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Abstract 
 

We present a method for evolving and 
implementing artificial neural networks (ANNs) on 
Field Programmable Analog Arrays (FPAAs). These 
FPAAs offer the small size and low power usage 
desirable for space applications. We use two cascaded 
FPAAs to create a two layer ANN. Then, starting from a 
population of random settings for the network, we are 
able to evolve an effective controller for several 
different robot morphologies. We demonstrate the 
effectiveness of our method by evolving two types of 
ANN controllers: one for biped locomotion and one for 
restoration of mobility to a damaged quadruped. Both 
robots exhibit non-linear properties, making them 
difficult to control. All candidate controllers are 
evaluated in hardware; no simulation is used. 
 

1. Introduction 
 

Fault-tolerant systems have long been sought after 
for applications where it is either impossible or 
impractical to manually repair a deployed device. 
Imagine if a robot deployed in a remote location 
suffered a fault—for instance if some of its sensors or 
motors stopped functioning. Attempting to diagnose 
and work around the fault via radio communication 
could take too long and may be impossible. 
Abandoning the robot without attempting to recover 
some functionality would be a waste. Thus an on-board 
fault-recovery system is required to attempt to 
compensate for such faults. Exploring the creation of 
such a system, Mahdavi and Bentley [1] evolved 
controllers on a snake-like robot, and then damaged the 
robot and continued evolution. Their system 
demonstrated evolved recovery from damage, but the 
controller was open-loop and used digital circuits: our 
system differs in that we evolve sensor-based ANNs in 
analog hardware. 

Greenwood et al [2] describe an evolvable 
hardware approach that performs fault recovery in 
linear systems on an FPAA. However, many real-world 
systems (especially robots) are non-linear, necessitating 
a more robust method of control and fault tolerance. 
While evolving controllers on fine-grained evolvable 

hardware platforms (such as the FPTA [7] or possibly 
an FPGA [8, 9]) may seem appealing for this 
application, the search space for such evolution is 
extremely large and the likelihood of finding an 
acceptable solution in a reasonable number of in-robot 
evaluations is small. 

Artificial neural networks (ANNs) have proven to 
be an invaluable tool for complex control applications. 
Evolving ANNs has proven to be an effective technique 
for finding desirable solutions to difficult problems 
(sorting, control, pattern recognition, classification, 
etc.). However, efficiently implementing reconfigurable 
ANNs in hardware is still under investigation. Roggen 
et al [4] report a successful implementation of spiking 
neural networks on an FPGA. While their work is 
promising, an analog solution is desirable because of 
the need to satisfy power and space constraints in 
space-exploration applications. Also, an analog 
implementation would virtually eliminate the need for 
interfacing the system with the analog world of sensors, 
a task which requires extra resources. Implementing 
ANNs on microprocessor platforms presents many of 
the same problems. 

To that end, researchers have investigated the 
implementation of reconfigurable ANNs using analog 
devices. Amaral et al [3] have demonstrated the 
evolution of neuron circuits on a programmable analog 
multiplexer array (PAMA-NG). Schürman et al [5] have 
developed a system of Application Specific Integrated 
Circuits (ASICs) that can be configured into an ANN. 
However, such previous research has focused on the 
evolution of neurons (or neuron-like structures) while 
the evolution of analog ANNs in hardware has 
remained relatively unexplored. 

This paper describes an effective method for the 
implementation of hardware neurons and the evolution 
of hardware ANNs. We apply our evolutionary 
hardware method to evolve two types of controllers: 
one for biped locomotion and the other for restoration 
of mobility to an extremely damaged quadruped. Both 
robots exhibit non-linear properties, making them 
difficult to control. Several different damage scenarios 
are considered for the quadruped.  



Figure 1: Left: Schematic of the AN221E04 FPAA. Right: Inside a Configurable Analog Block (CAB). 

 2. Methods 
 
2.1 The FPAA 
 

The Anadigm® AN221E04 is a reconfigurable 
analog device based on switched capacitor technology. 
See figure 1 for a schematic of the chip. Different 
circuit configurations are achieved through 
manipulation of switches between various circuit 
components inside four configurable analog blocks 
(CABs). Each CAB contains two op-amps, a 
comparator, and 8 variable capacitors (see figure 1). 

