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Abstract— We propose a new method of representing de-
formable objects that allows both physical and qualitative
properties to be captured in an efficient representation. We
show how to use this representation with two types of motion
planners: 1) optimal discrete planners, which are suitable for
low-dimensional problems, 2) sampling-based planners that
plan in high-dimensional cost spaces. In both cases, our rep-
resentation allows us to formulate a cost function that directly
assesses the cost of deformation without expensive physical
simulation or computation of deformed geometry. We show that
our methods can generate paths that minimize deformation in
both simulated and physical environments with either hard and
soft robots in either hard and soft environments. The efficiency
of our representation allows these paths to be computed in
under 20s for 3-DOF problems. For more complicated 6-DOF
problems, low-deformation paths can be computed in under
120s. Additionally, using feedback from simulated and physical
test environments, we demonstrate methods for calibrating
models based on our representation.

I. INTRODUCTION

This paper addresses the problem of computing motion
plans for scenarios where the object being manipulated by the
robot and/or the environment are deformable. This important
class of problems arises in everyday environments, such as
putting on clothing or cooking food, as well as in surgical
and industrial settings.

The primary challenge of motion planning for deformable
objects/environments is that deformability is very difficult to
simulate accurately. Unlike rigid objects, whose dynamics
are well-understood, the motion of a deformable object
depends on a large and complex set of parameters that define
its stiffness, friction, and volume preservation. Computing
the geometry of a deformable object in contact with another
object is particularly challenging, especially if both objects
are deformable. Many methods exist for deformable object
simulation, including mass-spring model simulation [1] and
the more general finite element method (FEM) [2], [3].
Simulation methods for meshless models also exist [4]. FEM
simulation is generally regarded to be the most accurate,
although it is highly sensitive to the discretization of the
deformable object and, for fine discretizations, is very time-
consuming to compute.

Given the difficulties of deformable object simulation, we
seek to explore the practicality of performing useful motion
planning for deformable objects without explicitly simulating
them. To accomplish this, we model the environment and
moving object using voxel grids. Each contains two values:
deformability and sensitivity. The deformability represents
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Fig. 1: Execution of paths planned using our representation: (a)
with a PR2, (b) in the Bullet physics simulator.

how compressible the voxel is. The sensitivity represents
the penalty for deforming that particular voxel. Sensitivity
is used to allow our motion planner to avoid some objects
more than others in the planning process, which is useful
if different objects have different sensitivity to deformation.
For instance, in a surgical setting, one organ may be more
sensitive to compression than another, even though both are
equally deformable.

Our representation is designed to represent objects that
deform elastically, meaning that while the object may change
its surface geometry when in contact, it exhibits volume
restoration and will return to its original shape when the
colliding object is removed (e.g. a sponge). Note that our
representation currently assumes that environment objects,
whether deformable or rigid, do not move as a result of
deformation or other forces. While restrictive, we believe
that these limitations are consistent with a range of real-
world problems where deformable objects are constrained
by the environment (e.g. inside the body) or by the robot
itself (e.g. a robot with deformable components). In cases
that do not completely meet these constraints, we believe
our representation will be conservative – it will over-estimate
the severity of deformation. Certain objects such as clothing
or rope that do not obey these limitations may instead be
represented as an articulated series of these voxel-based
representations, though this is not within the scope of this
paper.

Once the moving object and environment have been de-
fined using our voxel-based representation, we can evaluate
the cost of a given configuration of the object by computing a
novel cost function that combines deformability and sensitiv-
ity into a single value. This value represents the deformation
cost of that configuration. Using this cost function, the cost of



a given configuration in a motion planner may be computed.
As we demonstrate in this paper, this cost function is suitable
for both discrete (demonstrated using a variant of A*) and
sampling-based motion planning algorithms (demonstrated
using T-RRT [5] and GradienT-RRT [6]).

In our experiments we show that our method is effective
at finding paths for rigid objects moving in deformable envi-
ronments, deformable objects moving in rigid environments,
and deformable objects moving in deformable environments.
Computing paths for these scenarios would involve radically
different simulation methods, however, using our approach,
we need only to adjust the deformability of the object and
environment. We verify the efficacy of our method in virtual
environments using the Bullet physics simulator, and in
physical experiments using the PR2 robot with a custom
deformation-tracking camera system.

