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Abstract— We present a method to manipulate deformable
objects that does not require modeling and simulating defor-
mation. Our method is based on the concept of diminishing
rigidity, which we use to quickly compute an approximation
to the Jacobian of the deformable object. This Jacobian is
used to drive the points within the deformable object towards
a set of targets. However, this Jacobian alone is insufficient
to avoid stretching the object beyond its allowed length and
to avoid gripper collision with obstacles. Thus a key part of
our approach is incorporating techniques to avoid collision and
excessive stretching. Our experiments show how to perform sev-
eral interesting tasks for one and two-dimensional deformable
objects using our method. They also show how the method
can be applied to collaborative tasks, where the robot and
a user simultaneously manipulate the deformable object. Our
experiments are conducted in simulation but we emphasize that
our method does not have access to the model of the deformable
object used by the simulator, although we assume we are able
to sense the geometry of the object. While our method is local,
we find that it is quite versatile in the range of tasks it can
perform, especially since it has no knowledge of the model of
the deformable object.

I. INTRODUCTION
Many real-world manipulation tasks involve deformable

objects. From folding a bed sheet in the home to tying
suture in the operating room, the ability to manipulate
deformable objects is an important capability for assistive
and autonomous robots to poses.

The primary challenge of manipulating deformable objects
is that they are very difficult to model and simulate. Unlike
rigid objects whose dynamics are well-understood, the mo-
tion of a deformable object depends on a large and complex
set of parameters that define its stiffness, friction, and volume
preservation. As a result, a great deal of research has focused
on how to model these kinds of objects. It is possible to
model known deformable objects in known environments
(such as an industrial or manufacturing setting [1]). However,
online modeling of deformable objects in new environments
is currently an open problem, though some progress has
been made in probing deformable objects to acquire model
parameters [2], [3].

Even if it were possible to obtain a perfect model of
the deformable object, simulating that model presents its
own challenges. Many methods exist for deformable object
simulation, including mass-spring model simulation [4] [5]
and the more general Finite Element Method (FEM) [6].
Simulation methods for mesh-less models also exist [7].
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Fig. 1. Two examples showing the concept of diminishing rigidity. Left:
Moving twine which is fixed at one end. Right: Picking up the corner of
a piece of cloth. In both examples parts of the object near gripped point
move similarly to the gripper (i.e. as if they were rigidly attached to the
gripper), while parts that are farther away from the gripper have smaller
displacements.

Specialized domain-specific simulators have also been de-
veloped; for instance for organ deformation during needle
insertion [8]. FEM simulation is generally regarded to be the
most accurate, although it is highly sensitive to the discretiza-
tion of the deformable object and, for fine discretizations, is
very time-consuming.

Given the difficulties of deformable object modeling and
simulation, we seek to explore the practicality of ma-
nipulating deformable objects without explicitly modeling
and simulating them. Our hypothesis is that model-free
deformable manipulation like this can be accomplished by
exploiting a property we call diminishing rigidity – i.e. that
the effect of gripper motion along the deformable object
diminishes as the distance from the gripper increases (see
Figure 1 for motivating examples). This property is based
on the assumption that the combination of gravity, friction,
and stretching of the deformable object dissipate the force
applied at the gripper. The more distant a point is from the
gripper, the more the above forces can counteract the force
at the gripper. Of course this property does not hold for all
deformable objects in all situations. For instance, imagine a
cloth that is draping off a table; a small pull of the tablecloth
could cause it to slip off the table completely. However, our
experiments show that assuming diminishing rigidity does
indeed yield useful behavior for several non-trivial tasks.

In this paper we address the problem of manipulating
deformable objects locally, i.e. given a desired displacement
of the points comprising the object we compute a motion
of the grippers that achieves that displacement as closely as



possible. To do this we use the diminishing rigidity property
to quickly compute an approximation to the Jacobian of the
deformable object. This Jacobian is used to iteratively move
the points comprising the deformable object toward a set
of targets. However, this Jacobian alone is insufficient to
avoid stretching the object beyond its allowed length and
to avoid gripper collisions with obstacles. Thus a key part of
our approach is incorporating techniques to avoid collision
and excessive stretching.

