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Abstract. We present an autonomous multi-robot system that can collect objects
from indoor environments and load them into a dishwasher rack. We discuss each
component of the system in detail and highlight the perception, navigation, and ma-
nipulation algorithms employed. We present results from several public demonstra-
tions, including one in which the system was run for several hours and interacted
with several hundred people.
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Introduction

One of the long-term goals of robotics is to develop a general purpose platform that
can co-exist with and provide assistance to people. Substantial progress has been made
toward creating the physical components of such an agent, resulting in a wide variety
of both wheeled and humanoid robots that possess amazing potential for dexterity and
finesse. However, the development of robots that can act autonomously in unstructured
and inhabited environments is still an open problem, due to the inherent difficulty of the
associated perception, navigation, and manipulation problems.

To usefully interact in human environments, a robot must be able to detect and rec-
ognize both the environment itself and common objects within it, as well as its own po-
sition within the environment. Robust and safe navigation approaches are required to
effectively move through populated environments; a robot must differentiate between
moving objects (e.g. people) and static objects, and know when it is appropriate to avoid
or interact with people. Finally, complex manipulation techniques are required to inter-
act with household objects in the environment; a robot must cope with the complexity
of objects as well as errors in perception and execution. Most importantly, to function
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Figure 1. The Robotic Busboy composed of a Segway RMP200 and a Barrett WAM arm, with a snapshot
from simulation and reality.

seamlessly in dynamic human environments, all of these actions must be planned and
executed quickly, at human speeds.

Currently, although several researchers are working on robotic systems to satisfy
some portion of these requirements for specific tasks, very few [1,2,3] have tried to tackle
all of them in conjunction or achieved real autonomy. We focus our current work toward
achieving this goal.

The Robotic Busboy is a project intended to encompass several of the challenges
inherent in developing a useful robotic assistant while restricting the scope of the tasks
performed. We concentrate on a dishwasher loading scenario in which people moving
around an indoor environment place empty cups on a mobile robot, which then drives
to a kitchen area to load the mugs into a dishwasher rack (Figure 1). This specialized
task requires robust solutions to several of the challenges associated with general robotic
assistants and we have found it to be a valuable domain for providing new research
problems.

In this paper, we describe a multi-robot system to tackle this problem. We first intro-
duce the architecture of the system and the interaction between the various components.
We then discuss each component in detail and highlight the perception, navigation, and
manipulation algorithms employed. We present results from several public demonstra-
tions, including one in which the system was run for several hours and interacted with
several hundred people, and provide a number of directions for future research.

1. System Architecture

In our approach to the Robotic Busboy task, we have a Segway mobile robot navigating
through the environment collecting empty mugs from people. The Segway then trans-
ports the collected mugs to the vicinity of a Barrett WAM robotic arm which, in turn,
detects and removes the cups from the mobile robot and loads them into a dishwasher
rack. The overall system is divided into three main components: Segway navigation,
vision-based mug and Segway detection, and grasp planning and arm motion planning.



Figure 2. System Architecture Diagram.

We have developed a plugin-based architecture called OpenRAVE, released publicly
on Sourceforge [4], that provides both basic services like collision detection and physics
simulation, as well as a novel scripting environment that allows for the seamless inter-
action of many components to perform a combined task. Furthermore, the simulation
environment provided by openRAVE allows for the testing of all subsystems via virtual
controllers.

Figure 2 illustrates the high-level architecture of the manipulation portion of our
system. Feedback and control of the arm and hand is achieved by a controller plugin
which interfaces with Player/Stage [5] drivers for each hardware component. The vision
plugin updates the scene with the pose of the Segway and the mugs. The manipulation
plugin oversees the grasping and motion planning tasks and instructs the planner plugin
to plan appropriate collision-free motions for the arm.

The following sections describe in detail the algorithms implemented in the individ-
ual subsystems as well as their interactions with each other.

2. Mobile Robot Navigation

To reliably navigate through highly populated indoor environments, the Segway needs to
localize itself accurately within the environment and detect and avoid people and other
obstacles that may be present. To facilitate this, the Segway is equipped with both a laser
range finder and an upwards-pointing monocular camera.