The chip has two dedicated output cells and four 
bidirectional cells which can be used as either an input 
or an output. The chip’s dimensions are 13.2mm x 
13.2mm x 2.45mm.  

Anadigm Desiger 2 software controls the 
configuration inside the AN221K04 through a serial 
connection to the development board. By placing and 
routing various Configurable Analog Modules (CAMs) 
in the software, the user can create a functional circuit. 
The software also contains an API that allows the 
design interface to be manipulated from an external 
program. 
 
2.2 Creating a Hardware Neuron 
 

Because the Anadigm Designer software only 
allows block-level circuit implementations, it was 
necessary to construct a hardware ANN using the 

CAMs made available by Anadigm. Thus it was 
necessary to approximate the function of a neuron using 
two parts: a weighted summing module and an 
activation function module. The weighted sum was 
easily facilitated by the “SumDiff” CAM, which can 
take up to four inputs, multiply each by its own 
constant, and output the sum. For the activation 
function, the “integrator” CAM was used because of its 
ability to act as a thresholding function. When the input 
into the integrator rises above 2 volts, the integrator 
quickly saturates and outputs a 4V signal. When the 
voltage drops below 2V, the integrator’s output quickly 
goes to 0V. The speed of change of the integrator’s 
output (integration constant) is variable and, in our 
experiment, was one of the settings determined by 
evolution. One may also invert the output signal of the 
integrator, as well as any of the inputs into the sum 
block. See figure 2. 
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Figure 2: The block-level hardware
implementation of a neuron. 
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Figure 3: Implementation of a two-layer ANN on two AN221E04s.  

Since the AN221E04 works around an analog 
clock, analog “calculations” are performed at a certain 
clock frequency. Additionally, the values of all settings 
(i.e. the weights on each input and the integration 
constant) are limited to a range of values determined by 
the clock frequency. Because the AN221E04 uses 
switched capacitor technology, perfect granularity 
between these values is not possible. However, values 
can be adjusted by a minimum of 0.01 units, which was 
acceptable for our needs. 
 
2.3 Creating a Hardware ANN 
 

The major limiting factor in creating a hardware 
ANN on the AN221E04 is the on-chip resources. For 
instance, there are a limited number of channels to and 
from the input and output cells. Routing two inputs to 
each of the four CABs is impossible. Thus, it was 
necessary to place two sum blocks in each of two CABs 
and to place all the integrators in the remaining two 
CABs. However, in order to accommodate two sum 
blocks in a single CAB, the number of inputs into each 
sum block had to be reduced from four to three. Thus, 
because of hardware restrictions, we found that one 
AN221E04 could hold a maximum of four neurons with 
three inputs each. 

The ANN we constructed had two inputs and two 
outputs (see figure 3). It consisted of two layers: a four 
neuron hidden layer and a two neuron output layer. In 
order to accommodate enough neurons, two 
development kits were cascaded and their FPAAs 
interconnected.  

A constant -3V source CAM was placed on the first 
chip and connected to the hidden layer neurons to 
effectively shift the level of each neuron’s threshold. By 
evolving the weights of the neuron inputs 
corresponding to the -3V source, we were able to 
evolve a unique threshold for each neuron.  

A two layer ANN was used because it was the 
closest approximation to a three-layer network, which 
has proven effective in robot-control applications [6]; 
the hidden and output layers are sufficient to allow 
nonlinear transformation of the sensor signals into 
motor commands. 

According to the Anadigm Designer 2’s simulator, 
the neural network circuit described here consumed 
0.625 +/- 0.121 Watts of power. 
 
2.4 The Algorithm 
 

A standard evolutionary algorithm was used to 
evolve the weights of the inputs, integration constants, 
and “polarity” for each neuron. “Polarity” is used here 
to indicate whether the output of the integrator is 
inverted or non-inverted. 

The algorithm used elitism selection (top 50% 
preserved into next generation), a population size of 32 
individuals, crossover, and mutation. An individual 
consisted of six genes, one for each neuron. The gene 
structure is diagrammed in figure 4. The weights (ω) 
and integration constant (Ic) were floating point values.  
Polarity (P) was a binary value. 

 



 
The procedure of the algorithm was as follows:  
 

1. Generate a random population of individuals. 
2. Program the chips with an individual from the 

population. 
3. Evaluate the individual’s fitness. 
4. Go to step 2, repeat until entire population has 

been evaluated. 
5. Select the top 50% of the population as 

parents. 
6. Mate the parents using two-point crossover 

(probability = 1) and produce two children for 
each two parents. 