In our experiments we show how to encode several
interesting tasks for one and two-dimensional deformable
objects (i.e. rope and cloth), as instances of this kind of
problem. Surprisingly, our straightforward method can also
be applied to collaborative tasks, where the robot and a user
manipulate the deformable object together. Our experiments
are conducted using the open-source Bullet simulator [9],
however we emphasize that the simulator is used as a “black
box” to test the algorithm, which does not require any
knowledge of the underlying model. However, we do assume
that we are able to sense the shape of the deformable object
(although the sensing can be noisy). This experimental setup
is intended to mimic the information available in the physical
world as closely as possible.

II. RELATED WORK

Robotic manipulation of deformable objects has been
studied in many contexts ranging from surgery to industrial
manipulation (see [1] for an extensive survey).

Motion planning for manipulation of deformable objects
is an active area of research. Saha et al. [10] present a
Probabilistic Roadmap that plans for knot-tying tasks with
rope. Rodriguez et al. [11] study motion planning in fully-
deformable simulation environments. Their method, based on
Rapidly-exploring Random Trees, applies forces directly to
an object to move it through narrow spaces while using the
simulator to compute the resulting deformations. Recently
Frank et al. [12] presented a method that pre-computes
deformation simulations in a given environment to enable
fast multi-query planning. We see the local method presented
in this paper as potentially useful for motion planning, as it
can generate useful primitive actions for consideration by the
planner. Also, the above methods rely on physical simulation
of the deformable object, while our method does not.

The method presented in this paper is most closely re-
lated to work in visual servoing for deformable objects.
Smolen and Patriciu [13] formulate an iterative Jacobian-
based method to align interest points on an object with
targets. They model the object using the mesh-less Reproduc-
ing Kernel Particle Method and use this model to compute
the Jacobian. Hirai and Wada [14] propose an iterative
visual-servoing controller which aligns interest points on the
deformable object to targets. Their control law is based on
modeling the deformable object as a lattice of interconnected
springs. Wada et al. [15] use a similar spring model to
formulate a PID controller that aligns interest points to
targets. Our work differs from those above in that we do not
rely on an explicit model to represent the deformable object.

Also, unlike our method, the above methods do not consider
obstacle avoidance or compensation for excessive stretching,
which are key to practical deformable object manipulation.

Our iterative Jacobian-based method is derived from the
operational space control of robot manipulators [16]. Similar
methods are used to solve inverse-kinematics problems for
high-DOF robots [17]. We also make use of the null-space of
the Jacobian to allow movements that do not interfere with
constraints (in our case obstacle avoidance), similar to Sentis
and Khatib [18].

III. PROBLEM STATEMENT

Let the configuration of a deformable object be defined
by the position of the points within the object. Let P ⊂
R3 be a discrete set of points of size P that approximates
the deformable object. We assume that P can be sensed,
though it may not be sensed precisely due to sensor error.
We allow obstacles to be present in the environment of the
deformable object as well as standard gravity. We assume
that the obstacle geometry can be sensed.

Let the robot have G grippers which grasp the deformable
object. We assume that each grasp is a rigid pinch grasp, i.e.
the points on the deformable object that are pinched by the
plates of the gripper cannot move with respect to the gripper.
We assume that each gripper can move independently in all
six degrees of freedom in SE(3). Let a configuration of the
G grippers be q ∈ Q. Let the function F : Q → R3P map
the gripper configuration q to the position of the points in
the deformable object. We assume that the grippers move
slowly enough that we can treat the system as quasi-static.

In this paper we assume that the grippers are free-floating,
i.e. they are unattached to robot arms. Robot arm kinematics
are well-studied in the literature and the Jacobians computed
for free-floating grippers presented here can easily be com-
puted for grippers attached to robot arms instead, however
this work is not within the scope of this paper.

