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Abstract
We present a manipulation planning framework that allows robots to plan in the presence of constraints on end-effector
pose, as well as other common constraints. The framework has three main components: constraint representation,
constraint-satisfaction strategies, and a general planning algorithm. These components come together to create an efficient
and probabilistically complete manipulation planning algorithm called the Constrained BiDirectional Rapidly-exploring
Random Tree (RRT) – CBiRRT2. The underpinning of our framework for pose constraints is our Task Space Regions
(TSRs) representation. TSRs are intuitive to specify, can be efficiently sampled, and the distance to a TSR can be evaluated
very quickly, making them ideal for sampling-based planning. Most importantly, TSRs are a general representation of pose
constraints that can fully describe many practical tasks. For more complex tasks, such as manipulating articulated objects,
TSRs can be chained together to create more complex end-effector pose constraints. TSRs can also be intersected, a prop-
erty that we use to plan with pose uncertainty. We provide a detailed description of our framework, prove probabilistic
completeness for our planning approach, and describe several real-world example problems that illustrate the efficiency
and versatility of the TSR framework.
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1. Introduction

Constraints involving the pose of a robot’s end-effector are
some of the most common constraints in manipulation plan-
ning. They arise in tasks such as reaching to grasp an object,
carrying a cup of coffee, or opening a door. Although ubiq-
uitous, these constraints present significant challenges for
planning algorithms. Because the allowed configurations
of the robot are not known a priori, a planning algorithm
must discover valid configurations as it plans. In the con-
text of sampling-based motion planning, this exploration is
done through sampling. Yet sampling pose constraints in
an efficient and probabilistically complete manner is dif-
ficult because they can produce lower-dimensional mani-
folds in the configuration space of the robot. It is unclear
how to represent such constraints in a general way, how to
ensure that the exploration is efficient, and how to guarantee
probabilistic completeness.

Researchers have developed several algorithms capable
of planning with end-effector pose constraints (Koga
et al. 1994; Yamane et al. 2004; Yao and 2005; Bertram
et al. 2006; Drumwright and Ng-Thow-Hing 2006;
Stilman 2007). Although often able to solve the problem at
hand, these algorithms suffer from problems with efficiency

(Stilman 2007), probabilistic incompleteness (Koga et al.
1994; Yamane et al. 2004; Yao and Gupta 2005), and
overly-specialized constraint representations (Bertram
et al. 2006; Drumwright and Ng-Thow-Hing 2006).

We present a manipulation planning framework that
allows robots to plan in the presence of pose constraints.
The framework has three main components: an intuitive
constraint representation, constraint-satisfaction strategies,
and a general planning algorithm. These three components
come together to create an efficient and probabilistically
complete manipulation planning algorithm called the Con-
strained BiDirectional RRT (CBiRRT2). The underpinning
of our framework for pose-related constraints is our Task
Space Regions (TSRs) representation. TSRs are intuitive
to specify, can be efficiently sampled, and the distance to
a TSR can be evaluated very quickly, making them ideal
for sampling-based planning. Most importantly, TSRs are a
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Fig. 1. The HERB and HRP3 robots executing paths planned using our pose-constrained manipulation planning framework.

general representation of pose constraints that can describe
many practical tasks. TSRs can also be chained to describe
constraints on articulated objects and intersected to address
pose uncertainty. CBiRRT2 explores the constraints of a
given problem by sampling from TSRs and TSR chains
using projection methods and direct sampling of parame-
ters. These samples are used to determine goals for the plan-
ner and to construct paths on the manifold of configurations
allowed by the constraints.

Our constrained manipulation planning framework also
allows planning with multiple simultaneous constraints.
For instance, collision, torque, and balance constraints
can be included along with multiple constraints on end-
effector pose. Closed-chain kinematics constraints can also
be included as a relation between end-effector pose con-
straints without requiring specialized projection operators
(Yakey et al. 2001) or sampling algorithms (Cortes and
Simeon 2004).

We have applied our framework to a wide range of prob-
lems for several robots (Figure 1), both in simulation and in
the real world. These problems include grasping in cluttered
environments, lifting heavy objects, two-armed manipu-
lation, and opening doors, to name a few. Despite this
wide range of problems our approach only requires three
parameters, all of which are constant across the examples
described in this paper. We also provide a method for short-
ening paths generated by our planner, an important com-
ponent for producing practical paths with sampling-based
planners. Finally, since we are operating in the sampling-
based planning paradigm, our constraint representations
and constraint-satisfaction strategies can be used by other
planners such as Probabilistic RoadMaps (PRMs) (Kavraki
et al. 1996).

In the following sections, we first discuss previous work
related to our approach (Section 2). We then formulate
the constrained path planning problem and discuss three
strategies for planning with constraints on configuration
(Section 3). Section 4 presents TSRs, which can represent
constraints on end-effector poses and goals. We then extend

this representation to handle more complex constraints by
chaining TSRs together (Section 5). Section 6 describes
the CBiRRT2 planner, which is capable of planning with
TSRs and TSR chains, among other constraints. Section
7 describes several example problems and shows how to
formulate constraints for these problems using TSRs. The
performance of CBiRRT2 is also evaluated on each exam-
ple problem. We then describe an extension of the TSR
framework that allows planning with object pose uncer-
tainty in Section 8. Finally, we provide a summary of the
proof of probabilistic completeness for a class of planning
algorithms which includes CBiRRT2 in Appendix A.

2. Background

Our framework builds on several developments in control
theory and motion planning research. Some of the most
successful methods in control theory for manipulation have
come from local controllers that seek to minimize a given
function in the neighborhood of the robot’s current config-
uration through gradient-descent. For instance, controllers
have been developed for balancing two-legged robots
(Sugihara and Nakamura 2002), placing the end-effector
somewhere in task space (Khatib 1987), and collision-
avoidance (Sentis and Khatib 2005). The technique of
recursive null-space projection (Sentis and Khatib 2005)
can satisfy multiple constraints simultaneously by prioritiz-
ing the constraints and satisfying lower-priority constraints
in the null-space of higher-priority ones. These controllers
can succeed or fail depending on the prioritization of con-
straints, and it is unclear which of the multiple simultane-
ous constraints should be prioritized ahead of which others.
Even if the prioritization issue is resolved, controllers based
on gradient-descent only guarantee that a local minimum of
the function is found, which may not be sufficient to solve
the problem.

Researchers in control theory have also pursued more
global solutions, such as building control policies through
dynamic programming (Bellman 1957). However, such
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approaches do not scale to the high-dimensional configu-
ration spaces of most manipulators because of the exponen-
tial cost of computing optimal policies. Another popular
approach has been to learn policies from demonstration
(Atkeson and Schaal 1997; Bentivegna et al. 2004; Howard
et al. 2008). However, for our scope of manipulation prob-
lems, finding a set of examples that spans the space of tasks
the manipulator is expected to perform, as well as a robust
way to generalize from these examples, has proven quite
difficult.

In motion planning, a number of efficient sampling-based
planning algorithms have been developed for searching
high-dimensional C-spaces (Kavraki et al. 1996; LaValle
and Kuffner 2000). Sampling-based planners are designed
to explore the space of solutions efficiently, without the
exhaustive computation required for dynamic programming
and without being trapped by local minima like gradient-
descent controllers. This global planning ability is acutely
important for manipulation because even the most common
constraints (like collision-avoidance) can trap approaches
based on gradient-descent. Yet sampling-based planners fal-
ter when the constraints of a problem restrict the valid con-
figurations to a lower-dimensional manifold in the C-space.
It is unclear how to sample such manifolds efficiently and
how to ensure probabilistic completeness.

Our strategy is to merge the best aspects of control
theory and sampling-based planning to produce an algo-
rithm that searches globally while satisfying constraints
locally. The CBiRRT2 planner uses a bidirectional RRT
to explore the constraint manifold while enforcing con-
straints via rejection sampling and projection methods
based on gradient-descent. Although CBiRRT2 is based
on the Rapidly-exploring Random Tree (RRT) algorithm
(LaValle and Kuffner 2000), it is possible to adapt some of
the ideas and techniques in this paper to other search algo-
rithms such as the PRM (Kavraki et al. 1996). We selected
RRTs for their ability to explore C-space while retaining an
element of “greediness” in their search for a solution. The
greedy element is most evident in the bidirectional version
of the RRT algorithm (BiRRT), where two trees, one grown
from the start configuration and one grown from the goal
configuration, take turns exploring the space and attempt-
ing to connect to each other. In this paper, we demonstrate
that such a search strategy is also effective for motion plan-
ning problems involving pose constraints when it is coupled
with the proper strategies for handling those constraints.

The task of the CBiRRT2 planner is to construct a
C-space path that lies on the constraint manifolds induced
by pose constraints (as well as constraints like collision-
avoidance, balance, and torque). We distinguish this task
from the task of tracking pre-scripted end-effector paths
(Seereeram and Wen 1995; Oriolo et al. 2002; Oriolo and
Mongillo 2005) because we do not assume an end-effector
path is given. CBiRRT2 uses gradient-descent inverse-
kinematics techniques (Sciavicco and Siciliano 2000; Sen-
tis and Khatib 2005) to meet pose constraints and sample

goal configurations. The algorithm plans in the full C-space
of the robot, which implicitly allows it to search the null-
space of pose constraints, unlike task-space planners (Koga
et al. 1994; Yamane et al. 2004; Yao and Gupta 2005), which
assign a single configuration to each task-space point (from
a potentially infinite number of possible configurations).
Exploration of the null-space is necessary for probabilistic
completeness and can be useful for satisfying other con-
straints, such as avoiding obstacles or maintaining balance,
though our constraint representation could be incorporated
into task-space planners as well.

Algorithms similar to CBiRRT2 have been proposed by
Yakey et al. (2001) and Stilman (2007). Yakey et al. (2001)
proposed using Randomized Gradient Descent (RGD)
to meet closed-chain kinematics constraints. RGD uses
random-sampling of the C-space to iteratively project a
sample toward an arbitrary constraint (Yao and Gupta
2005). Although Yakey et al. (2001) showed how to
incorporate RGD into a sampling-based planner and their
method is quite general, it requires significant parameter-
tuning and they dealt only with closed-chain kinematic con-
straints, which are a special case of the pose constraints
used in this paper. Furthermore, Stilman (2007) showed
that when RGD is extended to work with more general
pose constraints it is significantly less efficient than Jaco-
bian pseudo-inverse projection and it is sometimes unable
to meet more stringent constraints. Our approach is simi-
lar to Stilman (2007) in that we use an RRT-based planner
with Jacobian pseudo-inverse projection, although we dif-
fer in the specifics of the planning algorithm and use TSRs,
which are a more general constraint representation.

Another key feature of CBiRRT2 is that it can sam-
ple TSRs to produce goal configurations. Other researchers
have approached the problem of ambiguous goal specifi-
cation by sampling some number of goals before running
the planner (Hirano et al. 2005; Stilman et al. 2007), which
limits the planner to a small set of solutions from a region
which is really continuous. Another approach is to bias a
single-tree planner toward the goal regions, although this
approach usually considers single points in the task space
(Drumwright and Ng-Thow-Hing 2006; Vande Weghe et al.
2007) or is hand-tuned for specific goal regions (Bertram
et al. 2006).

3. Constraints on configuration

Depending on the robot and the task, many types of con-
straints can limit a robot’s motion. This paper focuses
on scleronomic holonomic constraints, which are time-
invariant constraints evaluated at a given configuration of
the robot. Let the configuration space of the robot be Q.
A path in that space is defined by τ : [0, 1] → Q. We
consider constraints evaluated as a function of a config-
uration q ∈ Q in τ . The location of q in τ determines
which constraints are active at that configuration. Thus a
constraint is defined as the pair {C( q), s}, where C( q)∈
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R ≥ 0 is the constraint-evaluation function. C( q) deter-
mines whether the constraint is met at that q, and s ⊆ [0, 1]
is the domain of this constraint, i.e. where in the path τ
the constraint is active. To say that a given constraint is
satisfied we require that C( q)= 0 ∀q ∈ τ ( s). Each con-
straint defined in this way implicitly defines a manifold in Q
where τ ( s) is allowed to exist. Given a constraint, the man-
ifold of configurations that meet this constraint MC ⊆ Q is
defined as

MC = {q ∈ Q : C( q)= 0}. (1)

In order for τ to satisfy a constraint, all the elements of
τ ( s) must lie within MC . If ∃q /∈MC for q ∈ τ ( s) then τ
is said to violate the constraint.

