
Human-Robot Collaborative Manipulation Planning

Using Early Prediction of Human Motion

Jim Mainprice1 and Dmitry Berenson1

Abstract— In this paper we present a framework that allows
a human and a robot to perform simultaneous manipulation
tasks safely in close proximity. The proposed framework is
based on early prediction of the human’s motion. The prediction
system, which builds on previous work in the area of gesture
recognition, generates a prediction of human workspace occu-
pancy by computing the swept volume of learned human motion
trajectories. The motion planner then plans robot trajectories
that minimize a penetration cost in the human workspace
occupancy while interleaving planning and execution. Multiple
plans are computed in parallel, one for each robot task available
at the current time, and the trajectory with the least cost is
selected for execution. We test our framework in simulation
using recorded human motions and a simulated PR2 robot. Our
results show that our framework enables the robot to avoid the
human while still accomplishing the robot’s task, even in cases
where the initial prediction of the human’s motion is incorrect.
We also show that taking into account the predicted human
workspace occupancy in the robot’s motion planner leads to
safer and more efficient interactions between the user and the
robot than only considering the human’s current configuration.

I. INTRODUCTION

Factory automation has revolutionized manufacturing over

the last 50 years, but there is still a large set of manufacturing

tasks that are tedious or strenuous for humans to perform.

Some of these tasks, such as electronics or aircraft assembly,

are difficult to automate because they require workers to

collaborate in close proximity and adapt to each other’s

decisions and motions, which robots cannot currently do.

Rather than automating such tasks fully (which may not be

possible and/or cost-effective), we believe that human-robot

collaboration can enable safe and effective task execution

while reducing tedium and strain of the human.

In this paper we address an important step toward human-

robot collaboration: allowing a robot and human to safely

perform simultaneous manipulation motions in close prox-

imity to one another. Given two sets of tasks M and K

that the human and the robot could perform, respectively, at

a given time, we seek to create a method that selects the

robot task and plans the robot motion while 1) minimizing

the physical interference between the human and the robot

during task execution, and 2) minimizing robot execution

time. This involves sensing and predicting the movements

of the human, adapting the motion of the robot to avoid the

human, and choosing the robot task which interferes the least

with the human.
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Fig. 1. Data flow of the framework: In the offline stage the human motion
library is encoded in a gaussian mixture model and the swept volumes
of regressed motions are computed. In the online stage, the workspace
occupancy prediction module makes use of the mixture model to produce
plans for the robot to minimize interference with the human.

A popular approach to maintaining safety in the presence

of moving humans is to interleave planning and execution

within a motion planning framework [1], [2], [3]. Humans

are treated as dynamic obstacles and the human motion is

predicted in the replanning window by using a bounded

velocity model. However future motions are unaccounted for,

which may lead to inefficiency in the robot behavior. On

the other end, research on human-robot collaborative task

planning has been focused on taking into account the human

explicitly by maintaining a model of affordances [4], [5], and

using such analysis at the decision and the motion planning

layers. Although these approaches reason on human abilities,

they only account for a static model of the human. In this

work we propose to account for human motion by learning a

task-specific model of human motion and using it to infer the

humans future motion and compute safe robot trajectories.

An overview of the framework we have developed to

address the above problem is presented in Figure 1. Our

method is divided in two phases. In the offline phase, we

gather data about how the human moves to perform the set

of tasks we are interested in. In the online phase, we use the

models learned in the offline phase to predict the human’s

motion and simultaneously select a task that interferes the

least with the human while producing a robot motion that

avoids the human.

An important feature of our framework is early detection



of the human’s intent. This is performed by querying the

probabilistic models learned in the offline phase. The result

of this query is used to predict the workspace occupancy of

the human’s future motions, using the swept volume of the

representative motions obtained by regression.

The motion planning component of the framework com-

putes a plan for the K robot tasks in parallel as the robot

moves, and falls back to the best solution at each re-planning

step, which gives it an anytime property. Hence as we

interleave prediction, planning, and execution, the robot is

able to adapt its motion to the human’s intent, minimize

interference, and change tasks quickly in order to avoid the

human.