The remainder of the paper is structured as follows:
Section II gives a background on previous work on simu-
lation and motion planning of deformable objects, Section
III describes our voxel-based representation, cost function,
and planning algorithms. Section IV presents results in
simulation and on PR2. Finally, Section V concludes the
paper.

II. BACKGROUND

Deformable objects are important for a variety of fields
ranging from computer graphics to robotics to medicine. As
a result, extensive work has been done on the modelling and
representation of deformable objects for computer graphics
[1] and medicine [7]. More recently, this work has been
adapted to robotics to allow the manipulation of real-world
objects such as clothing, rope, and human tissue. Unlike a
range of work focusing on visual servoing [8], [9] and haptics
[10], [11] with deformable objects, we focus on motion
planning for deformable objects – i.e. we seek to compute a
path that minimizes deformation.

While a wide variety of modelling approaches for de-
formable objects exist for computer graphics and physical
simulation purposes, we are primarily concerned with rep-
resentations suitable for motion planning purposes. We wish
to avoid the problem of directly computing the geometry of
a deformed object, as doing so is an expensive intermediate
step to assessing the severity of deformation.

Existing representations of deformable objects fall into
two main groups, those using meshed volumetric models and
those using meshless models.

Meshed - Often tetrahedral meshes, these models preserve
volumetric constraints and allow the use of numerical simu-
lation to compute the effects of collision. Existing work uses
Mass-Spring (M-S) [1] and Finite-Element (FEM) [2],[3]
methods to simulate changes to object geometry resulting
from collisions. These methods allow the inclusion of volume
preservation and restoration. However, as noted in [12], M-
S models are inaccurate beyond low-deformation cases, and
both M-S and FEM are expensive to compute.

Meshless - Two variants of this approach exist – models
that represent only the surface of the object such as [12], and

models such as [4], which use a discretized representation
that allows for heterogeneous objects with varying internal
properties. In the former case, the surface model was used
to compute the penetration into the object, ignoring internal
forces. In the latter, discrete information on material prop-
erties allows the efficient computation of object deformation
with comparable accuracy to established FEM methods [4].

Some deformable objects, such as rope and thread, can
change shape with limited (or no) restoring forces. Existing
models for these objects assume that the object itself is
incompressible [13] (i.e., a rope cannot be crushed), which
prevents the application of these techniques to problems such
as ours, in which the objects modelled must be compressible.

Building from these established representations and tech-
niques, a range of motion planning approaches have been
developed to find paths in deformable environments. Exten-
sive work has been done applying Probabilistic Roadmap
planners (PRMs [14]) and Rapidly-exploring Random Tree
planners (RRTs [15]) to deformable objects, including [16],
[17], [18], [19], [20], [21]. Other work in the area includes
planning for rope and thread such as [13].

However, the above work is marked by a trade-off between
the desires for accuracy and performance. Accurate methods
based on FEM models are slow to compute, prompting
a range of simpler models such as [17], [12] which are
designed to provide “good-enough” simulation of deforma-
tion. Furthermore, most previous work is concentrated on
finding feasible deformations using volume preservation and
penetration distance to evaluate feasibility, whereas we seek
to minimize deformation.

Limited work has been done to account for the severity of
the deformation, such as [12] and [21], which assess a cost of
deformation. In the former, the problem of motion planning
itself is replaced with an optimization problem of reducing
the cost for motion along a parametrized Bezier curve below
a preset threshold. Instead of a local optimization approach
like this, our approach is to use global planners.

The most similar existing works to ours are [4] and
[21], the former in terms of representation, and the latter
in terms of planning. Using an underlying discrete repre-
sentation similar to ours, [4] simulates the geometry and
kinematics of heterogeneous deformable objects. While this
technique could be used as a stepping-stone to compute a
cost of deformation, our method skips the simulation step to
directly compute a cost value. In addition, neither approach
incorporates an element comparable to the sensitivity used
in our representation.

In terms of planning, [21], like our method, attempts to
generate optimal paths, taking into account both costs in-
curred in deformation and path length. Unlike our approach,
[21] relies on extensive and time-consuming pre-computation
of a meshed environment using FEM methods.