The problem we address in this paper is how to move
the G grippers such that the points in P align as closely
as possible with some set of target points T ⊂ R3 while
avoiding gripper collision and excessive stretching of the
deformable object. Let ρ be a function that computes the
alignment error between P and T . The method we present is
local, i.e. at each time t it chooses an incremental movement
q̇ which reduces the alignment error as much as possible at
time t+ 1:

min
q̇t

ρ(T ,Pt+1) (1)

where Pt+1 = F (qt + q̇t) is the result of performing the
motion q̇t at time t. qt must also be feasible, i.e. it should
not bring the grippers into collision with obstacles and should
not cause the object to stretch excessively. We will show that
several practical tasks can be represented as instances of this
problem.



IV. A LOCAL METHOD FOR DEFORMABLE
OBJECT MANIPULATION

Solving the problem in Equation 1 exactly in the gen-
eral case is impractical for two reasons. First, modeling a
deformable object accurately is very difficult in the general
case, especially if it contacts other objects or self-collides.
Second, even given a perfect model, computing precise
motion of the deformable object requires FEM simulation
and is very time consuming. Thus we present an approximate
solution to this problem which can be computed quickly.

Our solution to Equation 1 is to construct an approximate
linearization of the F function by computing an approxima-
tion to the Jacobian of F :

P = F (q)

∂P
∂t

=
∂F (q)

∂q

∂q

∂t

Ṗ = J(q)q̇ (2)

The Jacobian J(q) allows us to drive P toward T , however
the Jacobian alone is insufficient to avoid stretching the
object beyond its allowed length and to avoid collision with
obstacles. Thus we integrate methods to mitigate these issues.

A. Computing an approximate J(q)

The typical approach to computing an approximation to
the Jacobian at a given configuration is to perturb each
degree of freedom of q independently by a small amount,
simulate the system for some amount of time, and collect
the corresponding changes in state in the Jacobian matrix.
For instance, this type of approach was applied for de-
formable objects in [13]. In our problem domain, such an
approach would require a fast and accurate simulation of the
deformable object in the given environment, which we do
not assume to have. This method also scales poorly with the
number of grippers. In testing on our simulator (described
in the Experiments section), we found that this method was
highly unreliable in computing an approximate Jacobian and
was very sensitive to the size of the perturbation applied
(despite being quite time-consuming).

The key observation that enables us to compute an ap-
proximate Jacobian efficiently is that deformable objects
tend to be locally rigid near points that are grasped by the
gripper. Since we assume the object is grasped tightly, points
grasped by the gripper clearly move rigidly with respect to
the gripper. However, we also observe that points nearby to
the points that are grasped move “almost-rigidly,” and points
farther from the gripped points move “less rigidly.” We can
use this observation to compute an approximation to J(q)
which we call the diminishing rigidity Jacobian J̃(q).

The first step to computing J̃(q) is to establish baseline
geodesic distances between the points in P . We thus assume
that we have knowledge of the object in its “natural” non-
deformed state. For instance, for a rope this would be the
rope stretched out in a straight line at its maximum extent.
For a cloth, it would be the cloth laid flat, etc. In this natural
state, for two given points pi, pj ∈ P , we can compute

the geodesic distance between them d(pi, pj) by finding the
shortest path between pi and pj that is contained in the
object1. We then construct a matrix D of size P ×P , where
Di,j = d(pi, pj). Note that this computation is done offline
so it does not add to the online computational load of our
method.

