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Abstract— To enable safe and efficient human-robot collab-
oration in shared workspaces, it is important for the robot
to predict how a human will move when performing a task.
While predicting human motion for tasks not known a priori is
very challenging, we argue that single-arm reaching motions for
known tasks in collaborative settings (which are especially rele-
vant for manufacturing) are indeed predictable. Two hypotheses
underlie our approach for predicting such motions: First, that
the trajectory the human performs is optimal with respect to an
unknown cost function, and second, that human adaptation to
their partner’s motion can be captured well through iterative re-
planning with the above cost function. The key to our approach
is thus to learn a cost function which “explains” the motion
of the human. To do this, we gather example trajectories
from two participants performing a collaborative assembly task
using motion capture. We then use Inverse Optimal Control
to learn a cost function from these trajectories. Finally, we
predict a human’s motion for a given task by iteratively re-
planning a trajectory for a 23 DoF human kinematic model
using the STOMP algorithm with the learned cost function in
the presence of a moving collaborator. Our results suggest that
our method outperforms baseline methods and generalizes well
for tasks similar to those that were demonstrated.

I. INTRODUCTION

Human-robot collaboration has become a popular research
area in recent years due to the difficulty of automating tasks
such as electronics or aircraft assembly. In such cases the
human and the robot workers must adapt to each other’s
decisions and motions. In this paper we address an important
step toward more fluid human-robot collaboration: the ability
to predict human motion in collaborative settings.

A great deal of work in the fields of neuroscience [1], [2],
[3] and biomechanics [4] has sought to model the principles
underlying human motion. However, human motion in en-
vironments with obstacles has been difficult to characterize.
Furthermore, human motion in collaborative tasks where two
humans share a workspace is difficult to model due to unclear
social, interference, and comfort criteria. While some of
these principles have been studied in the context of human
navigation [5], to our knowledge there is no framework for
predicting human motion in collaborative manipulation tasks.

This paper describes our efforts toward creating such
a framework. Predicting human motion in an open-ended
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Fig. 1. Shared workspace assembly experiment (left) and sampling of
collision free manipulation motions for inverse optimal control (right).

collaborative context (where the tasks are not known a-
priori) would require a very general model of how humans
move in close proximity to one another, which we believe
to be very difficult to obtain. Instead, we propose a method
for predicting human motion for single-arm reaching in a
collaborative context where the task is known. Though the
range of applications of our methods is restricted, we argue
that this is an important category of motions to be able to
predict, since many pick-and-place tasks in manufacturing
fall into this category. Being able to predict these motions
well can move us closer to enabling safe and efficient human-
robot collaborative manipulation in manufacturing.

Our approach to predicting human motion in these settings
is based on studying how two humans collaborate in a shared
workspace (as in Figure 1). We acknowledge that a human’s
motion in human-robot collaboration may differ from his/her
motion when collaborating with a human partner; e.g. the
human may be afraid of the robot and stay farther away
from it than he/she would from another person. However we
believe that studying how two humans collaborate gives us an
important baseline against which human-robot collaborations
can be judged; if we can predict what a natural motion for
a human is in a given collaborative context, we can judge
when the human deviates significantly from that motion in
response to a robot’s actions. Also, the method we present
here for learning a cost function that describes human motion
can be used to learn the cost function for a human-robot pair
if the features of the cost function can be adjusted to account
for the robot’s kinematics (which would be straightforward
for an anthropomorphic robot).



Our approach is based on two hypotheses about collabo-
rative human motion: 1) The trajectory the human performs
is optimal with respect to an unknown cost function, and 2)
Human adaptation to their partner’s motion can be captured
well through iterative re-planning of a trajectory which is
locally-optimal with respect to the same cost function. Our
method thus seeks to learn a cost function for which the
human’s motion is locally-optimal from training data.

To gather training data, we record the motion of two
humans performing a collaborative task using a motion
capture system and then manually segment that recording
into individual reaching motions. These reaching motions,
along with a set of feature functions encoding trajectory
smoothness and distance relationships between the humans
are used as input for the Path Integral Inverse Reinforcement
Learning (PIIRL) algorithm [6]. PIIRL produces a weighting
for the feature functions that captures their relative impor-
tance. The learned cost function is then a weighted sum of
the feature functions using the learned weights. To predict
human motion we input the learned cost function into the
STOMP algorithm [7], which we adapt for iterative motion
re-planning in a dynamic environment.