This paper focuses on the core algorithms and framework

structure that allow safe simultaneous human-robot motion

in close proximity. We thus implement, test, and analyze

our method in simulation, which is necessary before any

human trials are conducted. Given the success of the simu-

lation study presented in this paper, we will pursue physical

experiments with human subjects in future work.

The rest of the paper is organized as follows: After

discussing related work in section II, we give a detailed

overview of the framework in section III. In section IV we

present the method for early human motion recognition and

prediction of workspace occupancy. Then in section V we

present the motion planning component before going over

the experimental results in section VI. We end the paper

with conclusions and future work.

II. RELATED WORK

Our work contributes to the field of safe robot manipula-

tion in the presence of humans, it is similar to [6], however

their work only considers motions of the human’s hands and

does not fall back to the plan of least interference. Older

works in the area of safe robot manipulation in proximity

to humans, e.g. [7], [8], have led to the characterization of

safety criteria. However, though safety is the most important

factor of robotic design, it may be desirable to account

for other constraints to allow for more comfortable user-

interactions and more efficient robot behaviors.

In the closely-related topic of robot navigation in the

presence of humans, early works were inspired by the social

behavior demonstrated by humans [9]. In those work, the

motion planner not only reasons about the human safety, i.e.

clearance, but also about how visible the robot is along the

robot motion to avoid the effect of surprise [10] leading to

more legible navigation plans. Recently this approach was

extended to combine planning and more reactive schemes

[11], allowing more natural crossings between the robot

and the human. Similar to our approach, researchers have

explored how to learn models of human motion and use them

for online online navigation planning [12]. While we believe

it is possible to apply our framework to navigation, our

approach is intended for manipulation tasks which require

planning in a much higher-dimensional space as well as

predicting human motion in that space.

Motion planning for robot manipulation in close proximity

to humans poses two main challenges: first on the algorithmic

techniques to be used and second on the definition of safety

and comfort metrics. Recent work has explored computing

more human-like motions [13] using a reachability map

representation. Other work [5] has focused on considering

the human’s safety, visibility, and musculoskeletal comfort

directly in the robot configuration space and solving motion

planning using sampling-based and stochastic-optimization

techniques. The recent work by Dragan and Srinivasa [14]

proposes a legibility metric inspired by the psychology

of action interpretation applied to robot motion planning

using functional gradient optimization. The resulting mo-

tion trajectories purposefully deviate from what an observer

would expect in order to better convey intent. This work in

particular can be seen as complementary to our approach, in

our work the robot interprets the human’s intent as early as

possible.

Simultaneous motion for human-robot collaboration has

been studied in terms of hand-over tasks [15], [16], [17]. A

motion planning method that allows to share the effort by

exploring the combined configuration space of the human

and the robot has been proposed in [18]. While hand-over is

an important instance of collaboration, the work presented

here is meant to apply to a broader class of tasks, although

it could be adapted for hand-over tasks as well.

A major part of our framework is early prediction of hu-

man motion. Researchers have investigated early recognition

of gestures [19] [20], where the goal is to classify a type of

gesture being performed by the human. While classifying the

type of motion is the first step of our framework, we are also

concerned with predicting the human’s future motion and

ultimately computing the probability of the human occupying

a given voxel in the environment. Our method of learning

the Gaussians Mixture Model (GMM) representation of the

human’s motion and querying it using Gaussian Mixture

Regression (GMR) is similar to [21], although, again, we

extend this work to predict the workspace occupancy of the

human, as well as integrating the prediction with the robot

motion planning.

We rely on recent developments in trajectory optimization

for motion planning [1] [22] [23] to compute low-cost robot

motion plans quickly. Our framework uses the STOMP algo-

rithm, which has proven effective for the type of manipulator

motion planning we consider [23]. Recently, STOMP was

adapted to run faster than real-time [3], and we plan to

employ this new method in future work.

