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Abstract We propose a method that allows a motion planning algorithm to imitate

the behavior of expert users in deformable environments. For instance, a surgeon

inserting a probe knows intuitively which organs are more sensitive than others, but

may not be able to mathematically represent a cost function that governs his or her

motion. We hypothesize that the relative sensitivities of deformable objects are en-

coded in the expert’s demonstrated motion and present a framework which is able

to imitate an expert’s behavior by learning a sensitivity-based cost function under

which the expert’s motion is optimal. Our framework consists of three stages: (1)

Automatically generating demonstration tasks that prompt the user to provide in-

formative demonstrations through an active learning process; (2) Recovering object

sensitivity values using an Inverse Optimal Control technique; and (3) Reproduc-

ing the demonstrated behavior using an optimal motion planner. We have tested our

framework with a set of 5DoF simulated and 3DoF physical test environments, and

demonstrate that it recovers object parameters suitable for planning paths that imi-

tate the behavior of expert demonstrations. Additionally, we show that our method

is able to generalize to new tasks; e.g. when a new obstacle is introduced into the

environment.

1 Introduction

Manipulation of deformable objects, and in deformable environments, is an impor-

tant area of research, as deformable objects are common in domestic, industrial, and

medical environments. Unlike manipulation in rigid environments, where collisions

are forbidden, deformable environments allow, and often require, collisions between

a robot and deformable objects. However, modeling deformable objects is a difficult

problem; models must not only capture the geometry (undeformed and deformed)

of objects (itself a very difficult problem), but should also capture the sensitivity

of the object. This qualitative aspect is critical for deformable environments, as it

allows a motion planner to distinguish between multiple objects with similar phys-

ical properties but with different qualitative characteristics. An important example

of this occurs in surgical robotics; while multiple organs and tissues may have sim-
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Fig. 1: Diagram of the three stages and main components of our framework.

ilar physical properties, some parts of the body are significantly more sensitive than

others. Without accounting for sensitivity, motion planners can produce paths that

could cause unnecessary injury.

The motion planning methods introduced in our previous work [16] use a voxel-

based representation of deformable objects, in which each voxel has two parameters.

The first parameter, deformability, captures physical properties of the rigidity of the

material. The second parameter, sensitivity, captures the qualitative significance of

deforming the object. Together, these parameters are used in a cost function that

provides a cost of deformation that can be used in cost-aware motion planners.

While the deformability parameters are directly related to material properties,

setting the sensitivity parameters is more difficult, as they capture a range of ob-

ject characteristics. Setting them by hand is time-consuming and error-prone, as

incorrect sensitivity values can produce unwanted planner behavior. More problem-

atically, setting these parameters for practical environments requires both domain

knowledge and the ability to mathematically represent that knowledge such that

the planner will perform well. Instead, we propose a framework for automatically

learning and validating these parameters from expert demonstrations. For example,

a surgeon can demonstrate the optimal path for inserting a probe, and we can use

this demonstration to find the sensitivity values of organs around the path.

Our framework consists of three parts: (1) Automatic generation of demonstra-

tion tasks that prompt the user to provide informative demonstrations through a

novel active learning process; (2) Recovery of object sensitivity values using Path

Integral Inverse Reinforcement Learning (PIIRL) Inverse Optimal Control (IOC)

technique [10]; and (3) Reproduction of the demonstrated behavior using the RRT*

asymptotically-optimal motion planner [12] with a key modification that allows us

to check for punctures of deformable objects.

This approach offers two main advantages over existing similar techniques. First,

by using sampling-based techniques for IOC that avoid the need to solve the forward

problem and sampling-based asymptotically-optimal planners, our framework is ap-

plicable to higher-dimensional problems than approaches such as LEARCH [17],

which are limited by the need to repeatedly compute optimal paths to recover the

cost function. Second, our proposed method for automatically generating demon-

stration tasks for experts to perform reduces the number of demonstration tasks

needed to capture the desired behavior and removes the need for domain knowledge
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to generate these tasks by hand. Finally, to our knowledge, IOC has never before

been applied to the problem of learning deformable object parameters.

In our experiments in simulated and physical test environments we show that,

despite the limitations inherent in asymptotically-optimal sampling-based planning,

the recovered sensitivity parameters allow motion planners to reliably reproduce

behavior demonstrated by expert users. We also present experiments which show

the generalization capabilities of our method.

2 Related Work

Extensive work on the modeling and representation of deformable objects has been

done, primarily from the perspectives of computer graphics [6] and medicine [2]. In

recent years, this work has been adopted by the robotics field to enable the manipula-

tion of real-world deformable objects such as clothing, rope, food, and human tissue

[8]. A wide range of simulation-based models for deformable objects are available,

most of which are meshed models based on Mass-Spring (M-S) [6] and Finite-

Element (FEM) [14, 7], but mesh-less models [13, 5, 16] have also been proposed.

