
An Optimization Approach to Planning for Mobile Manipulation

Dmitry Berenson James Kuffner Howie Choset

The Robotics Institute
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA, 15213, USA
[dberenso, kuffner, choset]@cs.cmu.edu

Abstract— We present an optimization-based approach to
grasping and path planning for mobile manipulators. We focus
on pick-and-place operations, where a given object must be
moved from its start configuration to its goal configuration by
the robot. Given only the start and goal configurations of the
object and a model of the robot and scene, our algorithm finds
a grasp and a trajectory for the robot that will bring the object
to its goal configuration. The algorithm consists of two phases:
optimization and planning. In the optimization phase, the
optimal robot configurations and grasp are found for the object
in its start and goal configurations using a co-evolutionary
algorithm. In the planning phase, a path is found connecting the
two robot configurations found by the optimization phase using
Rapidly-Exploring Random Trees (RRTs). We benchmark our
algorithm and demonstrate it on a 10 DOF mobile manipulator
performing complex pick-and-place tasks in simulation.

I. INTRODUCTION

Motion planning for a mobile manipulator is a complex
task, involving multiple levels of planning which are often
divided into sub-problems to manage complexity. Consider a
pick-and place operation for a mobile manipulator: the task
is to move an object from some given starting configuration
to some given goal configuration. The problem can be
broken down into three sub-problems: 1) move the robot
from its initial configuration to a configuration where it
is near the object, 2) grasp the object, 3) move the robot
(holding the object) to some configuration which places
the object into its goal configuration. Breaking the problem
into the above subproblems reduces the complexity of the
overall task by allowing sub-plans to be generated in series.
However, ignoring the coupling between sub-problems can
turn feasible problems into infeasible ones and introduce
unnecessary difficulty for the path planning algorithm. In
this paper, we will show the importance of coupling the sub-
problems and present an algorithm which takes this coupling
into account. Our algorithm focuses on two issues central
to mobile manipulation: choosing the optimal grasp and
choosing the optimal locations for the mobile base.

To illustrate the importance of picking the correct grasp,
consider the canonical problem of loading a dishwasher with
a mobile manipulator. Suppose we wish to place a wineglass
into one of the dishwasher’s bins. Suppose also that we have
two stable grasps for the wineglass: a power grasp of the
body and a pinch at the stem. If we only consider grasp
quality, we are likely to choose the power grasp because it

Fig. 1. An example of the importance of proper grasp selection in the
wineglass problem. (a) If the glass is grasped in the initial state using a
power grasp, the goal configuration of the wineglass is unachievable without
collision between the hand and environment. (b) If a pinch grasp is used,
the goal configuration for the wineglass can be achieved without collision.
(c) The Puma arm using the correct grasp for the wineglass as determined
by our algorithm.

is usually more stable than a pinch. However, as shown in
Fig. 1(a), it is impossible to place the glass into the goal
configuration while using the power grasp because of colli-
sions between the fingers and the environment. Considering
the feasible grasp at the goal configuration of the wineglass
is essential to the completion of this task.

Much work has been done on finding a suitable metric
for grasp quality [2] [3] [4]. Our approach introduces a
task-dependent component to the problem of grasp selection.
Instead of greedily choosing the best grasp at the initial
configuration of the object based solely on grasp quality,
our algorithm considers the object in both its starting and
goal configurations as well as the placement of the robot’s
base.

The placement of the mobile base of the manipulator
is crucial to the success of the path planning algorithm.
An incorrect placement of the base could make the robot
unable to reach the object. If the robot is able to reach the
object, it may do so in an undesirable way, such as placing
itself near a singular configuration where controlling the arm
is difficult. The placement of the base in the initial and
final configurations also determines the difficulty of the path

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1187

planning subproblem. If we choose to place the base in a
very cluttered area, it may be more difficult or impossible
to escape, whereas if we place the base in an open area, we
will likely have an easier time planning a path through the
environment. Base placement also influences the configura-
tion of the the rest of the mobile manipulator through inverse
kinematics. Finally, an improper base placement could place
the arm into collision when grasping the object.