In our experiments we gathered the training data from
a pair of participants in a structured assembly task (see
Figure 1). We found that we are able to capture a cost
function for collaborative reaching motions that outperforms
baseline methods in terms of generalizing to unseen reaching
examples. We also found that re-planning was more effective
than single-shot planning for capturing a human’s adaptation
to their partner’s motion in cases where the motion of
the two participants interfered significantly. While these
results are preliminary and the method needs to be evaluated
with a broader human-subjects study, the initial results are
compelling since we are able to predict human motion well
for these tasks given a training set of only seven trajectories.

The remainder of this paper is structured as follows: In the
next section we give a description of related work. In Section
III we describe the approach that enables us to recover the
cost function from training data. In Section IV, we present
the experimental setup used to gather collaborative reaching
motions. In Section V, we present results that illustrate
the ability of our method to predict collaborative reaching
motions.

II. RELATED WORK

Our work contributes to the field of autonomous robot
manipulation in the presence of humans, by creating a
method to predict human motion which could be used
onboard a robot. In our prior work [8], we have incorporated
early prediction of human motion with an iterative motion
re-planning approach to generate efficient robot motions.
However the prediction based on Gaussian Mixture Models
(GMM), which is a commonly used technique in gesture
recognition, is limited to a set of known tasks in a structured
environment. Similarly to our approach Koppula et al. have
integrated prediction of 3D trajectories of the human hand
[9] in the robot planning using a Conditional Random Fields

(CRF) to model affordances of objects in the scene. This
work has been recently extended in [10] to predict high-
dimensional trajectories but does not account for dynamic
environments nor collaborative tasks as we aim to do in this
work. Hidden Markov Models (HMM) is another popular
stochastic modeling technique for human motion. In [11],
Kuliç et al. describe an approach for on-line, incremental
learning of full body motion primitives from observation of
human motion encoded using HMMs, so that the same model
can be used for both motion recognition and motion gener-
ation. These graphical model representations, (i.e., GMM,
CRF and HMM), allow to encode efficiently relationships
such as those between activities, objects and motions, but do
not capture well obstacles constraints.

The underlying principles of human motion have been
investigated in terms of muscle activation and neural activity
[1], [12], [4]. But there is no study providing a model human
motion that handles obstacles in collaborative manipulation
tasks. A detailed subject-customized bio-mechanical model
has been used in [13] to efficiently reconstruct a subject
motion dynamics from motion capture data in realtime
using a whole-body control approach. Many experiments
investigating reaching under various conditions [1], [12]
suggest that human motor-behavior is determined by the
minimization of a cost function used to weight different
movement options to a task, and to select a particular
solution. Stochastic Optimal Control provides a framework to
model such motor-behavior, while taking into account motor
noise inherent to sensorimotor control [3]. In [14], Rigoux
and Guigon describe a model derived from the maximization
of the discounted weighted difference between expected
rewards and foreseeable motor efforts, relevant to address the
neural bases of decision making and motor control. Recently
in [15], Ganesh and Burdet showed on a manipulation task,
that the central nervous system uses a motion planning phase
with multiple plans, and a memory mechanism. While this
suggests that motion planning plays an important role in
explaining human motion, to the best of our knowledge,
Inverse Optimal Control of human reaching-motion has only
been proposed in [16], where the authors present a method
for transferring reaching behaviors from humans to robots.
The authors were able to capture the complex, non-linear
dynamics of the human musculoskeletal system, nonetheless
the system was demonstrated on the control of a ball hitting
task and did not consider workspace obstacles.