In general, we can define any number of constraints for
a given task, each with their own domain. Let a set of n
constraint-evaluation functions be C and the set of domains
corresponding to those functions be S. Then we define the
constrained path planning problem as

find τ : q ∈MCi ∀q ∈ τ (Si)
∀i ∈ {1 . . . n}. (2)

Note that the domains of two or more constraints may
overlap, in which case an element of τ may need to lie
within two or more constraint manifolds.

3.1. Difficulties of constrained path planning

Two main issues make solving the constrained path
planning problem difficult. First, constraint manifolds are
difficult to represent. There is no known analytical repre-
sentation for many types of constraint manifolds (including
pose constraints) and the high-dimensional C-spaces of
most practical robots make representing the manifold
through exhaustive sampling prohibitively expensive. It
is possible to parameterize some constraint manifolds,
though this can be insufficient for planning paths because
the mapping from the parameter space to the manifold
can be non-smooth (see Figure 2). Thus, although we can
construct a smooth path in the parameter space, its image
on the constraint manifold may be disjoint. Restrictions
imposed on the mapping to render it smooth, like impos-
ing a one-to-one mapping from pose to configuration,
compromise on completeness.

Second, and acutely important for pose constraints, is
the fact that constraint manifolds can be of a lower dimen-
sion than the ambient C-space. Lower-dimensional man-
ifolds cannot be sampled using rejection sampling (the
sampling technique used by most sampling-based plan-
ners) and thus more sophisticated sampling techniques are
required. A key challenge is to demonstrate that the dis-
tribution of samples produced by these techniques densely
covers the constraint manifold, which is necessary for
probabilistic completeness.

We address the first issue by using a sampling-based
planner that explores the constraint manifold in the C-space
(not in the parameter space). This planner uses a variety

(a) (b)

Fig. 2. (a) Pose constraint for a 3-link manipulator: The end-
effector must be on the line with an orientation within ±0.7 rad
of downward. (b) The manifold induced by this constraint in the
C-space of this robot.

Fig. 3. The three sampling strategies used in our framework. Red
dots represent invalid samples and green dots represent valid ones.
Left: Rejection sampling. Center: Projection sampling. Right:
Direct sampling from a parameterization of the constraint.

of sampling techniques to generate samples on constraint
manifolds (Section 3.2). One of these techniques is able
to sample lower-dimensional constraint manifolds, and we
validate the probabilistic completeness of this approach in
Appendix A, thus addressing the second issue.

3.2. Sampling on constraint manifolds

In order to solve the constrained path planning problem, a
sampling-based planning algorithm must be able to gen-
erate configurations that lie on constraint manifolds. We
describe three general strategies for generating these con-
figurations: rejection, projection, and direct sampling (see
Figure 3).

In the rejection strategy, we simply generate a sample
q ∈ Q and check if C( q)= 0; if this is not the case, we
deem q invalid. This strategy is effective when there is a
high probability of randomly sampling configurations that
satisfy this constraint; in other words, MC occupies some
significant volume in Q. This strategy is used to satisfy
torque, balance, and collision constraints, among others.

The projection strategy is robust to more stringent con-
straints, namely ones whose manifolds do not occupy a
significant volume of the C-space. However, this robustness
comes at the price of requiring a function to evaluate how
close a given configuration is to the constraint manifold,
i.e. C( q) needs to encode some measure of distance to the
manifold. The projection strategy first generates a q0 ∈ Q
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then moves that q0 onto MC . The most common type of
projection operator relevant for our application is an itera-
tive gradient-descent process. Starting at q0, the projection
operator iteratively moves the configuration closer to the
constraint manifold so that C( qi+1)< C( qi). This process
terminates when the gradient-descent reaches a configura-
tion on MC , i.e. when C( qi)= 0. A key advantage of the
projection strategy is that it is able to generate valid config-
urations near other configurations on MC , which allows us
to use it in algorithms based on the RRT. This strategy is
used to sample on lower-dimensional constraint manifolds,
such as those induced by end-effector pose or closed-chain
kinematics constraints.

Finally, the direct sampling strategy uses a parameteri-
zation of the constraint to generate samples on MC . This
strategy is specific to the constraint representation, and the
mapping from the parameterization to MC can be arbi-
trarily complex. Although this strategy can produce valid
samples, it can be difficult to generate samples in a desired
region of MC , for instance generating a sample near other
samples (a key requirement for building paths). Thus we
will use this strategy only when sampling goals for our plan-
ner, not to build paths. We will describe how to do direct
sampling with our constraint representation in Section 4.

A given constraint may be sampled using one or more
of these strategies. The choice of strategy depends on the
definition of the constraint as well as the path planning algo-
rithm. Sometimes a mix of strategies may be appropriate.
For instance, a PRM planning with pose constraints may use
the direct sampling strategy to generate a set of map nodes
but may switch to the projection strategy when constructing
edges between those nodes.

4. Task Space Regions

We now focus on a specific constraint representation that
we have developed for planning paths for manipulators
with end-effector pose constraints. The pose of a manip-
ulator’s end-effector is represented as a point in SE( 3),
the six-dimensional space of rigid spatial transformations.
Many practical manipulation tasks, like moving a large box
or opening a refrigerator door, impose constraints on the
motion of a robot’s end-effector(s) as well as allowing free-
dom in the acceptable goal pose of the end-effector. For
example consider a humanoid robot placing a large box
onto a table (see Figure 1(d)). Although the humanoid’s
hands are constrained to grasp the box during manipulation,
the task of placing the box on the table affords a wide range
of box placements and robot configurations that achieve the
goal. We propose a framework for pose-constrained manip-
ulation planning which is capable of trading off constraints
and affordances to produce manipulation plans for high
degree of freedom (DOF) robots, like humanoids or mobile
manipulators.

Our constrained manipulation planning framework uses a
novel unifying representation of constraints and affordances
which we term Task Space Regions (TSRs) (Berenson et al.

2009c). TSRs describe end-effector constraint sets as sub-
sets of SE( 3). These subsets are particularly useful for spec-
ifying manipulation tasks ranging from reaching to grasp
an object and placing it on a surface or in a volume, to
manipulating objects with constraints on their pose, such
as transporting a glass of water without spilling or sliding a
milk jug on a table.

TSRs are specifically designed to be used with sampling-
based planners. As such, it is straightforward to specify
TSRs for common tasks, to compute distance from a given
pose to a TSR (necessary for the projection strategy), and
to sample from a TSR using direct sampling. Furthermore,
multiple TSRs can be defined for a given task, which allows
the specification of multiple simultaneous constraints and
affordances.

TSRs are not intended to capture every conceivable con-
straint on pose. Instead they are meant to be simple descrip-
tions of common manipulation tasks that are useful for
planning. We have also developed a more complex rep-
resentation for articulated constraints called TSR chains,
which is discussed in Section 5. Finally, we discuss the
limitations of these representations in Section 9.

4.1. TSR definition

Throughout this section, we will be using transformation
matrices of the form Ta

b, which specifies the pose of b in the
coordinates of frame a. Ta

b, written in homogeneous coor-
dinates, consists of a 3 × 3 rotation matrix Ra

b and a 3 × 1
translation vector ta

b:

Ta
b =

[
Ra

b ta
b

0 1

]
. (3)

A TSR consists of three parts:

• T0
w: transform from the origin to the TSR frame w;

• Tw
e : end-effector offset in the coordinates of w;

• Bw: 6× 2 matrix of bounds in the coordinates of w:

Bw =

⎡
⎢⎢⎢⎢⎢⎢⎣

xmin xmax

ymin ymax

zmin zmax

ψmin ψmax

θmin θmax

φmin φmax

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

The first three rows of Bw bound the allowable transla-
tion along the x, y, and z axes (in meters) and the last three
bound the allowable rotation about those axes (in radians),
all in the w frame. Note that this assumes the Roll-Pitch-
Yaw (RPY) Euler angle convention, which is used because
it allows bounds on rotation to be specified intuitively.

In practice, the w frame is usually centered at the origin of
an object held by the hand, or at a location on an object that
is useful for grasping. We use an end-effector offset trans-
form Tw

e because we do not assume that w directly encodes
the pose of the end-effector. Tw

e allows the user to specify
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Fig. 4. The w and e frames used to define end-effector goal TSRs for a soda can and a pitcher.

an offset from w to the origin of the end-effector e, which
is extremely useful when we wish to specify a TSR for an
object held by the hand or a grasping location which is off-
set from e; for instance in between the fingers. For some
example Tw

e transforms, see Figure 4.

4.2. Distance to TSRs

When using the projection strategy with TSRs, it will be
necessary to find the distance from a given configuration
qs to a TSR (please follow the explanation below in Figure
5). Because we do not have an analytical representation of
the constraint manifold corresponding to a TSR, we com-
pute this distance in task space. Given a qs, we use forward
kinematics to get the position of the end-effector at this con-
figuration T0

s . We then apply the inverse of the offset Tw
e to

get T0
s′ , which is the pose of the grasp location or the pose

of the object held by the hand in world coordinates:

T0
s′ = T0

s ( Tw
e )−1 . (5)

We then convert this pose from world coordinates to the
coordinates of w:

Tw
s′ =( T0

w)−1 T0
s′ . (6)

Now we convert the transform Tw
s′ into a 6 × 1 displace-

ment vector from the origin of the w frame. This displace-
ment represents rotation in the RPY convention so it is
consistent with the definition of Bw:

dw =

⎡
⎢⎢⎢⎣

tw
s′

arctan 2( Rw
s′32

, Rw
s′33

)

− arcsin( Rw
s′31

)

arctan 2( Rw
s′21

, Rw
s′11

)

⎤
⎥⎥⎥⎦ . (7)

Taking into account the bounds of Bw, we get the 6 × 1
displacement vector to the TSR, �x:

�xi =
⎧⎨
⎩

dw
i − Bw

i,1 if dw
i < Bw

i,1
dw

i − Bw
i,2 if dw

i > Bw
i,2

0 otherwise
, (8)

where i indexes through the six rows of Bw and six ele-
ments of �x and dw. ‖�x‖ is the distance to the TSR.
Note that we implicitly weigh rotation in radians and trans-
lation in meters equally when computing ‖�x‖, but the

Fig. 5. Transforms and coordinate frames involved in computing
the distance to TSRs. The robot is in a sample configuration which
has end-effector transform s, and the hand near the soda can at
transform e represents the Tw

e defined by the TSR.

two types of units can be weighed in an arbitrary man-
ner to produce a distance metric that considers one or
the other more important. Because of the inherent redun-
dancy of the RPY Euler angle representation, there are
several sets of angles that represent the same rotation. To
find the minimal distance by our metric, we evaluate the
norm of each of the possible RPY angle sets capable of
yielding the minimum displacement. This set consists of
the {�x4,�x5,�x6} defined above as well as the eight
equivalent rotations {�x4 ± π ,−�x5 ± π ,�x6 ± π}.

If we define multiple TSRs for a given manipulator, we
extend our distance computation to evaluate distance to all
relevant TSRs and return the smallest.

4.3. Direct sampling of TSRs

When using TSRs to specify goal end-effector poses, it will
be necessary to sample poses from TSRs. Sampling from
a single TSR is done by first sampling a random value
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between each of the bounds defined by Bw with uniform
probability. These values are then compiled in a displace-
ment dw

sample and converted into the transformation Tw
sample.

We can then convert this sample into world coordinates after
applying the end-effector transform:

T0
sample′ = T0

wTw
sampleTw

e . (9)

We observe that while our method ensures a uniform sam-
pling in the bounds of Bw, it could produce a biased sam-
pling in the subspace of constrained spatial displacements
SE( 3) that Bw parameterizes. However, this bias has not had
a significant impact on the runtime or success-rate of our
algorithms.

In the case of multiple TSRs specified for a single
task, we must first decide from which TSR to sample. If
the bounds of all TSRs enclose six-dimensional volumes,
we can choose among TSRs in proportion to their vol-
ume. However a volume-proportional sampling will ignore
TSRs that encompass volumes of fewer than six dimen-
sions because they have no volume in the six-dimensional
space. To address this issue we use a weighted sampling
scheme that samples TSRs proportional to the sum of the
differences between their bounds:

ζi =
6∑

j=1

(
Bwi

j,2 − Bwi
j,1

)
, (10)

where ζi and Bwi are the weight and bounds of the ith
TSR, respectively. Sampling proportional to ζi allows us
to sample from TSRs of any dimension except 0 while
giving preference to TSRs that encompass more volume.
TSRs of dimension 0, i.e. points, are given a fixed probabil-
ity of being sampled. In general, any sampling scheme for
selecting a TSR can be used as long as there is a non-zero
probability of selecting any TSR.