Our model replaces the need for physical simulation with a cost function based on

the volume of intersection between voxelized deformable and rigid objects [16].

While this approach cannot capture moving objects, and can only approximate the

true deformation, it is extremely efficient to compute in comparison to simulation-

based methods, and thus ideal for use inside a motion planner. Notably, because

our approach provides a cost function that accounts for both object deformation and

sensitivity, it produces plans that minimize deformation and preferentially deform

or avoid objects based on their sensitivity.

Inverse Optimal Control (IOC) is the problem of recovering the cost or reward

function being optimized by a trajectory or policy. Introduced by Kalman [11] and

applied to robotics by Ng et al. [15], several different formulations of the IOC prob-

lem and algorithms to address it have been proposed, covering both continuous and

discrete state spaces [15]. Earlier approaches to the IOC problem, such as appren-

ticeship learning, require that the forward problem be solved in addition to com-

puting optimal weights [1, 17]. More recent approaches, based on the maximum

entropy principle, replace the need for solving the forward problem by using sam-

ple trajectories around the demonstration [19].

The IOC approach we use, Path Integral Inverse Reinforcement Learning (PI-

IRL) samples around the demonstration instead of solving the forward problem [10].

In the PIIRL formulation, a series of locally-optimal demonstration trajectories are

gathered from the user(s). For each of these demonstrations, a set of sample trajec-

tories around the demonstration is generated; note that these samples are assumed to

be sub-optimal relative to their demonstration. For all demonstrations and all sam-

ples, user-specified features are evaluated, and the weights associated with these

features are then recovered via a convex optimization problem that attempts to max-



4 Calder Phillips-Grafflin and Dmitry Berenson

imize the margin between the features of the demonstrations and the features of the

samples.

3 Problem Statement

Let τ represent the path of a rigid object (i.e. the robot) through an environment

composed of n deformable objects E =O1,O2, ...,On. Representing τ with a discrete

sequence of configurations, we assume the cost of executing τ is a function of the

form C(τ) = ∑
|τ|
k=1 ∑

n
i=1 DiSiVi(τk), where Vi(τk) is the volume of deformation of Oi

that results from placing the rigid object at the kth configuration of path τ , Di is

the deformability of Oi, and Si is the sensitivity of Oi. We focus on learning the Si

parameters, so we assume Di = 1∀i, though our methods work with any known D.

Note that while sensitivity parameters S can be set per-voxel in our representation,

we simplify the problem of recovering sensitivities by assuming that each object has

uniform sensitivity.

S represents the ground-truth sensitivities of the objects. We seek to generate a

set of learned parameters Ŝ from a set of demonstrations, such that these Ŝ can be

used in a motion planner to produce similar behavior to the demonstrations. Obtain-

ing the true S from demonstration is not possible in general, as a demonstration can,

at best, encode only the ratios between different elements of S and not their mag-

nitudes. Thus it is not meaningful to compare S to Ŝ directly. A more informative

comparison is in how well a planner imitates demonstrated behavior when planning

with Ŝ. Thus we evaluate our method in terms of the cost of the path produced by

our framework. Therefore the quality of Ŝ relative to the ground truth is evaluated

as E(Ŝ,S) = CS(τd)−CS(τplanned(Ŝ)), where τd is a path demonstrated for a given

task, τplanned(Ŝ) is a path planned for the same task using the sensitivities Ŝ, and the

cost function CS(·) is evaluated using the ground-truth sensitivities S.

4 Methods

We have developed a framework for recovering sensitivity parameters for de-

formable objects, as illustrated in Figure 1. Below we describe each of the four

components in detail.

4.1 Capturing Demonstrations

Like all IOC problems, our approach requires demonstrations. In our case, demon-

strations are captured in a simulation environment using a physics simulator to sim-

ulate deformable objects. Our demonstration task consists of inserting a cylindrical

probe between deformable objects to reach target points distributed across the en-

vironment, as illustrated in Figure 2. The user attempts to minimize contact with

more sensitive objects (shown in yellow and green) compared to less sensitive ob-

jects (shown in blue). We record the demonstration trajectory along with the features
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(a) (b) (c) (d)

Fig. 2: Example demonstration tasks for our 6-object test environment, shown with the probe

reaching the target. (a) Low sensitivity objects L1,L2 (blue), medium sensitivity objects M1,M2

(green), and high sensitivity objects H1,H2 (yellow). (b,c,d) Goal configurations for three auto-

matically generated tasks.

of that trajectory, which are the total amounts of deformation of each object. While

outwardly simple, the problem of probe and needle insertion between deformable

objects such as this is common in medical tasks [2] and a subject of previous re-

search in robot motion [2, 13], however, none of this work has explored learning

qualitative properties of deformable objects to determine higher-level behavior. In

addition to capturing demonstrations, we use this simulation environment to com-

pute feature vectors for demonstration and sample paths.

