
Hardware Evolution of Analog Circuits for In-situ Robotic Fault-Recovery

Dmitry Berenson Nicolás Estévez Hod Lipson
Cornell Computational Synthesis Lab

Cornell University, Ithaca, New York 14853
 Email:[ddb25| nse5| hl274]@cornell.edu

Abstract

We present a method for evolving and
implementing artificial neural networks (ANNs) on
Field Programmable Analog Arrays (FPAAs). These
FPAAs offer the small size and low power usage
desirable for space applications. We use two cascaded
FPAAs to create a two layer ANN. Then, starting from a
population of random settings for the network, we are
able to evolve an effective controller for several
different robot morphologies. We demonstrate the
effectiveness of our method by evolving two types of
ANN controllers: one for biped locomotion and one for
restoration of mobility to a damaged quadruped. Both
robots exhibit non-linear properties, making them
difficult to control. All candidate controllers are
evaluated in hardware; no simulation is used.

1. Introduction

Fault-tolerant systems have long been sought after
for applications where it is either impossible or
impractical to manually repair a deployed device.
Imagine if a robot deployed in a remote location
suffered a fault—for instance if some of its sensors or
motors stopped functioning. Attempting to diagnose
and work around the fault via radio communication
could take too long and may be impossible.
Abandoning the robot without attempting to recover
some functionality would be a waste. Thus an on-board
fault-recovery system is required to attempt to
compensate for such faults. Exploring the creation of
such a system, Mahdavi and Bentley [1] evolved
controllers on a snake-like robot, and then damaged the
robot and continued evolution. Their system
demonstrated evolved recovery from damage, but the
controller was open-loop and used digital circuits: our
system differs in that we evolve sensor-based ANNs in
analog hardware.

Greenwood et al [2] describe an evolvable
hardware approach that performs fault recovery in
linear systems on an FPAA. However, many real-world
systems (especially robots) are non-linear, necessitating
a more robust method of control and fault tolerance.
While evolving controllers on fine-grained evolvable

hardware platforms (such as the FPTA [7] or possibly
an FPGA [8, 9]) may seem appealing for this
application, the search space for such evolution is
extremely large and the likelihood of finding an
acceptable solution in a reasonable number of in-robot
evaluations is small.

Artificial neural networks (ANNs) have proven to
be an invaluable tool for complex control applications.
Evolving ANNs has proven to be an effective technique
for finding desirable solutions to difficult problems
(sorting, control, pattern recognition, classification,
etc.). However, efficiently implementing reconfigurable
ANNs in hardware is still under investigation. Roggen
et al [4] report a successful implementation of spiking
neural networks on an FPGA. While their work is
promising, an analog solution is desirable because of
the need to satisfy power and space constraints in
space-exploration applications. Also, an analog
implementation would virtually eliminate the need for
interfacing the system with the analog world of sensors,
a task which requires extra resources. Implementing
ANNs on microprocessor platforms presents many of
the same problems.

To that end, researchers have investigated the
implementation of reconfigurable ANNs using analog
devices. Amaral et al [3] have demonstrated the
evolution of neuron circuits on a programmable analog
multiplexer array (PAMA-NG). Schürman et al [5] have
developed a system of Application Specific Integrated
Circuits (ASICs) that can be configured into an ANN.
However, such previous research has focused on the
evolution of neurons (or neuron-like structures) while
the evolution of analog ANNs in hardware has
remained relatively unexplored.

This paper describes an effective method for the
implementation of hardware neurons and the evolution
of hardware ANNs. We apply our evolutionary
hardware method to evolve two types of controllers:
one for biped locomotion and the other for restoration
of mobility to an extremely damaged quadruped. Both
robots exhibit non-linear properties, making them
difficult to control. Several different damage scenarios
are considered for the quadruped.

Figure 1: Left: Schematic of the AN221E04 FPAA. Right: Inside a Configurable Analog Block (CAB).