III. METHODS

We have developed an efficient representation for de-
formable objects and a cost function for assessing the cost
of collisions. Building from this representation, we have



Fig. 2: An example of our representation and cost function –
deformability values are shown in red, sensitivity values are shown
in blue. The voxel centers of the moving object (orange) are shown
as black points. Cost is computed for the shaded voxel in collision.

developed a cost function that allows discrete and sampling-
based planners to compute paths that minimize deformation.

A. Representation

Object geometry is inherently captured in our voxel-based
representation. Unlike triangle meshes and other methods
optimized for surface representation, this discretization pre-
serves information about the interior of the object. As with all
discrete representations, the resolution of our representation
is limited by the size on an individual voxel. Arbitrarily high
resolution can be achieved by increasing the number and
decreasing the size of the voxels, at the cost of increased
memory usage and processing time. To address the well-
known problem of rotating voxels, only the planning en-
vironment is directly modelled using voxels; objects being
moved are represented by a set of points that shares the
same discretization, in which the points correspond to voxel
centers. An example representation is shown in Figure 2.

Our representation captures physical properties through
the use of two parameters per voxel, Sensitivity and De-
formability. These parameters represent the cost incurred
by deforming the voxel, and the ability of the voxel to be
deformed (similar to the “stiffness” in [4]). Intuitively, a
completely rigid object has a deformability of zero, while
empty space has a deformability of one. Sensitivity is a user-
assigned parameter that allows a range of object qualities
to be represented. In general, sensitivity may be used to
differentiate between two deformable objects with similar
physical properties but different desired qualities.

Increasing sensitivities from the surface to the center of an
object can be used to represent a greater severity of deforma-
tion (e.g. the tissue inside an organ may be much more prone
to damage than the exterior) or, by increasing sensitivity to
infinity, effectively prevent the planner from producing paths
that result in any penetration. While deformability parameters
can be derived from physical properties of an object, tuning
sensitivity parameters is more complicated. In future work,
we plan to investigate the automatic generation of sensitivity
parameters.

B. Cost Function

Using our voxel-based representation, we develop a cost
function to assess the cost of collision between two objects.

As noted already, previous work with deformable objects
requires the expensive calculation of the deformed geometry;
our method, however, directly assesses the costs resulting
from this deformation by observing the intersecting volume
of objects in collision. Cost is computed for each voxel of
the object (or objects) being moved in collision, and the sum
of these per-voxel costs is the total cost of deformation for
a given state.

Per-voxel cost is evaluated using Equation 1. Let Ci be
the total deformation cost of voxel i, while Si(A) and Sj(B)
are the sensitivity parameters of voxel i in object A and
j in B, respectively. Similarly, Di(A) and Dj(B) are the
deformability parameters of voxels i and j.

Ci(A,B) =
Di(A)

Di(A) +Dj(B)
∗ Si(A)

+
Dj(B)

Di(A) +Dj(B)
∗ Sj(B) (1)

Intuitively, this cost function assigns cost based on the
weighted combination of costs incurred by both objects.
If both objects have the same deformability, each will
contribute equally to the total cost (if Si(A) = Sj(B)),
while in cases of varying deformability, the “softer” object
with higher deformability contributes more to the total cost.
In cases of hard-on-soft or soft-on-hard collision where
one object is completely rigid, only the soft object being
deformed contributes to the total cost.

A notable special case of Equation 1 exists if both Di(A)
and Dj(B) are zero (meaning that voxels i in A and j in B
are both rigid), in which case Ci(A,B) becomes undefined.
This property is used for implicit collision detection in our
planner, as our implementation of the cost function returns
NaN in these cases, which allows states resulting in rigid
body collisions to be eliminated. Similarly, using NaN for
sensitivity values can also be used to make certain states
explicitly infeasible.1

C. Discrete Path Planning

For low-dimensional problems, we use a planning algo-
rithm based on the well-known A* search algorithm [22]. A*
is both complete, meaning that it will always find a solution
if it exists, and optimal, meaning that it will always find the
minimum-cost path to the solution.