Each demonstration we capture can be parametrized as a demonstration task by

a starting pose of the probe Pstart , a target point Ptarget the user must touch with the

probe tip, and a set of “collision planes” Cplanes, hyperplanes that constrain the

motion of the probe. As shown in Figure 3, the hyperplanes approximate a funnel

that guides the user towards the target point and restricts which objects the user can

contact with the probe. These hyperplanes are added to constrain the user to pro-

ducing demonstrations that capture the relative difference in sensitivity between the

accessible objects. In our experience, without the hyperplanes users sometimes pro-

duce demonstrations that deform only the globally least-sensitive object(s) instead

of capturing sensitivity relationships between neighboring objects.

While we attempt to capture optimal demonstrations, in practice users may pro-

vide slightly sub-optimal demonstrations. We attempt to correct for this using a local

optimizer that optimizes each demonstration. This method generates a set of random

sample trajectories around the demonstration trajectory and replaces the demonstra-

tion trajectory with any of the random samples with strictly dominating deformation

(i.e. the random sample deforms all objects less than or equal to the demonstration).

4.2 Active Learning

We can capture demonstrations and compute features for demonstrations and sam-

ples needed for PIIRL; however, this leaves two problems to address: how to gen-

erate demonstration tasks for the user to complete, and how many demonstrations

must be collected. Clearly, the accuracy of recovered sensitivity values depends on

the quality of the demonstrations provided. For example, if an object has zero fea-
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Algorithm 1 Demonstration task collection algorithm

procedure COLLECTDEMONSTRATIONS(A)

G←{ /0, /0}
O1← argmaxo∈E degree(A(o))
O2← argmaxo∈neighbors(A(O1))degree (A(o))
G← G∪COLLECTSINGLEDEMONSTRATION(O1,O2)
while {o ∈ E|o /∈Gv,degree(A(o)) > 0} 6= /0 do

O1← argmax{o∈Gv |neighbors(A(o))\Gv 6= /0} depth(G(o))
O2← argmax{o∈neighbors(A(O1))\Gv} degree(A(o))
G← G∪COLLECTSINGLEDEMONSTRATION(O1,O2)
G← ENSURERANKING(G)

return G

procedure ENSURERANKING(G)

for O1 ∈ Gv do

for {O2 ∈ Gv| depth(G(O2)) ≥ depth(G(O1))} do

if NODIRECTEDPATHEXISTS(O1,O2) then

if DIRECTLYCOMPARABLE(O1,O2) then

G← G∪COLLECTSINGLEDEMONSTRATION(O1,O2)
return ENSURERANKING(G)

return G

procedure COLLECTSINGLEDEMONSTRATION(O1,O2)

Ptarget ,Pedge,Cplanes← GENERATEDEMONSTRATIONTASK(O1,O2,Tclearance,Trange)
Dv,De← GETDEMONSTRATIONFROMUSER(Ptarget ,Pedge,Cplanes)
return (Dv,De)

ture values in both demonstrations and the trajectory samples around the demon-

strations used by PIIRL, we cannot recover a meaningful sensitivity value for the

object; e.g. if all demonstrations entered through the forward half of our cube en-

vironment, no features would be available for objects on the reverse. A different,

but equally problematic, issue occurs when features have been collected for every

object, but the demonstrations are “unconnected”; for example, in an environment

E = {O1,O2,O3,O4}, if features have been collected for demonstrations between

O1,O2 and O3,O4, but not for O2,O3, the optimizer cannot determine if O1 and O2

are more or less sensitive that O3 and O4. Thus, we need to ensure that sufficient

demonstrations have been collected.

The conservative solution is to require a demonstration for every pair of adja-

cent objects, however, this can result in a large number of demonstrations. For our

test environment shown in Figure 2, 12 demonstrations would be required to cap-

ture the relationship between every adjacent pair. We seek to reduce the number of

demonstrations required.