 2. Methods

2.1 The FPAA

The Anadigm® AN221E04 is a reconfigurable
analog device based on switched capacitor technology.
See figure 1 for a schematic of the chip. Different
circuit configurations are achieved through
manipulation of switches between various circuit
components inside four configurable analog blocks
(CABs). Each CAB contains two op-amps, a
comparator, and 8 variable capacitors (see figure 1).

The chip has two dedicated output cells and four
bidirectional cells which can be used as either an input
or an output. The chip’s dimensions are 13.2mm x
13.2mm x 2.45mm.

Anadigm Desiger 2 software controls the
configuration inside the AN221K04 through a serial
connection to the development board. By placing and
routing various Configurable Analog Modules (CAMs)
in the software, the user can create a functional circuit.
The software also contains an API that allows the
design interface to be manipulated from an external
program.

2.2 Creating a Hardware Neuron

Because the Anadigm Designer software only
allows block-level circuit implementations, it was
necessary to construct a hardware ANN using the

CAMs made available by Anadigm. Thus it was
necessary to approximate the function of a neuron using
two parts: a weighted summing module and an
activation function module. The weighted sum was
easily facilitated by the “SumDiff” CAM, which can
take up to four inputs, multiply each by its own
constant, and output the sum. For the activation
function, the “integrator” CAM was used because of its
ability to act as a thresholding function. When the input
into the integrator rises above 2 volts, the integrator
quickly saturates and outputs a 4V signal. When the
voltage drops below 2V, the integrator’s output quickly
goes to 0V. The speed of change of the integrator’s
output (integration constant) is variable and, in our
experiment, was one of the settings determined by
evolution. One may also invert the output signal of the
integrator, as well as any of the inputs into the sum
block. See figure 2.

ω1
+/-

ω2 output
Σ

+/-inputs
(up to 4)

Integratorω3 +/-
+/-

ω4
+/-

Figure 2: The block-level hardware
implementation of a neuron.

neuron input1output1input1

neuroninput2 output1output2neuroninput2

output2input3 neuronneuron output3

-3V neuron input4output4

chip2chip1

Figure 3: Implementation of a two-layer ANN on two AN221E04s.

Since the AN221E04 works around an analog
clock, analog “calculations” are performed at a certain
clock frequency. Additionally, the values of all settings
(i.e. the weights on each input and the integration
constant) are limited to a range of values determined by
the clock frequency. Because the AN221E04 uses
switched capacitor technology, perfect granularity
between these values is not possible. However, values
can be adjusted by a minimum of 0.01 units, which was
acceptable for our needs.

2.3 Creating a Hardware ANN

The major limiting factor in creating a hardware
ANN on the AN221E04 is the on-chip resources. For
instance, there are a limited number of channels to and
from the input and output cells. Routing two inputs to
each of the four CABs is impossible. Thus, it was
necessary to place two sum blocks in each of two CABs
and to place all the integrators in the remaining two
CABs. However, in order to accommodate two sum
blocks in a single CAB, the number of inputs into each
sum block had to be reduced from four to three. Thus,
because of hardware restrictions, we found that one
AN221E04 could hold a maximum of four neurons with
three inputs each.

The ANN we constructed had two inputs and two
outputs (see figure 3). It consisted of two layers: a four
neuron hidden layer and a two neuron output layer. In
order to accommodate enough neurons, two
development kits were cascaded and their FPAAs
interconnected.

A constant -3V source CAM was placed on the first
chip and connected to the hidden layer neurons to
effectively shift the level of each neuron’s threshold. By
evolving the weights of the neuron inputs
corresponding to the -3V source, we were able to
evolve a unique threshold for each neuron.

A two layer ANN was used because it was the
closest approximation to a three-layer network, which
has proven effective in robot-control applications [6];
the hidden and output layers are sufficient to allow
nonlinear transformation of the sensor signals into
motor commands.

According to the Anadigm Designer 2’s simulator,
the neural network circuit described here consumed
0.625 +/- 0.121 Watts of power.

