist an arbitrary distur-

bance wrench. We implemented the state of the art technique
presented in [21] to evaluate force-closure. The test takes
as input a set of contact points and normals, a coefficient
of friction (µ), and the number of segments in a linear
approximation of the friction cone(ρ) and states if the grasp
is in force-closure. The contribution of [21] was to formulate
the test as a linear program, resulting in faster runtime.

A refined grasp that is collision-free and in force-closure is
considered valid.

VI. EXTENSION TO TWO-HANDED GRASPING

Our algorithm can also be applied to two-handed grasps by
treating the two hands as fingers connected by virtual joints
to a virtual wrist (see Figure 6). By arranging the hands in
this way, we turn the problem of two-handed grasping into
the problem of grasping with a large gripper that has no wrist,
which can be handled by our algorithm. The fingers of both
hands are locked into an initial position and preshapes are
generated by placing the hands opposite to each other and
spreading the hands apart. The grasping controller moves the
hands toward each other along the virtual prismatic joints.
Once both hands make contact their fingers are curled in as
usual.

While it is possible to simply connect the hands as above
and run the algorithm, far better results can be achieved with
the following extensions.

First, since there is no wrist for the opposing hands, the
strategy for picking the initial seed described in Section IV-A
is no longer applicable. For two-handed grasping, instead of
sampling directly from the CylCM for the wrist position, we
sample from pairs of points in the CylCM3 to find suitable
positions for the opposing hands. In order to be considered
for sampling, the points’ normals must be roughly opposing
each other and they must be separated by roughly the width
of the preshape. Once all pairs of such points are identified,
we sample from this set proportional to the minimum of the
CylCM scores for each pair of points. Once the pairs are
sampled, we generate the seed HPOs by aligning the hands
with the line between each pair of points and rotating the

3constructed using the approximating cylinder of one of the wrists

Fig. 7. Four objects used in the experiments and the preshapes used for these objects
for both the Barrett and Shadow hands.

hands randomly about that line. Pairing hands (left or right)
with points is also done randomly for each HPO.

Second, the approximating cylinders for both wrists are
used in the optimization. They are spread apart to match the
preshape width and collision is checked with both of them
when evaluating X(HPO, E).

Third, fingertip grasps are not considered in the optimization
to ensure that the entire hand touches the surface of the object
being grasped if possible. This is done because holding large
and possibly heavy objects with the fingertips alone may not
be desirable because of torque limits on the finger motors.

VII. RESULTS

We tested our algorithm on two types of hands: a three-
fingered 7DOF Barrett hand and an anthropomorphic 22DOF
Shadow hand. Figure 7 shows the four test objects and
their respective preshapes. The objects chosen are meant to
represent various levels and types of difficulties for grasping.
Object A (the red T) is larger than both hands and contains
large concavities, however its surface geometry is very regular
and simple. Object B (the blue mug) has smaller concavities
but its geometry is significantly more complicated. Object C
(the red mug) is similar to Object B, but it is significantly
larger, making it more difficult to grasp in tight spaces. Object
D (the dog statue) is the most difficult because it contains
sizable concavities and its surface geometry is very erratic.
The parameter values used in all experiments were: φ = 45◦,
β = 5cm, γ = 2cm, ζ = 0.02, µ = 0.75, and ρ = 8.

A. Cost Function Evaluation

To gauge the effectiveness of the contact safety cost por-
tion of the cost function, we compare the contact points of
successful grasps to points classified as safe or unsafe by our
cost function. The results are displayed in Figure 8. This figure
shows that successful grasps rarely make contact near points
deemed to be unsafe. Thus it is correct to assign higher costs
to those points because contacts near them are rarely a part of
successful grasps.

We also compare the overall cost assigned by the cost
function to the probability of success, see Figure 9. To do



Fig. 8. Comparison of contact safety costs with contact points from 1000 successful
grasps (generated using random sampling). The red points are the contact points of the
grasps, the green points are surface samples of the object deemed to be safe, and the
black points are surface samples deemed unsafe. Two views of the same example are
shown.

Fig. 9. Comparison of scores to percent success for the objects in the scene shown
when using the Barrett Hand.

this, we generated 20,000 grasps for each of the three objects
in the scene shown in Figure 9. Each grasp is validated, and
the comparison between scores given by the cost function and
probability of success is shown. The trend in each graph is
clear, the lower the cost of a grasp, the more probable it is
to succeed, thus the cost corresponds well to probability of
success for the objects tested in this scene.