7. Mutate the children (probability = 0.1 for each 
locus). 

8. Replace the bottom 50% of the population with 
the children. 

9. Go to step 2 (if desired generation has not been 
reached). 

 
Crossover operated on a gene level; genes were never 
split. We used “creep” mutation, which shifts the target 
value by +/- 0.15, as opposed to standard mutation 
which replaces the target value with a random value. 
The polarity was never mutated because we believed 
crossover could sufficiently explore this property. 

To decrease the number of hardware trials, the 
algorithm never re-evaluated the fitness of an 
individual.  

Though our algorithm could have evolved the 
connections between the neurons and the 
inputs/outputs, we chose to fix the topology. 
Greenwood et al. [1] note that, in controls applications 
with complex circuitry, it is probably best to fix the 
configuration and only evolve the settings values. This 
is due to the exponential increase of the search space if 
topology is also evolved.  

 
2.5 The Robots 

 
To investigate the robustness of our method, we 

evolved controllers for two robots with different 
morphologies.  
 
2.5.1. The Biped. The biped robot (called the 
“Toddler”) was assembled using a kit purchased from 

Parallax® (see figure 5). To keep the robot from falling 
forward or backward, two metal rods were inserted 
through the feet. However, the robot was still able to 
fall on its sides. 

To give the ANN information about the robot’s 
state, a Fairchild QRB1134 optical sensor was placed at 
the back of each foot and connected to the ANN’s 
inputs. These sensors output a voltage proportional to 
the foot’s distance from the ground. Both sensors were 
biased to produce a voltage between 0V (corresponding 
to 0cm above the ground) and 2V (corresponding to 
2cm or more above the ground). 

 

 
 

The robot’s motion is controlled by two servo 
motors. One servo controls the position of the feet 
relative to each other and the other servo controls the 
tilt of the feet (see figure 6). 

 
 
2.5.2. The Quadruped. The quadruped robot was built 
from printed plastic and servo motors (used to create 

Figure 6: Illustration of the “Toddler.” Left:
Servo controlling the position of the feet relative
to each other. Right: Servo controlling the tilt of
the feet. 
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Figure 5: The “Toddler” bipedal robot with pads,
stability rods, and touch sensors. Left: front view.
Right: side view. Note: this is the initial state all
candidate solutions started from. 
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Figure 4: Diagram of a gene used in our
algorithm. ω4 is only used for the output-layer
neurons. Ic is the integration constant and P is
the polarity of the integrator (inverting or non-
inverting). 



motorized joints). See figure 7 for an idealized 
computer model of the quadruped and figure 8 for an 
illustration of one of the quadruped’s four identical 
legs. The idealized computer model is only shown for 
illustrative purposes; no simulation was used in these 
experiments. 

To implement the touch sensor, a Fairchild 
QRB1134 optical sensor was placed on the foot. This 
sensor output a voltage proportional to the foot’s 
distance from the ground. Unavoidably, the sensor also 
responded to the angle at which the foot was canted. To 
implement the angle sensor, a QRB1134 was placed 
near the hip joint. This sensor output a voltage 
proportional to the distance between the thigh and 
shank. Both sensors were biased to produce a voltage 
between 0V and 2V. Through several preliminary 
experiments, it was found that candidate solutions were 
generally more productive when the signal from the 
angle sensor was inverted at the input of every hidden 
layer neuron, thus this setting was fixed.  

Figure 7: Idealized computer model of the
quadruped robot. Ti indicates touch sensors; Ai
indicates angle sensors; and Mi indicates
motorized joints. 

The quadruped was constructed from plastic parts 
printed on a Stratasys rapid prototyping “3-D printer.” 
Since the robot was a prototype, there were some 
imperfections which hindered the development of a 
controller. First, the plastic parts were not well attached 
at the joints; the parts could rotate from side to side by a 
few degrees. Such a shift would change the angle at 
which the foot touched the ground, thus changing the 
friction between that foot and the ground and the 
direction the robot would move when pushing off this 
leg. 