2.4 The Algorithm

A standard evolutionary algorithm was used to
evolve the weights of the inputs, integration constants,
and “polarity” for each neuron. “Polarity” is used here
to indicate whether the output of the integrator is
inverted or non-inverted.

The algorithm used elitism selection (top 50%
preserved into next generation), a population size of 32
individuals, crossover, and mutation. An individual
consisted of six genes, one for each neuron. The gene
structure is diagrammed in figure 4. The weights (ω)
and integration constant (Ic) were floating point values.
Polarity (P) was a binary value.

The procedure of the algorithm was as follows:

1. Generate a random population of individuals.
2. Program the chips with an individual from the

population.
3. Evaluate the individual’s fitness.
4. Go to step 2, repeat until entire population has

been evaluated.
5. Select the top 50% of the population as

parents.
6. Mate the parents using two-point crossover

(probability = 1) and produce two children for
each two parents.

7. Mutate the children (probability = 0.1 for each
locus).

8. Replace the bottom 50% of the population with
the children.

9. Go to step 2 (if desired generation has not been
reached).

Crossover operated on a gene level; genes were never
split. We used “creep” mutation, which shifts the target
value by +/- 0.15, as opposed to standard mutation
which replaces the target value with a random value.
The polarity was never mutated because we believed
crossover could sufficiently explore this property.

To decrease the number of hardware trials, the
algorithm never re-evaluated the fitness of an
individual.

Though our algorithm could have evolved the
connections between the neurons and the
inputs/outputs, we chose to fix the topology.
Greenwood et al. [1] note that, in controls applications
with complex circuitry, it is probably best to fix the
configuration and only evolve the settings values. This
is due to the exponential increase of the search space if
topology is also evolved.

2.5 The Robots

To investigate the robustness of our method, we

evolved controllers for two robots with different
morphologies.

2.5.1. The Biped. The biped robot (called the
“Toddler”) was assembled using a kit purchased from

Parallax® (see figure 5). To keep the robot from falling
forward or backward, two metal rods were inserted
through the feet. However, the robot was still able to
fall on its sides.

To give the ANN information about the robot’s
state, a Fairchild QRB1134 optical sensor was placed at
the back of each foot and connected to the ANN’s
inputs. These sensors output a voltage proportional to
the foot’s distance from the ground. Both sensors were
biased to produce a voltage between 0V (corresponding
to 0cm above the ground) and 2V (corresponding to
2cm or more above the ground).

The robot’s motion is controlled by two servo
motors. One servo controls the position of the feet
relative to each other and the other servo controls the
tilt of the feet (see figure 6).

2.5.2. The Quadruped. The quadruped robot was built
from printed plastic and servo motors (used to create

Figure 6: Illustration of the “Toddler.” Left:
Servo controlling the position of the feet relative
to each other. Right: Servo controlling the tilt of
the feet.

servo

feet

10 cm
7. 5 cm

stability rod

touch
sensors

pads

Figure 5: The “Toddler” bipedal robot with pads,
stability rods, and touch sensors. Left: front view.
Right: side view. Note: this is the initial state all
candidate solutions started from.

ω1 ω2 ω3 ω4 Ic P

Figure 4: Diagram of a gene used in our
algorithm. ω4 is only used for the output-layer
neurons. Ic is the integration constant and P is
the polarity of the integrator (inverting or non-
inverting).

motorized joints). See figure 7 for an idealized
computer model of the quadruped and figure 8 for an
illustration of one of the quadruped’s four identical
legs. The idealized computer model is only shown for
illustrative purposes; no simulation was used in these
experiments.

To implement the touch sensor, a Fairchild
QRB1134 optical sensor was placed on the foot. This
sensor output a voltage proportional to the foot’s
distance from the ground. Unavoidably, the sensor also
responded to the angle at which the foot was canted. To
implement the angle sensor, a QRB1134 was placed
near the hip joint. This sensor output a voltage
proportional to the distance between the thigh and
shank. Both sensors were biased to produce a voltage
between 0V and 2V. Through several preliminary
experiments, it was found that candidate solutions were
generally more productive when the signal from the
angle sensor was inverted at the input of every hidden
layer neuron, thus this setting was fixed.