In its conventional form, A* orders states based on the
combined value of g(s), the cost of moving to state s, and
h(s), the heuristic value of s. A* alone is sufficient for use
in rigid environments in which states are either feasible and
free of collision, or infeasible due to collision; however, A*
is insufficient to handle planning in deformable environments
with feasible collisions.

Thus, we adapt the A* algorithm to account for the
deformation cost in addition to the path length cost, as seen
in the DEFORM and FVALUE functions in Algorithm 1. The
DEFORM function computes the total cost of deformation

1As defined in the IEEE Floating Point standard, NaN “poisons” calcu-
lations, so a single voxel cost of NaN results in a total cost of NaN.



Algorithm 1 Cost function for our A* planning algorithm

procedure FVALUE(s, p)
return (1− p)× (h(s) + g(s)) + p× DEFORM(s)

procedure DEFORM(s)
cost← s.parent.cost
for each point A in s.shape do

B ← LOOKUP(A)
cost← cost+ C(A,B)

return cost

in a given state using C(A,B), our cost function shown in
Equation 1 for all voxels in the moving object. LOOKUP
transforms a given point in the object being manipulated
into the planning environment and returns the corresponding
voxel. FVALUE, which implements the classical f(s) =
g(s)+h(s) in A*, is extended to incorporate the deformation
cost of the path to s, which is returned by DEFORM. Here,
g(s) is the path length from the start to state s, and h(s) is
the euclidean distance from s to the goal.

It is important to point out that we have not simply
appended deformation cost to the overall state cost. Instead,
we have incorporated the concept of Pareto-optimality for
paths discussed in [23], which allows us to compute paths
with varying definitions of optimality. This control is intro-
duced with the parameter p, which weighs the deformation
against path length. Intuitively, low values of p induce greater
deformation if doing so will result in a shorter path, as they
increase the relative penalty of path length. High values of
p may result in lower deformation at the expense of longer
paths. The two boundary cases of p, namely p = 0 and
p = 1, result in conventional A* (ignoring deformation) and
best-first search considering only deformation, respectively.
Note that using 1 − p to scale the heuristic is necessary to
ensure that the heuristic remains admissible.

In practice, selecting values for p close to 0 may result
in undesirably high deformation and values close to 1
may produce unnecessarily long paths. In cases where no
deformation-free path exists, the effect of p is dependent on
the total deformation encountered and the cost parameters of
the deformable objects. In practice, the paths for the range
of p values can be presented to the user, allowing the user
to select from the Pareto front.

D. Sampling-based Planning

For higher-dimensional problems, we evaluate both the
T-RRT algorithm [5] and the GradienT-RRT algorithm [6]
with our representation. Both are probabilistically-complete
sampling-based planners suitable for cost-space planning
in high-dimensional spaces. Our choice of these planners
instead of the better-known RRT* [24] is because T-RRT
has been shown to outperform RRT* [25], [26] in higher
dimensions and because GradienT-RRT is an extension of T-
RRT specifically intended for narrow low-cost regions such
as those encountered in many scenarios where objects need
to be deformed to complete a task.

Fig. 3: Workspace gradient computation: initial per-voxel gradients
∇xi,∇xj (dashed arrows) are computed using a signed distance
field in GradienT-RRT. These gradients are scaled by the cost
function evaluated at the voxel of intersection (shaded) to produce
the final Ci∇xi, Cj∇xj (solid arrows).

The T-RRT algorithm, unlike the basic RRT, uses cost
to control the addition of nodes to the tree. Addition of
nodes is a function of the cost of the new node, the cost
of its parent, and the distance between them (see Algorithm
2 in [5] for details). New nodes of lower cost than their
parents are automatically added. Higher-cost nodes are added
to the tree with probability dependent on the cost increase
and the current temperature. Expansion behavior is primarily
controlled with the nFailMax parameter, which specifies
the number of unsuccessful extensions required to increase
temperature. Effectively, nFailMax can be used to trade
between cost and planning time – lower values will result
in more rapid expansion (and thus faster planning), while
higher values will result in lower cost solutions, usually at
the expense of longer planning time.