We now show how to compute J̃(q) by first computing
the translation and rotation Jacobians for each point in P
and each gripper. Let the set of points grasped by the gripper
having index g be Cg ⊆ P . The closest point in Cg to the ith
point in P is

c(i, g) = arg min
p∈Cg

Di,P(p), (3)

where P(p) is the index of point p in P .
We define w(i, g) to be the “rigidity” of the ith point

with respect to gripper g. Many functions could be used
to compute rigidity as long as they obey the following
properties:

1) w(i, g) ranges between 0 and 1
2) w(i, g) = 1 if the ith point is grasped by gripper g
3) w(i, g) > w(j, g) if Di,P(c(i,g)) < Dj,P(c(j,g))

The first property is necessary because of the way rigidity
is used in the Jacobian below. The second property follows
directly from the assumption that grasped points move rigidly
with the gripper. The third property encodes the concept of
diminishing rigidity as described in the Introduction.

Through experimentation, we found that we obtained good
results when rigidity decreased exponentially with distance
at a rate of k, which we tune experimentally:

w(i, g) = e−k(Di,P(c(i,g))). (4)

Note that this function meets the required properties above.
This rigidity function will be used to weigh the compo-

nents of J̃(q). The translation component of J̃(q) for the
point in P with index i and gripper with index g is

J̃trans(q, i, g) = I3×3. (5)

Let Rg be the 3× 3 rotation matrix, and vg be the 3× 1
vector of translation of the gripper having index g in the
world frame. Let r = (c(i, g)−vg). The rotation component
of J̃(q) for the ith point in P and gripper with index g is
then

J̃rot(q, i, g) = [Rg[1]× r, Rg[2]× r, Rg[3]× r] , (6)

where Rg[n] represents the nth column of Rg . Combining
J̃trans(q, i, g) and J̃rot(q, i, g) and scaling by the rigidity,
we get

J̃(q, i, g) = w(i, g)
[
J̃trans(q, i, g), J̃rot(q, i, g)

]
, (7)

which is size 3× 6.
Finally, combining the Jacobians for all points in P and

all G grippers, we get

1For convex objects, this is simply the Euclidean distance between pi
and pj .



J̃(q) =


J̃(q, 1, 1) J̃(q, 1, 2) · · · J̃(q, 1, G)

J̃(q, 2, 1)
. . .

...
J̃(q, P, 1)

 , (8)

which is size 3P × 6G.
We can then apply the Moore-Penrose pseudo-inverse2

of J̃(q) to compute a movement of the grippers q̇ which
produces a desired Ṗ:

q̇ = J̃(q)+Ṗ. (9)

B. Correcting for Excessive Stretching

While applying q̇ will indeed drive the points in P
toward a given target, Equation 9 does not take into account
constraints on allowable stretching of the deformable object.
For instance, imagine a rope which is fixed at one end and
held by a gripper at the other. If using Equation 9 to drive
the rope toward a target which is farther from the fixed point
than the length of the rope, the rope could be torn. Such
cases become difficult to detect in the presence of obstacles,
where, for instance, a rope may wind around an obstacle.

To mitigate this problem, we first compute the Euclidean
distance between every pair of points in P at each time
step and store it in the P × P matrix E. We can then
compare E to D, which contains the maximum allowed
lengths between every pair of points, to detect if two points
are near their maximum distance apart. We can then attempt
to move such points closer. Let Ṗs be desired displacements
of the nodes to correct for excessive stretching. We use the
StretchingCorrection function (Algorithm 1) to compute Ṗs
based on a user-defined threshold λ. We can then include Ṗs
in Equation 9:

q̇ = J̃(q)+(Ṗ + Ṗs) (10)

C. Obstacle Avoidance

While contact between the deformable objects and obsta-
cles is expected (and in some cases desired), the grippers are
assumed to be rigid and a practical implementation requires
that they not collide with obstacles. One approach to local
obstacle avoidance is to repel each gripper from the nearest
object while projecting the q̇ resulting from Equation 10 into
the null space of the avoidance motion:

q̇g = J+
pg ẋpg + (I− J+

pgJpg )q̇g (11)

where Jpg is the Jacobian for the closest point on gripper
g to the nearest obstacle and ẋpg is a displacement for that
point that repels it from the nearest obstacle. The q̇g on the
right-hand side of the equation is the movement computed
for the gripper with index g in Equation 10. Let O be
the set of obstacles. Jpg and ẋpg are computed using the