Figure 7: Idealized computer model of the
quadruped robot. Ti indicates touch sensors; Ai
indicates angle sensors; and Mi indicates
motorized joints.

The quadruped was constructed from plastic parts
printed on a Stratasys rapid prototyping “3-D printer.”
Since the robot was a prototype, there were some
imperfections which hindered the development of a
controller. First, the plastic parts were not well attached
at the joints; the parts could rotate from side to side by a
few degrees. Such a shift would change the angle at
which the foot touched the ground, thus changing the
friction between that foot and the ground and the
direction the robot would move when pushing off this
leg.

Second, all legs had spring-mounted plastic pegs
connected at the foot. These pegs would retract a
distance proportional to how much force was applied to
them. The pegs made the robot wiggle up and down as
it moved and resist certain kinds of motion because of
the spring force. These factors (side to side leg rotation,
up and down wiggle, and resistance to certain motion)
made it very difficult to predict the effects of changing
servo positions. However, these factors also make the
finding of an adequate controller all the more enticing.
By evolving a controller for this non-linear system we
show that our method can be applied to real world
systems containing real-world imperfections without
the use of modeling or system-identification.

2.6 Breaking the Quadruped

The faults induced in the quadruped for our
experiments were intentionally extreme. First, the
robot’s motion and sensing was restricted to a single leg
(henceforth referred to as the “active leg”). Servos on
all other legs were locked in the leg-at-maximum-
extension position shown in figure 8. Second, the shank
of the leg opposite the active leg was removed.

metal
rods

knee
joint

servo
motor hip

joint
body
cageservo

motor

spring-mounted peg

This configuration was intentionally unstable for
certain conditions: in certain situations, the robot would
tip over in the direction of the detached shank and
would not be able to recover motion. We term this
irrecoverable situation a “dead state” (see figure 9).

Figure 8: Illustration of one of the robot’s real
legs. Motion is achieved by turning servo
motors connected to metal rods. The leg is
shown here at full extension. Other legs are
identical.

In order to make each candidate evaluation as fair
as possible, we reset the robot to the same initial state
before beginning each trial. The configuration of the leg
we chose for the initial state was maximum contraction
at the knee joint and maximum extension at the hip joint
(see figure 9).

The initial state posed a significant challenge for
the evolving controllers. An adequate controller would
need to escape this state before it could begin the
periodic motion necessary for movement. Another

difficulty was the “false” signal coming from the touch
sensor. Since the lower part of the active leg lies
parallel to the ground, the foot’s touch sensor is pointed
parallel to the ground. Thus the sensor outputs a signal
which corresponds to maximum distance from ground
when the foot is in-fact touching the ground. An
adequate controller must compensate for this initial
sensor error as well.

Also, a piece of sandpaper was attached to the foot
of the active leg and the plastic peg was disabled to give
that leg enough friction to move the robot forward.

2.7 The Setup

See figure 10 for a flow chart of our setup. A PC

programs the two AN221E04 FPAAs containing the
ANN through a serial connection. Since the servo
motors on our robots required a pulse width modulated
(PWM) signal, we could not feed the outputs of the
ANN directly into the servo motors. It was necessary to
connect these outputs to an Atmel Mega32
microcontroller, which performed a simple threshold
function: if the input signal is below 2V, output a PWM
pulse corresponding to the zero-position of the servo; if
the signal is above 2V, output a PWM signal
corresponding to the maximum (180o) rotation of the
servo. For the biped, we restricted the servos’
movement range to +/- 45 degrees from center because
the robot was not designed for rotations outside of this
range.