The GradienT-RRT algorithm is designed to address par-
ticular shortcomings of T-RRT, namely in the inability of
T-RRT to follow narrow valleys in the cost-space. Instead
of simply rejecting higher-cost nodes, GradienT-RRT adjusts
them using the gradient of the cost function. If these new
nodes result in lower cost, they are then added to the tree.
GradienT-RRT has been previously applied to a range of
cost-space problems including those with workspace, task-
space, and configuration-space costs. However, GradienT-
RRT requires a function that computes the gradient ∇q
of the cost function at configuration q in addition to the
cost of that configuration. Our approach to computing the
gradient derives from previous work planning for workspace
uncertainty [6].

The gradient for a given state is computed as shown in
Equation 2 in a similar manner to that used in [6].

∇q = J(q, x1, x2, ...)
T [C1∇xT

1 , C2∇xT
2 , ...]

T (2)

Here, a workspace gradient ∇xi is computed for each
voxel xi of the robot that intersects an obstacle at configura-
tion q. As this workspace gradient only reflects penetration of
filled voxels, we multiply the magnitude of the gradient for
each voxel with the cost computed from our aforementioned
cost function Ci as shown in Figure 3. We use the Jacobian
J(q, x1, x2, ...), a composition of the Jacobians for each point
in the intersection, to convert this workspace gradient to the



(a) Triple-wall (b) Multi-cost

Fig. 4: Simulation environments (a) three walls with a deformation-
free path, (b) two walls with multiple sensitivity values – blue
sections have half the sensitivity of gray sections.

C-space gradient ∇q needed for GradienT-RRT. For both
T-RRT and GradienT-RRT planners, edge cost is simply the
change in cost between a node and its parent. Note that we do
not currently have an equivalent to p for our sampling-based
planners, as the paths produced by T-RRT and GradienT-RRT
are not guaranteed to be optimal (though they have low cost
in practice).

IV. RESULTS

We have applied our methods to both simulation-only envi-
ronments and simpler physical environments manipulated by
a PR2 robot. For low-dimensional problems, we have imple-
mented a planner integrated with ROS [27], which provides
both visualization for planning and testing, control of the
PR2, and the interface to our custom deformation tracking
system. For higher-dimensional problems, we have modified
the existing GradienT-RRT planner in the OpenRAVE [28]
planning environment and implemented a validation environ-
ment using the Bullet physics simulation engine [29]. We
show the performance of these planners on several problems
and report time and cost results. We also present a way to
calibrate our model.

A. Low-dimensional Planning

We first demonstrate the capabilities of our representation
in low-dimensional environments using our A*-derived plan-
ner. We use a set of simulated environments and objects with
different combinations of hard and soft material properties.
The environments are modelled at a resolution of 8mm, for
a total size of 54000 voxels. Due to the well-known perfor-
mance problems of applying A* directly to high-dimensional
problems, we limit planner control to 3D translation of the
object.

1) Environment: We have built two simulation environ-
ments, shown in Figure 4, that demonstrate the capabilities
of our low-dimensional planning method. The first of these
environments provides a set of distinct pareto-optimal paths
with decreasing path lengths and increasing cost, while the
second environment illustrates the control provided by the
sensitivity parameter (e.g. Si(A)) of our representation. With
both of these environments, the behavior of the planner can
be controlled using p. Additionally, due to the simplicity of
our representation, it is trivial to change these environments
to reflect all four combinations of hard/soft obstacles and
robot, and we report results for all of these cases.

The first environment, (“triple-wall”), allows both
deformation-free and deformed paths. By varying p, we are
able to control the balance between deformation and path
length. Additionally, due to the existence of a deformation-
free solution, it can be simulated as a fully rigid environment
instead, and we provide this for comparison.

The second environment, (“multi-cost”), illustrates the
capability of our deformability and sensitivity representa-
tion. Both black and blue obstacles in this environment
exhibit the same nominal physical properties (captured by
deformability). However, we assign lower sensitivity to the
blue obstacles to indicate that deformation of them is less
severe. As before, using p we can tune the behavior of the
planner to produce paths that deform either or both blue and
black obstacles. While simple, this environment illustrates
the advantage of our representation, namely that it combines
both physical and qualitative properties of objects that are
difficult to capture using purely mechanical models.