Simply collecting demonstrations such that we observe a non-zero feature for

each object is insufficient for accurate parameter recovery, rather, we must ensure

that the demonstrations collected form a ranking of the objects in terms of sen-

sitivity; i.e. that for objects O1,O2 ∈ E , rank(O1) is either less than, equal to, or

greater than rank(O2) if the objects are comparable. Rankings are derived from

demonstrations collected between adjacent objects; the preferentially-deformed ob-

ject receives a lower ranking than the preferentially-avoided object. Rankings are
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Algorithm 2 Demonstration task generation algorithm

procedure GENERATEDEMONSTRATIONTASK(O1,O2,Tclearance,Trange)

Pedge← GETEDGEPOINTBETWEENOBJECTS(O1,O2)
Ptarget ← /0

while Ptarget = /0 do

Psampled ← SAMPLEINRANGE(Pedge,Trange)
if clearance(Psampled )< Tclearance then

Ptarget ← Psampled

Cplanes← GENERATECOLLISIONPLANES(Pedge,Ptarget)
return Ptarget ,Pedge,Cplanes

not comparable in certain cases, such as between objects on the opposing faces of

our test environment, in which it impossible to perform a demonstration between the

two objects, and they cannot be ranked via a combination of other demonstrations.

Demonstrations are collected using Algorithm 1, which takes A, the set of object

adjacencies in E , and iteratively collects demonstrations until there are no more

useful demonstrations to perform. This algorithm captures preference relationships

between objects by building a directed graph G. The nodes in G represent objects

in the environment and the directed edges point from the less-sensitive object to the

more-sensitive one. Initially, G contains no nodes or edges, and each demonstration

adds an edge and 0, 1, or 2 nodes. The key to the algorithm is determining which

demonstration (and thus which edge) should be queried next.

The algorithm uses the structure of G at the current time as well as a heuristic to

decide which demonstration to query next. If the ranking between all objects in G

is known, then the algorithm selects a new object to add to G (via a demonstration

involving that object and one already in G). After adding a new object, the algo-

rithm queries demonstrations until the ranking of all objects in the graph is again

established (this is done in the ENSURERANKING function). It then selects a new

object to add, and so on, until no more objects can be added.

At each step where objects or edges are selected, we choose the object or edge

based on connectivity heuristics. For new objects (i.e. those not already in G), we

prefer those that are adjacent to as many other objects as possible. When picking

objects already in G for a new edge, we prefer objects that have a higher “depth”.

Here depth(n) is the length of the longest directed path in G which ends at n. These

heuristics bias the algorithm to create long chains of edges where possible, which is

clearly beneficial for forming a ranked list; e.g. rank(O1)< rank(O2)< rank(O3)<
rank(O4) is a chain of three edges which gives a complete ranking of four objects.

Algorithm 1 is not guaranteed to produce the minimal set of demonstrations be-

cause it cannot foresee the results of future demonstrations. It frequently collects

demonstrations early on that prove to be unnecessary in the final set of demonstra-

tions. In pathological environments, Algorithm 1 may be forced to collect all pos-

sible demonstrations. However, in practice, we show that it reduces the number of

demonstrations without significant impact on the recovered sensitivity parameters.
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Fig. 3: Our automatic

demonstration task gen-

erator.

For each demonstration requested by Algorithm 1, we

generate a new task using Algorithm 2. This algorithm is

given a pair of target objects O1,O2, a target clearance

Tclearance, and a target depth range Trange. First, the algorithm

selects an “edge point”, Pedge by randomly selecting a point

on the medial axis between the two target objects. Using the

edge point, the algorithm randomly samples nearby points

Trange away from the edge point to select one that is “inside”
1 the environment and also at least Tclearance away from an

object, which it returns as Ptarget , the target point. Finally, a set of “collision planes”

are generated to restrict the user’s demonstration to the desired area. The parameter

Trange ensures that the user must insert the probe sufficiently to cause deformations.

Similarly, the parameter Tclearance controls how close to an object the target point

can be, and can be used to ensure that the target point itself is not in contact with an

object (see Figure 3).

4.3 Parameter Recovery

Our approach to motion planning for deformable objects, introduced in [16], uses a

“cost of deformation” to enable any motion planner that accounts for cost to produce

plans that minimize deformation. We can frame the problem of imitating demonstra-

tion behavior as the problem of inferring the sensitivity parameters used to produce

the demonstration. Assuming that the demonstration is optimal, this is the well-

established problem of Inverse Optimal Control (IOC).

Using the PIIRL formulation of IOC, the cost function consists of a series of

features V =V1,V2, ...,Vn (in our case these are the amounts of deformation of each

of the n objects) with corresponding sensitivities S = S1,S2, ...,Sn, such that the

total cost of a configuration C = ∑
n
i=1 ViSi, where the Vi can be computed using our

physics simulator, but the optimal set of sensitivities S∗ is unknown.