3. Experiments

3.1 Biped Locomotion

This experiment aimed to evolve a gait for the
“Toddler” biped shown in figure 5. The biped was
placed on a plywood surface and evolution was run for
eight generations. Each candidate solution was
downloaded onto the robot and allowed to run for 10
seconds, starting from the initial state. Fitness values
were assigned as shown in table 1. To minimize the
effects of evaluation noise, each candidate solution that
showed >5cm of forward movement was run three
times. The fitness was the lowest distance traveled of
the three runs.

Two runs of the algorithm were conducted; the
results are shown in figure 11. Distance was originally
measured in inches but all values have been converted
to centimeters.

The best gaits of both runs would move via a
repetitive back and forth rotation of the servo
controlling the position of the legs. This caused the
robot to sway back and forth, moving forward in the
process.

10cm

Fig

active
leg

detached
shank

ure 9: Top: All trials started from this initial
state. Bottom: A dead state.

 Computer

config
data

distance
traveled

FPAAFPAA

ANN
output

sensor
signals

Atmel
Mega32 Robot

servo
signals

Figure 10: Flow chart of our setup. The computer
programs the ANN (contained on the FPAAs) with
the candidate solution. The Atmel microcontroller
converts the ANN outputs to servo-compatible
signals. The distance traveled by the robot is input
into the computer as the candidate’s fitness.

Table 1: Description of fitness values for all
experiments.

3.2 Quadruped Fault Recovery

3.2.1. Experiment I: One Shank Missing. In this
experiment the quadruped shown in figure 9 was placed
on a ply-wood surface and evolution was run for seven
generations. Each candidate solution was downloaded
onto the robot and allowed to run for 10 seconds.
Results are shown in figure 12.

The best evolved gait can be described as a
sequence of the following three modes of movement
(see figure 13):

1st mode: the robot rose from the initial state.

2nd mode: the robot moved its active leg back and
forth rapidly, making no progress.

3rd mode: the robot moved forward by repeatedly
leaning on the active leg and pushing off it.

Individuals with fitness greater than 40cm exhibited this
same sequence of progression. However, individuals
with higher fitnesses tended to enter the third mode
faster than those with lower fitness.

It is important to note that running the same
candidate solution does not always produce the same
distance traveled; fitnesses for the same individual
usually fell into a 15cm range. Fitness Behavior

0 No movement or robot fell over
2.5 Robot stopped moving before run was

complete.
5 <5cm forward movement but robot did

not stop moving before evaluation was
complete.

>5 Forward distance traveled
(rounded to nearest 2.5 cm)

 ge fitness.

Generation

Fitness
(cm)

Fitness
(cm) Figure 12: Fitness plot for experiment I. Solid,

best fitness; dashed, avera

1)

Generation

Figure 11: Plot of fitnesses from two runs of
the biped locomotion experiment. Higher
lines, best; lower lines, average. Solid, run 1;
dashed, run 2. 2)

3)

Figure 13: Time-lapse (1 second difference in each
image) depiction of the three modes of movements
of high fitness gaits.

3.2.2. Experiment II – Pendulum. This experiment
was the same as experiment one except that a pendulum
of length 5cm and weight 73g was attached where the
detached shank would have been. This situation was
intended to simulate a fault scenario where the robot’s
shank had broken but was still partially attached to the
thigh. This was also a more difficult fault to compensate
for because of the vibration introduced by the
pendulum.

To minimize evaluation noise, each candidate
solution that showed >5cm of forward movement was
run three times and the lowest distance traveled was
taken as the solution’s fitness.

Solutions evolved from best fitness of 27cm and
average fitness of 2cm to a best fitness of 46cm and an
average fitness of 27cm over five generations.

Higher fitness individuals exhibited the same
general modes of motion as described in experiment I.
However, individuals took longer to escape the second
mode and their third mode was less productive.
Individuals also slipped back into the second mode
from the third mode more often.

3.2.3. Other Experiments. To investigate fault
scenarios involving an unexpected environmental
change, we re-ran experiment II using high-friction
sandpaper and low-friction plastic as the surface the
quadruped moved on. In the sandpaper case, our
method was not able to evolve a controller that made
forward progress without falling over.