(a) (b) (c) (d)

Fig. 5: Path classes for the Triple-wall simulation environment
(soft) using the robot (hard) shown (a) with the swept volume of
the robot shown in red (b) deformation free path: length = 94, p =
0.7, deformation = 0, (c) medium deformation path: length = 65, p
= 0.01, deformation = 683, and (d) highest deformation path: length
= 61, p = 0.0, deformation = 1062.

(a) (b) (c) (d)

Fig. 6: Path classes for the Multi-cost simulation environment (soft)
using the robot (hard) shown (a) with the swept volume of the robot
shown in red (b) lowest deformation path: length = 73, p = 0.7,
deformation = 81, (c) medium deformation path: length = 58, p =
0.01, deformation = 159, and (d) highest deformation path: length
= 57, p = 0.0, deformation = 310.

2) Testing: Using the triple-wall environment, we have
run the planner for all combinations of hard and soft proper-
ties and values of p ranging between 0 and 1. Three distinct
examples of these paths can be seen in Figure 5. Notably,
only very low values of p, such as p = 0.01 result in any
incurred deformation for this test environment. This is due
to the imbalance between cost incurred due to path length
and cost of deformation – the optimal non-deformation path
through the environment has a length of approximately 94,
while a deformation-causing path of length 61 incurs a defor-
mation cost of 1062. In contrast, the multi-cost environment
lacks a deformation-free path. As before, we have tested the
planner with a range of p values. Several examples of paths
with corresponding values of p used to produce them can be
seen in Figure 6.



(a) (b) (c) (d) (e)

Fig. 7: (a) Vision system for deformation tracking, (b) the three Pareto-optimal path classes, (c),(d),(e) execution of the shortest path
through the physical test environment, as seen by the forearm camera of the PR2.

3) Performance: For each combination of hard and soft
environment and robot, we ran our discrete planner 101
times on each environment, increasing p from 0.0 to 1.0 in
0.01 increments. Planning times for the two simulation envi-
ronments (triple-wall and multi-cost) average approximately
14.4 seconds and 2.3 seconds, respectively, for these experi-
ments. A notable outlier in terms of run time exists for very
low values of p in cases with soft environments and/or soft
robots, in which a solution is found in under 2 and 1 seconds,
respectively, because the cost of deformation is effectively
ignored in these cases. In general, while computation of
deformation adds comparatively little overhead to the state
evaluation process, planner performance is worse with fully
deformable environments or fully deformable robots with
p values above zero, as there are no longer any infeasible
states that can be eliminated as would be the case with rigid
environments. As a result, there are more states to consider.

B. PR2 Testing

We have also built a test environment to evaluate our cost
function and demonstrate the performance of our planner
when applied to a physical environment. This test envi-
ronment is similar in concept to the triple-wall simulation
environment discussed already, containing a hard robot and
soft obstacles, which has been simplified to allow assessment
of deformation. As full tracking of deformation in the
physical world is currently very difficult to accomplish, our
test environment allows us to sense physical deformation.

1) PR2 Implementation: Our test environment consists
of obstacles built out of deformable foam blocks on a
rigid backing. These blocks are attached to the backing
to prevent rotation or movement without affecting the de-
formable behavior of the blocks’ exterior (see Figure 7(a)).
For planning purposes, the test environment is represented at
5mm resolution, as this offers a balance between accuracy
and fast planning times. Planning times for the test environ-
ment average 1.2 seconds with a maximum of 1.7 seconds,
requiring the evaluation of at most 4818 unique states.

To represent the simulated robot in our test environment,
we use the red cylinder shown in Figure 7(b) which is moved
through the environment by a PR2 robot. For our tests,
paths planned in the simulator are converted into pose-space
trajectories in the PR2’s reference frame. Using the provided
inverse-kinematics software, we convert these pose-space tra-
jectories to joint-space trajectories which are then executed
using the PR2’s provided joint trajectory controllers, while

the base of the robot remains at a fixed location.
2) Deformation Tracking: To assess the accuracy of our

cost function, we use a vision-based tracking system shown
in Figure 7(a) to provide ground-truth values for deformation.
This vision system consists of a camera mounted above the
test environment which measures the visible deformation of
the foam environment. Our test environment is specifically
designed so that only the areas made up of deformable foam
are visible to the camera, as these are the only areas in which
deformation may occur.