4.4. Planning with TSRs as goal sets

TSRs can be used to sample goal end-effector placements
of a manipulator, as would be necessary in a grasping or
object-placement task. The constraint for using TSRs in this
way is

{C( q)= DistanceToTSR( q) , s = [1]}, (11)

where the DistanceToTSR function implements the method
of Section 4.2, and s refers to the domain of the constraint
(Section 3).

To generate valid configurations in the MC correspond-
ing to this constraint, we can use direct sampling of TSRs
(Section 4.3) and pass the sampled pose to an Inverse Kine-
matics (IK) solver to generate a valid configuration. In order
to ensure that we don’t exclude any part of the constraint
manifold, the IK solver used should not exclude any con-
figurations from consideration. This can be achieved using
an analytical IK solver for manipulators with six or fewer

Algorithm 1: J+Projection(q)

while true do1

�x← DisplacementFromTSR(q);2

if ‖�x‖ < ε then3

return q;4

end5

J← GetJacobian(q);6

�qerror← JT( JJT)−1�x;7

q← ( q−�qerror);8

end9

DOF. For manipulators with more than six DOF we can use
a pseudo-analytical IK solver, which discretizes or samples
all but six joints.

Alternatively, we can use the projection strategy to sam-
ple the manifold. This would take the form of an iterative
IK solver, which starts at some initial configuration. This
configuration should be randomized to ensure exploration
of the constraint manifold. Note that this strategy is prone
to local minima and can be relatively slow to compute, so
we use it only when an analytical or pseudo-analytical IK
solver is not available (for instance with a humanoid).

Of course, the same definition and strategies apply to
sampling starting configurations as to goal configurations.

4.5. Planning with TSRs as pose constraints

TSRs can also be used for planning with constraints on
end-effector pose for the entire path. The constraint defi-
nition for such a use of TSRs differs from Equation 11 in
the domain of the constraint:

{C( q)= DistanceToTSR( q) , s = [0, 1]}. (12)

Since the domain of this constraint spans the entire path,
the planning algorithm must ensure that each configura-
tion it deems valid lies within the constraint manifold.
While the rejection strategy can be used to generate valid
configurations for TSRs whose bounds encompass a six-
dimensional volume, the projection strategy can be used for
all TSRs.

One method of projection for TSRs is shown in Algo-
rithm 1. This method uses the Jacobian pseudo-inverse (J+)
(Sciavicco and Siciliano 2000) to iteratively move a given
configuration to the constraint manifold defined by a TSR
(Berenson et al. 2009d).

The DisplacementFromTSR function returns the dis-
placement from q to a TSR, i.e. the result of Equation 8. The
GetJacobian function computes the Jacobian of the manip-
ulator at q. Although Algorithm 1 describes the projection
conceptually, in practice we must also take into account
the issues of step-size, singularity avoidance, and joint
limits when projecting configurations. We will show, in
Appendix A, that the distribution of samples generated on
the constraint manifold by this projection operator covers
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the manifold, which is a necessary property for probabilistic
completeness.

It is important to note that we can also use the method
of Section 4.3 to generate samples directly from TSRs and
then compute IK to obtain configurations that place the end-
effector at those samples. Such a strategy would be espe-
cially useful when planning in task space (i.e. the parameter
space of pose constraints) instead of C-space because it
would allow the task space to be explored while provid-
ing configurations for each task-space point (similar to Yao
and Gupta (2005)). However, we prefer the completeness
properties of C-space planners, so we focus on those in this
paper.

5. TSR chains

While we showed that TSRs are intuitive to specify, can be
quickly sampled, and the distance to TSRs can be evalu-
ated efficiently, a single TSR, or even a finite set of TSRs,
is sometimes insufficient to capture the pose constraints of
a given task. To describe more complex constraints such
as those required to manipulate articulated objects, this
section introduces the concept of TSR chains (Berenson
et al. 2009a), which are defined by linking a series of TSRs.
Although direct sampling of TSR chains follows clearly
from that of TSRs, the distance metric for TSR chains is
extremely different.

To motivate the need for a more complex representation
consider the task of opening a door while allowing the end-
effector to rotate about the door handle (see Figure 6). It
is straightforward to specify the rotation of the door about
its hinge as a single TSR and to specify the rotation of the
end-effector about the door’s handle as a single TSR if the
door’s position is fixed. However, the product of these two
constraints (allowing the end-effector to rotate about the
handle for any angle of the hinge) cannot be completely
specified with a finite set of TSRs. In order to allow more
complex constraint representations in the TSR framework,
we present TSR chains, which are constructed by linking a
series of TSRs.

5.1. TSR chain definition

A TSR chain C = {C1, C2, . . . , Cn} consists of a set of n
TSRs with the following additional property:

Ci.T
0
w =( Ci−1.T0

w) ( Ci−1.Tw
sample) ( Ci−1.Te

w) (13)

for i = {2 . . . n}, where Ci corresponds to the ith TSR in
the chain and Ci.{·} refers to an element of the ith TSR. Of
course a TSR chain can consist of only one TSR, in which
case it is identical to a normal TSR. Ci.Tw

sample can be any
transform obtained by sampling from inside the bounds of
Ci.Bw. Thus, we do not know Ci.T0

w until we have deter-
mined Tw

sample values for all previous TSRs in the chain. By

Fig. 6. The virtual manipulator for the door example. The green
dotted lines represent the links of the virtual manipulator and the
red dot and arrow represent the virtual end-effector, which is at
transform T0

vee.

coupling TSRs in this way the TSR chain structure can rep-
resent constraints that would otherwise require an infinite
number of TSRs to specify.

A TSR chain can also be thought of as a virtual serial-
chain manipulator. Again, consider the door example. To
define the TSR chain for this example, we can imagine a
virtual manipulator that is rooted at the door’s hinge. The
first link of the virtual manipulator rotates about the hinge
and extends from the hinge to the handle. At the handle, we
define another link that rotates about the handle and extends
to where a robot’s end-effector would be if the robot were
grasping the handle (see Figure 6). Here C1.Tw

sample would
be a rotation about the door’s hinge corresponding to how
much the door had been opened. In this way, we could see
the Tw

sample values for each TSR as transforms induced by
the “joint angles” of the virtual manipulator. The joint limits
of these virtual joints are defined by the values in Bw.

5.2. Direct sampling from TSR chains

To directly sample a TSR chain we first sample from within
C1.Bw to obtain C1.Tw

sample. This is done by sampling uni-
formly between the bounds in Bw, compiling the sampled
values into a displacement dw

sample = [x y z ψ θ φ], and con-
verting that displacement to the transform C1.Tw

sample. We

then use this sample to determine C2.T0
w via Equation 13.

We repeat this process for each TSR in the chain until we
reach the nth TSR. We then obtain a sample in the world
frame:

T0
sample′ =( Cn.T0

w) ( Cn.Tw
sample) ( Cn.Tw

e ) . (14)

Note that the sampling of TSR chains in this way is
biased, but the sampling will cover the entire set. To see this,
imagine a virtual manipulator with many links. It can be
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readily seen that many sets of different joint values (essen-
tially Tw

sample values) of the virtual manipulator will map
to the same end-effector transform. However, if the vir-
tual manipulator’s end-effector is at the boundary of the
virtual manipulator’s reachability, only one set of joint val-
ues maps to the end-effector pose (when the manipulator
is fully outstretched). Thus some T0

sample′ values can have a
higher chance of being sampled than others, depending on
the definition of the TSR chain. Clearly a uniform sampling
would be ideal but we have found that this biased sampling
is sufficient for the practical tasks we consider.

If there is more than one TSR chain defined for a single
manipulator, this means that we have the option of drawing
a sample from any of these TSR chains. We choose a TSR
chain for sampling with probability proportional to the sum
of the differences between the bounds of all TSRs in that
chain.

5.3. Distance to TSR chains

Although the sampling method for TSR chains follows
directly from the sampling method for TSRs, evaluat-
ing distance to a TSR chain is fundamentally different
from evaluating distance to a TSR. This is because we
do not know which Tw

sample values for each TSR in the
chain yield the minimum distance to a query transform
T0

s (derived from a query configuration qs using forward
kinematics).

To approach this problem, it is again useful to think of
the TSR chain as a virtual manipulator (see Figure 7(a)).
Finding the correct Tw

sample values for each TSR is equiva-
lent to finding the joint angles of the virtual manipulator that
bring its virtual end-effector as close to T0

s as possible. Thus
we can see this distance-checking problem as a form of the
standard IK problem, which is to find the set of joint angles
that places an end-effector at a given transform. Depending
on the TSR chain definition and T0

s , the virtual manipula-
tor may not be able to reach the desired transform, in which
case we want the virtual end-effector to get as close as pos-
sible. Thus we can apply standard iterative IK techniques
based on the Jacobian pseudo-inverse to move the virtual
end-effector to a transform that is as close as possible to
T0

s (see Figure 7(b)). Once we obtain the joint angles of
the virtual manipulator, we convert them to Tw

sample values
and forward-chain to obtain the virtual end-effector posi-
tion T0

vee. We then convert T0
s to the virtual end-effector’s

frame:
Tvee

s =( T0
vee)−1 T0

s , (15)

and then convert to the displacement form

dvee
s =

⎡
⎢⎢⎣

tvee
s

arctan 2( Rvee
s32

, Rvee
s33

)
− arcsin( Rvee

s31
)

arctan 2( Rvee
s21

, Rvee
s11

)

⎤
⎥⎥⎦ . (16)

Here ‖dvee
s ‖ is the distance between T0

s and T0
vee.

(a) (b) (c)

Fig. 7. Depiction of the IK handshaking procedure. (a) The vir-
tual manipulator starts in some configuration. (b) Finding the
closest configuration of the virtual manipulator. (c) The robot’s
manipulator moves to meet the constraint.

Once the distance is evaluated we can employ the pro-
jection strategy by calling the IK algorithm for the robot’s
manipulator to move the robot’s end-effector to T0

vee to meet
the constraint specified by this TSR chain (Figure 7(c)). We
term this process of calling IK for the virtual manipulator
and the robot in sequence IK handshaking.

Just as with TSR chains used for sampling, we may define
more than one TSR chain as a constraint for a single manip-
ulator. This means that we have the option of satisfying any
of these TSR chains to produce a valid configuration. To
find which chain to satisfy, we perform the distance check
from our current configuration to each chain and choose the
one that has the smallest distance.

5.4. Physical constraints

In the door example, the first TSR corresponds to a physi-
cal joint of a body in the environment, but the second one
is purely virtual; it defines a relation between two frames
that is not enforced by a joint in the environment (in this
case the relation is between the robot’s end-effector and
the handle of the door). It is important to note that TSR
chains inherently accommodate such mixing of real and vir-
tual constraints. In fact a TSR chain can consist of purely
virtual or purely physical constraints. However, when plan-
ning with TSR chains, special care must be taken to ensure
that any physical joints (such as the door’s hinge) be syn-
chronized with their TSR chain counterparts. This is done
by including the configuration of any physical joints cor-
responding to elements of TSR chains in the configuration
space searched by the planner (see Section 6.3).

In the case that the physical constraints included in
the TSR chain form a redundant manipulator, the inverse-
kinematics algorithm for the TSR chain should be modi-
fied to account for the physical properties of the chain. For
instance, if the chain is completely passive, a term that min-
imizes the potential energy of the chain should be applied
in the null-space of the Jacobian pseudo-inverse to find a
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local minimum-energy configuration of the chain. In gen-
eral, chains can have various physical properties that may
not be easy to account for using an IK solver. In that case,
we recommend a physical simulation of the movement of
the end-effector from it’s initial pose to T0

vee as it is being
pulled by the robot to find the resting configuration of the
chain.

5.5. Notes on implementation

Whenever we create a TSR chain, we also create its virtual
manipulator in simulation so that we can perform IK on this
manipulator and get the location of the virtual end-effector.
When we refer to the joint values of a TSR chain, we are
actually referring to the joint values of that TSR chain’s vir-
tual manipulator. Also, to differentiate whether a TSR chain
should be used for sampling goals or constraining configu-
rations or both, we specify how the chain should be used in
its definition. When inputing TSR chains into our planner,
we specify which manipulator of the robot they correspond
to as well as any physical DOFs that correspond to elements
of the chain.