The Inverse Optimal Control (IOC) problem, occasionally
named the Inverse Reinforcement Learning (IRL) problem,
is the problem of finding the cost or reward function that an
agent optimizes when computing a trajectory or policy. This
problem is usually found in the context of physical systems
that solve the optimal control problem but can also be found
framed in the more general context of Markov Decision
Processes (MDP). In both cases the system is represented
by a state x, and a transfer function or transition function
that given a state x and a command u moves the system
from one state to the other. IRL was introduced by Ng et
al. in [17], who proposed two algorithms for discrete and
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Fig. 2. Data flow through the system. The gathered human-motion library is used to generate sample trajectories. Features (Φ) are then computed for the
demonstrated and sampled trajectories. The PIIRL algorithm principle is then applied to generate a weight vector w∗. Prediction of collaborative human
reaching motions can then be performed by an iterative re-planning algorithm based on STOMP, relying on the learned weight vector w∗ and a kinematic
model of the human.

continuous states spaces. Later apprenticeship learning [18]
introduced the notion of margin maximization between the
cost of the demonstration and other solutions. Apprenticeship
learning consists of solving iteratively the forward problem,
modifying the weights at each iteration. In [19], Zeibart et al.
proposed an approach to IRL based on the maximum entropy
principle. The methods based on this principle [20], [21],
[22] do not require solving the forward problem and allow
handling high-dimensional continuous state spaces. Instead
of a solution to the forward problem they sample trajectories.
Our approach is based on the algorithm introduced in [6],
which only requires local optimality of the demonstrated
trajectories.

We rely on recent developments in trajectory optimization
for motion planning [23], [7] to compute low-cost motion
predictions. Our framework uses the Stochastic Trajectory
Optimizer for Motion Planning (STOMP) algorithm, which
has proven effective for the type of manipulation motion
planning we consider [7]. Recently, STOMP was adapted
to run faster than real-time [24], and we plan to employ this
new method in future work.

III. APPROACH

Our approach to predicting human motion in collaborative
manipulation tasks consists of two phases (see Figure 2).
First we gather a library of collaborative motions. We then
segment the motions into elementary reaching motions (i.e.,
from a resting configuration to a grasping configuration).
IOC is then performed using the segmented motions as
demonstrations to learn a cost function where the demonstra-
tions are optimal. In the second phase we use the learned cost
function inside a motion planner to predict how the human
will move.

A. Inverse Optimal Control algorithm

We wish to perform IOC of human upper-body motions.
Such motions can be represented as time-parametrized curves
τ in the human’s configuration space. Because these motions
are inherently high-dimensional (in this work we consider
23 DoFs), global optimality is intractable. Hence we use the
path integral inverse reinforcement learning (PIIRL) algo-
rithm [6], which can deal with high-dimensional continuous
state-action spaces, and only requires local optimality of the
demonstrated trajectories.

The original inverse optimal control problem solved by the
PIIRL algorithm aims to recover a cost function composed of
a control cost term and a general cost term (i.e., configuration
dependent) that can be combined with a terminal cost term,
which we do not use here. Our formulation of the problem
considers linearly-parametrized cost functions where each
elementary feature function models a desired property and
is user defined. A feature function penalizes motions which
do not respect the associated property, see Section III-D for
a description of the features we use.

Thus the cumulative cost C(τ), and feature count Φ(τ) of
a trajectory are defined as follows:

C(τ) = wTΦ(τ) ,Φ(τ) =

[
G(τ)
A(τ)

]
,

where Φ is a multi-valued feature function defined by the
user, w are weights associated with the features, which the
algorithm attempts to learn. A is a term enforcing smoothness
(i.e., control cost) and G a general term of the form:

G(τ) =

∫ T

t=0

φ(qt) dt '
N∑
i=1

φ(qi)δt,

where qi is the configuration at index i along the trajectory
and N the number of waypoints.

PIIRL samples trajectories with low smoothness features
around each demonstration from a multivariate gaussian
distribution with covariance R−1 (for a definition see [7]).
In the sampling phase, trajectories that collide with the
environment are discarded by performing collision detection.

The weights are obtained by solving the following convex
minimization problem:

w∗ = argmin
w

−
D∑
i=1

log
e−w

T Φi

K∑
k=1

e−w
T Φi,k

,

where D is the number of demonstrations and K the number
of samples per demonstration.

In the original version of PIIRL, a penalty on the L1

norm of the vector w was added to the objective function
to achieve learning with large set of features. In this case
the objective function is still convex but non differentiable
due to the regularization term. The Orthant-Wise Limited-
memory Quasi-Newton [25] algorithm is able to deal with



Fig. 3. Each line corresponds to a distance used in the feature vector
(left). 3D model of the experiment used for collision checking with hand
trajectories of the seven demonstrations used in the result section (right).