In this paper, we address the issues of grasp selection
and base placement from the perspective of optimization.
In the following sections we discuss related work in mobile
manipulation, formally define the pick-and-palce problem,
and present three metrics for evaluating the quality of a
robot configuration: grasp quality, configuration desirability,
and configuration clutter. These metrics are evaluated at
each candidate configuration where the robot is grasping
the object—thus giving the configuration an overall score.
We show how to use a co-evolutionary algorithm to search
a constrained space of base placements and grasps for the
optimal (as defined by the above score) robot configurations
for the start and goal configurations of the object we wish to
move. Then we show how to use Bidirectional RRTs [1] to
find a path linking the the start and goal robot configurations
found by optimization. Finally, we benchmark our optimiza-
tion method against random sampling and demonstrate our
algorithm in simulation on a 10 DOF mobile manipulator.

II. RELATED WORK

In previous work, mobile manipulation planning has been
divided into four main areas: path planning for robot arm(s),
navigation planning for the base of the robot, grasping, and
frameworks for general manipulation planning. Our contribu-
tion is the integration of path planning for arms, navigation,
and grasping into a single optimization-based algorithm
which can be used as a module for general manipulation
planning frameworks.

Lozano-Perez et al. [10] were one of the first to examine
integrated grasping and planning for a fixed-base arm. They
present a framework that recognizes objects, chooses grasps,
and plans arm motions. We revist the same problem in this
paper with more modern algorithms that consider a mobile
base and optimality concerns when choosing grasps. Koga
et al. [11] examine the problem of manipulation planning
for one or more fixed-base arms by planning a path for the
object and then using inverse kinematics to find the necessary
grasps and arm configurations at each point in the object’s
trajectory. Unfortunately, inverse kinematics cannot deter-
mine the necessary base positions for a mobile manipulator,
much less determine base positions that will be collision-
free. Hsu et al. [20] study the problem of where to place a
fixed base manipulator in a factory environment for optimal
task execution.

Zhao et al. [5] use a genetic algorithm to plan a path
for the mobile base between a discrete set of feasible
base-placements. The set of placements is determined by
exhaustive search but obstacles and grasping are not con-
sidered. Chen and Zalzala [6] use a genetic algorithm to

plan a path through a gridded environment using distance to
obstacles as one of the criteria for optimization. Vannoy and
Xiao [7] use a genetic algorithm to create a population of
trajectories for a mobile manipulator that allow it to avoid
dynamic obstacles while maintaining good manipulability.
Similarly, our approach considers both distance to obstacles
and manipulability when determining the fitness of a robot
configuration.

Li and Sastry [4] define a grasp-quality metric that is task-
dependent, based on the types of motions one wishes to
perform with the object, but do not consider the geometric
environment inhabited by the robot and the coupling between
a grasp and robot arm configuration. However, this metric
can be used as one of the configuration quality metrics in
our configuration scoring function (see Methods).

Stilman et al. [15] and Cambon et al. [14] both outline
manipulation planning frameworks. Stilman et al. examine
the problem of manipulation planning among movable ob-
stacles. Here the object is initially inaccessible and movable
obstacles must be displaced in order to pick up the object
and place it in its goal configuration. Cambon et al. have
developed a motion planning framework where high-level
action plans and low-level path plans are searched in parallel.
The high level plans can involve regrasping and moving
obstructing obstacles out of the way. Our algorithm can be
integrated with these schemes to choose the optimal base-
placements and grasps for all low-level path plans. Likewise
if the object must be slid through a narrow space as in [13]
and [12].

Other issues in mobile manipulation have also been stud-
ied: Seraji [18] and Yamamoto and Yun [17] explore issues
in control for mobile manipulators, and Nagatani et al.
[16] show a control approach to the task of door opening.
Petrovskaya and Ng [19] show how to integrate localization
and object detection for navigation and manipulation. Brock
and Khatib [21] explore the problem of following an end-
effector trajectory while avoiding obstacles in a dynamic
environment.