2A+ = (ATA)−1AT for any matrix A

Algorithm 1: StretchingCorrection(E, D, λ, P)

1 Ṗs ← 03P×1;
2 ∆← E −D;
3 for i ∈ {1, 2, ..., P} do
4 for j ∈ {i, i+ 1, ..., P} do
5 if ∆i,j − λ < 0 then
6 v ← ∆i,j(Pj − Pi);
7 Ṗsi ← Ṗsi + 1

2v;
8 Ṗsj ← Ṗsj − 1

2v;
9 end

10 end
11 end
12 return Ṗs;

Algorithm 2: ObstacleAvoidance(g, O)

1 dg ←∞;
2 for o ∈ {1, 2, ..., |O|} do
3 pg, po ← ClosestPoints(g, o);
4 v ← pg − po;
5 if ‖v‖ < dg then
6 dg ← ‖v‖;
7 ẋpg ← v

‖v‖ ;
8 Jpg ← GripperPointJacobian(g, pg);
9 end

10 end
11 return {Jpg , ẋpg , dg};

ObstacleAvoidance function3 (Algorithm 2). (I − J+
pgJpg )

is the null space of Jpg .
While Equation 11 will move the grippers away from

collision while allowing null-space motion to align P and
T , the repulsion is active regardless of the distance from the
obstacle. Initially, we only used Equation 11 when a gripper
came within some threshold of an obstacle and otherwise
use Equation 10. However this lead to jitter as the system
switched between the two equations around the threshold.
Instead, we developed a way to merge the two equations
so that the transition is smooth. We first compute a severity
measure γg , ranging from 0 (far from collision) to 1 (in
contact):

γg = e−βdg (12)

where dg is the distance from the closest obstacle to the
closest point on the gripper with index g and β is a user-
defined positive parameter. We then balance the movements
computed by Equations 10 and 11 using γg:

q̇g = γg(J
+
pg ẋpg + (I− J+

pgJpg )q̇g) + (1− γg)q̇g (13)

In this way there is a smooth transition between the two
desired movements. As dg approaches 0, the collision avoid-

3The ObstacleAvoidance function requires computing the closest point
on a gripper to an obstacle, which can be implemented using freely-available
collision detectors (we use the Bullet collision detector).



Fig. 2. Sequence of snapshots showing the execution of the first experiment. The rope is shown in green and the gripper is shown in blue. The points
on the cylinder range from red (distant from the closest point of the rope) to black (close to the closest point of the rope).

Algorithm 3: MainLoop(D, O, α, β, λ)

1 t← 0;
2 while true do
3 Pt ← SensePoints();
4 qt ← SenseGripperConfiguration();
5 T ← GetTargets(Pt);
6 Ṗ ← DesiredDisplacement(Pt, T );
7 J̃ ← LocalRigityJacobian(qt, D);
8 E ← EuclidianDistanceMatrix(Pt);
9 Ṗs ← StretchingCorrection(E,D, λ,Pt);

10 q̇ ← J̃+(Ṗ + Ṗs);
11 for g ∈ {1, 2, ..., G} do
12 Jpg , ẋpg , dg ← ObstacleAvoidance(g,O);
13 γg ← e−βdg ;
14 q̇g ← γg(J

+
pg ẋpg + (I− J+

pgJpg )q̇g) + (1− γg)q̇g;
15 end
16 if ‖q̇‖ > α then
17 q̇ ← α q̇

‖q̇‖ ;
18 end
19 MoveToConfiguration(qt − q̇);
20 t← t+ 1;
21 end

ance term dominates the other term completely, thus guar-
anteeing obstacle avoidance.

The combination of obstacle avoidance, stretching correc-
tion, and the diminishing rigidity Jacobian are shown in the
MainLoop function (Algorithm 3). This is the function used
in our experiments.