To find the best estimate of the optimal set of sensitivities Ŝ, PIIRL requires a

set of sample paths around each demonstration. Because the demonstrations are as-

sumed to be locally optimal, all samples around a demonstration will be sub-optimal

w.r.t to the unknown cost function. For K demonstrations and L samples for each

demonstration, the optimal weights are obtained using the following minimization

problem (a similar form of the minimization problem used in [10]), where Vk are

the feature values for demonstration k, and Vk,l are the feature values for sample l of

1 To determine which points are “inside” the environment, we compute a “local maxima map”

using the Signed Distance Field (SDF) of the environment. For each point in the SDF, we follow

the gradient away from obstacles and record the location the gradient becomes zero (i.e. the local

distance maxima). Points “inside” the environment have corresponding local maxima inside the

bounds of the SDF, while points “outside” have local maxima corresponding to the bounds of the

SDF. Intuitively, “inside” points have finite-distance local maxima reachable via the gradient, while

for “outside” points, the local maxima are undefined.
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demonstration k:

Ŝ = argminS

K

∑
k=1

STVk

L

∑
l=1

STVk,l

(1)

This minimization finds the sensitivity values Ŝ that maximize the margin between

the cost of the demonstrations and the costs of their samples. Note that in our prob-

lem, S > 0 and sample feature values Vk,l 6= 0, as all sensitivity values must be

greater than zero and Vk,l = 0 implies Vk = 0 (since samples must be sub-optimal

relative to their demonstrations). Vk = 0 implies that the demonstration k captures

no information about any object and thus can be removed from the optimization so

this condition will not occur. Since this minimization problem is convex, we can

use standard convex optimization solvers to find optimal weights. Unlike previous

work such as LEARCH [17], PIIRL does not rely on the specific configurations the

demonstration path traverses; rather, only the corresponding feature values must be

locally optimal in our cost function [9]. This makes it tractable to learn cost func-

tions in high-dimensional spaces.

4.4 Recovered Parameter Verification

Once sensitivity values Ŝ have been recovered for each object in our test envi-

ronments, we must verify that the recovered values allow our motion planner to

imitate the behavior of the expert demonstrations. We attempt to perform each

demonstration task using an optimal motion planner and comparing the planned

path τplanned(Ŝ) with the demonstration τd in terms of the true cost function CS(·)
using the ground truth sensitivity values S. In our previous work, we used the T-

RRT and GradienT-RRT planners to efficiently produce paths in high-dimensional

spaces [16]; however, since these planners have no optimality guarantees, they are

unsuitable for parameter verification. Instead, we use the asymptotically-optimal

RRT* planner [12] with our deformation cost function. While we could use de-

formations measured via a physics simulator to compute cost during planning, our

voxel-based deformation cost function is significantly faster, more stable, and de-

tects object punctures and separation. To accurately mimic the demonstration tasks,

the RRT* planner is provided with the same task-space target point to reach with

the probe tip, rather than a goal configuration of the probe. Feasible configurations

touching this target point can be sampled, and RRT* attempts to connect the tree

to these goal states. As RRT* runs, it improves the path by reducing the deforma-

tion cost of the path and by sampling and connecting to new, lower-cost goal states.

Note that while RRT* is asymptotically optimal, for finite time it will not return

the optimal path, so we expect paths reproduced with RRT* may be slightly higher-

cost than their corresponding expert demonstrations, but should exhibit the same

preferential deformation demonstrated by the expert.
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Fig. 4: Illustration of puncture checking for an extension from configuration q1 to q3. As the

surfaces are no longer connected (red), puncture has occurred and the q2→ q3 motion is invalid.

In addition to integrating our existing cost function with RRT*, we have signifi-

cantly improved the quality of planned paths by adding puncture detection to prevent

paths from puncturing or cutting deformable objects. Puncture and cut detection is

essential to planner performance; without it, planners can produce low-cost paths

that pass directly though deformable objects. To prevent punctures and cuts, we

check every extension of the tree in RRT* for puncture using an incremental variant

of the algorithm introduced by Chen et. al. [3] for computing topological invariants

on voxel grids. The original algorithm extracts the surface vertices from the voxel

grid, and computes the connectivity of each surface vertex. Each surface vertex can

be connected to between one and six neighboring surface vertices; let M1 be the

total number of surface vertices with one connected neighbor, M2 the total with two

neighbors, and so on. From these totals, Chen et. al. prove that the number of holes

in the voxel grid is nholes = 1+((M5+(2 ∗M6)−M3)/8).
Thus, checking for punctures can be implemented by removing the swept vol-

ume of the path of the probe from the voxel-based model of deformable objects

used for motion planning, and then computing the number of holes to ensure that

no new holes have been created by the path. Additionally, to prevent objects from

being completely cut apart by the path, the overall connectivity of the surface voxels

corresponding to each object are computed; if the surface vertices for an object form

multiple disconnected groups, then the object has been cut apart by the path.