Fig. 4. Division of a demonstration τ0 into smaller segments

the non-differentiability by using additional projection steps
and constraining the search to one orthant at a time. Using
a regularization term adds a supplementary step to the algo-
rithm that can be performed by cross validation, however we
found the results to be sparse enough without a regularization
term (see Section V).

B. Iterative re-planning

Iterative re-planning consists of replanning iteratively
while considering the current environment as static. It is
a common approach to accounting for dynamic obstacles
in robot motion planning [26], [24]. Typical approaches
either maintain a tree or graph of collision-free motions,
which is updated at each replanning step, or they deform
the current trajectory locally given the updated positions
of obstacles in the world. Our approach aims to recover
a cost function that can be used for such a framework.
Thus, once the library of collaborative motion trajectories
is gathered in the first phase of our method, it is segmented
manually into elementary manipulation motions, which are
then cut into smaller segments by advancing ∆t along each
demonstration τ0 as depicted in Figure 4. For each segment
the initial velocity q̇0, acceleration q̇0 and jerk

...
q0, as well

as the configuration of the other human and the positions of
obstacles are used to compute the features of the segment
and of the sample trajectories for this segment .

When planning with the human model, we make use of
the STOMP algorithm [7], which is a trajectory optimizer
that iteratively deforms an initial solution by stochastically
estimating the gradient in trajectory space. It internally
represents the trajectory by an m by n matrix, where m
is the number of DoFs and n the number of waypoints. At
each iteration, trajectories are sampled from a multivariate
gaussian distribution with covariance R−1 (see [7]), the
general costs and control costs of the sampled trajectories

are combined to generate the update. Thus it does not require
the analytical gradient of the cost function to be known, and
generally converges to a local minima within 100 iterations.

The initial algorithm presented in [7] optimizes a com-
bination of obstacle cost and smoothness cost. The first
is estimated by summing a penetration cost for a set of
bounding spheres in the obstacles at every waypoint using
a signed Euclidean Distance Transform (EDT). Note that
the weight of this cost is manually tuned in our result
section. The second is estimated by summing the squared
accelerations along the trajectory using finite differencing.
In order to account for the other human, we sum a third cost
criterion defined in the next section. The smoothness cost is
defined differently from [6] and also described in the next
section. In order to account for smoothness between each
replanning step, a buffer of configurations from the previous
step is used to compute velocity, acceleration and jerk at the
initial configuration.

C. Human Kinematic model description

We model the human kinematics following the recommen-
dation for joint coordinate in [4]. The model is composed
of translation and rotation joints. In our experiments we
only account for upper body motions and right arm motions,
which totals 23 DoFs. Three translations and three rotations
are used for the pelvis. Three rotations for the torso joint.
Three translation followed by three rotation for the shoulder
joint. One translation, followed by three rotations for the
elbow and one translation followed by three rotations for
the wrist joint. When predicting motions using STOMP the
bounds of the translation joints are set using the minimal
and maximal values observed in the motion capture data.
These translations are used to compensate for errors in the
computation of joint centers from the markers, since there is
always some error in marker placement. They are also useful
for addressing the approximations we make in modeling the
human kinematics.

D. Feature functions

We consider variants of feature functions that have been
introduced in previous work to account for human-robot
interaction constraints [27], [28], [5]. We use two types of
features inspired by the proxemics theory [29] and experi-
ments in neuroscience [1].

1) Distance between human links: The goal of these
features is to avoid collision risks. However, in situations
requiring close interaction (e.g., reaching over the other
person to access an object), two people may come close to
one another. To model this avoidance behavior we consider
16 pairwise distances (see Figure 3) along the arm and pelvis
between the two humans (i,e,. wrist, elbow, shoulder, pelvis).

2) Smoothness: These features ensure that the trajectory
remains smooth. We measure configuration and task space
length, squared velocities, squared accelerations and squared
jerks along the trajectory using finite differencing.



(a) Initial state (b) End state

(c) t = 0.0 sec (d) t = 0.5 sec (e) t = 1.0 sec

Fig. 5. Experiment design (top) and motion capture of the task (bottom).