V. EXPERIMENTS

We now present three example tasks where the above
method is effective, show how to encode those tasks in
the DesiredDisplacement and GetTargets functions, and
discuss experimental results. The first task shows how our
method can be applied to a rope, with the goal of winding
the rope around a cylinder in the environment. The second

and third tasks show the method applied to cloth. In the
second task, two grippers manipulate the cloth so that it
covers a table. In the third task, a user collaboratively folds
the cloth with the assistance of autonomous grippers. The
video accompanying this paper shows the task executions.

In our experiments we use a uniform discretization to
generate the points on the object, however task-specific
discretizations can also be used. In general, the more points
a part of the object has, the more the alignment of that part
to its target will influence the motion of the grippers.

All experiments were conducted in the open-source Bullet
simulator [9], with additional wrapper code developed at
UC Berkeley. The sizes of objects and parameters of the
simulator were tuned to produce visually-realistic behavior.
The rope is modeled as a series of 50 small capsules linked
together by springs and is 25m long. The cloth is modeled
as a triangle mesh size 10m × 10m. We emphasize that our
method does not have access to the model of the deformable
object or the simulation parameters. The simulator is used as
a “black box” to test our method. However, we do assume
that we are able to sense the shape of the deformable object
(although the sensing can be noisy). This experimental setup
is intended to mimic the information available in the physical
world as closely as possible.

A. Winding a rope around a cylinder

In the first example task, a single gripper holds a rope that
is laying on a table. The task is to wind the rope around a
cylinder which is also on the table (see Figure 2). We encode
this task in the DesiredDisplacement as follows: First, we
discretize the surface of the cylinder (except for the caps).
These points are the T returned by the GetTargets function.
The alignment error ρ(P, T ) is then the sum of the distances
between every point in T to the closest point in P in meters.
The desired displacement for a point p ∈ P is then the sum of
the vectors from p to all points in T for which p is the nearest
point. Since the rope cannot occupy the same physical space
as the cylinder, we disregard points in T if they are within
a small-enough threshold of their nearest neighbors in P .



Fig. 3. Alignment error ρ vs. iteration number for the rope-winding task
with k varying from 0.2 (lightest) to 2.0 (darkest) in steps of 0.2.

These points are considered “covered” and do not influence
the desired displacement (although their alignment error is
still included in ρ).

The parameter values used for this experiment (established
by trial and error) were λ = 0.1 and β = 10. We found that
the rotation component of J̃ performed poorly for the rope,
thus it was not used in this scenario.

To tune the rigidity parameter k we tested a range of values
in this scenario (see Figure 3). Under-estimating the rigidity
(i.e. a high k) resulted in the rope moving very slowly toward
the cylinder in the beginning of the task. This is because the
parts of the rope being “pulled” toward the cylinder by the
DesiredDisplacement function are in the middle of the rope
(these are the points that are closest to the cylinder). When
the rigidity is low the magnitude of J̃ is small for points
in the middle of the rope because they are distant from the
gripper, thus the resulting displacement is small. Our method
converged to the minimum error the fastest for the lowest
value of k = 0.2, however we chose k = 0.5 for subsequent
experiments because k = 0.2 seemed to over-fit to the task
in this scenario and k = 0.5 was more robust for general
manipulation with the rope, especially with noise.

Results for this experiment with varying levels of noise in
the perception of the points of the rope are shown in Figure
4. To simulate sensor uncertainty, we perturbed the position
of the points of the object reported by the simulator with
zero-mean Gaussian random noise (generated using the Box-
Muller method). Since the cylinder is much larger than the
rope, it is impossible to cover all the points on the surface of
the cylinder even if the entire rope is wound around it, hence
the high steady-state alignment error shown in Figures 3 and
4. Once the rope was wound around the cylinder, the gripper
exhibited a periodic motion of continuing to circle around the
cylinder while maintaining a near-constant error. Our results
in Figure 4 show that the method degraded gracefully with
increasing noise in this scenario.