For localization, we first build offline a 2D map of the (unpopulated) environment
using the laser range finder (see Figure 4, left image for an example such map). This
provides an accurate representation of the static elements in the environment and can
be used effectively for determining the pose of the Segway during navigation in static
environments (see, for instance, [6]). However, in highly populated environments such
an approach is of limited accuracy, since the a priori 2D map doesn’t accurately represent
the dynamic elements encountered by the robot in the environment and these elements
can significantly restrict the amount of the static environment that can be observed at any
time.



Figure 3. Camera-based indoor localization using ceiling markers. On the left is a view of the Segway with
the upward-pointing camera and the ceiling markers. Images on the right show snapshots from localization
performed using the ceiling markers. As the vehicle moves between the markers its position error accrues
(particles from its particle filter-based localization are shown in red), but collapses upon reaching a marker.

To improve upon this accuracy, in populated environments we use a vision-based
localization approach, exploiting an area of the environment that is never populated and
thus never changing: the ceiling [7,8]. To do this, we place unique markers, in the form
of checkerboard patterns, at various locations on the ceiling and store the pose of each
marker with respect to the 2D map constructed offline2. We then use an upwards-pointing
camera on the Segway to detect these markers and thus determine the pose of the Segway
in the world (see Figure 3). This provides very good global pose information when in
the vicinity of one of the markers, and in combination with odometry-based movement
estimation provides a reliable method for determining the pose of the Segway in all areas
of the environment.

For detecting and avoiding people and other objects that may not have existed in our
prior 2D map, we use the laser range-finder to provide local obstacle information. This
information is then combined with the prior 2D map and used when planning paths for
the Segway. For planning we use the open-source Player implementations of a global
wavefront planner and a local vector-field histogram planner [9]. The global planner is
used to provide a nominal path to the goal, or value function, for the Segway and the local
planner is used to track this nominal path by generating dynamically feasible, collision-
free trajectories for the Segway to execute. Together, the global and local planners enable
the Segway to reliably navigate through large populated indoor environments and find its
way to the manipulator to deliver its collection of mugs.

2It is also possible to use ceiling-based localization without requiring markers, but for our application we
found the marker-based approach to be easy to set up and very reliable.



Figure 4. Laser-based obstacle avoidance. A person stands between the segway and its desired location. The
person is detected by the Segway’s laser range finder and is avoided.

3. Robotic Manipulation

After successfully navigating to the arm, the Segway and the mugs are registered by the
robot using a camera mounted on the ceiling. Once registered, the arm unloads the mugs
onto a dishwasher rack. The remainder of this section details our algorithms for detecting
and manipulating the mugs and the tradeoffs between planning and execution speed.

The vision system tracks the 2D position and orientation of the Segway, mugs, and
table in real-time while allowing users to add, remove or move mugs at any point during
the demonstration. We used normalized cross-correlation template matching to detect the
center of each mug and to find the orientation of the mugs we then search in an annulus
around the center of each mug for a color peak corresponding to the mug’s handle.

We have developed a grasping framework that has been successfully tested on sev-
eral robot platforms [10]. Our goal for the grasp planner is to load the mugs with minimal
planning delay. To achieve this, we perform most of the heavy computation offline by
computing a grasp set comprising of hundreds of valid grasps, in the absence of any ob-
stacles (Figure 5). Once a scene is registered with multiple mugs, we first select a candi-
date mug based on the proximity to the arm. The planner then efficiently sorts the mug’s
grasp set based on various feasibility criteria like reachability and collision avoidance,
and tests the sorted grasps. Once a grasp is chosen, the arm plans to an empty position
in the dish rack using a bi-directional RRT, and releases the mug. An illustration of the
entire algorithm is shown in Figure 6.

Generated paths were smoothed and communicated across Player to the WAM. The
grasp controller simply closed each finger until it exerted a minimum torque, securing
the grasp. Once a cup is grasped, the configuration of the current hand is compared to
the expected configuration for validation of a successful grasp. If the two configurations
are substantially different, the arm replans the trajectory.

We added several heuristics specific to our problem. For aesthetic appeal, we priori-
tized loading the mugs face-down in the rack. The planner switched to the next best mug
if it was unable to find a collision-free path within a given time. If the planner fails to
repeatedly find grasps that put a mug face down in the rack, it would remove the face-
down constraint and search for grasps regardless of final orientation. When the planner
is no longer able to find any valid spot in the dish rack to place a mug, it requests for the
dishwasher rack to be unloaded.