6. The CBiRRT2 algorithm

This section describes the Constrained BiDirectional RRT
(CBiRRT2) planner, which is capable of planning with TSR
chains among other constraints. Since the representation of
TSR chains subsumes that of TSRs, the planner can incor-
porate the uses of TSRs already described. In this section
we describe the operations of the planner. Several exam-
ple problems, as well as CBiRRT2’s performance on these
problems, are shown in Section 7. We prove the proba-
bilistic completeness of CBiRRT2 when planning with pose
constraints in Appendix A.

6.1. Planner operation

CBiRRT2 takes into account constraints on the configura-
tion of the robot during its path as well as constraints on the
goal configuration of the robot. Constraints on the poses
and goal locations of the robot’s end-effectors are specified
as TSR chains.

CBiRRT2 operates by growing two trees in the C-space
of the robot (please follow the explanation below in Algo-
rithm 2). At each iteration CBiRRT2 chooses between one
of two modes: exploration of the C-space using the two trees
or direct sampling from a set of TSR chains. The prob-
ability of choosing to sample is defined by the parameter
Psample.

If the algorithm chooses to sample, it calls the AddRoot
function, which tries to inject a goal configuration into the
backward tree Tgoal. If the algorithm chooses to explore the
C-space, one of the trees grows a branch toward a randomly-
sampled configuration qrand using the ConstrainedExtend
function. The branch grows as far as possible toward qrand

Algorithm 2: CBiRRT2( Qs, Qg)

Ta.Init( Qs); Tb.Init( Qg);1

while TimeRemaining( ) do2

Tgoal = GetBackwardTree( Ta, Tb);3

if size( Tgoal)= 0 or rand( 0, 1) < Psample then4

AddRoot( Tgoal);5

else6

qrand ← RandomConfig( );7

qa
near ← NearestNeighbor( Ta, qrand);8

qa
reach ← ConstrainedExtend( Ta, qa

near, qrand);9

qb
near ← NearestNeighbor( Tb, qa

reach);10

qb
reach ← ConstrainedExtend( Tb, qb

near, qa
reach);11

if qa
reach = qb

reach then12

P← ExtractPath( Ta, qa
reach, Tb, qb

reach);13

return ShortenPath( P);14

else15

Swap( Ta, Tb);16

end17

end18

end19

return ∅;20

Algorithm 3: ConstrainedExtend( T , qnear, qtarget)

qs← qnear; qold
s ← qnear;1

while true do2

if qtarget = qs then3

return qs;4

else if ‖qtarget − qs‖ > ‖qold
s − qtarget‖ then5

return qold
s ;6

end7

qold
s ← qs;8

qs← qs +min(�qstep, ‖qtarget − qs‖) (qtarget−qs)
‖qtarget−qs‖ ;9

c← GetConstraintValues(T , qold
s );10

{qs, c}← ConstrainConfig(qold
s , qs, c, ∅);11

if qs �= ∅ then12

T .AddVertex( qs, c);13

T .AddEdge( qold
s , qs);14

else15

return qold
s ;16

end17

end18

but may be stalled due to collision or constraint viola-
tion and will terminate at qa

reach. The other tree then grows
a branch toward qa

reach, again growing as far as possible
toward this configuration. If the other tree reaches qa

reach,
the trees have connected and a path has been found. If not,
the trees are swapped and the above process is repeated.

The ConstrainedExtend function (see Algorithm 3) iter-
atively moves from a configuration qnear toward a config-
uration qtarget with a step size of �qstep. After each step



Berenson et al. 1445

Fig. 8. Depiction of one ConstrainedExtend operation. The oper-
ation starts at qnear, which is a node of a search tree on the con-
straint manifold and iteratively moves toward qtarget, which is a
configuration sampled from the C-space. Each step toward qtarget

is constrained using the ConstrainConfig function to lie on the
constraint manifold.

toward qtarget, the function checks if the new configura-
tion qs has reached qtarget or if it is moving farther from
qtarget; in either, case the function terminates. If the above
conditions are not true then the algorithm takes a step
toward qtarget and passes the new qs to the ConstrainConfig
function, which is problem-specific. If ConstrainConfig is
able to project qs to a constraint manifold, the new qs is
added to the tree and the stepping process is repeated.
Otherwise, ConstrainedExtend terminates (see Figure 8 for
an illustration). ConstrainedExtend always returns the last
configuration reached by the extension operation. The c
vector is a vector of TSR chain joint values of all TSR
chains. Every qs has a corresponding c which is stored
along with qs in the tree. We store the c vector so that the
ConstrainConfig function has a good initial guess of the
TSR chain joint values when taking subsequent steps. This
greatly decreases the time used by the inverse-kinematics
solver inside ConstrainConfig.

After a path is found, we shorten it using the ShortenPath
function. This function implements the popular “short-
cut” method to iteratively shorten the path. However,
instead of using straight lines which would violate con-
straints, we use the ConstrainedExtend function (Algorithm
4) for each short-cut. Using ConstrainedExtend guaran-
tees that constraints will be met along the shortened path.
Also, it is important to note that a short-cut generated by
ConstrainedExtend between two nodes is not necessarily
the shortest path between them because the nodes may have

Algorithm 4: ShortenPath( P)

while TimeRemaining( ) do1

Tshortcut← {};2

i← RandomInt( 1, size( P)−1);3

j← RandomInt( i, size( P) );4

qreach ← ConstrainedExtend( Tshortcut, Pi, Pj);5

if qreach = Pj and6

Length( Tshortcut)< Length( Pi · · ·Pj) then
P← [P1 · · ·Pi, Tshortcut, Pj+1 · · ·P.size];7

end8

end9

return P;10

Algorithm 5: AddRoot( T)

for i = 1 . . .m do1

C← GetTSRChainsForManipulator(i);2

{T0
target, c}← SampleFromTSRChains(C);3

Targets.AddTarget( T0
target, i);4

end5

{qs, c}← GetInitialGuess( );6

{qs, c}← ConstrainConfig(∅, qs, c, Targets);7

if qs �= ∅ then8

T .AddVertex( qs, c);9

end10

Algorithm 6: ConstrainConfig( qold
s , qs, c, Targets)

CheckDist = False;1

if Targets = ∅ then2

CheckDist = True;3

for i = 1 . . .m do4

C← GetTSRChainsForManipulator(i);5

T0
s ← GetEndEffectorTransform(qs, i);6

{T0
target, c}← GetClosestTransform(C, T0

s , c);7

Targets.AddTarget( T0
target, i);8

end9

end10

qs ← UpdatePhysicalConstraintDOF(qs, c);11

qs ← ProjectConfig(qs, Targets);12

if qs = ∅ or13

( CheckDist and
∣∣qs − qold

s

∣∣ > 2�qstep) then14

return ∅;15

end16

return {qs, c};17

been projected in an arbitrary way. This necessitates check-
ing whether Length( Pshortcut) is shorter than the original
path between i and j.

Note that CBiRRT2 can also be seeded with multiple
start and goal configurations (Qs/Qg). If no goals are speci-
fied, the AddRoot function will insert the first goal into the
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backward tree. In fact, the AddRoot function can be called
for both the start and the goal trees, if this is desired.

6.2. Planning with TSR chains

Accounting for TSR chains is done in the AddRoot
and ConstrainConfig functions. When CBiRRT2 chooses
to sample a goal configuration, it calls the AddRoot
function (see Algorithm 5). This function retrieves the
relevant set of TSR chains for each manipulator and
samples a target transform for each manipulator using the
SampleFromTSRChain function, which is an implementa-
tion of the methods described in Section 5.2. It then forms
an initial guess of the robot’s joint values and c, and calls
the ConstrainConfig function. In practice we usually use
the initial configuration of the robot and a vector of zeros
for c as the guess, but these can be randomized as well. If
the ConstrainConfig does not return ∅, the resulting qs and
corresponding c are added to the tree.

The ConstrainConfig function is problem-specific: an
example of a ConstrainConfig function that considers only
TSR chains is given in Algorithm 6. If ConstrainConfig
is not passed a set of targets (i.e. it is called from
ConstrainedExtend instead of AddRoot), then it gener-
ates a set of targets for each manipulator using the
GetClosestTransform function, which is an implementa-
tion of the methods described in Section 5.3. Note that
this function also updates the c vector with the joint val-
ues of the TSR chain that generated the closest trans-
form. The c values for the TSR chains that did not
yield the closest transform to T0

s are not updated. After
the target transforms for each manipulator are obtained,
ProjectConfig projects the configuration of the robot using
standard inverse-kinematics algorithms based on the Jaco-
bian pseudo-inverse to produce a qs which meets the con-
straints represented by the TSR chains. This completes the
IK handshaking process described in Section 5.3.

If ConstrainConfig was called by AddRoot, the distance
between qold

s and qs is unimportant. However, we do not
wish for qs to be too far from qold

s when extending using
ConstrainedExtend because the intermediate configurations
are not likely to meet the constraints. Thus we enforce a
small step size to reduce deviation from constraints between
nodes.

In most situations, we are also interested in satisfying
other constraints, such as balance and collision, using the
rejection strategy. Checks for these constraints should be
inserted at line 14 of ConstrainConfig.

6.3. Augmenting configuration with states
of physical DOF

Because TSR chains can specify constraints correspond-
ing to physical DOF of objects in the world (such as

the hinge of a door) as well as purely virtual con-
straints, we have to account for physical DOF when check-
ing collision and measuring distances in the C-space. To
achieve this, we include the configuration of all phys-
ical DOF in the configuration vector q. We set these
DOF by extracting their values from the vector of all the
TSR chains’ virtual manipulator joint values c using the
UpdatePhysicalConstraintDOF function. This is done on
line 11 of the ConstrainConfig function. Note that these
DOF are not affected by the ProjectConfig function.

6.4. Parameters

One of the strengths of CBiRRT2 is that it uses only three
parameters, all of which require minimal tuning. The first
parameter encodes the RRT step size �qstep. �qstep can be
increased to speed up planning or decreased to allow finer
motions but we have found that tuning this parameter is
rarely necessary for the manipulation tasks we consider.

The numerical error allowed in meeting a pose constraint
ε (in Algorithm 1) is necessitated by the numerical nature
of our projection operator. Our projection method is quite
accurate, so CBiRRT2 performs well even for small values
of ε.

Finally, the third parameter Psample is only used when
goal sampling is required. A higher Psample biases CBiRRT2
toward goal sampling, a lower one biases it toward building
paths. We showed in Berenson et al. (2009c) that the algo-
rithm performs well for a wide range of values for Psample,
though we recommend setting the value to be low because
in our problem domain building paths usually requires more
computation than sampling an adequate goal.

7. Example problems

This section describes six example problems and the con-
straints specified for those problems as well as results for
running CBiRRT2 in simulation and experiments on phys-
ical hardware. These examples illustrate the use of TSRs
and TSR chains for common problems in manipulation
planning. They are also meant to show the wide range of
problems and robots which can be handled by the TSR
framework.

The first three examples are implemented on a 7-DOF
Barrett WAM and the last three on the 28-DOF HRP3
humanoid. Since the TSR chain representation subsumes
the TSR representation, each problem can be implemented
using TSR chains. However, we do not describe a chained
implementation when only chains of length one are used
so that the explanation is clearer. Unless otherwise noted,
we use the ConstrainConfig function of Algorithm 6 and
include collision and balance (for HRP3) constraints on line
14, so all paths produced by the planner are guaranteed to
be collision-free and quasi-statically balanced. We set the
allowable error for meeting a constraint to ε = 0.001 and
the RRT stepsize �qstep = 0.05. Psample is only used in the
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Fig. 9. Snapshots from three runs of three trajectories planned
using CBiRRT2. Top row: Grasping and throwing away a box
of rice. Middle row: Grasping and throwing away a juice bottle.
Bottom row: Grasping and throwing away a soda can.

first and fifth examples, where its value is 0.1. All experi-
ments were performed on a 2.4 GHz Intel CPU with 4 GB
of RAM.