III. FRAMEWORK OVERVIEW

Our framework (Figure 1) is composed of two stages:

1) Offline construction of a probabilistic representation of

the human workspace occupancy from a motion trajectory

library, and 2) online recognition and prediction of human

motion and computation of robot motion plans. The online

stage also simultaneously computes plans for each possible

robot task. The one that minimizes interference with the

human is then selected for execution.



Fig. 2. A motion library gathered using kinect data is regressed to 8 motion trajectories using GMR. Each motion type corresponds to a different reaching
goal position on the table.

A. Offline phase

A library of motions is first gathered from human demon-

stration. The type of motion depends on the type of task

being executed by the human, here we consider manipulation

motion on a table. Each motion in the library is then tagged

depending on the intent of the human. For instance, in the

manipulation tasks considered in the experiments of section

VI, the intent corresponds to the goal position of the hand

as the human reaches for an object on the table. In order to

perform early motion recognition and predict the subsequent

human motion, we fit a GMM to each class of motion. We

then use GMR to extract a new motion that best fits the class.

Figure 2 shows the regressed motion trajectories used in the

experiments. These trajectories are used to compute a swept

volume that corresponds to the class which is then stored in

a 3D voxel grid.

B. Online phase

The online phase interleaves prediction, planning and

execution. The GMM of each class is first queried with the

partial human motion trajectory observed at the current time,

yielding likelihood values for each class. The probability of

occupancy of a given voxel is then estimated by summing

the likelihood of all motion classes whose swept volumes

occupy the voxel.

At each replanning step, the cost assessed by the motion

planner is updated according to the prediction of human

workspace occupancy. We define a penetration cost in the

occupancy grid where high cost corresponds to penetration in

regions very likely to be occupied by the human’s subsequent

motion. This cost can be viewed as an interference cost.

We compute robot motions that minimize this cost along

the robot trajectory using STOMP [23]. We also plan for

each task available simultaneously by running STOMP in

parallel, one instance per task, and then select the trajectory

for the task with the least interference cost at the end of the

replanning step.

IV. EARLY RECOGNITION AND PREDICTION

OF HUMAN MOTION AND WORKSPACE OCCUPANCY

Offline, we fit one GMM per class of motion that we are

considering in the human motion library. Intuitively, fitting

Gaussians to the data set allows us to restrict each class to

a small set of parameters, which is straightforward to query.

A. Gaussian mixture model

Each motion trajectory in our gathered data set is repre-

sented by a matrix ξ composed of T vectors of dimension

D, with each vector representing a posture.

In gesture recognition, an important problem resides in

constructing the feature space, i.e. what values are considered

in the posture vector. In [20] the author studies three types

of features space, euclidean i.e. position of interest points

on the kinematic structure of the human, joint angles, or

amorpholgical i.e. combination of joint angles and relative

positions between links, as well as the derivative of the

feature vector. We chose joint angles to represent postures,

as our aim is to both predict and recognize the motion.

Joint angles enable a straightforward reconstruction of the

regressed motion with no need for inverse kinematics (which

may be difficult due to redundancy). In our experiments 12

DoFs are taken into account: pelvis position and orientation

as well as the joint values of the arm and torso.

In the library we define M classes (which correspond to 8

goal positions in our experiments), the set of motions of class

m is denoted Cm. Each class consists of N trajectories. We

then fit Ng gaussians per class; e.g. 20 in our experiments.

Thus, the probability density of any posture in a class

represented by Ng gaussians is given by:

p(ξt) =

Ng
∑

g=1

p(g)p(ξt|g),

where ξt is the feature vector corresponding to the posture

along the motion trajectory ξ at index t and p(g) is the prior



Fig. 3. Evolution of the workspace occupancy prediction stored in a voxel map during a manipulation task. Red spheres correspond to high probability
of occupancy and blue to low values. The prediction switches from right to left of the human as he/she progresses towards the goal position.

probability of component g. The conditional probability for

g is defined as follows:

p(ξt|g) = N (µg,Σg)

=
1

√

(2π)D|Σg|
e−

1

2
((ξt−µg)

TΣ−1

g (ξt−µg))

where and {µg,Σg} are the mean and covariance parameters

of the Gaussian component g. This probabilistic representa-

tion of the data set enables two things: first to extract a

motion trajectory for each class using GMR, and second,

to compute the likelihood that any new motion trajectory

belongs to any class.