3) Testing: Using three Pareto-optimal paths produced by
the planner shown in Figure 7(b), we executed each path
12 times through the environment with six executions in
either direction; snapshots from the execution are shown
in figures 7(c-e). Notably, the deformation-free path of p
= 0.5 caused a non-zero measured deformation – this was
due to A* planning paths that closely follow the shape of
obstacles, which results in interaction between the surface
of the foam environment and the plastic object. Overall,
however, measured deformation and observed behavior of the
foam strongly correlates to that expected from the planner.

4) Calibration: An additional role of the deformation
tracking system is to calibrate the costs returned by the
planner’s cost function to the costs measured by the tracking
system. To calibrate, we calculated the ratio between planned
and measured deformation (in pixels) for each point of the
three paths, and used the mean of this data to scale the
cost computed by our cost function. For the two Pareto-
optimal paths in Figure 7(b) with planned deformation, the
planner computed cumulative path costs of 581 and 1240
in units of our cost function. We measured cumulative path
deformation of 19700 and 56200 in units of pixels. Applying
our calibration, the planner costs are 23000 and 51000 pixels,
respectively, which are within 17% and 9% of the measured
values. Inaccuracy in the calibration occurs at points of
starting and ending deformation; we believe this results from
the discretization of the planner and the material properties
of our foam test environment.

C. Higher-dimensional Planning

To demonstrate the suitability of our representation for
higher-dimensional problems that cannot be reasonably ad-
dressed with discrete planning approaches, we use the T-
RRT and GradienT-RRT planners in the environment shown
in Figure 8.



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 8: 6-dimensional planning: (a-f) Execution of a planned trajectory in the OpenRAVE environment used for planning, (g-l) execution
of the same trajectory in the Bullet physics simulator.

1) Environment: In this environment, the vertical wall is
rigid and the cube robot is deformable. The vertical wall
is largely symmetric; however, the hole in the blue half
is 12.5% larger and thus presents a lower-cost path. The
robot has 6 degrees of freedom (translation and rotation),
but is neither capable of moving around the wall nor passing
completely through the wall, as the very center of the robot
is rigid. Rather, a valid solution must pass through one of
the two holes, both of which are smaller than the robot.
These holes pose two particular challenges to the planning
algorithm as each presents both a “narrow passage” and a
“cost-space chasm” [6] – i.e. a narrow area of low cost.

2) Testing: Using the aforementioned testing environ-
ment, we can produce paths such as those shown in Figure 8.
As already discussed, the GradienT-RRT planning algorithm
is especially designed to navigate the low-cost C-space
region resulting from the hole in the wall, however, neither
it nor T-RRT is particularly designed to address the problem
of entering this region.

In our initial tests, both T-RRT and GradienT-RRT failed
to compute any paths given a reasonable time limit. As a
workaround, we added virtual padding to the obstacle when
creating the discretized cost-space. This effectively increases
the volume of the obstacle and produces a smoother gradient
instead of a sharp boundary. Counter-intuitively, while this
padding makes the “narrow passage” of entry narrower, it
makes the volume of the cost-space chasm larger, which
increases the probability of sampling within it. Notably, it
also increases the area of “useful gradients” that push the
algorithm towards the hole. For paths such as that shown
in Figure 8, padding increased the length of the cost-space
chasm from 0.1m to 0.7m for both holes.

T-RRT GradienT-RRT
nFailMax 10 20 10 20
Planning time (s) 112(45.6) 736(260) 20.6(10.7) 175(69.4)
Planned cost 515(82.3) 478(56.9) 714(326) 563(164)
Calib. cost (m3) 3.04(0.48) 2.82(0.33) 4.21(1.90) 3.32(0.96)
Sim. cost (m3) 2.97(1.46) 2.63(1.28) 4.10(2.04) 3.48(1.29)

TABLE I: Performance data [mean(std. dev.)] for T-RRT and
GradienT-RRT planners. Cost given is the integral of costs incurred
at each state in a trajectory.