7.1. Clearing a table

In this problem the robot’s task is to clear a table (see
Figure 9). Each object on the table has a set of TSRs associ-
ated with it, similar to the TSRs defined in Figure 4. For the
soda can and juice bottle we define allowable grasp poses
similar to those used for the soda can in Figure 4. For the
notebook and rice box, we define a TSR for each side of
the object with the hand facing that side. Note that we do
not specify which object to grasp, we simply input all the
TSRs for all the objects into the planner and execute the first
path the planner returns. After the robot grasps one of the
objects, we plan a path to throw it away using a TSR placed
over the recycling bin. This TSR allows translation freedom
over the top of the bin and full rotation freedom. Snapshots
from the execution of this task are shown in Figure 9. The
objects were recognized and localized using a vision algo-
rithm based on SIFT feature matching (Collet et al. 2009).
Seven objects were picked up and dropped into the recy-
cling bin. The average time for planning a reaching path
was 3.5 s and the average planning time for planning a path
to the recycling bin was 2.44 s (all runs were successful).

7.2. The maze puzzle

In this problem, the robot must solve a maze puzzle by
drawing a path through the maze with a pen (see Figure 10).
The constraint is that the pen must always be touching the
table, although the pen is allowed to pivot about the contact
point up to an angle of α in both roll and pitch. We define
the end-effector to be at the tip of the pen with no rotation
relative to the world frame. To specify the constraint in this

Fig. 10. A trajectory found for the maze puzzle using α = 0.4 rad.
The black points represent positions of the tip of the pen along the
trajectory.

Table 1. Simulation results for the maze puzzle

α (rad) 0.0 0.1 0.2 0.3 0.4 0.5

Avg. Runtime(s) >83.5 >58.8 >49.0 19.5 14.3 15.2
Success Rate 40% 60% 90% 100% 100% 100%

problem, we define one pose constraint TSR with T0
w to be

at the center of the maze with no rotation relative to the
world frame (z being up). Tw

e is identity and Bw is

Bw =

⎡
⎢⎢⎢⎢⎢⎢⎣

−∞ ∞
−∞ ∞

0 0
−α α

−α α

−π π

⎤
⎥⎥⎥⎥⎥⎥⎦

. (17)

This example is meant to demonstrate that CBiRRT2
is capable of solving multiple narrow passage problems
while still moving on a constraint manifold. It is also meant
to demonstrate the generality of CBiRRT2; no special-
purpose planner is needed even for such a specialized
task.

IK solutions were generated for both the start and goal
positions of the pen using the given grasp and input as Qs

and Qg. The values in Table 1 represent the average of 10
runs for different α values. Runtimes with a “>” denote that
there was at least one run that did not terminate before 120
s. For such runs, 120 was used in computing the average.
No goal sampling is performed in this example.

The shorter runtimes and high success rates for larger α
values demonstrate that the more freedom we allow for the
task, the easier it is for the algorithm to solve it. This shows
a key advantage of formulating the constraints as bounds
on allowable pose as opposed to requiring the pose of the
object to conform exactly to a specified value. For prob-
lems where we do not need to maintain an exact pose for an
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object we can allow more freedom, which makes the prob-
lem easier. See Figure 10 for an example trajectory of the
tip of the pen.

7.3. Heavy object with sliding surfaces

In this problem the task is to move a heavy dumbbell from
a start position to a given goal position (see Figure 12). The
weight of the dumbbell is known but we do not know what
configurations allow acceptable torques a priori. Sliding
surfaces are also provided so that the planner may use these
to support the object if necessary. The planner is allowed to
slide the object along a sliding surface or to hold the object
if the torques in the holding configuration are within torque
limits. The constraint on torque is formulated as

{
C( q)=

{
1 if InTorqueLimits( q)
0 otherwise

, s = [0, 1]

}
.

(18)

We employ the rejection strategy with respect to torque con-
straints, so we need to calculate the torques on the joints in
a given q. This is done using standard Recursive Newton-
Euler techniques (Walker and Orin 1982). We will refer to
the total end-effector mass as m. Note that this formulation
only takes into account the torque necessary to maintain a
given q, i.e. it assumes the robot’s motion is quasi-static.
The end-effector frame is defined to be at the bottom of the
dumbbell.

Each sliding surface is a rectangle of known width and
length with an associated surface normal. In general, the
surfaces may be slanted so they may only support part of
the object’s weight, which is taken into account when cal-
culating joint torques. Each sliding surface gives rise to a
constraint manifold and there can be any number of slid-
ing surfaces. To represent the sliding surfaces, we define
pose constraint TSRs at the centers of each sliding surface
with T0

w at the center with the z axis oriented normal to
the surface and Tw

e being identity. The Bw for each of these
TSRs is

Bw =

⎡
⎢⎢⎢⎢⎢⎢⎣

−length/2 length/2
−width/2 width/2

0 0
0 0
0 0
−π π

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)

The ConstrainConfig function for this example dif-
fers slightly from the one in Algorithm 6. Instead of
always satisfying one of the pose constraint TSRs, the
ConstrainConfig function for this example first checks if
the configuration meets the torque constraint and, if it does
not, attempts to satisfy the closest pose constraint TSR
in the same way as Algorithm 6 (see Figure 11). Finally,
ConstrainConfig for this example checks if the projected

Fig. 11. Finding the closest pose constraint TSR within
ConstrainConfig. The shortest distance from T0

e to T0
wi

(computed
using the DistanceToTSR function of Section 4.2) determines
which TSR is chosen for projection.

configuration supports enough weight to ensure that the
torque constraint is met.

We generate Qs and Qg the same way as in the maze puz-
zle. The values in Table 2 represent the average of 10 runs
for different weights of the dumbbell. The weight of the
dumbbell was increased until the algorithm could not find a
path within 120 s for one of the 10 runs. No goal sampling
is performed in this example.

The shorter runtimes and higher success rates for lower
weights of the dumbbell match our expectations about
the constraints induced by torque limits. As the dumbbell
becomes heavier, the manifold of configurations with valid
torque becomes smaller and thus finding a path through this
manifold becomes more difficult.

We also implemented this problem on our physical WAM
robot. Snapshots from three trajectories for three different
weights are shown in Figure 12. As with the simulation
environment, the robot slid the dumbbell more when the
weight was heavier, and sometimes picked up the weight
without any sliding for the mass of 4.98 kg. Note that we
take advantage of the compliance of our robot to help exe-
cute these trajectories but in general such trajectories should
be executed using an appropriate force-feedback controller.

7.4. Closed chain kinematics

One of the major research areas in two-arm manipula-
tion is the handling of closed chain kinematics constraints.
Some researchers approach the problem of planning with
closed chain kinematics by implementing specialized pro-
jection operators (Yakey et al. 2001) or sampling algo-
rithms (Cortes and Simeon 2004). However, in the TSR
framework no special additions are required. In fact, closed
chain kinematics can be enforced using straightforward
TSR definitions.
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Table 2. Simulation results for heavy object sliding

Weight (kg) 7 8 9 10 11 12 13 14

Avg.Runtime(s) 1.89 2.06 3.84 5.51 7.29 12.4 27.5 >53.9
Success Rate 100% 100% 100% 100% 100% 100% 100% 80%

Fig. 12. Experiments on the 7-DOF WAM arm for three dumbbells. Top row: m = 4.98 kg. Middle row: m = 5.90 kg. Bottom row:
m = 8.17 kg. The trajectory for the lightest dumbbell requires almost no sliding, whereas the trajectories for the heavier dumbbells
slide the dumbbell to the edge of the table. Time proceeds from left to right.

Consider the problem shown in Figure 13(a). The task
for the HRP3 humanoid is to pick up a box from the bot-
tom of the bookshelf and place it on top. Note that there
are two closed chains which must be enforced by the plan-
ner: the legs and arms form two separate loops. We root
the kinematic tree of the robot at the right foot, though the
floating-base formulation can also be used.

We define three pose constraint TSRs. The first TSR is
assigned to the left leg of the robot and allows no deviation
from the current left-foot location (i.e. Bw = 06×2). The
second and third TSRs are assigned to the left and right
arms and are defined relative to the location of the box (i.e.
the 0 frame of T0

w is the frame of the box). The bounds are
defined such that the hands will always be holding the sides
of the box at the same locations (Bw = 06×2). The geometry
of the box is “attached” to the right hand. We get the goal
configuration of the robot from inverse kinematics on the
target box position; no goal sampling is performed in this
example.

The result of this construction is that when
ConstrainedExtend generates a new qs, the box moves
with the right hand and the frame of the box changes, thus

breaking the closed-chain constraint. This qs is passed to
ConstrainConfig, which projects qs to meet the constraint
(i.e. moving the left arm). The right hand is constrained
to not deviate from its pose in qs by its TSR chain, which
ensures that the box does not move during the projection
operation. The same process happens simultaneously for
the left leg of the robot as well.

We implemented this example in simulation and on the
physical HRP3 robot. Runtimes for 30 runs of this problem
in simulation can be seen in Table 3. On the real robot, the
task was to stack two boxes in succession; snapshots from
the execution of the plan can be seen in Figure 14. The
experiments on the robot show that we can enforce strin-
gent closed-chain constraints using the CBiRRT2 planner
and TSRs.

7.5. Simultaneous constraints and
goal sampling

The task in this problem is to place a bottle held by HRP3
into a refrigerator (see Figure 13(b)). Usually, such a task
is separated into two parts: first open the refrigerator and
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(a) (b)

(c)

Fig. 13. Snapshots from paths produced by our planner for the three examples using HRP3 in simulation. (a) Closed chain kinematics
example. (b) Simultaneous constraints and goal sampling example. (c) Manipulating a passive chain example.

Fig. 14. Snapshots from the execution of the box stacking task on the HRP3 robot.

then place the bottle inside. However, with TSRs, there is
no need for this separation because we can implicitly sam-
ple how much to open the refrigerator and where to put the
bottle at the same time. The use of TSR chains is important
here, because it allows the right arm of the robot to rotate
about the handle of the refrigerator, which gives the robot
more freedom when opening the door. We assume that the
grasp cages the door handle (as in Diankov et al. (2008))
so the end-effector can rotate about the handle without the
door escaping.

There are four TSR chains defined for this problem. The
first is the TSR chain (1 element) for the left leg, which
is the same as in the previous example. This TSR chain
is marked for both sampling goals and constraining pose.
The second TSR chain (2 element) is defined for the right
arm and is described in Section 5.1. This chain is also
marked for both sampling goals and constraining pose. The
third TSR chain (1 element) is defined for the left arm and
constrains the robot to disallow tilting of the bottle during

the robot’s motion. This chain is used only as a pose
constraint. Its bounds are

Bw =

⎡
⎢⎢⎢⎢⎢⎢⎣

−∞ ∞
−∞ ∞
−∞ ∞

0 0
0 0
−π π

⎤
⎥⎥⎥⎥⎥⎥⎦

. (20)

The final TSR chain (1 element) is also defined for the left
arm and represents the allowable placements of the bot-
tle inside the refrigerator. Its Bw has freedom in x and y
corresponding to the refrigerator width and length, and no
freedom in any other dimension. This chain is only used for
sampling goal configurations.

The result of this construction is that the robot simulta-
neously samples a target bottle location and wrist position
for its right arm when sampling goal configurations, so it
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Table 3. Runtimes for example problems using HRP3

Mean Std Dev % Success

Closed chain kinematics 4.21 s 2.00 s 100%
Simultaneous constraints

and goal sampling 1.54 s 0.841 s 100%
Manipulating a passive chain 1.03 s 0.696 s 100%

can perform the task in one motion instead of in sequence.
Another important point is that we can be rather sloppy
when defining TSRs for goal sampling. Observe that many
samples from the right arm’s TSR chain will leave the door
closed or marginally open, thus placing the left arm into col-
lision if it is reaching inside the refrigerator. However, this
is not an issue for the planner because it can always sam-
ple more goal configurations and the collision constraint is
included in the ConstrainConfig function. Theoretically, a
TSR chain defined for goal sampling need only be a super-
set of the goal configurations that meet all constraints (as
long as it is of the same dimensionality). However, as the
probability of sampling a goal from this TSR chain which
meets all constraints decreases, the planner will require
more time to generate a goal configuration, thus slowing
down the algorithm.

Runtimes for 30 runs of this problem in simulation can
be seen in Table 3.

7.6. Manipulating a passive chain

The task in this problem is for the robot to assist in placing
a disabled person into bed (see Figure 13(c)). The robot’s
task is to move the person’s right hand to a specified point
near his body. The person’s arm is assumed to be completely
passive and the kinematics of the arm (as well as joint lim-
its) are assumed to be known. In this problem, we get the
goal configuration of the robot from inverse kinematics on
the target pose of the person’s hand. The robot’s grasp of the
person’s hand is assumed to be rigid. No goal sampling is
performed in this example.