B. Optimization Comparison

To gauge the effectiveness of our optimization algorithm,
we compare our GA to a Random Sampling method. In the
Random Sampling method, we sample a much larger number
of initial seed HPOs and rank them by the scoring function
instead of running the GA. To compare these two methods, we
again use the objects and scene shown in Figure 9. The GA
method was run 63 times with an initial sampling size of 160
HPOs. The top 10% of HPOs in each of the final populations
are validated, generating a total of 1008 HPOs along with
their success or failure for each object. The Random Sampling
method is run once, with a sampling size of 10,080 HPOs for
each object. The top 10% of HPOs are validated, generating
1008 HPOs along with their success or failure for each object.
The percent success (number of successful HPOs/1008) for
each object is shown in Table I.

The GA method clearly outperforms Random Sampling
because it is far more likely to generate successful grasps,
even though it starts with a far smaller initial sampling. This

Object A Object B Object C Object D

Barrett Hand
Genetic Algorithm 98.8 78.6 72.2 60.1
Random Sampling 73.2 31.9 60.0 39.3

Shadow Hand
Genetic Algorithm 91.1 94.8 96.9 68.3
Random Sampling 81.3 66.4 81.4 70.8

TABLE 1
TABLE I: PERCENT SUCCESS FOR GA AND RANDOM SAMPLING

1 2 3 4A 4B 4C 4D

Barrett Hand 96.3 97.5 83.3 84.4 88.7 80.3 54.7
Shadow Hand 82.9 95.0 96.3 91.9 94.0 90.0 43.5

TABLE II: PERCENT SUCCESS IN TEST SCENES

occurs because the GA focuses its search on good solutions,
generating new HPOs near low-cost HPOs, which are also
likely to have a low cost. The GA also explores the space at
the same time, so new HPOs farther from the initial sampling
can be found. By contrast, the Random Sampling method is
locked in to the initial seed and has no way to focus on good
HPOs.

C. Trials in Simulated Scenes

We tested our algorithm on the test objects in several
representative scenes. The algorithm was run 30 times in each
scene with an initial sampling of 160 HPOs and the top 10%
of HPOs in each final population were validated. The percent
success of the generated grasps is shown in Table I. Examples
of successful grasps in the test scenes are shown in Figure 10.

Scenes 4A, 4B, 4C, and 4D were randomly generated by
placing the object to be grasped at the origin and dispersing
obstacles (2 blue mugs, 2 red mugs, 2 big boxes, a pitcher,
a ketchup bottle, and a dog statue) around it. Obstacles were
placed around the object at random poses within a cube of
50cm. No collisions were allowed. For each test object we
generated 100 random scenes and ran the algorithm 30 times
in each scene. The percent success in Table II is averaged
over the scenes. As expected, object D is the most difficult
to grasp with this algorithm, receiving the lowest success rate.
Objects A and B turned out to have very similar success rates,
illustrating that algorithm compensates for different geometries
very well.

D. Comparison to Previous Work

To benchmark our algorithm, we show the success rates
of two previously-proposed algorithms for the Barrett Hand
in Table III. The Primitives algorithm [13] works by first
defining preshapes and approach directions to grasp primitive
objects such as cylinders, boxes, and cones. An approximation
of the geometry of the object to be grasped is then generated
using these primitive shapes. The grasps corresponding to the
approximating primitives are tested in the given scene using a
grasp controller and force-closure test that is similar to ours.
To generate success rates, we tested all grasps in the grasp set



Fig. 10. The Barrett and Shadow hands successfully grasping objects in scenes 1, 2, 3, 4A, 4B, 4C, and 4D, respectively from left to right.

Fig. 11. The robot grasping blue and red mugs in various scenes. In the three right-most pictures an artificial obstacle was added above the mugs to increase difficulty.

1 2 3 4A 4B 4C 4D

Proposed Algorithm 96.3 97.5 83.3 84.4 88.7 80.3 54.7
Primitives 0 0 0.95 12.8 12.2 12.4 10.2
Grasp Tables 0.68 0 2.33 44.9 51.7 48.3 53.2

TABLE III: COMPARISON OF PERCENT SUCCESS FOR BARRETT HAND

(roughly 300 for each object) in the given scene and recorded
the percent that were valid.