Second, all legs had spring-mounted plastic pegs 
connected at the foot. These pegs would retract a 
distance proportional to how much force was applied to 
them. The pegs made the robot wiggle up and down as 
it moved and resist certain kinds of motion because of 
the spring force. These factors (side to side leg rotation, 
up and down wiggle, and resistance to certain motion) 
made it very difficult to predict the effects of changing 
servo positions. However, these factors also make the 
finding of an adequate controller all the more enticing. 
By evolving a controller for this non-linear system we 
show that our method can be applied to real world 
systems containing real-world imperfections without 
the use of modeling or system-identification. 
 
2.6 Breaking the Quadruped 
 

The faults induced in the quadruped for our 
experiments were intentionally extreme. First, the 
robot’s motion and sensing was restricted to a single leg 
(henceforth referred to as the “active leg”). Servos on 
all other legs were locked in the leg-at-maximum-
extension position shown in figure 8. Second, the shank 
of the leg opposite the active leg was removed.  
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This configuration was intentionally unstable for 
certain conditions: in certain situations, the robot would 
tip over in the direction of the detached shank and 
would not be able to recover motion. We term this 
irrecoverable situation a “dead state” (see figure 9). 

Figure 8: Illustration of one of the robot’s real
legs. Motion is achieved by turning servo
motors connected to metal rods. The leg is
shown here at full extension. Other legs are
identical. 
 

In order to make each candidate evaluation as fair 
as possible, we reset the robot to the same initial state 
before beginning each trial. The configuration of the leg 
we chose for the initial state was maximum contraction 
at the knee joint and maximum extension at the hip joint 
(see figure 9). 

The initial state posed a significant challenge for 
the evolving controllers. An adequate controller would 
need to escape this state before it could begin the 
periodic motion necessary for movement. Another 



difficulty was the “false” signal coming from the touch 
sensor. Since the lower part of the active leg lies 
parallel to the ground, the foot’s touch sensor is pointed 
parallel to the ground. Thus the sensor outputs a signal 
which corresponds to maximum distance from ground 
when the foot is in-fact touching the ground. An 
adequate controller must compensate for this initial 
sensor error as well.  

Also, a piece of sandpaper was attached to the foot 
of the active leg and the plastic peg was disabled to give 
that leg enough friction to move the robot forward. 

 
2.7 The Setup 

 
See figure 10 for a flow chart of our setup. A PC 

programs the two AN221E04 FPAAs containing the 
ANN through a serial connection. Since the servo 
motors on our robots required a pulse width modulated 
(PWM) signal, we could not feed the outputs of the 
ANN directly into the servo motors. It was necessary to 
connect these outputs to an Atmel Mega32 
microcontroller, which performed a simple threshold 
function: if the input signal is below 2V, output a PWM 
pulse corresponding to the zero-position of the servo; if 
the signal is above 2V, output a PWM signal 
corresponding to the maximum (180o) rotation of the 
servo. For the biped, we restricted the servos’ 
movement range to +/- 45 degrees from center because 
the robot was not designed for rotations outside of this 
range.  
 
3. Experiments 
 
3.1 Biped Locomotion 
 

This experiment aimed to evolve a gait for the 
“Toddler” biped shown in figure 5. The biped was 
placed on a plywood surface and evolution was run for 
eight generations. Each candidate solution was 
downloaded onto the robot and allowed to run for 10 
seconds, starting from the initial state. Fitness values 
were assigned as shown in table 1. To minimize the 
effects of evaluation noise, each candidate solution that 
showed >5cm of forward movement was run three 
times. The fitness was the lowest distance traveled of 
the three runs.  

Two runs of the algorithm were conducted; the 
results are shown in figure 11. Distance was originally 
measured in inches but all values have been converted 
to centimeters. 

The best gaits of both runs would move via a 
repetitive back and forth rotation of the servo 
controlling the position of the legs. This caused the 
robot to sway back and forth, moving forward in the 
process.  
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ure 9: Top: All trials started from this initial
state. Bottom: A dead state. 
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Figure 10: Flow chart of our setup. The computer 
programs the ANN (contained on the FPAAs) with 
the candidate solution. The Atmel microcontroller 
converts the ANN outputs to servo-compatible 
signals. The distance traveled by the robot is input 
into the computer as the candidate’s fitness. 



Table 1: Description of fitness values for all 
experiments. 