There are two TSR chains defined for this problem, both
of which are used as pose constraints. The first is the TSR
chain (1 element) for the left leg, which is the same as the
previous example. The second is a TSR chain (6 element)
defined for the person’s arm. Every element of this chain
corresponds to a physical DOF of the person’s arm. Note
that since the arm is not redundant, we do not need to per-
form any special IK to ensure that the configuration of the
person matches what it would be in the real world.

The result of this construction is that the person’s arm
will follow the robot’s left hand. Since the configuration of
the person’s arm is included in q, there cannot be any signif-
icant discontinuities in the person’s arm configuration (i.e.
elbow-up to elbow-down) because such configurations are
distant in the C-space.

This example shows that the TSR framework is capa-
ble of handling complex chains of constraints in addition

to the simpler constraints of the previous problems. Run-
times for 30 runs of this example in simulation can be seen
in Table 3.

8. Extension: Addressing pose uncertainty
with TSRs

In an effort to broaden the applicability of our framework to
larger classes of real-world problems, we have been study-
ing how to compute safe plans in the presence of uncer-
tainty (Berenson et al. 2009b). A common assumption when
planning for robotic manipulation tasks is that the robot has
perfect knowledge of the geometry and pose of objects in
the environment. For a robot operating in a home environ-
ment it may be reasonable to have geometric models of the
objects the robot manipulates frequently and/or the robot’s
work area. However, these objects and the robot often move
around the environment, introducing uncertainty into the
pose of the objects relative to the robot. Laser-scanners,
cameras, and sonar sensors can all be used to help resolve
the poses of objects in the environment, but these sen-
sors are never perfect and usually localize the objects to
be within some hypothetical set of pose estimates. Plan-
ning without regard to this set of estimates can violate task
specifications.

Suppose that a robot arm is to pick up an object by plac-
ing its end-effector at a particular pose relative to the object
and closing the fingers. If there is any uncertainty in the
pose of the object, generally no guarantee can be made that
the end-effector will reach a specific point relative to the
true pose of the object. Depending on the task, this lack
of precision may range from being the source of minor
disturbances to being the cause of critical failure.

TSRs allow planning for manipulation tasks in the pres-
ence of pose uncertainty by ensuring that the given task
requirements are satisfied for all hypotheses of an object’s
pose. TSRs also provide a way to quickly reject tasks which
cannot be guaranteed to be accomplished given the current
pose uncertainty estimates. In this section, we show how to
modify the TSRs of a given task to account for pose uncer-
tainty and guarantee that samples drawn from the modified
TSRs will meet task specifications. The methods presented
in this section apply only to the TSR representation; we
have not yet generalized them to account for TSR chains
because we do not yet have a method for intersecting the
implicit sets of poses defined by TSR chains.

8.1. Intersecting TSRs

Let the set of pose hypotheses for a given object be a set of
transformation matrices H. Also, let the set of TSRs defined
for this object be T . The process for generating a new set
of TSRs Tnew that takes into account H is shown in Algo-
rithm 7. The goal of this process is to find the intersection of
copies of each TSR corresponding to each pose hypothesis.
Any point sampled from within the volume of intersection
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Algorithm 7: ApplyUncertainty(T ,H)

T0
h0
← Any element of H;1

Tnew ← ∅;2

for t ∈ T do3

Tsplit ← SplitRotations( t, T0
h0

,H);4

for ts ∈ Tsplit do5

A← ∅; b← ∅;6

for T0
h ∈ H do7

V ← GetVertices( ts);8

Vxyz ←( T0
h0

)−1 T0
hVxyz;9

F ← GetFaces( V );10

{Atemp, btemp} ←11

FacesToLinInequalities( F);
A← A ∪ Atemp;12

b← b ∪ btemp;13

end14

P← GetVerticesFromInequalities( A, b);15

if P = ∅ then16

ts.T0
w ← h0;17

ts.Bw ← BoundingBox( P);18

ts.Tw
e ← t.Tw

e ;19

ts.LI← {A, b};20

Tnew ← Tnew ∪ ts;21

end22

end23

end24

return Tnew;25

is guaranteed to meet the task specification despite pose
uncertainty.

This algorithm first splits every TSR t ∈ T to take into
account the rotation uncertainty in H, generating a set Tsplit

for each t. See Figure 15 for an illustration of this process.
It then places a duplicate of each ts ∈ Tsplit at every loca-
tion defined by the transforms in H. Next, it computes the
volume of intersection of all duplicates for every ts (see Fig-
ure 16). Recall that TSR bounds define a cuboid in pose
space. The volume of intersection between multiple cuboids
is computed by first converting all faces of all cuboids into
linear constraints via the FacesToLinInequalities function
and then converting those linear constraints into vertices
P of a 6D polytope via the GetVerticesInequalities func-
tion. Since TSRs are convex we know that the polytope
of intersection must be convex as well. If the uncertainty
is too great (i.e. there is no 6D point where all duplicates
intersect), P will be empty. If P is not empty, we place an
axis-aligned bounding box around P, set this as the new
bounds of ts, and add ts to Tnew. Note that it is irrelevant
which element of H is used as T0

h0
because the results will

always be the same in the world frame.

Fig. 15. Process for splitting TSRs to take into account rotation
uncertainty. Only one dimension of rotation is shown here. The
three concentric circles correspond to a single TSR’s bound in
Roll that has been rotated by transforms T0

h0
, T0

h1
, and T0

h2
. Blue

regions correspond to allowable rotations and black regions to
unallowable rotations. The circles are cut at π = −π and over-
laid on the right. The strips where all rotations are valid (there
are no black regions) are extracted as new separate bounds for
this dimension. This process is identical for Roll, Pitch, and Yaw.
The cartesian product of the new bounds for Roll, Pitch, and Yaw,
along with the original x, y, and z bounds, produces a new set of
TSRs Tsplit.

Fig. 16. Intersection of five instances of a TSR. Left: x–y view.
Right: y–z view. The red points are sampled within the polytope of
intersection using rejection sampling.

8.2. Direct sampling from the volume
of intersection

In order to guarantee that a directly sampled 6D point meets
the uncertainty specification of the problem, samples drawn
from ts must lie inside the polytope defined by P. Ideally,
we would like to generate uniformly random samples from
within P directly. Indeed, this is always possible because the
polytope defined by P is convex. Because the polytope is
convex, it can always be divided into simplices using Delau-
nay Triangulation. To generate a uniformly random sample
from a collection of simplices, we first select a simplex pro-
portional to its area and then sample within that simplex
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Fig. 17. Sampled goal configurations of the WAM arm that are guaranteed to meet task specifications despite uncertainty for three
reaching tasks. The intersecting boxes above show several of the intersecting TSRs for these tasks. In the task shown in the center the
TSR for grasping the box from the top is eliminated by uncertainty (there is no point where all the boxes intersect) while the one for
grasping it from the side is not.

by generating a random linear combination of its vertices
(Devroye 1986). For simple polytopes this method is quite
efficient, however as the polytope defined by P grows more
complex, the Delaunay Triangulation becomes more costly,
so this method usually does not scale well with the number
of hypotheses in H.

Rejection sampling can also be used to sample from the
polytope defined by P. When using rejection sampling, we
sample a point x uniformly at random from the bounding-
box of P until we find an x which satisfies b−Ax ≥ 0, where
the matrix A and the vector b describe the hyperplanes and
offsets, respectively, that define the faces of P. This method
is quite fast in practice and does not require triangulating
the polytope defined by P, thus it is more suitable for use in
an online planning scenario.

In order to accommodate rejection sampling with TSRs,
we add another element to our TSR definition (Section 4.1)
for tasks with pose uncertainty:

• LI: Linear inequalities of the form b− Ax ≥ 0.

If the Tnew returned by ApplyUncertainty( T ,H) is
empty, then we know that it is impossible to accomplish
this task with the uncertainty in H. We can thus reject this
task without calling the planner, a key advantage of this
approach.

Several example reaching tasks and associated TSRs are
shown in Figure 17. The scene contains duplicates of every
object at its pose estimates to ensure that the path generated
by the planner is collision-free for all hypotheses of object
pose.

9. Discussion

The main advantage of our framework is the generality in
the constraint representation and planning method. We are
able to tackle a wide range of problems without resorting to
highly specialized techniques. This is evidenced in part by
the low number of parameters in our algorithm and that,
despite a wide range of problems and robots, the values
of these parameters were constant across all the example
problems.

Another advantage of our approach is that short-cutting
paths produced by our planner uses the same process as
growing branches. This allows us to easily shorten our paths
in the presence of multiple constraints, which was left as an
open problem in previous work (Yakey et al. 2001; Stilman
2007).

Since our framework is built around a sampling-based
planner we inherit many of the difficulties of this approach
to planning. For instance, it would be difficult to incorporate
non-holonomic constraints and dynamics into our frame-
work because these constraints would disrupt the distance
metric used by the RRT. On the other hand, we can employ
a wide range of techniques that speed up sampling-based
planning and repair paths in the presence of moving obsta-
cles. These techniques can be incorporated into our planner
to make it faster and more robust.

One criticism of the TSR framework is that the constraint
representation may not be sufficiently rich. For instance,
some modifications to TSR chains are necessary to accom-
modate constraints where DOF are coupled (as with screw
constraints). Indeed, TSRs and TSR chains cannot cap-
ture every conceivable constraint, nor are they intended to.
Instead, these representations attempt to straddle the trade-
off between practicality and expressivity. TSRs have proven
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sufficient for solving a wide range of real-world manipu-
lation problems while still remaining relatively simple and
efficient to use in a sampling-based planner. While a more
expressive representation is surely possible, we have yet
to find one that is as straightforward to specify and as
convenient for sampling-based planning.

Even if we were to adopt a different constraint repre-
sentation to solve a specific problem, many parts of our
framework would still be applicable. For instance, we would
still be able to use CBiRRT2 as long as the representation
provided for fast sampling and distance-checking meth-
ods. The proof of probabilistic completeness (Appendix A)
would also apply, because it addresses pose constraints in
general, not only TSRs.

One drawback of the TSR framework is that we have
not yet devised a method to prioritize constraints. As a
result, we can only specify simultaneous constraints using
an OR structure if we use the projection strategy. This
means that the planner has the option of satisfying con-
straint 1 OR constraint 2 OR constraint 3, and so on. One
way to address this issue would be to attempt to satisfy con-
straints in order of their priority, though this is not equiv-
alent to a truly prioritized framework. Another approach
would be to use projection operators that allow prioriti-
zation, like those discussed in Section A.7.2, although it
is unclear how to retain probabilistic completeness while
using those operators. We are very interested in investigat-
ing how to incorporate prioritization into the framework in
the future.

Finally, a practical issue with our method of planning on
constraint manifolds is that the distribution of samples may
sometimes be undesirable, i.e. the projection strategy biases
samples toward the boundaries of the manifold (Figure 18).
This bias leads to an over-exploration of the boundaries of
the manifold to the detriment of exploring the manifold’s
interior. It can cause the algorithm to perform slowly if an
interior point of the manifold is needed to complete a path.
On the other hand, the algorithm is much faster at find-
ing configurations on the boundary, which can be useful
for problems such as the weight-lifting example, where the
robot must slide the dumbbell to the edge of the table in
order to lift it.

10. Conclusion

We have presented a practical framework for represent-
ing and planning with end-effector pose constraints, among
others. The underpinnings of our approach are the TSR
and TSR chain representations, which allow us to easily
specify constraints for a given problem. These representa-
tions are designed specifically for sampling-based planners
and as a result possess fast sampling and distance-checking
methods. The TSR framework uses these representations to
characterize and solve many real-world problems ranging
from reaching to grasp to manipulating articulated objects.
Most importantly, the framework is designed for real-world

(a) (b)

Fig. 18. The depiction of a TSR and the samples on the corre-
sponding manifold generated using the CBiRRT2. (a) The end-
effector must be on the line with an orientation within ±0.7 rad
of downward. (b) The sampling is biased toward the boundaries of
the manifold.

robots, such as the mobile manipulator and humanoid
shown earlier. We discuss the completeness properties of
planning with end-effector pose constraints and present a
proof for a class of planning algorithms in Appendix A.
This provides a theoretical foundation for our framework
and reinforces its generality. Finally, we have begun to
apply our framework to planning with uncertainty, where
we developed a method that exploits freedoms in task
specification to compensate for uncertainty in object pose.