III. PROBLEM DEFINITION

We formally define the problem of pick-and-place mobile
manipulation as follows:

Define the following configurations:

• qR, the full configuration of the robot, including the
base and the arm

• qArm ⊂ qR, a configuration of the robot’s arm joints
excluding the joints of the hand

• qBase ⊂ qR, a configuration of the robot’s base
(usually in the XY plane)

• qO, a configuration of the object (usually 6 DOF)
• qOstart, the starting configuration of the object
• qOgoal, the goal configuration of the object
• qRstart, the starting configuration of the robot
• qROstart, a collision-free configuration of the robot

where the robot is grasping the object in the object’s
starting configuration

1188

• qROgoal, a collision-free configuration of the robot
where the robot is grasping the object in the object’s
goal configuration

Also define Grasp as a set of parameters tailored to the
robot’s manipulator and/or the object. The only restriction on
the definition of Grasp is that the parameters must somehow
determine a workspace position for the robot’s end-effector.
For instance, a Grasp could be defined by a center point and
orientation for a gripper. Please see the Experiments section
for a description of the Grasp definition we use.

Our algorithm requires qOstart, qOgoal, and qRstart as
input. The problem is to find a collision-free path for the
robot and object which takes the object from qOstart to
qOgoal.

We do not assume that the robot starts in a configuration
where it is grasping the object. qROstart and qROgoal are ini-
tially unknown. In our experiments we assume no constraints
on qBase, however such constraints can be incorporated into
the path planning phase [1] if needed.

We also require an Inverse Kinematics (IK) algorithm
for the given robot. In our context the IK algorithm need
not find values for all DOF of the robot, only qArm. To
illustrate, consider an arm mounted on a mobile base. In this
case the IK algorithm would determine qArm given qBase
and an end effector position determined by some Grasp as
arguments. The IK algorithm is robot-specific and can be
iterative or analytical.

IV. METHODS

Our algorithm consists of two-phases: an optimization
phase and a planning phase. In the optimization phase, we
use a co-evolutionary algorithm to find the optimal qBase ⊂
qROstart, qBase ⊂ qROgoal, and Grasp. After the search,
we extract the accompanying qArm values using IK, thus
fully defining qROstart and qROgoal. In the path planning
phase, we use bidirectional RRTs to find a path connecting
qROstart and qROgoal.

A. Scoring Function

In order to find the optimal grasp and base placement
at both the start and goal configurations of the object we
need a scoring function that judges the quality of a given
robot configuration. Let qR = IK(qBase,Grasp) be a
configuration we wish to evaluate. If qR is in collision it
receives a score of 0. Otherwise, we consider three criteria to
compute the score: grasp quality, configuration desirability,
and configuration clutter. Grasp quality is often defined as
force-closure [9], but can be measured with a variety of
metrics [3] [4] [2]. For our purposes it will suffice that the
there exists some grasp-quality metric that returns a single
number as a measure of grasp quality, G, given qR. Note that
if Grasp is defined in such a way that all possible values of
Grasp parameters will yield desirable grasps, this measure
is unnecessary.

Configuration desirability is robot-specific, referring to the
cost of being in a certain configuration of the arm. If we
assume that the robot’s arm can be easily controlled in any

feasible configuration, there is no need to consider configura-
tion desirability. Unfortunately, an arm’s configuration space
often contains singular configurations which are difficult to
deal with in control. The manipulability measure is useful
for gauging the desirability of a configuration because it
gives better scores to configurations that are farther from
singular configurations. Thus we use manipulability as our
configuration desirability score, calculated as follows:

M = min(eigs(JJT)) (1)

where M is the manipulability score for a certain robot
configuration, J is the Jacobian of the robot’s arm evaluated
at qArm ⊂ qR, and eigs() is a function that returns the
eigenvalues of a matrix.