IV. EXPERIMENTS

The experiment we designed to gather training and test
data consisted of two participants standing shoulder to shoul-
der parallel to a table; each working on an individual task
within a shared workspace (Figure 5). In order to execute
their task, the participants must place a correspondingly
colored ball on each of their pegs in a specified order,
displayed as an ordered set of pegs (Figure 5(a)). Adhesive
tape on the pegs allows quick and easy placement. Our
experiment simulates a packing task, for instance packing
different chocolates into a sampler box.

The participants look at the color of the first empty peg
in their plan, pick up a ball from the corresponding color
zone, and place the ball on top of the peg until all pegs
in the plan are filled with balls (Figure 5(b)). Following a
predetermined order of execution denies the participants the
ability to switch tasks in mid-motion. This allows us to study
the manipulation planning component of human motion in
isolation. In future work, we will investigate our results with
a task planner and allow the pegs to be filled in any order.

A. Recording method

In order to record these interactions, we used a Vicon
motion capture system consisting of eight Bonita cameras.
Subjects wore a suit consisting of three rigid plates and nine
markers which had been placed according to standards in
use in the field of biomechanics [4]. Our full marker set
(Seen in Figure 5(c)) consists of a waist-belt and headband
attached to rigid objects, a marker on the back of the hand,
two on each side of the wrist, an elbow pad, two markers on
either side of the shoulder, and two markers straddling both
the sternum and xyphoid process. This set of markers allows
us to easily find the center of rotation of the wrist, elbow,
shoulder and torso. From these joint centers, we obtain a
23 DoF configuration of the right arm and torso for each
participant using analytical inverse kinematics.

Recording fluid collaborative motion can be difficult when
one participant occludes the other from the Vicon cameras. A
joint defined by a pair of markers becomes occluded if one
of the markers becomes occluded. Upon noticing frequent
occlusion of the elbow in our tests, we switched from a
marker pair to an elbow pad with multiple markers. The
tracker then labels each marker in a known calibration pose
wherein the subject stands upright with their hands rested
comfortably at their side. After each update from the Vicon
system, marker indices are matched by closest distance to the
previous frame. If a marker label cannot be found within a
threshold distance, it is considered occluded, and the missing
marker is filled in with data from the previous update.

V. RESULTS

In this section we present results illustrating the capacity
of the algorithm to recover a cost function using distance
between links and smoothness features. We define an active
human, whose motion trajectories are used as demonstra-
tions, and a passive human, whose trajectories serve as
contexts for the IOC and for the iterative re-planning predic-
tion tests. First we validate the approach by planning with
a manually defined weight vector and measuring the cost
difference between the initial trajectory and the recovered
trajectory. This experiment gives us a rough estimate of how
many trajectory samples to use in the PIIRL algorithm. We
evaluate the capacity of the inverse optimal control algorithm
to predict human motion by comparing the demonstrations to
motions computed using our framework with a weight vector
generated from IOC on these demonstrations. We then show
the ability of the prediction to generalize to new situations
by performing leave-one-out testing over seven motions and

Fig. 6. Three trajectories computed using the STOMP motion planner. (a)
Trajectory planned with a user-given weighing of features. (b) Trajectory
planned with weights recovered by the IOC. (c) Trajectory planned with a
random weight vector.
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Fig. 7. Average difference in cost and standard deviation, function of
the number of samples used by the IOC algorithm. The difference in cost
compares solutions planned on the example of Figure 11 using the recovered
weight vector and the original weight vector.



Fig. 8. Three trajectories computed using the STOMP motion planner.
Demonstrations in red and 10 predicted motion trajectories given the start
and goal configuration in blue.

Joint center distances Task space

Run µ σ min max µ σ min max

1 33.17 3.35 28.41 40.33 44.44 2.27 41.56 49.69
2 37.20 3.57 32.39 43.91 53.08 2.17 49.50 56.13
3 53.37 7.17 40.36 64.42 76.26 4.22 70.08 82.28
4 20.95 2.28 17.94 25.12 31.39 1.00 29.69 33.09
5 21.59 1.84 17.58 23.75 26.50 1.13 25.03 28.44
6 10.12 1.23 7.83 12.11 23.62 0.85 22.46 25.00
7 25.56 5.09 16.91 34.30 45.69 3.45 40.18 52.38

All 28.85 3.50 23.06 34.84 42.99 2.15 39.78 46.71

TABLE I
DTW PERFORMED BETWEEN THE SEVEN DEMONSTRATIONS AND THE

TRAJECTORIES PLANNED ON A STATIC ENVIRONMENT, RESULTS ARE

AVERAGED OVER 10 RUNS

comparing to two baseline methods. Finally we demonstrate
the usefulness of the replanning approach on a particularly
difficult motion.