To efficiently perform these checks during the planning process, we incremen-

tally check for punctures with each extension and rewiring step of RRT* (see Figure

4). For testing a new edge from configuration q1 to configuration q2 the process is

as follows: (1) retrieve the stored object surfaces corresponding to q1, (2) update

the object surfaces with the swept volume from q1 to q2, (3) compute the number

of holes in each object surface (check for puncture), (4) compute the connectivity

of each object surface (check for cuts), and (5) if no holes or cuts are encountered,

store the updated surfaces corresponding to q2. For every such check, we are effec-

tively checking the entire path from the start configuration qstart to q2 for punctures

and cuts.
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5 Results

We present results of testing our framework in a 3D simulated environment (5DoF

probe insertion task) and in a physical planar environment (3DoF rigid object nav-

igation task) using an industrial robot. We use the Bullet physics simulator [4] to

provide an environment for capturing demonstrations and computing features, and

the Open Motion Planning Library (OMPL) [18] to provide the RRT* planner used

to verify the recovered sensitivity values. We show that our methods accurately re-

cover sensitivity values that allow planners to imitate expert demonstrations. We

also report on how the algorithm generalizes to a new task, where an obstacle is in-

troduced into the environment, and report on the use of active learning for reducing

the number of demonstrations required. Ideally, we would compare the performance

of our framework with existing approaches such as LEARCH [17], however, these

approaches require computing the true optimal path to perform IOC, which is in-

tractable in the 5DoF probe insertion task.

5.1 Recovered Behavior

We first demonstrate the performance of our framework in the 3D simulated envi-

ronment without using the automatic demonstration task generator, and show that

our demonstration capture environment and parameter recovery process produce

acceptable object sensitivity values. Using our RRT* planner, we show that the re-

covered sensitivities produce paths that imitate the expert demonstrations.

The test environment, as shown in Figure 2, consists of six deformable objects

forming the faces of a hollow cube. These objects form three classes; each pair of

opposing faces has the same sensitivity assigned, with the lowest sensitivity (L1,L2)

shown in blue, an intermediate sensitivity (M1,M2) shown in green, and high sen-

sitivity (H1,H2) shown in yellow. For testing purposes, the “true” sensitivity values

of these objects are set as L1,L2 = 0.2, M1,M2 = 0.4, H1,H2 = 0.8. We use the true

values to evaluate the quality of paths planned with the recovered sensitivity values,

but they are unknown to our IOC method.

Using the conservative approach discussed in Section 4.2, 12 demonstrations

were performed, one for each pair of adjacent objects. Several examples of these

demonstrations can be seen in Figure 2 and Figure 5. While time-consuming, this

approach ensures that sufficient demonstrations have been collected to capture the

desired behavior. In these demonstrations, lower-sensitivity objects were preferen-

tially deformed instead of higher-sensitivity objects.

Using the set of 12 demonstrations, we recovered the object sensitivity parame-

ters using our parameter recovery process. We generated a set of 100 sample paths

around each demonstration using a multivariate gaussian distribution using the pro-

cess described in [9], which produces smooth noisy path samples around an initial

path. Features for all demonstrations and samples were computed by executing paths

in the demonstration capture environment, and all feature values were normalized
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relative to the highest feature value. Using the PIIRL formulation of IOC, the opti-

mal weights were recovered using the convex optimization problem in Equation (1);

we used the function minimization tools in MATLAB to perform this optimization.

For optimization, the lower bound of possible weight values was 0.1, and the upper

bound was 1000, with the weights initialized to 500. The recovered sensitivity val-

ues were L1 = 0.10004, L2 = 0.10092, M1 = 2.8523, M2 = 8.5683, H1 = 958.92,

H2 = 999.51. Note that both high sensitivity objects (H1 and H2) were avoided in

all demonstrations, and thus received maximum weights in the optimization. Again,

recovery of the true sensitivities is impossible and we must evaluate our method in

terms of the cost of the path planned using the recovered sensitivities.

5.1.1 Recovered Parameter Verification

(a) (b) (c) (d)

Fig. 5: Examples of goal configurations from demonstrations (a,c) and corresponding goals of

paths planned using recovered sensitivity values (b,d). Full paths are not shown for clarity.