In the plastic case, the solutions evolved from a
best fitness of 2.5cm of forward movement to 10cm of
forward movement in seven generations. However,
most forward motion came from the robot rising from
the initial state and not from repetitive motion.

4. Discussion and Conclusion

Through experiments on the biped and quadruped,
we have shown that our evolvable hardware method can
be applied to radically different robot morphologies,
even those exhibiting non-linear properties. We have
also demonstrated that our system was capable of
recovering mobility in several extreme fault scenarios
on the quadruped.

However, the system was not able to recover
mobility in the presence of extreme friction conditions
(section 3.2.3). These conditions necessitate very
specialized controllers; any deviation from these
controllers will cause the robot to fall over or not move.
Since our algorithm converges quickly and does not
search a very broad solution space, it is not surprising
that these controllers were not found. Increasing the
population size and varying the selection method would
allow us to search a larger solution space. However,
such changes would necessitate an unrealistic number
of hardware evaluations. This highlights one of the
primary challenges of in-situ evolution: the tradeoff
between a manageable number of hardware evaluations
and searching a larger solution space.

In further work, it would be interesting to explore
the creation of a larger network of FPAAs and
implications for scalability.

Finally, we plan to pursue hybrid methods in which
in-situ hardware evolution is combined with automated
simulation refinement and the use of the resulting
simulations for off-board controller evolution.

5. Acknowledgements

The authors thank Josh Bongard and Chandana
Paul for their creativity and support. This research was
supported in part by the NASA program for Research in
Intelligent Systems, grant number NNA04CL10A.

6. References

[1] S. H. Mahdavi and P. J. Bentley, An evolutionary approach
to damage recovery of robot motion with muscles, Seventh
European Conference on Artificial Life (ECAL03), 2003, pp.
248-255

[2] G. Greenwood, D. Hunter, and E. Ramsden, Fault Recovery
in Linear Systems via Intrinsic Evolution, Proc. 2004
NASA/DOD Conference on Evolvable Hardware, June 2004,
pp.115-122

[3] J.F.M Amaral, J.L.M. Amaral, C. Santini, R. Tanscheit, M.
Vellasco, and M. Pacheco, Towards Evolvable Analog
Artificial Neural Network Controllers, Proc. 2004 NASA/DOD
Conference on Evolvable Hardware, June 2004, pp.46-51

[4] D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano,
Hardware Spiking Neural Network with Run-Time
Reconfigurable Connectivity in an Autonomous Robot, Proc.
2003 NASA/DOD Conference on Evolvable Hardware, July
2003, pp.189-198

[5] F. Schürmann, S. Hohmann, J. Schemmel, K. Meier, Towards
an Artificial Neural Network Framework, Proc. 2002
NASA/DOD Conference on Evolvable Hardware, July 2002,
pp.266-273

[6] J. Bongard and H. Lipson, Automated Robot Function
Recovery after Unanticipated Failure or Environmental
Change using a Minimum of Hardware Trials, Proc. 2004
NASA/DOD Conference on Evolvable Hardware, June 2004, pp.
169-176

[7] A. Stoica, D. Keymeulen, A. Thakoor, T. Daud, G. Klimech,
Y. Jin, R. Tawel, V. Duong, Evolution of Analog Circuits on
Field Programmable Transistor Arrays. Trials, Proc. 2000
NASA/DOD Workshop on Evolvable Hardware, July 2000, pp.
99-108

[8] A. Thompson, Exploring Beyond the Scope of Human
Design: Automatic generation of FPGA configurations
through artificial evolution. 8th Annual Advanced PLD &
FPGA Conference, 1998. pp. 5-8

[9] J. Lohn, G. Larchev, and R. DeMara, Evolutionary Fault
Recovery in a Virtex FPGA Using a Representation That
Incorporates Routing, 10th Reconfigurable Architectures
Workshop, April 2003.