Configuration clutter measures the proximity of a given
robot configuration to nearby obstacles. For path planning
and safety purposes, it is desirable to choose the goal
configuration for the robot that is not in a cluttered area, if
possible. To measure the clutter in the vicinity of the robot,
we compute the distance from each of the robot’s links to
the nearest obstacle. This distance, dl, is computed for each
link, l, and the total configuration clutter is given by:

C =
∑

wldl (2)

where wl is a weighting constant for the link l. We use the
inverse of the distance between l and the robot base’s center
of mass as our wl.

After calculating the three metrics, G, M , and C, we
weight and sum them into an overall score for the configu-
ration, Score(qBase,Grasp). If qR is in collision or does
not meet the minimum requirements for grasp stability (as
determined by the grasp quality metric), Score is set to 0. It
is important to note that these metrics are not the only ones
that can be used, they can be replaced by other metrics or
other metrics can be used in conjunction with them. All that
is required is a function that returns an Score when given a
base position and grasp.

B. Optimization

Environments with clutter and objects which can be
grasped in multiple ways make the problem of finding the
optimal base positions and grasp highly non-linear with many
local minima. The difficulty of the problem necessitates an
optimization approach that can efficiently avoid these local
minima. We use a co-evolutionary algorithm (see [8] for
a description of evolutionary algorithms) to search for the
optimal base positions and grasp.

The evolutionary structure is set up as follows: there
are three populations, a population of qBase ⊂ qROstart

individuals, a population of qBase ⊂ qROgoal individuals,
and a population of Grasp individuals. The base position
individuals are specified in polar coordinates, with the origin
of the coordinate system placed at the center of mass of the
object in configurations qOstart and qOgoal, respectively.
The individuals also contain genes for an offset in X and

1189

Y limited to ±20cm. These offset genes allow the co-
evolutionary algorithm to improve on good solutions in later
generations via mutation.

Each population is associated with its own fitness function,
however the fitness of one population depends on the indi-
viduals in one or more of the other populations (this is what
makes the algorithm co-evolutionary). The base position
populations use the following fitness function:

FBase(qBase) = max
0≤i<k

Score(qBase,Graspi) (3)

i indexes over the individuals in the Grasp population in
order of their fitness. k determines how many Grasp indi-
viduals are to be evaluated1. The fitness of Grasp individuals
is determined by

FGrasp(Grasp) =
k∑

i=0

Score(qBasei ⊂ qROstart, Grasp)

+ Score(qBasei ⊂ qROgoal, Grasp)

In this equation, i indexes over the individuals in the base
position populations in order of their respective fitnesses.
We also include a special provision for this fitness function:
if exactly one of the scoring functions returns 0, (i.e. the
resulting configuration is in collision), FGrasp(Grasp) is set
to 1.0. This provision ensures that grasps which are valid
in exactly one of the start/goal configurations of the base
are preserved but not given any advantage over other such
grasps. This is important for maintaining a pool of grasps
that will eventually be successful in the Grasp population
without allowing one such grasp to dominate.

The effect of the fitness functions is to guide all three
populations to a solution that has maximum score. Each base
position population “pulls” the grasp population toward what
the best base position individuals “want” via the FGrasp

fitness function. Likewise, the Grasp population “pulls”
both of the base position populations toward what its best
individuals want via the FBase fitness function. Thus the
most successful individuals in the Grasp population will
be the ones which are preferred by both base position
populations and the most successful individuals in the base
position populations will be the ones which are preferred by
the Grasp population. See Figure 2.

One cycle of evolution is defined as evolving each of
the base position populations for one generation and then
evolving the grasp population for one generation. For each
generation in the evolution of all three populations, the
parents are the top 50% of the population. Children are
generated from these parents by randomly choosing two
parents, performing two-point crossover, and then mutating
the resulting genomes with 20% mutation probability for
each gene. Mutation adds a random value to the value of
the mutated gene. This random value is uniformly distributed
between ±1/4th of the gene’s range.

1We use k = 7 in our experiments

Fig. 2. Depiction of the three populations. The best individuals in the
qBase ⊂ qROstart population prefer the grasps in the green circle. The
best individuals in the qBase ⊂ qROgoal population prefer the grasps in
the blue circle. The best individuals in the Grasp population prefer the base
positions in the red circles. The grasp in the intersection of the green and
blue circles is preferred by both base position populations and will receive
the highest fitness in the Grasp population.