Using the object sensitivity parameters recovered using PIIRL, we planned for

all 12 demonstration tasks using RRT*. Table 1 compares the demonstrations with

results for planning times of 30 and 60 minutes, with 30 and 15 trials of each, re-

spectively. Figure 5 shows examples of demonstrated paths compared with paths

produced by RRT*. As shown in the table, paths produced using the recovered pa-

rameters imitate the behavior of the demonstrations by deforming the same objects

with similar amounts of deformation except for two demonstrations (namely 9 and

12) for which the planner found a path superior to the original demonstration. Note

that due to the difficulty of the planning problem and the finite planning time for

RRT*, we do not expect planned paths to exactly match the demonstrations. Two

notable types of error resulted in sub-optimal plans, namely cases where planned

paths clip the edge of higher-sensitivity objects, and cases where planned paths sim-

ply result in higher cost than the demonstration. In both cases, errors are indicated

by high standard deviations; this is expected if a small number of the planned paths

exhibit particularly sub-optimal behavior. These errors are caused by the limited

time available to RRT*, which restricts the number of goal states sampled and the
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Demonstrated Recovered (30 plans, 30 min/plan) Recovered (15 plans, 60 min/plan)

L M H L M H L M H

1 5.61 0.0 0.0 12.14 [4.68] 0.0 [0.0] 0.0 [0.0] 10.81 [1.55] 0.0 [0.0] 0.0 [0.0]

2 7.14 0.0 0.0 12.35 [2.7] 0.0 [0.0] 0.0 [0.0] 11.57 [2.82] 0.0 [0.0] 0.0 [0.0]

3 4.87 0.0 0.0 10.65 [3.71] 0.16 [0.82] 0.0 [0.0] 9.82 [2.84] 0.0 [0.0] 0.0 [0.0]

4 5.30 0.0 0.0 10.27 [2.75] 0.07 [0.38] 0.01 [0.03] 11.06 [2.22] 0.0 [0.0] 0.0 [0.0]

5 7.69 0.0 0.0 13.65 [4.18] 0.0 [0.0] 0.1 [0.53] 14.17 [3.62] 0.0 [0.0] 0.0 [0.0]

6 7.92 0.0 0.0 10.73 [2.09] 0.0 [0.0] 0.0 [0.01] 11.24 [4.7] 0.0 [0.0] 0.0 [0.0]

7 7.27 0.0 0.0 11.86 [2.93] 0.1 [0.54] 0.0 [0.0] 12.48 [3.5] 0.0 [0.0] 0.0 [0.0]

8 9.55 0.0 0.0 13.48 [3.52] 0.34 [1.47] 0.0 [0.0] 11.97 [2.97] 0.26 [0.97] 0.0 [0.0]

9 0.0 35.59 0.0 0.02 [0.13] 32.55 [9.13] 0.0 [0.01] 0.03 [0.11] 31.51 [10.48] 0.0 [0.0]

10 0.0 20.38 0.0 0.9 [1.63] 21.8 [8.44] 0.0 [0.01] 1.44 [2.69] 20.51 [8.5] 0.0 [0.0]

11 0.0 18.67 0.0 0.02 [0.08] 23.79 [5.62] 0.29 [1.29] 0.17 [0.56] 24.68 [5.55] 0.0 [0.0]

12 0.0 17.17 0.0 9.58 [1.95] 0.1 [0.32] 0.07 [0.25] 9.36 [1.96] 0.02 [0.09] 0.03 [0.09]

Table 1: Comparison between demonstrated behavior and paths planned using object sensitivity

values recovered from 12 demonstrations between each pair of adjacent objects. Costs reported

(mean [std.dev.]) are the integral of volume change multiplied by the true object sensitivity val-

ues, separated by class of object (L = low-sensitivity, including objects L1 and L2, M = medium-

sensitivity, including objects M1 and M2, H = high-sensitivity, including objects H1 and H2).

refinement of the path. Results for 60-minute planning times shown in Table 1 show

that in most cases, increased planning time reduces these errors. Note that the high

planning times used here are partially a consequence of our puncture test, which

adds considerable computation in addition to the deformation cost function.

5.1.2 Generalization of Recovered Parameters

The importance of recovering sensitivity parameters is not to reproduce the demon-

strations, since these could simply be replayed; rather, recovering the sensitivity

parameters allows us to generalize the behavior displayed in the demonstrations to

other tasks in the test environment. To demonstrate that the recovered sensitivity

parameters generalize, we performed a set of tests shown in Figure 6. Starting from

one of the demonstrations (demonstration task 6), we adjusted the target point and

inserted rigid obstacles that block the demonstrated path. As shown in Figure 6, our

planner produces paths that exhibit the same behavior as the demonstration path;

while the new path differs from the demonstration and thus results in different cost,

the preferential deformation of the blue object over the green one indicates that the

expert’s preference was correctly captured.