Funding

This research was partially supported by Intel Labs Pittsburgh,
and by the National Science Foundation (grant number EEC-
0540865).

Conflict of interest

The authors declare that they have no conflicts of interest.

Acknowledgements

Thanks are due to Ross Knepper, Julius Ziegler, Joel Chestnut,
Nico Blodow, and David Handron for helpful discussions.

References

Atkeson, CG and Schaal, S (1997) Learning tasks from a sin-
gle demonstration. In: Proc. IEEE International Conference on
Robotics and Automation (ICRA), 1706–1712.

Bellman, R (1957) Dynamic Programming. Princeton, NJ: Prince-
ton University Press.

Bentivegna, D, Atkeson, CG, and Cheng, G (2004) Learning
tasks from observation and practice. Robotics and Autonomous
Systems 47:163–169.

Berenson, D, Chestnutt, J, Srinivasa, SS, Kuffner, JJ, and Kagami,
S (2009a) Pose-Constrained Whole-Body Planning using Task
Space Region chains. In: Proc. IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids 09).



Berenson et al. 1455

Berenson, D and Srinivasa, S (2010) Probabilistically complete
planning with end-effector pose constraints. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA).

Berenson, D, Srinivasa, S, and Kuffner, J (2009b) Address-
ing Pose Uncertainty in Manipulation Planning Using Task
Space Regions. In: Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

Berenson, D, Srinivasa, SS, Ferguson, D, Collet, A, and Kuffner, J
(2009c) Manipulation planning with workspace goal regions.
In: Proc. IEEE International Conference on Robotics and
Automation (ICRA).

Berenson, D, Srinivasa, SS, Ferguson, D, and Kuffner, J (2009d)
Manipulation planning on constraint manifolds. In: Proc.
IEEE International Conference on Robotics and Automation
(ICRA).

Bertram, D, Kuffner, J, Dillmann, R, and Asfour, T (2006)
An integrated approach to inverse kinematics and path plan-
ning for redundant manipulators. In: Proc. IEEE International
Conference on Robotics and Automation (ICRA), 1874–1879.

Burdick, J (1989) On the inverse kinematics of redundant manip-
ulators: characterization of the self-motion manifolds. In: Proc.
IEEE International Conference on Robotics and Automation
(ICRA), 264–270.

Collet, A, Berenson, D, Srinivasa, SS, and Ferguson, D (2009)
Object recognition and full pose registration from a single
image for robotic manipulation. In: Proc. IEEE International
Conference on Robotics and Automation (ICRA).

Cortes, J and Simeon, T (2004) Sampling-based motion planning
under kinematic loop-closure constraints. In: Workshop on the
Algorithmic Foundations of Robotics (WAFR).

Devroye, L (1986) Non-Uniform Random Variate Generation.
New York: Springer-Verlag, 567–571.

Diankov, R, Srinivasa, SS, Ferguson, D, and Kuffner, J (2008)
Manipulation planning with caging grasps. In: Proc. IEEE-RAS
International Conference on Humanoid Robots (Humanoids
08).

Drumwright, E and Ng-Thow-Hing, V (2006) Toward interactive
reaching in static environments for humanoid robots. In: Proc.
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

Hauser, K and Latombe, J (2008) Multi-Modal Motion Planning
in Non-Expansive Spaces. In: Workshop on the Algorithmic
Foundations of Robotics (WAFR).

Hirano, Y, Kitahama, K, and Yoshizawa, S (2005) Image-based
object recognition and dexterous hand/arm motion planning
using rrts for grasping in cluttered scene. In: Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS).

Howard, M, Klanke, S, Gienger, M, Goerick, C, and Vijayakumar,
S (2008) Learning potential-based policies from constrained
motion. In: Proc. 8th IEEE-RAS International Conference on
Humanoid Robots (Humanoids 08).

Kavraki, LE, Svestka, P, Latombe, JC, and Overmars, MH (1996)
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Transactions on Robotics and
Automation 12:566–580.

Khatib, O (1987) A unified approach for motion and force con-
trol of robot manipulators: The operational space formulation.
IEEE Transactions on Robotics and Automation 3:43–53.

Koga, Y, Kondo, K, Kuffner, J, and Latombe, J-C (1994) Planning
motions with intentions. In: SIGGRAPH.

Kuffner, JJ Jr and LaValle, SM (2000) RRT-connect: An effi-
cient approach to single-query path planning. In: Proc.
IEEE International Conference on Robotics and Automation
(ICRA).

LaValle, S and Kuffner, J (2000) Rapidly-exploring random trees:
Progress and prospects. In: Workshop on the Algorithmic Foun-
dations of Robotics (WAFR).

LaValle, SM (2006) Planning Algorithms. Cambridge, UK: Cam-
bridge University Press.

Oriolo, G and Mongillo, C (2005) Motion planning for
mobile manipulators along given end-effector paths. In: Proc.
IEEE International Conference on Robotics and Automation
(ICRA).

Oriolo, G, Ottavi, M, and Vendittelli, M (2002) Probabilistic
motion planning for redundant robots along given end-effector
paths. In: Proc. IEEE/RSJ International Conference on Intelli-
gent Robots and System (IROS).

Sciavicco, L and Siciliano, B (2000) Modeling and Con-
trol of Robot Manipulators, 2nd edition. London: Springer,
96–100.

Seereeram, S and Wen, J (1995) A global approach to path
planning for redundant manipulators. IEEE Transactions on
Robotics and Automation 11:152–160.

Sentis, S and Khatib, O (2005) Synthesis of whole-body behaviors
through hierarchical control of behavioral primitives. Interna-
tional Journal of Humanoid Robotics 2:505–518.

Stilman, M (2007) Task constrained motion planning in robot
joint space. In: Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Stilman, M, Schamburek, JU, Kuffner, J, and Asfour, T (2007)
Manipulation planning among movable obstacles. In: Proc.
IEEE International Conference on Robotics and Automation
(ICRA).

Sugihara, T and Nakamura, Y (2002) Whole-body cooperative
balancing of humanoid robot using COG Jacobian. In: Proc.
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

Svestka, P (1996) On probabilistic completeness and expected
complexity of probabilistic path planning. Technical report,
UU-CS-96-20. Department of Computer Science, Utrecht Uni-
versity, Utrecht, Netherlands.

Vande Weghe, M, Ferguson, D, and Srinivasa, SS (2007) Random-
ized path planning for redundant manipulators without inverse
kinematics. In: Proc. IEEE-RAS International Conference on
Humanoid Robots (Humanoids 07).

Walker, M and Orin, D (1982) Efficient dynamic computer sim-
ulation of robotic mechanisms. ASME Journal of Dynamic
Systems Measurement and Control 104:205–211.

Yakey, JH, LaValle, SM, and Kavraki, LE (2001) Randomized
path planning for linkages with closed kinematic chains. IEEE
Transactions on Robotics and Automation 17:951–958.

Yamane, K, Kuffner, J, and Hodgins, J (2004) Synthesizing
animations of human manipulation tasks. In: SIGGRAPH.

Yao, Z and Gupta, K (2005) Path planning with general end-
effector constraints: using task space to guide configuration
space search. In: Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).



1456 The International Journal of Robotics Research 30(12)

A. Appendix: Probabilistic completeness

We now discuss a proof of probabilistic completeness
for our approach to planning with end-effector pose con-
straints. Since the proof is quite lengthy, we provide only
a summary here (for details see Berenson and Srinivasa
(2010)). We emphasize that this proof is valid for a class of
algorithms that plan with constraints on end-effector pose,
not only CBiRRT2. We also note that, while we focus on
the TSR representation in the rest of this paper, this sec-
tion makes no assumptions about the representation of pose
constraints. Our only restriction is that the dimensionality
of the manifold described by the constraint is fixed for a
given problem.

Depending on the definition of an end-effector pose con-
straint, it can induce a variety of manifolds in the robot’s
configuration space. If these manifolds have non-zero vol-
ume in the C-space (see Figure 19(d)) it is straightforward
to show that an RRT-based algorithm is probabilistically
complete because rejection sampling in the C-space will
eventually place samples inside of the manifold. However, if
a pose constraint induces a lower-dimensional manifold, i.e.
one that has zero volume in the C-space (see Figure 19(e)
and (f)), rejection sampling in the C-space will not generate
a sample on the constraint manifold.

RRT-based algorithms can overcome this problem by
using the projection strategy: sampling coupled with a pro-
jection operator to move configuration space samples onto
the constraint manifold. However, it is not clear whether the
projection strategy produces adequate coverage of the con-
straint manifold to guarantee probabilistic completeness.
The proof presented in this section guarantees probabilis-
tic completeness for a class of RRT-based algorithms given
an appropriate projection operator. This proof is valid for
constraint manifolds of any fixed dimensionality.

Our proof of probabilistic completeness has two parts:
first, we present a set of properties for the projection opera-
tor and prove that these properties allow the projection strat-
egy to cover the constraint manifold. Second, we describe
a class of RRT-based algorithms (such as CBiRRT2 and
TCRRT (Stilman 2007)), which use such a projection oper-
ator and prove that they are probabilistically complete.

A.1. Definitions

A topological manifold is a second-countable Hausdorff
space where every point has a neighborhood homeomor-
phic to an open Euclidean n-ball, where n is allowed to vary.
Manifolds can be disjoint, with each piece of the manifold
called a connected component. Manifolds that have a fixed
n (i.e. n-dimensional manifolds) are called pure manifolds.

Let μn be a measure of volume in an n-dimensional
space. If the volume of a manifold in an embedding space
is zero, then the probability of generating a sample on the
manifold by rejection sampling in the embedding space is
zero. Conversely if the volume of a manifold in an embed-
ding space is not zero, then the probability of generating a

(a) (b) (c)

(d) (e) (f)

Fig. 19. Three pose constraints and their corresponding C-space
constraint manifolds for a 3-link manipulator. (a) The end-effector
must be in the green rectangle with an orientation ±0.7 rad of
downward. (b) The end-effector must be on the line with an orien-
tation ±0.7 rad of downward. (c) The end-effector must be on the
line pointing downward. (d)–(f) show graphs created from sam-
pling on the manifolds corresponding to the constraints in (a)–(c),
respectively. Black points are nodes and blue lines are edges. The
manifold in (d) has non-zero volume in the C-space, the manifolds
in (e) and (f) do not.

sample on the manifold by rejection sampling in the embed-
ding space will go to one as the number of samples goes to
infinity.

A sampling method covers a manifold if it generates a set
of samples such that any open n-dimensional ball contained
in the manifold contains at least one sample.

Our proof of manifold coverage hinges on the concept
of self-motion manifolds, which were described in Burdick
(1989). A self-motion manifold is the set of configurations
in C-space which place the end-effector of the robot in a
certain pose.

Let the reachable manifold of end-effector poses of the
given manipulator be R ⊆ SE( 3). Here R is defined by the
Forward Kinematics function of the robot:

x : Q→ R, (21)

where Q is the C-space; x is always surjective and can be
one-to-one or many-to-one, depending on the manipulator.
We restrict our proof to manipulators whose Q and R are
both pure manifolds.

Let Q be n-dimensional, where n is the number of DOF
of the manipulator. We will parameterize SE( 3) locally
using three variables for translation and three for rotation,
i.e. a pose will be a vector in R

6. Let R be r-dimensional,
where r ≤ 6.

Let the manifold of end-effector poses allowable by the
task be T ⊆ R. Let this manifold have dimensionality d ≤
r. We will assume that d is fixed, though we will discuss
the implications of allowing d to vary in Section A.7. Let
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the manifold of configurations that place the robot’s end-
effector in T be M ⊆ Q. M is the union of all self-motion
manifolds that map to a pose in T :

M =
⋃
t∈T
{q ∈ Q | x( q)= t}. (22)

Here M has dimensionality m = n−( r− d).
We will be using the (weighted-)Euclidian distance met-

ric on SE( 3), which we will denote as dist. This distance
metric has the property that each pose in T has at least an
( r − d)-dimensional Voronoi cell in R. A Voronoi cell is
the set of points that are closer to a certain point than to any
other, given a distance metric (LaValle 2006).

Table 4 summarizes the definitions and dimensionalities
of manifolds used in the proof.

A.2. Proof of manifold coverage by the projection
strategy

The projection strategy first produces a sample in the C-
space and then projects that sample onto M using a pro-
jection operator P : Q → M. In order to show that an
algorithm using the projection strategy is probabilistically
complete, we must first show that this method covers M.