B. Training

To fit the GMM to a set of motion trajectories, we have

to maximize the likelihood for the mixture parameters. For

a given class Cm comprising of N motion trajectories, the

objective is to maximize the likelihood defined as follows:

p(ξ|Cm) =

N
∏

n=1

T
∏

t=1

p(ξnt |Cm)

Since the number of considered feature vectors is usually

quite high (e.g. 2500 postures per class in our experiments)

p(ξ|Cm) can exceed the machines precision. In order to

avoid such situations we used the log-likelihood which is

a common procedure for mixture model fitting.

No analytical method exists for maximizing the likelihood.

So we use the widely known expectancy-maximization (EM)

algorithm which is a simple search technique that monoton-

ically increases the log-likelihood during optimization. The

obtained distribution corresponds to a local minimum.

EM consists of two steps. The E step computes the log-

likelihood for the parameters (p(g), µg , Σg), and the M steps

performs their adjustment through computation of the partial

derivatives of the log-likelihood function. We initialize the

procedure with an estimate provided by a k-means clustering

applied to the data set. The algorithm stops when a negligible

improvement of the log-likelihood is attained. The reader

may refer to [24] for a more detailed explanation of this

procedure.

C. Query phase

Once the GMMs are fitted for each class, the log-

likelihood of all Cm can be computed as follows:

ln(p(ξ|Cm)) =

T
∑

t=1

ln(p(ξt|Cm))

Note that for the classification problem we would only

consider the class with highest log-likelihood. Here we use

the likelihood of each class to weigh the voxel occupancy as

shown in section IV-E.

D. Extraction of the swept volume

To obtain a motion reconstructed from the GMMs that

represents the predicted trajectory for each class, we use the

GMR procedure [25]. More precisely, we apply the technique

as established in [21], as it provides a way to reconstruct a

general motion for the class.

The swept volume of a given class is computed using

the regressed trajectory of the class. To compute the swept

volume of the trajectory, we first sample points on the human

model 3D surface. We then set the human model to each

configuration along the trajectory. The voxel occupancy for

one configuration is computed by looking up the voxels that

contain the sampled points and marking those as occupied.

The sampling has to be dense enough not to miss any voxel.

Thus, the swept volume of a given class is computed as the

union of the voxel occupancy of discretized configurations

along the regressed motion.

E. Likelihood estimation of workspace occupancy

The motion recognition systems relies on the log-

likelihood computed by querying the GMMs which represent

the probability of the motions belonging to each class given

the partial trajectory observed so far (see Section IV-D). To

obtain a prediction p(x|ξ) for each voxel x to be occupied by

the human motion ξ, we first retrieve the likelihood p(ξ|Cm),
the output of the GMM query, of the M motion classes by

exponentiation. We then compute p(x|ξ) by summing the

contribution of the M motion classes Cm in the following

manner:

p(x|ξ) =
M
∑

m=1

p(x|Cm)p(Cm|ξ)

where:

p(Cm|ξ) =
p(ξ|Cm)

∑M

m=1 p(ξ|Cm)

and:



p(x|Cm) =

{

1 if x is occupied by Cm

0 otherwise

Intuitively, this procedure returns a score p(x|ξ) ∈ [0 , 1]
for all voxels that is higher for regions more likely to be

occupied by the subsequent human motion, and thus predicts

workspace occupancy. This score will be used by the motion

planner to avoid colliding with the human and adapt the robot

motion to the human’s intent. Figure 3 shows the evolution of

the estimation of workspace occupancy during the execution

of a human motion recorded with the Kinect.