To initialize the base position populations, we need to
sample positions from regions of the configuration space
that are likely to yield IK solutions. We define an annulus
around the object with inner radius equal to the radius of
the robot’s base and an outer radius equal to the distance
from the robot’s base to its end effector when the arm is
fully extended. Individuals in the initial start and goal base
position populations are sampled from annuluses centered
at the center of mass of the object in qOstart and qOgoal,
respectively. Each sample is tested for collision between the
base and environment obstacles and any samples in collision
are rejected and re-sampled.

After running the co-evolutionary algorithm, we extract
the best Grasp in the population of grasps and the best
qBase ⊂ qROstart and qBase ⊂ qROgoal for that grasp
in the base position populations. We then compute the IK
and arrive at the fully specified qROstart and qROgoal

configurations.

C. Path Planning

Once we have determined qROstart and qROgoal, we plan
a path for the robot and object to move the object from
qOstart to qOgoal. We divide this task into two intuitive sub-
tasks, moving the robot from qRstart to qROstart and then
moving the robot and object from qROstart to qROgoal. We
know that moving the robot to qROgoal while grasping the
object must place the object into qOgoal because of the way
we found qROgoal. We use a Bidirectional RRT to plan these
two paths, which is very effective for mobile manipulators.

V. EXPERIMENTS

We conducted several experiments with a Puma robot on
a cylindrical mobile base in simulation. The robot has 10
DOF: 6 DOF in the arm, 2 DOF in the hand, and 2 DOF of
translation (X and Y) of the base. We define qBase to be
the X and Y translation and define qArm to be the DOF of
the arm. We consider two pick-and-place problems: moving
a wineglass from a kitchen counter into a dishwasher and
moving a plate from the dishwasher onto a cabinet shelf
(see Figure 3).

1190

Fig. 3. Start and goal positions for the object to be moved in the wineglass
problem(a) and plate problem (b).

Currently, we must parameterize the Grasp differently for
each object that is to be grasped. For the wineglass problem,
the Grasp was parameterized in terms of end effector
orientation and target point on the wineglass’ principle axis.
The target point specifies where the center of the Puma’s
gripper should be placed. The end effector orientation was
restricted to be perpendicular to the principle axis of the
wineglass. Thus the grasp is defined using two variables: 1
for the location of the target point along the principle axis
and 1 for the approach direction.

The Grasp for the plate was defined similarly. The target
point for the gripper is allowed to lie on the outer lip of the
plate, with the approach direction allowed to lie in the plane
parallel to the plate. Note that in both problems, all grasps
will yield force closure, so grasp-quality is not evaluated.

To gauge our co-evolutionary optimization algorithm, we
performed a benchmark test against random sampling of
base placement and grasp parameters. Co-evolution was
run for 6 cycles with population sizes of 84 for the base
position populations and 64 for the grasp population. Each
run entailed 6940 scoring function evaluations. To be fair,
the random sampling was restricted to base positions within
the same annulus as the co-evolutionary algorithm and both
random sampling and co-evolution were allowed the same
number of scoring function evaluations. Both problems were
run 200 times for both random sampling and co-evolution,
the statistics are shown in Table I. Both algorithms were
able to find a feasible solution in an equal number of runs.
However, co-evolution clearly outperforms random sampling

Percent Avg. Score Score
Success (100 max) Std. Dev.

Wineglass Problem
Co-Evolution 99.0% 91.74 3.77
Random Sampling 99.0% 72.57 6.13

Plate Problem
Co Evolution 100% 90.18 3.94
Random Sampling 100% 78.06 4.52

TABLE I
RESULTS OF 200 RUNS OF THE WINEGLASS AND PLATE PROBLEMS

in terms of both average score2 and consistency (standard
deviation).