This section will show that the projection strategy does
indeed cover M if the projection operator has the following
properties:

1. P( q)= q if and only if x( q)∈ T ;
2. if x( q1) is closer to x( q2)∈ T than to any other point in

T and dist( x( q1) , x( q2) )< ε for an infinitesimal ε >
0, then x( P( q1) )= x( q2).

The first property guarantees that a configuration that is
already in M will project to itself. The second property
ensures that any pose in T can be chosen for projection.
We will describe the underlying mechanics of the projection
operator in Section A.4.

If d = r then μn(M)> 0. By the first property of
P, a sample placed in M will project to itself. Thus the
projection strategy will cover M by the same principle as
rejection sampling when M is of the same dimension as the
C-space.

The remainder of this section will focus on proving cov-
erage when d < r, i.e. when μn(M)= 0. Consider an open
m-dimensional ball Bm( q)⊆M for any q ∈M. Note that
open in this context refers to the openness of the set with
respect to M. For notational simplicity, let Bm represent any
Bm( q) for any such q. We will show that the projection strat-
egy places a sample in any Bm as the number of iterations
goes to infinity, thus covering M.

Consider an n-dimensional manifold C( Bm)= {q :
P( q)∈ Bm, q ∈ Q}. If such a C exists for any Bm, the
projection strategy will place a sample inside C with prob-
ability greater than zero (because C is n-dimensional) and
that sample will project into Bm. This will guarantee cover-
age of M as the number of iterations goes to infinity. But
how do we guarantee that such a C exists for any Bm?

Table 4. Definitions used throughout the proof of probabilistic
completeness

Name Symbol Dimension

C-space Q n
Configuration q 0
Constraint Manifold M m = n−( r− d)
Reachability R r
Pose x( q) 0
Task Constraint T d ≤ r

We will show that C can be defined as the intersec-
tion of two n-dimensional manifolds, x−1(N ) and UH,
both of which must exist for any Bm (notation will be
explained in subsequent subsections). The following sub-
sections describe each of these manifolds and show that
( x−1(N )∩UH) must be n-dimensional and all configu-
rations in ( x−1(N )∩UH) must project into Bm. Thus,
( x−1(N )∩UH) meets the requirements of C, which com-
pletes the proof of coverage.

A.3. To task space and back again: defining
x−1(N )

In this section we will define a manifold x−1(N ), which
projects into a set of self-motion manifolds S ⊆ M that
intersects Bm. We do this by mapping Bm into task space,
constructing an r-dimensional manifold of poses N that
project into x( Bm) and then mapping N back into C-space.
We summarize these three steps in Figure 20. N is guar-
anteed to exist by the second property of the projection
operator but the construction of this manifold is somewhat
detailed, so we refer the reader to Berenson and Srinivasa
(2010) for a full explanation.

The manifold produced at the end of the three-step
process is x−1(N ), which has the following properties:

1. x−1(N ) is n-dimensional;
2. x−1(N ) contains Bm;
3. P( x−1(N ) )= S.

Here S is defined as the manifold of configurations which
map into x( Bm), i.e. S = {q ∈ M | x( q)∈ x( Bm) } (see
Figure 21). We will use S to show coverage of M in
Section A.5.

S has the following properties:

1. if a self-motion manifold intersects Bm, it is a subset
of S;

2. if a self-motion manifold does not intersect Bm, it is not
a subset of S;

3. S �= ∅.
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Fig. 20. An example showing the process used to define x−1(N ). d = 1, r = 2, and n = 3.

Fig. 21. An example of P( x−1(N ) )= S. d = 1, r = 2, and n = 3.

A.4. Projection into a ball on a self-motion
manifold

We have shown that P( x−1(N ) )= S and described some
properties of S, however we have not stated where on
S a projected configuration will go. It is possible that a
q ∈ x−1(N ) will project to a configuration outside of Bm

because S may contain configurations outside of Bm (see
Figure 21).

In order to show that the probability of placing a sample
inside Bm using the projection strategy is greater than zero,
we need to show that there exists an n-dimensional mani-
fold around a ball on a self-motion manifold that projects
into that ball. The purpose of this subsection is to prove this
property of self-motion manifolds. The remainder of this
subsection will consider a self-motion manifold in isolation
in order to show this property.

Let us now look closer at the mechanism of projection
used by P. In this paper, we focus on projection opera-
tors based on Jacobian pseudo-inverse or Jacobian trans-
pose. These kinds of projection operators step toward a
pose target, and this process can be written as a differential
equation:

dq

dt
= f ( q( t) ) , t ∈ [0,∞) . (23)

An equilibrium point q̄ of Equation (23) satisfies
f ( q̄)= 0. q̄ is asymptotically stable if any q( 0) inside a
neighborhood containing q̄ will converge to q̄ as the number
of iterations of Equation (23) goes to infinity.

The set of equilibrium points for the task of placing the
end-effector at a given pose is the self-motion manifold Q̄,
which is ( n − r)-dimensional. In Berenson and Srinivasa
(2010), we showed that, for any q̄ ∈ Q̄, there exists an
r-dimensional ball Br( q̄) within which the conditions for
asymptotic stability hold. Thus the evolution of Equation

(23) results in the projection P( q( 0) )= q̄ for all q̄ ∈ Q̄,
for all q( 0)∈ Br( q̄). Note that this fact is only valid for a
self-motion manifold in isolation.

Let us now consider an open ( n − r)-dimensional
ball BQ̄( q̄)⊆ Q̄. Define H( BQ̄( q̄) ) as the manifold
Br( q̄)×BQ̄( q̄) embedded in Q (see Figure 22).

Fig. 22. A self-motion manifold in C-space. r = 2 and n = 3.

H has the following properties:

1. H is n-dimensional;
2. H contains BQ̄( q̄);
3. P( q)∈ BQ̄( q̄) for all q ∈ H (conditional).

It is important to note that we have only described H for
a self-motion manifold in isolation. The third property of H
is only valid when x( q) is closer to x( Q̄) than to any x( k),
for a self-motion manifold k ⊆(M− Q̄). That is, the third
property holds only when Q̄ is “chosen” by the projection
operator.

A.5. Putting it all together

We will now bring the concepts developed thus far together
to show coverage of M by the projection strategy. Recall
that, to show coverage of M, we must show that the
projection strategy places a sample inside any Bm ⊆M.

Section A.3 showed that a configuration inside x−1(N )
will project into S, which consists of all self-motion man-
ifolds that intersect Bm. Let us construct an n-dimensional
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manifold UH( Bm) by taking the union of the n-dimensional
H manifolds around every Q̄ ∩ Bm for all Q̄ ⊆ S:

UH( Bm)=
⋃
Q̄⊆S

H( Q̄ ∩ Bm) . (24)

Here UH inherits the properties of H, as well as the con-
dition on the third property: a configuration q ∈ UH will
project to a configuration inside Bm by the third property of
H if, for some Q̄ ⊆ S, x( q) is closer to x( Q̄) than to any
x( k), for a self-motion manifold k ⊆(M− S).

Let C =( x−1(N )∩UH) (see Figure 23). C has the
following properties:

1. C is n-dimensional;
2. P( q)∈ Bm for all q ∈ C.

Theorem 1. The projection strategy places a sample inside
any Bm as the number of samples goes to infinity.

Proof: By the first property of C, μn( C)> 0. Thus the prob-
ability of sampling a q ∈ C is greater than zero and, as the
number of samples goes to infinity, the probability of sam-
pling a q ∈ C goes to one. P( q)∈ Bm by the second property
of C. Thus we have shown that the projection strategy places
a sample inside any Bm as the number of samples goes to
infinity, which entails that the projection strategy covers M.

A.6. Probabilistic completeness of RRT-based
algorithms using the projection strategy

We can use the fact that the projection strategy covers
M to prove that RRT-based methods that plan paths on
M are probabilistically complete. We focus on a class of
RRT-based algorithms that plan with end-effector pose con-
straints, for example CBiRRT2 and TCRRT (Stilman 2007).
These algorithms grow trees on M by sampling near an
existing node on M and then projecting that sample to M.
An RRT-based algorithm with the following properties is
probabilistically complete:

1. Given a node of the existing tree, the probability of sam-
pling in an n-dimensional ball centered at that node is
greater than zero and the sampling covers this ball.

2. The algorithm uses a projection operator with the prop-
erties of P to project samples to M.

We know that the algorithm will cover any ball in M
centered at an existing configuration in the tree by Theorem
1. We can then use the series-of-balls argument to show
that we place a node in any Bm which is connected to the
starting configuration. The basis of this argument is that we
can construct a series of overlapping balls on the manifold
which contains some node in the tree and overlaps with Bm.
We can use Theorem 1 to show that an RRT node will be
placed in each region of overlap between subsequent balls
until the tree reaches Bm. For a more detailed explanation of
the series-of-balls argument see Svestka (1996) and Kuffner
and LaValle (2000).

Thus we have shown that the RRT can reach any Bm con-
nected to the starting configuration, which entails that the
algorithm is probabilistically complete.

A.7. Implications of the proof

We now discuss the implications of our proof for sam-
pling goals, choosing projection operators, and planning
with mixed-dimensional constraint manifolds.

A.7.1. Probabilistically complete goal sampling The
above proof also applies to pose goal constraints, where we
would like to ensure that projection sampling covers the
manifold of configurations corresponding to some set of
pose goals in task space. The same principles apply as in
the above proof, except that we do not rely on a planner
to explore the manifold, we simply sample it using the
projection strategy. It follows clearly from Theorem 1 that
this goal manifold will be covered if we sample it using the
projection strategy.

A.7.2. Projection operators Section A.2 describes a pro-
jection operator that guarantees probabilistic complete-
ness for RRT-based algorithms. The regularized Jacobian
pseudo-inverse or Jacobian transpose IK methods can be
used to perform the projection because they possess the
requisite properties. Unfortunately, there are some com-
mon iterative methods which will not yield probabilistic
completeness.

The null-space projection method (Sentis and Khatib
2005) operates by using the null-space of the primary task
(placing the end-effector in some pose) to satisfy secondary
tasks such as collision-avoidance or balancing. For this
method, the dq

dt of Equation (23) is

dq

dt
= J+ẋ+( I− J+J) q̇null, (25)

where J+ is the generalized pseudo-inverse of the Jacobian,
ẋ is the error in pose, and q̇null is the error in meeting a
secondary objective. This type of projection attains opti-
mal configurations by sliding along a self-motion manifold
when ẋ = 0. The secondary task induces local minima on
the self-motion manifold which attract configurations from
the rest of the self-motion manifold. Thus, if a ball on the
self-motion manifold does not contain a local minimum of
the secondary task, configurations projecting to that ball
may escape by sliding along the manifold. It follows that
this projection operator will not cover M. Although using
this projection operator in an RRT-based algorithm may
yield an effective planner, it will not be probabilistically
complete.

A.7.3. Mixed-dimensional constraint manifolds The proof
of coverage and probabilistic completeness assumed that
the pose constraint T had a fixed dimensionality d. If we
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Fig. 23. An example of C =( x−1(N ) ∩ UH). d = 1, r = 2, and n = 3.

allow d to vary, then m (the dimensionality of M) will vary
as well. Since our proof of coverage used only local proper-
ties of M, we can extend this proof to the case of varying m
simply by applying the proof to each m-dimensional com-
ponent of M for every m. However, there is the case when a
ball around a point on M contains components of varying
dimension. In this case, the ball can be split according to
the dimensionality of its components and C can be shown
to exist for one of these components, thus guaranteeing a
sample will be placed in this ball.

Although we can show that the projection strategy covers
M, the proof of probabilistic completeness for RRT-based
algorithms only holds when M is pure. The reason is that
mixed-dimensional manifolds can be constructed such that
all paths between two configurations must go through a
narrow passage, which is of lower dimension than any

component of the manifold. For instance, suppose M were
composed of two lines that intersect at some configura-
tion qp. To get from one line to the other, the algorithm
would need to find a path which contained qp. Yet there
is zero probability of generating qp exactly, thus a path
may never be found, though one exists. This difficulty is
not caused by the projection strategy and is not limited
only to pose constraints. Rather this difficulty arises for all
RRT-based planners when they must find a path through a
lower-dimensional narrow passage. Coverage of M does
not entail probabilistic completeness in this case. In order
to guarantee probabilistic completeness, the algorithm must
be able to generate samples in these lower-dimensional nar-
row passages, which can be done in a problem-specific way
(as in Hauser and Latombe (2008)).
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