V. MOTION PLANNING WITH PREDICTED HUMAN

WORKSPACE OCCUPANCY

In this section, we describe the motion planning approach

based on STOMP. A similar approach has been proposed

and studied recently in [3]. Our approach differs from

[3] by using workspace occupancy prediction and planning

simultaneously for distinct goals.

A. Planning with predicted human workspace occupancy

STOMP [23] is a trajectory optimizer that iteratively

deforms an initial solution by estimating stochastically the

gradient in trajectory space. It internally represents the tra-

jectory by an m by n matrix, where m is the number of DoFs

and n the number of waypoints. At each iteration, trajectories

are sampled in the neighborhood of the current solution and

combined to generate the update. Thus it does not require

the analytical gradient of the cost function to be known.

The convergence rate to a local minima depends on the

standard deviation with which the neighboring trajectories

are sampled.

The initial algorithm presented in [23] optimizes a com-

bination of two classical criteria, namely obstacle cost and

smoothness cost. The first is estimated by computing a

penetration distance in the static obstacles for every waypoint

using a signed Euclidean Distance Transformed (EDT). The

second is estimated by summing the squared accelerations

along the trajectory using finite differencing.

In order to account for the human’s intent and minimize

interference, we combine a third cost criterion that penalizes

configurations penetrating the human predicted workspace

occupancy. The penetration cost of a given configuration q

is estimated in the following manner: after sampling points

on the robot structure in an initialization phase, we place the

robot at q and evaluate the probability of occupancy of the

sampled points. The total cost of q is then simply the sum

of the probabilities of occupancy p(x|ξ) (see section IV) of

the human occupancy-map voxels x, that contain sampled

points.

B. Planning with multiple goals

Our approach consists of interleaving prediction, planning

and execution (see Figure 4). At each replanning step K

STOMPs are run in parallel, one per manipulation task

(e.g. pick object1, pick object2, place object1 at p, ...). At

replanning step n, the robot executes the motion planned in

Planning K1
Planning K2

Sense Human
Ocupancy Predict.

Execution

Planning K1
Planning K2

Planning K1
Planning K2

step 0 step 1 step n-1 step n

Goal

time

Ocupancy Predict.
Sense Human

Sense Human
Ocupancy Predict.

Execution
Execution

Fig. 4. Interleaving of prediction, planning and execution. The planner uses
the prediction that has been established at the previous replanning step.

Algorithm 1: Multiple goal planning with prediction

input : Workspace W
K goal configurations goals

begin
t← 0
trajs← initStraightLines(goals)
while taskCompletion() do

ξ ← updateHumanMotion()
X ← predictVoxelOccupancy(ξ)
for g ∈ goals do

τ ← reconnectPrevious(trajs[g], τbest, t)
trajs[g]← STOMP(τ,X,W)

τbest ← getBestTrajectory(trajs)
t← execute(τbest)

end

step n − 1, it also records the current human motion and

predicts the human workspace occupancy. This workspace

occupancy prediction will be used in replanning step n+ 1.

The complete planner is described in algorithm 1. The

planner first starts by initializing straight line trajecto-

ries between the current configuration and each goal in

initStraightLines. It then loops over the three following

steps. First, the updated human motion ξ yields a new voxel

occupancy in the predictVoxelOccupancy function. This

updates the cost function taken into account by STOMP. Then

for each goal, the reconnectPrevious function adapts the

input trajectory in order to cope with the interleaving of

the execution step (discussed in section V-C). The planner

then launches each STOMP in a different thread. Finally,

once each trajectory has been optimized by STOMP, the

algorithm executes the trajectory τbest that minimizes the

overall cost combining human interference, obstacle cost and

smoothness.