 

 
 
3.2 Quadruped Fault Recovery 
 
3.2.1. Experiment I: One Shank Missing. In this 
experiment the quadruped shown in figure 9 was placed 
on a ply-wood surface and evolution was run for seven 
generations. Each candidate solution was downloaded 
onto the robot and allowed to run for 10 seconds. 
Results are shown in figure 12.  

The best evolved gait can be described as a 
sequence of the following three modes of movement 
(see figure 13):  

1st mode: the robot rose from the initial state.  
 
2nd mode: the robot moved its active leg back and 
forth rapidly, making no progress.  
 
3rd mode: the robot moved forward by repeatedly 
leaning on the active leg and pushing off it.  

Individuals with fitness greater than 40cm exhibited this 
same sequence of progression. However, individuals 
with higher fitnesses tended to enter the third mode 
faster than those with lower fitness.  

It is important to note that running the same 
candidate solution does not always produce the same 
distance traveled; fitnesses for the same individual 
usually fell into a 15cm range. Fitness Behavior 

0 No movement or robot fell over 
2.5 Robot stopped moving before run was 

complete. 
5 <5cm forward movement but robot did  

not stop moving before evaluation was 
complete. 

>5 Forward distance traveled  
(rounded to nearest 2.5 cm) 

 

 ge fitness. 

Generation

Fitness
(cm) 

Fitness 
(cm) Figure 12: Fitness plot for experiment I. Solid,

best fitness; dashed, avera

 

1)

Generation

Figure 11: Plot of fitnesses from two runs of
the biped locomotion experiment. Higher
lines, best; lower lines, average. Solid, run 1;
dashed, run 2. 2) 

3)

Figure 13: Time-lapse (1 second difference in each 
image) depiction of the three modes of movements 
of high fitness gaits. 

 
3.2.2. Experiment II – Pendulum. This experiment 
was the same as experiment one except that a pendulum 
of length 5cm and weight 73g was attached where the 
detached shank would have been. This situation was 
intended to simulate a fault scenario where the robot’s 
shank had broken but was still partially attached to the 
thigh. This was also a more difficult fault to compensate 
for because of the vibration introduced by the 
pendulum.  



To minimize evaluation noise, each candidate 
solution that showed >5cm of forward movement was 
run three times and the lowest distance traveled was 
taken as the solution’s fitness.  

Solutions evolved from best fitness of 27cm and 
average fitness of 2cm to a best fitness of 46cm and an 
average fitness of 27cm over five generations. 

Higher fitness individuals exhibited the same 
general modes of motion as described in experiment I. 
However, individuals took longer to escape the second 
mode and their third mode was less productive. 
Individuals also slipped back into the second mode 
from the third mode more often. 

 
3.2.3. Other Experiments. To investigate fault 
scenarios involving an unexpected environmental 
change, we re-ran experiment II using high-friction 
sandpaper and low-friction plastic as the surface the 
quadruped moved on. In the sandpaper case, our 
method was not able to evolve a controller that made 
forward progress without falling over.  

In the plastic case, the solutions evolved from a 
best fitness of 2.5cm of forward movement to 10cm of 
forward movement in seven generations. However, 
most forward motion came from the robot rising from 
the initial state and not from repetitive motion.  
 
4. Discussion and Conclusion 
 

Through experiments on the biped and quadruped, 
we have shown that our evolvable hardware method can 
be applied to radically different robot morphologies, 
even those exhibiting non-linear properties. We have 
also demonstrated that our system was capable of 
recovering mobility in several extreme fault scenarios 
on the quadruped.  

However, the system was not able to recover 
mobility in the presence of extreme friction conditions 
(section 3.2.3). These conditions necessitate very 
specialized controllers; any deviation from these 
controllers will cause the robot to fall over or not move. 
Since our algorithm converges quickly and does not 
search a very broad solution space, it is not surprising 
that these controllers were not found. Increasing the 
population size and varying the selection method would 
allow us to search a larger solution space. However, 
such changes would necessitate an unrealistic number 
of hardware evaluations. This highlights one of the 
primary challenges of in-situ evolution: the tradeoff 
between a manageable number of hardware evaluations 
and searching a larger solution space.  

In further work, it would be interesting to explore 
the creation of a larger network of FPAAs and 
implications for scalability.  

Finally, we plan to pursue hybrid methods in which 
in-situ hardware evolution is combined with automated 
simulation refinement and the use of the resulting 
simulations for off-board controller evolution. 
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