The Grasp Tables algorithm [14] is the one previously
proposed by the authors. This algorithm generates a large table
(roughly 600) of force-closure grasps offline for an object to
be grasped by sampling the preshape and pose parameters of
the hand and running the grasp controller. When the object
is placed a new scene, the CylCM is constructed as in our
proposed algorithm. The grasps in the table are then sorted
by their CylCM scores and the top sixteen4 are tested for
collision. No force-closure test is necessary since all grasps in
the table are known to be in force-closure.

Because both algorithms are determininstic they were run
once in each test scene including each of the four-hundred
randomly-generated scenes. We found that most of the cases
where these methods failed were due to wrist collisions or
finger collisions when executing the grasping controller.

E. Run Times

Table IV shows the run times of various components of
our algorithm averaged over 30 runs in each of the 100
randomly-generated scenes. These results were obtained on an

4this is the same number of grasps validated by our proposed algorithm

CylCM ConCM Cost Fn Total Validation
(per grasp)

Barrett Hand
Object A 0.164 1.15 0.994 2.31 0.42
Object B 0.475 1.90 1.01 3.38 0.48
Object C 0.552 2.79 1.13 4.47 0.50
Object D 0.413 3.84 1.31 5.57 0.42

Shadow Hand
Object A 0.169 1.21 1.28 2.67 0.78
Object B 0.475 1.97 1.47 3.91 1.20
Object C 0.576 2.88 1.52 4.98 1.22
Object D 0.428 4.03 1.72 6.18 0.88

TABLE IV: AVERAGE RUN TIMES(S)

Intel Dual-Core 2.4GHz PC with 4 GB of RAM. CylCM and
ConCM values are average times needed to compute clearance
maps. Cost Fn values are the average sum of all cost function
evaluations per run. Total values are the sums of all previous
values. Validation times for a single grasp averaged over all
runs for each object in each scene are also shown.

Note that the time needed to construct the CylCM and the
ConCM varies with the surface area of the object because
points are sampled on the surface at the same resolution,
thus larger objects will have more surface points. The cost
evaluation times also increase with the number of surface
points because the Nearest-Neighbor query needs to evaluated
more points, but this increase is moderate.

F. Two-Handed Grasping

We also ran the two-handed extension of our algorithm for
the left and right hands of the HRP3. Each hand has 6 degrees
of freedom in the fingers. The algorithm was run 30 times



Fig. 12. Two test scenes used to evaluate the two-handed grasping extension. Two
grasps generated by our algorithm are shown.

in the scenes shown in Figure 12. The success rates were
94.8% and 95.0% on average for scenes 5 and 6, respectively.
Since the objects were quite large, computing the CylCM and
ConCM took an average of 22.5 seconds. This run time can be
improved by using a lower-resolution sampling of the object,
however doing so may cause greater inaccuracy in fitting
preshapes.

G. Experiments on Robot

We implemented our algorithm on a robot consisting of a
7DOF WAM arm and a Barrett Hand. The task for the robot
was to pick up two different kinds of mugs arranged arbitrarily
on a table. The system uses an overhead camera to identify
the mugs and obtain their 3D transformations. The grasp set
generated by our algorithm is passed to a planner that uses
inverse kinematics and BiDirectional RRTs to plan an arm
trajectory to the HPO. Once the arm is in position, the fingers
are curled in, squeezing the mug. The mug is then lifted up
by 3cm. Several snapshots of objects B and C being lifted in
several scenes are shown in Figure 11.

To demonstrate that our algorithm can work in more con-
fined spaces than our vision system can handle, we placed
an artificial obstacle above the mug to prevent it from being
grasped from the top in the three right-most scenes in Figure
11. No artificial obstacles were used in the two left-most
scenes. Several experiments are shown in our our video at:

http://www.cs.cmu.edu/˜dberenso/intelgrasping.mp4

VIII. CONCLUSION

We have presented an efficient and general algorithm for
grasp synthesis in cluttered environments. We have demon-
strated the ability of our algorithm to consistently generate
force-closure grasps for a wide range of objects and scenes in
a few seconds. We have also demonstrated the generality of

our algorithm across manipulators of varying complexity and
structure. Furthermore, we have demonstrated an implementa-
tion of the algorithm on a physical robotic system.
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