A. Validation

We first planned a trajectory in a static environment with
no replanning with a user input weight vector using the
STOMP algorithm [7] (see Figure 6). We then used the PIIRL
algorithm presented in Section III-A to recover a weight vec-
tor using this planned trajectory as a demonstration. Figure
7 shows the difference in cost using the original weights
between the original trajectory and the trajectories planned
using the recovered weights as the number of samples PIIRL
increases. The results are averaged over 10 runs. As one can
see, the mean and standard deviation decrease as the number
of samples increases, which indicates the capacity of the
algorithm to recover cost functions for the type of reaching
motions we consider. These results were used to select the
number of sample trajectories, which is set to 700 in the rest
of the results presented in this section.

In order to validate the capacity of the approach to predict
human motion, we ran the experiment described in Section
IV to gather collaborative motions. The motions were then
segmented manually into seven elementary manipulation
motions (i.e., from a resting posture to a grasping posture).
The seven motions started and ended in the same area (see
Figure 9). We then ran the PIIRL algorithm using these seven
demonstrations, without the segmenting phase described in
Section III-B, to generate seven weights w∗, one for each
demonstration. This set of weights was then used to plan
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Fig. 10. Average weight vector and standard deviation from the leave one
out testing performed over the seven motions of Figure 9. The distances are
described with active human in the bottom.

for motion-trajectory predictions, using our motion planning
framework. The start and goal configurations are set to the
ones from the demonstrations trajectories. However they
could be set using biomechanics-based inverse-kinematics
[30]. We report the results of Dynamic Time Warping
(DTW) comparison between the resulting trajectories and the
demonstrations and in Table I.

DTW is an algorithm for measuring similarity between
two temporal sequences that may vary in time or speed. It
relies on a distance metric between waypoints. We use two
metrics throughout this section: sum of joint center distances
and task space distances. We do not report the configuration
space metric as it does not give a fair estimate due to the
high redundancy of our kinematic model, which represents
the elbow and wrist as ball joints. The joints considered in the
first metric are the pelvis, torso, shoulder, elbow and wrist.
The task space metric combines Euclidean distance and angle
between consecutive Quaternions. Figure 11, shows demon-
strations 1 and 2 and the corresponding motion trajectories
predicted by the motion planner. Comparing trajectories is
known to be a difficult problem, choosing a proper metric
for comparison is difficult for this experiment. The values
in Table I and visualization in Figure 11 provide a reference
point for what DTW values we can expect for visually similar
trajectories.

B. Predicting human motion

To evaluate the capacity of our predictions to generalize
to new situations we have performed leave-one-out testing
over the seven motions. The demonstration trajectories were
cut into smaller segments using the procedure described
in Section III-B, with a ∆t = 0.1sec. Resulting in 33
demonstrations used for IOC. The obtained average, and
standard deviation values for the weights are shown in Figure
10.

The obtained weights indicate the importance of smooth-
ness features rather than distance features. The distances
are measured between the active human (on the left) and
passive human (on the right). All distances between the active
human’s arm and passive’s pelvis are important, as well as



Fig. 9. Seven demonstrations (red) along with the ten trajectories planned with baseline 0 (green) and the weight vector obtained by IOC (blue).

Replanning No Replanning
Joint center distances Task space Joint center distances Task space

Method µ σ min max µ σ min max µ σ min max µ σ min max
baseline 1 81.01 3.88 74.48 87.43 63.11 2.51 58.70 67.85 64.96 3.94 58.21 71.03 57.78 2.69 53.86 62.57
baseline 0 39.55 3.34 33.83 45.72 48.04 1.89 45.29 51.45 34.06 3.72 28.60 39.78 45.81 1.91 42.60 49.08
With IOC 35.34 4.78 27.36 43.22 43.56 4.21 37.03 50.46 30.98 4.27 24.12 39.04 42.18 3.17 37.06 46.90

TABLE II
DTW PERFORMED BETWEEN THE SEVEN DEMONSTRATIONS AND THE TRAJECTORIES PLANNED USING A RE-PLANNING APPROACH AND WITHOUT

REPLANNING, RESULTS ARE AVERAGED OVER 10 RUNS

between the active’s elbow and passive’s shoulder. The high
weight values corresponding to the distances of the active’s
pelvis and passive’s body links do not impact the overall
motion as participants do not move the pelvis as much as the
arm during manipulation. Note that during the sampling and
planning phase the pelvis translation bounds are set to the
minimal and maximal values observed in the demonstrations.