B. Spreading a cloth across a table

The second scenario we consider is spreading a cloth
across a table (see Figure 5). In this scenario two grip-
pers hold the rectangular cloth at two corners and the

Fig. 4. Alignment error ρ vs. iterations of the main loop for the rope-
winding task with varying amounts of noise on sensing P . σ is the standard
deviation of the zero-mean Gaussian noise added to P .

Fig. 5. Sequence of snapshots showing the execution of the second
experiment. The cloth is shown in green and the grippers are shown in
blue. The purple lines on the table show the distance from points on the
table surface to the closest points on the cloth. The slight penetration of the
cloth into the table is due to the inaccuracy of the collision-handling used
by the simulator.

task is to cover the top of the table with the cloth. The
DesiredDisplacement and GetTargets functions are defined
similarly to the previous example, except that the target
points used are a discretization of the top of the table. We use
both the translation and rotation parts of J̃ in this example.
We found that our method generally over-estimated the effect
of rotation in this scenario, thus we scaled the rotation
component of J̃ by 50 to compensate. The parameters used
for this experiment were λ = 0.1, k = 0.7, and β = 100.

As in the previous example, we perturbed the position of
the points of the object reported by the simulator with zero-
mean Gaussian random noise. Results for this experiment
with varying levels of noise are shown in Figure 7. Even
when the cloth fully covers the table it is practically impossi-
ble to achieve an error of 0 because the points on the cloth P
will never perfectly match the points of the table surface T .
Unlike the previous example, our method was more sensitive
to noise in this scenario, with higher levels of noise causing
divergence. We believe this is due to errors in the handling
of collisions between the cloth and table in the simulator.
Higher noise sometimes caused the grippers to mistakenly
pull the cloth taught across the table, which caused inter-
penetration in the simulator. We also observed that higher
noise would cause the system to move into undesirable local
minima where the cloth became bunched or folded. Because
our method is local, it was not able to escape from these
minima. For lower noise, the method successfully covered
the table with the cloth.



Fig. 6. Sequence of snapshots showing the execution of the third experiment. The autonomous grippers are blue, and the grippers controlled by the
user are gray. The red line marks the plane of symmetry used by the DesiredDisplacement function for this experiment. The points on the autonomous
grippers’ side of the cloth Pauto range from red (distant from the corresponding point in T ) to black (close to the corresponding point in T ).

C. Collaborative Cloth Folding
In this experiment, a user uses two grippers to collaborate

with two autonomous grippers to fold a cloth twice. This task
is inspired by the common laundry task of folding a bed-
sheet (see Figure 6). The user controls his or her grippers
using a mouse for translation and keyboard for rotation.

We found that intuitive collaboration between the user
and the autonomous grippers could be accomplished through
symmetry preservation. The DesiredDisplacement function
is defined so that the autonomous grippers attempt to match
their side of the cloth to the user’s side of the cloth. To
encode this behavior, we define a plane of symmetry halfway
between the user’s grippers and the autonomous grippers at
their initial configuration (note that this plane is static, it does
not move with the cloth). To encode symmetry preservation,
before the task begins we reflect the points of the cloth on
the user’s side Puser across the plane of symmetry, and find
their corresponding points on the autonomous side Pauto.

Online, at each iteration, we first reflect the current sensed
Puser across the plane of symmetry to produce T (this
is computed in the GetTargets function). The alignment
error ρ(P, T ) is then the sum of the distances between
every point in T and its corresponding point in Pauto.
The DesiredDisplacement function then returns the set of
vectors T −Pauto, which are the desired displacements of the
points in Pauto. The desired displacement of points in Puser
is set to 0, so the user’s side is not intentionally disrupted.

We use both the translation and rotation parts of J̃ in this
example. Unlike the previous experiment, no rotation scaling
was needed. The parameter values were the same as above.