Figure 5. Offline grasp generation. Grasps are generated offline for a known object and stored for online
evaluation.

Figure 6. The real scene on the top left is registered by the ceiling camera on the top right and fed to Open-
RAVE. The first grasp on the bottom left is invalidated by collision but the second one succeeds, triggering the
arm planner which plans a collision-free path for the arm.

4. Results

The Robotic Busboy system has been developed and tested incrementally for more than
8 months. It has operated in populated environments dozens of times, often for several
hours at a time. The largest demonstration, both in terms of duration and audience, was
at the 2007 Intel Open House in October where the system operated continuously for
four hours and interacted with hundreds of people. Figure 7 shows snapshots of the arm
removing cups from the Segway and loading them into the dishwasher rack.

During the Open House demonstration the robot dropped or failed to pick up about
20 mugs and was successfull about 200 times in picking up a mug and loading it into the



dish rack. In most of the failures, the robot realized that it had not picked up the mug and
indicated failure. In a more structured experiment with different placements of 4 mugs,
we measured 19 out of 20 successes. We observed that failure to pick up a mug could
be due to incorrect calibration of the arm, inaccuracies due to the loosening of cables
that drive the arm, mis-registration of the mug handle by the vision system, and when
someone moved the mugs when the arm was in motion to pick one up.

In our structured experiment, the average total time from giving the order to pickup
a cup to the cup being released in the dishrack was measured to be 51 seconds, with
a standard deviation of 4.9 seconds. We noted that execution times remained approxi-
mately consistent regardless of the number of mugs the arm had to consider. We believe
that this is a testament to the dexterity of our arm and our grasp planner. We observed
that the most challenging arrangement is with the mugs close together with the handles
pointing outward.

As is the case for most complex autonomous systems, it was not until the entire
system was functional and stress-tested that many of the key challenges to grasping and
failure recovery were discovered. For example, if the arm fails to grasp a cup, it has to
restart its grasping script gracefully without any human intervention. This was achieved
by constantly comparing the hand’s predicted encoder values vs the real encoder values.
Using grasps that are robust against errors in the mug pose and arm configuration really
helped increase the success rate. We picked these grasps by randomly moving the cups
in simulation and testing whether force closure still persists. This ability to recover from
error was very important for successful continuous operation, particularly in the presence
of people endeavoring to test the system in challenging scenarios. The same technique is
used to detect, and recover from, the case when a person has physically removed the cup
from the hand of the robot.

5. Conclusions

We have presented an autonomous multi-robot system designed to play the role of a
robotic busboy. In our system, a mobile robot navigates through a populated environment
receiving empty cups from people, then brings these cups to a robotic manipulator on a
fixed platform. The manipulator detects the cups, picks them up off the mobile robot, and
loads them into a dishwasher rack. Although a specialized task, this problem requires
robust solutions to several of the challenges associated with general robotic assistants
and we have found it to be a valuable domain for providing new research problems and
general purpose perception and planning algorithms. Our system is entirely autonomous
and has interacted with people in dozens of public demonstrations, including one in
which it was run for several hours and interacted with several hundred people.

We are currently working on adding compliance to the arm to enable smoother inter-
action with unexpected obstacles and to allow for humans to work in the arm’s workspace
and interact with the arm comfortably. While the Segway and the arm currently function
as one coordinated robot system, we are also working on integrating them physically into
a mobile manipulator and on migrating all of the sensing onboard. We believe that these
improvements will enable us to perform complex mobile manipulation tasks like opening
doors and cabinets, and interacting with people even more closely in unstructured human
environments.



Figure 7. Removing cups from the Segway and loading them into a dishwasher rack during the Intel Open
House Demonstration. The top images show the environment, the center images show the result from the ceiling
camera vision system, and the bottom images show the corresponding OpenRAVE model. Note that while the
system is running, users have added extra cups to the Segway and the system simply updates its model and
continues.

We believe that the ability to plan robustly under uncertainty is a compelling chal-
lenge. We are currently working on active vision for information gain, kinesthetic sens-
ing on the hand and the arm for fine motion control while grasping, and on long-range
people prediction and tracking for autonomous navigation in indoor spaces.
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