For comparison, trajectories were also generated using two
baseline methods:

• Conservative tuning (baseline 1): minimizes the squared
velocities and the 16 distances with a manually tuned
weight vector where each distance weight is set to the
same value.

• Aggressive tuning (baseline 0): minimizes squared ve-
locities without considering the distances between links.

Table II summarizes the DTW values using the joint
center distance metric and the task space metric, between the
demonstrations and the planned trajectories with and without
replanning. Where “without replanning” means STOMP only
considers the initial configuration of the passive human. Fig-
ure 9 shows the demonstrations and the trajectories obtained
with the baseline 0 method and the weight vector recovered
by the IOC algorithm, both using replanning.

Trajectories planned with and without replanning for
baseline 0 and with the recovered weights all have lower
DTW scores, using both metrics, than the ones planned with
baseline 1. However trajectories planned with baseline 0
sometimes outperform trajectories planned with the recov-
ered weights, which can be explained due to the sparsity of
the distance weights recovered with IOC. Nevertheless, the
average values for the recovered cost function are smaller
than for the baseline 0, indicating the validity of using IOC
compared to hand tuning of the weight vector. Note that the

average DTW values for the leave-one-out test are close to
the values obtained in the validation test (joint distance score:
30.98 compared to 28.85), which shows the capability of our
method to generalize to new situations.

The “no replanning” approach tends to outperform the
“replanning” approach through out the different methods, but
remains close as indicated by the the task space values com-
parison when using the recovered cost function: 43.56 and
42.18 with and without replanning and standard deviation of
4.21 and 3.17 respectively.

To show the capacity of the replanning approach to better
predict human motion in more difficult situations we have
selected a motion where the passive human interferes sig-
nificantly with the active human while he/she is reaching.
The weights vector is obtained through training with all
seven motions used in the leave-one-out phase, but does not
include the demonstration. The motions obtained with and
without replanning are shown in Figure 11, and the DTW
results are shown in Table III. In this case, using replanning
better predicts the active human motion as the trajectories
generated with no replanning collide with the arm of the

Type µ σ min max
Joint center distances

No replanning 52.89 9.66 39.94 67.09
With replanning 44.91 6.62 36.15 55.20

Task space
No replanning 49.22 8.25 37.75 63.78

With replanning 36.20 8.13 24.81 50.77

TABLE III
DTW PERFORMED BETWEEN THE DEMONSTRATION OF FIGURE 11 AND

THE TRAJECTORIES PLANNED, RESULTS ARE AVERAGED OVER 10 RUNS



Fig. 11. A demonstration of the benefits of replanning on a difficult
example. Original motion (red) and predicted motions with (blue) and
without (green) replanning.

passive human. This result is underscored by the smaller
average values found for the joint center distances and task
space metric.

VI. CONCLUSION AND FUTURE WORK

We have presented an important step toward predicting
how humans move when collaborating on a manipulation
task by applying inverse optimal control to data gathered
from motion capture of collaborative manipulation in a
shared workspace.

To demonstrate the feasibility and efficacy of our approach
we have provided test results consisting of learning a cost
function, and comparing the planned motions using the
learned weights to the demonstrations using Dynamic Time
Warping (DTW). The approach based on Inverse Optimal
Control (IOC) allows us to find a cost function balancing
different features that outperforms hand-tuning of the cost
function in terms of task space and joint center distance
DTW. The method presented in this paper could be extended
to allow learning of a cost function for robot motion planning
of human-robot collaborative manipulation tasks where the
human and the robot manipulate objects simultaneously in
close proximity.

Future work concerns enhancing the type of features to be
taken into account to improve the prediction, and retargeting
these features for motion planning on a PR2 robot.
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