C. Interleaving planning and execution when considering

multiple goals

When planning with multiple tasks, the execution of

the trajectory τbest brings the robot away from the tra-

jectories planned for the other tasks. Hence, in order to



Fig. 5. Depiction of the procedure performed in the reconnectPrevious

function of algorithm 1 with two goals.

reuse part of the previously optimized trajectories, the

reconnectPrevious function reconnects the current robot

configuration to the previous trajectory by selecting the best

feasible solution.

Figure 5 depicts the procedure for two goals g1 and g2
where a trajectory has been planned from qcur to each goal.

All straight lines from the future configuration qt on τbest
to the previous trajectory are tested and the trajectory which

minimizes cost is kept to provide the next replanning step

preformed by STOMP with a good initial input leading to goal

g2.

VI. EXPERIMENTS AND RESULTS

We have performed a series of test and experiments on the

framework to asses the efficacy of the motion recognition

system and the capacity of the framework to minimize inter-

ference with the human and switch quickly between robot

tasks when necessary. We first evaluate the classification

system, then we show the overall efficacy of the framework

on two examples. The GMM fitting and GMR algorithms

have been implemented in Matlab. The online classifier,

STOMP, and a simulated version of the execution framework

have been implemented in Move3D [26].

A. Classification

We first evaluated the performance of the classification

component of our framework by gathering a library of M =
8 classes of human motion trajectories each containing N =
25 trajectories using the Kinect sensor. We converted the

raw Kinect data into joint-space trajectories using a custom

inverse kinematics procedure. The regressed trajectories of

each class are presented in Figure 2. In order to verify

that this system is adequate for predicting human motions,

we evaluated the classification by querying the GMM using

leave-one-out testing.

Figure 6 presents the average recognition rate for the 200

motion trajectories as a function of the executed fraction of

the motion trajectory. The recognition rate increases as the

fraction of the motion trajectory, until reaching a plateau

at 92% of the trajectories being correctly classified which

occurs at 80% of trajectory execution.

The classifier crosses 50% of good classification with 43%

of the motion trajectory and reaches a high percentage of
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Fig. 6. Leave-one-out testing of the recognition system.

good classification results (approximately 80%) with 60%

of the motion trajectory. This shows that the GMM fitting is

well suited for early motion recognition and prediction, and

can be used for collaborative manipulation. We expect that

recognition would decrease as the number of classes taken

into account increases. However, this could be compensated

with a larger motion trajectory library.

B. Interference in a manipulation scenario

We study the manipulation task depicted in Figure 7 where

the robot and the human reach for two cups set on a table.

At each replanning step, we move the human forward along

the recorded motion trajectory by a fixed amount, estimate

the workspace occupancy and replan the robot motion. We

execute 20 replanning steps in total for each run.

A replanning step comprises 50 iterations of STOMP

which take approximately 0.5 sec. We plan to make use of

the GPU accelerated framework described by [3] to decrease

planning time. Given their speed-up description, we can

expect to reduce planning time by a factor of 20 to 30.

We compare two versions of the planner. 1) A naive

version that computes a path without considering the pre-

dicted workspace occupancy. In this case the intermediate

path is planed by only considering smoothness and obstacle

constraints. 2) A planner that considers the supplementary

constraint of minimizing the penetration in the predicted

workspace occupancy along the path (our method).

Table I presents the integral cost of the executed robot

trajectories considering the final and most accurate prediction

of the workspace occupancy. The results are averaged values

over 10 runs for 5 human motion trajectories taken from a

human motion trajectory library similar to the one described

above. The GMMs used in the experiment have been trained

leaving those 5 trajectories out.

In Figure 7 where the robot reaches for the the red cup

while the human reaches for the blue cup. As one can see

taking into account the early prediction of workspace occu-

pancy in the planning phase produces minimal interference

with the human and provides good clearance.

This fact is also confirmed by the results presented in table

I. Indeed, even though the workspace occupancy predicted

with a minimal execution of the human trajectory is inaccu-



Fig. 7. Left, the motion is planned without considering workspace
occupancy, right, considering it as an additional constraint of STOMP.