5.2 Automatic Generation of Demonstration Tasks

Using the same test environment, we tested our active learning method for auto-

matically collecting demonstration tasks. Examples of these demonstration tasks

are shown in Figure 2. Unlike the conservative approach discussed previously,
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(a)

L=7.27,M=0.0,H=0.0
(b) L=8.20, M=0.0, H=0.0 (c) L=21.24, M=0.0, H=0.0

Fig. 6: Paths planned to show the generality of recovered sensitivity values, (a) goal configuration

of demonstration 6, and (b)(c) two goals of paths planned with target points offset from the center

of the environment when the direct path from start to target is blocked by a rigid obstacle (black).

which used demonstrations between all pairs of adjacent objects, the active learning

method generates only enough tasks to form a ranking of all objects in the environ-

ment. We tested the active learning method in the same test environment as above

and allowed it to select a subset of tests from the set of comprehensive demonstra-

tions. Using this method, between 8 and 10 demonstrations were required to cap-

ture features for all objects, compared to the 12 used by the conservative approach.

As before, 100 sample paths were generated around each demonstration, and sen-

sitivities were recovered using the PIIRL optimization problem. Since the active

learning process involves some random selections, we ran 15 trials; 10 demonstra-

tions were required in 14 cases, and 8 demonstrations in 1 case, with average re-

covered sensitivities (average [std.dev.]) being L1 = 0.100[0.0], L2 = 0.101[0.0002],
M1 = 2.858[0.012], M2 = 8.630[0.071], H1 = 984.12[29.272], H2 = 999.509[0.165].
Comparing these results with the sensitivities learned using the full set of demon-

strations (see Section 5.1), we observe that the values are not meaningfully different,

which shows that the active learning method can infer very similar sensitivity rela-

tionships with fewer demonstrations.

5.3 Physical Environment Tests

In addition to testing with our simulated environment, we have also applied our

framework to a planar physical test environment shown in Figure 7 with an L-shaped

block, similar to those used in our previous work [16]. Like our previous work, the

use of a planar 3DoF environment allows for the deformation of objects in the envi-

ronment to be tracked in real time by an overhead camera. Paths in the environment

were planned using the same RRT* planner as before, albeit in SE(2).
For comparison purposes, we first planned using uniform sensitivity values for

all objects, as shown in Figure 7b. A demonstration path through a narrower, higher-
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(a) (b) (c) (d)

Fig. 7: Testing for our physical test environment (a), with objects numbered and start (red) and

goal (blue) states shown. Swept volumes of (b) path planned with uniform object sensitivity values,

(c) demonstration path, and (d) path planned with recovered sensitivity values.

Object deformation

O1 O2 O3 O4 O5

Uniform 0 3367 2442 0 554148

Demonstration 23451 0 0 0 35222

Recovered 51569 38798 0 0 73013

Table 2: Deformation comparison for the five left-hand objects in our physical test environment

between a path planned with uniform object sensitivity values, the demonstrated path, and a path

planned using the recovered sensitivity values. Reported deformation values are in pixels.

deformation passage was provided using our demonstration capture environment, as

shown in Figure 7c. As with the simulated environment, 100 samples were generated

around the demonstration, and object sensitivity values O1 = 1.00, O2 = 200.00,

O3 = 100.03 , O4 = 200.00, O5 = 36.21 were recovered using a lower bound of

1, upper bound of 200, and initial value of 100. These parameters are expected, as

the demonstration path deforms O1, O4 and O5, while avoiding the other objects.

Planning using the recovered values is shown in Figure 7d; planning was performed

with a planning time of 5 minutes. Following planning, all three paths were executed

in our test environment by an industrial robot, with object deformations tracked

by our tracking camera and reported in Table 2. As before, we do not expect the

planned path to exactly match the demonstration; in particular due to the narrow

low-cost passages in the environment, it is unsurprising that the planned path has

significantly higher cost than the expert demonstration. However, the planned path

does avoid O3, instead preferring the passage between O1 and O2, which matches

the preferences demonstrated by the expert.

6 Conclusion

We have developed a framework for recovering sensitivities of deformable objects

so that our motion planners imitate the behavior of expert users in deformable

environments. By formulating the problem of motion planning in deformable en-

vironments in terms of generating optimal paths that minimize deformation, we

can recover object sensitivity parameters from demonstrated optimal paths using

IOC. We also propose an active learning algorithm to generate demonstration tasks.

Our framework has two advantages over existing similar techniques. First, by using
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sampling-based techniques for IOC that avoid the need to solve the forward prob-

lem and sampling-based asymptotically-optimal planners, our framework is more

applicable to higher-dimensional problems than existing approaches. Second, our

method for automatically generating demonstration tasks for users to perform re-

duces the number of demonstration tasks needed to capture the desired behavior.

We tested our framework in simulated and physical test environments, and showed

that it recovers object sensitivities suitable for planning paths that imitate the behav-

ior of expert demonstrations. We also showed that these preferences can generalize

to new tasks.
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