Re-grasping operations are required to complete the cloth-
folding task. However, grasping deformable objects is a
complex problem [19] and not within the scope of this paper.
Instead we place the grippers at manually-selected locations
on the cloth and close them. To accomplish the last part of
the fold, the autonomous grippers must hand-off the cloth
to the user’s grippers. Doing this while avoiding collision is
not possible with the grasps and gripper models we use, so
collision avoidance between the grippers was not used here.

Figure 6 shows the execution of the collaborative cloth

Fig. 7. Alignment error ρ vs iteration number for the cloth-spreading task
with varying amounts of noise on sensing P . σ is the standard deviation of
the zero-mean Gaussian noise added to the P given by the simulator.

folding task. In frames 1-5 the user brings the gray grippers
into alignment for the first re-grasp while the autonomous
grippers preserve symmetry for their side of the cloth. As
seen in frame 5, the error between Pauto and T is low (the
points on autonomous gripper side are black). Frame 6 shows
the first re-grasp, where one of the user’s grippers re-grasps
the top of the cloth while the other grasps the bottom-most
part of the cloth. The autonomous grippers perform the same
re-grasp on their side. In frames 7-9 the user brings the cloth
into alignment for the second re-grasp while the autonomous
grippers preserve symmetry. The user then brings the gray
grippers to the plane of symmetry so that they overlap with
the autonomous grippers (frame 10). The user’s grippers re-
grasp the cloth in frame 11 and the autonomous grippers are
removed. The user displays the folded cloth in frame 12.

D. Compensating for Excessive Stretching

While stretching compensation was active in the above
experiments, it is difficult to gauge its effects without de-
liberately attempting to tear the deformable object. Thus we
also conducted an experiment to show the system’s ability
to compensate for excessive stretching of a cloth. Again,
the user controls two grippers while the other two grippers
are autonomous. The same symmetry preservation described
above is active in this example.



Fig. 8. Sequence of snapshots showing the ability of our method to correct for excessive stretching.

Figure 8 shows the execution of the stretching experiment.
The cloth starts in a state where symmetry has been es-
tablished (frame 1). The user’s topmost gripper pulls the
cloth away from the center (frames 2-3). The symmetry
preservation is overridden by the stretching correction and
the topmost autonomous gripper moves toward the center
to avoid excessive stretching of the cloth (frames 2-3).
This causes the points in Pauto to move farther from their
corresponding points in T , which is why the points become
more red. When the user’s gripper moves closer to the center
(frame 4), the effect of stretching compensation goes to 0 and
the symmetry preservation is re-established (frame 5).

VI. DISCUSSION AND CONCLUSIONS
We have presented a method to manipulate deformable

objects that does not rely on modeling or simulation of
the object. Our local method combines an approximate
Jacobian based on diminishing rigidity with compensation
for excessive stretching and collision-avoidance. This method
is able to drive points on the deformable object toward targets
while simultaneously enforcing constraints. Our experiments
show how to perform several interesting tasks for rope and
cloth using our method. They also show how the method can
be applied directly to collaborative tasks, where the robot and
a human manipulate the deformable object together.

While we demonstrated that our approach can be applied
to manipulating rope and cloth in our experiments, it is
not well-suited for all scenarios involving deformation. Het-
erogeneous deformable objects would be particularly prob-
lematic for our approach because the diminishing rigidity
may vary widely depending on where the object is grasped.
Our approach also assumes that the grippers move quasi-
statically, and thus it cannot be applied to situations where
highly dynamic motion is necessary to accomplish a task.
Despite these limitations, we find that our method is quite
versatile in the range of tasks it can perform, especially since
it has no knowledge of the model of the deformable object.

In future work we seek to explore methods for
automatically-tuning the k parameter online (perhaps using
methods similar to [20]), instead of tuning it manually. We
believe automatic tuning will allow the Jacobian to adapt
quickly to new situations and will diminish the effects of
local minima. We also seek to extend our method to three-
dimensional deformable objects.
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