TABLE I

AVERAGED COST OF 10 RUNS OF THE MANIPULATION TASK FOR 5

DISTINCT MOTION TRAJECTORIES OF THE HUMAN

Cost (basic STOMP) Cost (least penetration)

Traj. 1 24.41 0.41
Traj. 2 21.47 0.49
Traj. 3 27.52 0.60
Traj. 4 24.44 0.41
Traj. 5 25.13 0.74

rate in the first replanning steps, the robot trajectory produced

minimizes the penetration on the final workspace occupancy.

C. Example with two robot tasks

We now study a slightly different scenario where the

human and the robot manipulate objects facing each other

across the table (see Figure 8). Two cups are present on the

table similarly to the example of Figure 7, and this time

the human reaches for the red cup. The robot plans for both

tasks (i.e. reaching for both cups), and the goal configurations

of the robot are shown on the left side of Figure 8. The

trajectories being optimized for each goal configuration are

depicted in green and orange. Green for the current τbest and

orange for the other.

We compare two versions of the algorithm, one that only

accounts for the current workspace occupancy of the human

(Figure 8.b, 8.c, 8.d) and another that accounts for the

predicted workspace occupancy (Figure 8.f, 8.g, 8.h). In the

latter case, the early recognition system provides the robot

with an initial workspace occupancy prediction that shifts as

the human reaches towards the object. This is also depicted

in Figure 8 with the same color convention as Figure 3.

Figure 9 presents the evolution of the cost of the two

candidate trajectories from the current configuration to the

target configuration. This cost is evaluated at the end of

each replanning step. The top graph corresponds to using

the current observed workspace occupancy version while

the bottom graph corresponds to the predicted workspace

occupancy version of the algorithm. The integral cost of

the trajectory reaching for the blue cup is depicted in blue

and in red for the red cup. As shown in Figure 9, the

robot switches tasks in step 4 when considering prediction

of the workspace occupancy while only switching in step

13 otherwise. Switching task later results in less efficient

collaboration as time taken between step 4 and 13 could

have been better allocated to perform another task.
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Fig. 9. Integral cost of the two cups example as more replanning steps
are executed. Top: only considering current workspace occupancy. Bottom:
using workspace occupancy prediction. Red curves correspond to red cups
and blue curves to blue cups respectively.

As the ambiguity in the human intent lessens, depicted in

Figure 8 by the shift of workspace occupancy prediction,

the robot changes the target to the one that minimizes

the penetration cost in the predicted workspace occupancy

thus leading to more efficient collaborative behavior than

produced using only the human’s current configuration.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a framework that allows the human

and the robot to perform simultaneous manipulation safely

to enable collaborative tasks in close proximity.

This framework is based on early prediction of the human

motion. The prediction system, which builds on previous

work in the area of gesture recognition, yields a workspace

occupancy prediction by computing the swept volume of

learned motion trajectories. The motion planner then plans

trajectories that minimize a penetration cost in the workspace

occupancy and interleaves planning and execution. Plans for

multiple tasks can be considered in parallel to select the least-

cost task.

Our results show that taking into account workspace

occupancy prediction in the motion generation leads to safer,

more efficient interactions between the user and the robot

than only considering the current configuration. Future work

concerns testing this hypothesis on real users with a real PR2.

We also intend to investigate a wider range of tasks such as

manipulation in shelves or incorporating human navigation.

Finally, our framework considers all available robot ac-

tions at the current time to have equal value to the overall

process, which may not be the case. To account for varying

action costs at the process level, we seek to explore integra-

tion with task-level planning for human-robot teams such as

[27].



(a) Goal 1 (b) t = 1 (c) t = 13 (d) t = 14

(e) Goal 2 (f) t = 1 (g) t = 4 (h) t = 5

Fig. 8. Optimization of two trajectories and switch between the initial trajectory and the goal. The current trajectory is depicted in green and the other is
yellow. The sequence on top (b,c,d) corresponds to planning with the current human workspace occupancy while the bottom sequence (f,g,h) makes use
of the predicted human workspace occupancy.
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