The runtime of optimization depends almost entirely on
the time needed for scoring function evaluation. Since the
models we used were extremely detailed, composed of
complex shapes with hundreds of thousands of triangles,
evaluating distance from the robot’s links to the environment
was quite slow. The distance evaluation time depended on the
configuration of the robot and its proximity to obstacles. This
is because our distance check used the PQP collision library,
which uses oriented bounding boxes to prune the search
for the shortest distance. The analytical IK computation for
the Puma was fast, however, if there was more than one
IK solution for a given base/end effector pair, the scoring
function evaluated all the solutions and took the best. Thus
it is difficult to give a runtime for one evaluation of the
scoring function. In total, co-evolution took an average of
149 and 133 seconds on a 3.0 GHz Pentium 4 with 1GB of
memory for the wineglass and plate problems, respectively.
Random sampling took an average of 97.4 and 112 seconds
on the same computer for the wineglass and plate problems,
respectively. While the difference between co-evolution and
random sampling runtimes may seem large, it is important to
note that random sampling spends most of its time evaluating
solutions that result in collision, which are quickly rejected,
while co-evolution spends most of its time evaluating high-
scoring solutions, which takes more time.

After generating the qROstart and qROgoal configurations
using the co-evolutionary algorithm, we plan a path from
qRstart to qROstart. We then grasp the object by closing
the gripper at the target point. After the grasp is complete,
we compute a plan to move from qROstart to qROgoal

with the exception that the fingers are not moved so that
the grasp is maintained. Planning these two trajectories took
roughly 30 seconds on the aforementioned computer, which
is reasonable considering the complexity of the models used
and the clutter of the space. See Figure 1 and Figure 4
for an example of the qROstart and qROgoal found for the
wineglass and plate problems, respectively. See Figure 5 for
several snapshots from the execution of the plan for the
wineglass problem.

VI. CONCLUSION AND FUTURE WORK

We have presented an optimization-based approach to
grasping and path planning for mobile manipulators per-

2Note, the scores are normalized to 100 by the best score found after
hundreds of runs of each problem.

1191

Fig. 4. An example of the qROstart and qROgoal found by the
optimization phase for the plate problem. Note that in the goal configuration
the optimizer prefers to keep the base away from the lower cabinet doors
more than it prefers to keep the arm away from the upper cabinet doors. This
is because the distance from the base link to the nearest obstacle is weighted
higher than the distance from the forearm link to the nearest obstacle in our
scoring function.

forming pick-and-place tasks. The algorithm consists of two
phases: optimization and planning. In the optimization phase,
we use a co-evolutionary algorithm to find the optimal robot
configurations and grasp for the object in its start and goal
configurations. In the planning phase, a path connecting the
two robot configurations determined by optimization is found
using bidirectional RRTs. Our optimization algorithm has
proven effective at finding high scoring grasp/base position
combinations and is capable of constructing plans to perform
complex pick-and-place tasks.

In future work, we would like to implement our algorithm
as a module for manipulation among movable obstacles, as
well as applying it to mobile manipulation by humanoid
robots. Also, if our optimization algorithm is unable to find a
Grasp and positions that are valid for qOstart and qOgoal it
is likely that no such combination exists and that regrasping
is necessary to move the object from qOstart to qOgoal. In
that case, the optimization results are still useful because we
will have grasps and base positions that are valid for both
qOstart and qOgoal in the populations (but no grasp valid for
both). The remaining task is to find an intermediate regrasp
that links two grasps in the grasp population preferred by
different base positions.

VII. ACKNOWLEDGMENTS

We gratefully acknowledge the students and faculty in-
volved with the ARMAR humanoid platform at the Uni-
versity of Karlsruhe for the use of the kitchen environment
model. We would also like to thank Rosen Diankov for his
assistance with the simulator and other valuable discussions.

REFERENCES

[1] LaValle, S., and Kuffner, J., “Randomized Kinodynamic Planning,”
Int. Journal of Robotics Research, Vol. 20, 2001.

[2] Pollard, N., “Closure and Quality Equivalence for Efficient Synthesis
of Grasps from Examples,” International Journal of Robotics Research
23(6), pages 595 - 614, June 2004.