3) Performance: We ran both planners 30 times in our test
environment, each with nFailMax = 10 and nFailMax =
20. The results of these trials are shown in Table I. GradienT-
RRT produced solutions in all 30 trials for both values of
nFailMax, while T-RRT failed to find a solution in 1200
seconds for 8 of 30 trials with nFailMax = 20. GradienT-
RRT is significantly faster than T-RRT with the same param-

eters, however, T-RRT produces lower-cost paths and always
traverses the lower-cost hole when it returns a solution.
At nFailMax = 10 and nFailMax = 20, GradienT-
RRT planned paths through the higher-cost hole seven and
one times, respectively. The high standard deviation for the
cost produced by GradienT-RRT is the result of these paths
through the higher-cost hole.

As is clearly visible in Table I, T-RRT and GradienT-RRT
work best with different values of nFailMax. GradienT-
RRT, by virtue of “greedily” following the cost-space gradi-
ent, requires a higher value (e.g. 20) to discourage planning
through the higher-cost hole. T-RRT, on the other hand,
requires longer planning times for a given nFailMax but
produces lower-cost paths than GradienT-RRT with the same
parameters. Notably, both planners produce “corner-first”
trajectories for the cube, demonstrating that our planners
take advantage of the rotational degrees of freedom to reduce
deformation.

D. Simulator Validation

Given the difficulty of assessing real-world deformations,
our simulation environment provides an alternative to real-
world testing – albeit one limited by the accuracy of the
simulator. To assess the paths produced with the T-RRT and
GradienT-RRT planning algorithms, we have implemented
a validation environment using the Bullet physics simula-
tion engine to match the OpenRAVE planning environment
shown in Figure 8. This validation environment provides
soft-body physics to simulate the physical interactions be-
tween the deformable cube and the wall. The deformable
robot is modelled using a tetrahedral mesh anchored to a
small rigid body. This setup allows the soft robot to be
“towed” along the path produced by the planner. Deforma-
tion is assessed by computing the current volume of each
tetrahedron in the tetrahedral mesh (in m3) and comparing
the total volume against that of an undeformed reference
mesh.

Our calibration strategy is similar to that used previously
in Section IV-B.4. We calibrated the raw costs returned
by the planner for each of the 112 trajectories to produce
the calibrated cost values shown in Table I. Discrepancies
between the calibrated planner cost and the simulator cost
are largely due to “mangling” of the deformable cube – i.e.
it does not return to its original shape after deformation,
which is an artifact of the Bullet simulator. This effect can
be seen in Figure 8(l).



E. Representation Performance

Cost assessment using our cost function offers significant
performance improvements over cost assessment using phys-
ical simulation. A single cost assessment for the deformable
cube discussed in Section IV-C, modelled with 1000 voxels
in our representation, takes an average of 84 microseconds,
regardless of the state of the deformable object. In compari-
son, the same cost assessment done using the Bullet physics
simulator (see Section IV-D), with the cube modelled with
400 tetrahedrals, takes an average of 4 milliseconds when the
cube is in contact with a rigid obstacle, and 16 milliseconds
when the cube is in contact with a deformable obstacle. Not
only is using our representation significantly faster (almost
50 times so in hard-on-soft and 200 times so in soft-on-
soft), but Bullet at these settings–tuned for a balance between
simulation quality and speed–exhibits severe mangling and
distortion of the deformable object during and after deforma-
tion. Tuning parameters in favor of higher simulation quality
results in an even greater performance gap, while tuning
them in favor of faster simulation results in prohibitively
poor simulation quality.

V. CONCLUSIONS

We have proposed a new method of representing de-
formable objects that allows both physical and qualitative
properties to be captured in a voxel-based representation.
Using this representation, we have designed a cost function
that directly assesses the severity of deformation without ex-
pensive physical simulation or computation of deformed ge-
ometry. This cost function is particularly suitable for motion
planning, and we have demonstrated its application to both
discrete motion planning in low dimensions and sampling-
based motion planning in higher dimensions. We show that
our methods can generate paths that minimize deformation
in both simulated and physical environments with either
hard and soft robots in either hard and soft environments.
In addition, using both a physical test environment and a
soft-body simulation environment, we have demonstrated
methods for calibrating our object representation to match
observed object behavior.
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