[3] Zhu, X., Ding, H., and Li, H. “A quantitative measure for multi-
fingered grasps,” Proceedings of the IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics, 2001.

[4] Li, Z., and Sastry, S., “Task oriented optimal grasping by multifingered
robot hands,” IEEE Trans. on Robotics and Automation, 4(1):32-44,
1988.

Fig. 5. Snapshots from the execution of a trajectory for the wineglass
problem.

[5] Min Zhao, Ansari, N., and Hou, E.S.H., “Mobile Manipulator Path
Planning By A Genetic algorithm,” Proceedings of the 1992 lEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 681
- 688, July 1992.

[6] Chen, M., and Zalzala, A., “A genetic approach to motion planning
of redundant mobile manipulator systems considering safety and
configuration,” Journal of Robotic Systems, Vol. 14, No. Y, pages 529
- 544, 1997.

[7] Vannoy, J., and Xiao, J., “Real-time planning of mobile manipulation
in dynamic environments of unknown changes,” Proceedings of RSS
2006 Workshop: Manipulation for Human Environments, August 2006.

[8] Mitchell, M., “An Introduction to Genetic Algorithms,” Cambridge,
MA: MIT Press, 1996.

[9] Mason, M.T., “Mechanics of Robotic Manipulation,” Cambridge, MA:
MIT Press, August 2001.

[10] Lozano-Perez, T., Jones, J., Mazer, E., O’Donnell, P., Grimson, E.,
Tournassoud, P., and Lanusse, A., “HANDY: A Robot System that
Recognizes, Plans, and Manipulates,” Proceedings of the 1987 IEEE
lnternational Conference on Robotics and Automation, March 1987.

[11] Koga, Y., Kondo, K., Kuffner, J., and Latombe, J-C., “Planning
Motions with Intentions,” Proceedings of SIGGRAPH 94 pp. 395-408,
1994.

[12] Alami, R., Laumond, J.P., and Simeon, T., “Two manipulation plan-
ning algorithms,” Workshop on Algorithmic Foundations of Robotics
(WAFR94), 1995.

[13] Simeon, T., Cortes, J., Sahbani, A., and Laumond, J.P., “A Ma-
nipulation Planner for Pick and Place Operations under Continuous
Grasps and Placements,” Proceedings of the 2002 IEEE lnternational
Conference on Robotics and Automation, May 2002.

[14] Cambon, S., Gravot, F., and Alami, R., “A robot task planner that
merges symbolic and geometric reasonning.” ECAI, 2004.

[15] Stilman, M., Schamburek, J., Kuffner, J., and Asfour, T., “Manipula-
tion Planning Among Movable Obstacles” Proceedings of the IEEE
International Conference on Robotics and Automation, April, 2007.

[16] Nagatani, K., Yuta, S., “Designing strategy and implementation of
mobile manipulator control system for opening doors,” IEEE Interna-
tional Conference on Robotics and Automation, April, 1996.

[17] Yamamoto, Y., Yun, X., “Coordinating locomotion and manipulation
of a mobile manipulator,” IEEE Conference on Decision and Control,
1992.

[18] Seraji, H., “A Unified Approach to Motion Control of Mobile Manip-
ulators,” The International Journal of Robotics Research, Vol. 17, No.
2, pages 107 - 118, 1998.

[19] Petrovskaya, A., and Ng, A., “Probabilistic Mobile Manipulation in
Dynamic Environments, with Application to Opening Doors,” Inter-
national Joint Conference on Artificial Intelligence (IJCAI), 2007.

[20] Hsu, D., Latcombe, J.C., and Sorkin, S., “Placing a robot manipulator
amid obstacles for optimized execution” IEEE International Sympo-
sium on Assembly and Task Planning, 1999.

[21] Brock, O., Khatib, O., and Viji, S., “Task-Consistent Obstacle Avoid-
ance and Motion Behavior for Mobile Manipulation,” IEEE Interna-
tional Conference on Robotics and Automation, Washingtion, 2002.

1192

