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Abstract In this paper, we present our system design,
operational procedure, testing process, field results,
and lessons learned for the valve-turning task of the
DARPA Robotics Challenge (DRC). We present a
software framework for cooperative traded control
that enables a team of operators to control a remote
humanoid robot over an unreliable communication
link. Our system, composed of software modules
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running on-board the robot and on a remote worksta-
tion, allows the operators to specify the manipulation
task in a straightforward manner. In addition, we have
defined an operational procedure for the operators to
manage the teleoperation task, designed to improve
situation awareness and expedite task completion.
Our testing process, consisting of hands-on inten-
sive testing, remote testing, and remote practice runs,
demonstrates that our framework is able to perform
reliably and is resilient to unreliable network condi-
tions. We analyze our approach, field tests, and expe-
rience at the DRC Trials and discuss lessons learned
which may be useful for others when designing similar
systems.

Keywords Humanoid robotics · Manipulation ·
Teleoperation

1 Introduction

The 2011 disaster at the Fukushima Daiichi nuclear
power plant illustrated the limitations of then state-
of-the-art disaster response robotics. This led to
the 2013 DARPA Robotics Challenge (DRC) Trials,
where roboticists were invited to compete on eight
tasks representative of those encountered in a disas-
ter recovery scenario. Each of these eight tasks was
defined to require a highly mobile and dexter-
ous robot. Humanoid robots, while not required
for the trials, are especially well suited for these
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tasks as they take place in human environments.
To match conditions experienced in real-world dis-
aster situations, trial rules specified that commu-
nication between robot and operators would be
restricted in bandwidth and suffer from high latency.
This prevents operators from working with sen-
sor feedback at a high rate, limiting situation
awareness, and making it difficult to accurately
monitor the result of the robot’s actions in real time.

This paper does not focus on providing novel
fundamental methods for robot control. Instead, we
focus on the development and testing of a frame-
work for the seventh DRC task – turning industrial
valves (shown in Fig. 1). Our DRC team was struc-
tured so that separate groups of people worked on
each DRC task, which allowed development to pro-
ceed in parallel (see [12, 20, 28, 32, 37, 53, 54]
for a description of our DRC team’s work on other
tasks). While the work described in this paper tar-
gets the valve-turning task, many of the components
of our framework, including both software compo-
nents and operating procedures, were adopted by other
member of our team for other DRC tasks.1 The valve-
turning task poses a number of particularly difficult
challenges, which we analyze in Section 3. However,
the core challenge is manipulating an object whose
general shape, but not size and location, is known
a priori. Thus, we need a system which is able to
navigate the robot to a location where it can manipu-
late the object of interest, determine grasp locations,
and dynamically generate trajectories for manipula-
tion.

Our system is composed of five primary com-
ponents: (1) an operator-guided perception interface
which provides task-level commands to the robot, (2)
a motion planning algorithm that autonomously gen-
erates robot motions that obey relevant constraints, (3)
an “unreliable communication teleoperation” toolkit,
which we have released as an open-source ROS pack-
age [33], that limits the traffic on the data link and
makes the system resilient to network dropouts and
delays, (4) an operational protocol that dictates how
the team of operators must act to operate the robot,
and (5) a testing process that simultaneously tests the
system and serves to train the human operators.

1Several software components, especially the robot–
workstation datalink, were used directly by other parts of our
DRC team, while other components, such as the user interface
and operational protocol, were modified to match their tasks.

Using our system, operators can specify the manip-
ulation task in a straightforward manner by setting the
pose and dimensions of the object to be manipulated in
a 3D display of the pointclouds acquired by the robot,
shown in Fig. 2. The system then lets operators plan
a feasible trajectory, and once validated using a pre-
viewing system (also shown in Fig. 2), send it to the
robot for execution.

This paper describes our system design, perfor-
mance, and lessons learned. In particular, we discuss
the development of our system design from an ini-
tial focus on autonomy to the cooperative traded
control system used in the DRC Trials. We discuss
lessons learned through the design process that could
be useful to others, including why some standard tech-
niques could not surpass the ability of well-trained
operators on critical tasks, such as localizing objects
in pointcloud data or monitoring errors in trajectory
execution. We also discuss the performance and limi-
tations of our motion planning and control approaches
as well as alternative approaches for performing the
task.

2 Related Work

Prior work in the area of disaster recovery robotics
[4, 9, 47, 50] has revealed the need for better group
organization, perceptual and assistive interfaces, and
formal models of the state of the robot, state of the
world, and information as to what has been observed.
Here, we focus on the problem of teleoperating a
single humanoid robot remotely under unreliable com-
munication.

2.1 Teleoperation of Humanoids

While a fully autonomous disaster-recovery robot
would be desirable, no fully-autonomous humanoid
robots currently exist. Instead, human supervision
(i.e. teleoperation) is necessary to perform complex
tasks in unstructured environments. Teleoperating a
humanoid robot involves controlling actions such as
head motions, grasping and manipulation of objects,
navigation, speech, gestures, etc. The case of teleop-
erating a humanoid robot is particularly difficult due
to the high number of degrees of freedom (DoFs) and
the constraint to maintain balance. Teleoperation for
humanoid robots is a rather new area of research. A
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Fig. 1 Hubo2+ (left) in a simulated environment and DRCHubo (right) at DRC Trials turning a valve

recent survey on the topic can be found in [18], in
which authors list three types of challenges to teleop-
erate humanoids, two of which are relevant for disaster
recovery: 1) challenges created by physical proper-
ties of humanoids (e.g., high DoFs, morphology) and
2) operator-based challenges (e.g., situation aware-
ness, skill, and training). In this paper, we present a
framework that addresses both types of challenges.

There are a number of architectures that attempt to
tackle the problem of mobile manipulation [10, 23,
44]. Mobile manipulation tasks, be they performed by
a humanoid or wheeled robot such as the PR2, consist
of several difficult problems: where to place the robot

in relation to the object to be manipulated [15, 46, 51],
how to grasp the object [5, 25, 30], and how to plan
the robot’s movements [6, 22, 26]. Despite extensive
work in this area, to the best of our knowledge, there is
no available framework for humanoids robots tailored
for operator-guided object manipulation in unstruc-
tured environments with limited communication to the
robot.

2.2 Managing Autonomy in Teleoperation

All teleoperated robots require a certain level of
autonomy. Managing this autonomy is crucial in

Fig. 2 The operator identifies and localizes a valve in a pointcloud using an interactive marker (left), visualizes the motion planned
to maximize the turn angle of the valve by testing multiple hand placements before execution (right)
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the design of a teleoperation system. Supervisory
control [17], defined by Sheridan [43] as a process
in which “one or more human operators are intermit-
tently programming and continually receiving infor-
mation from a [robot] that itself closes an autonomous
control loop”, provides a good framework to clas-
sify different control approaches. However, other
terminologies and methodologies have since emerged
to describe ways of managing the robot’s auton-
omy, the three most relevant for our task are defined
in [18]:

Direct control
The operator manually controls the robot, minimal
autonomy is involved on the robot side. The robot is
controlled in a master-slave interaction. An exam-
ple of a direct-control approach is the control of
each DoF of a manipulator using a joystick.

Traded control
In traded control the operator and the robot both
control the robot’s actions. The operator initiates
a task or behavior for the robot. The robot then
performs the task autonomously by following the
desired input while the operator monitors the robot.
For instance, in [39], an interactive robot is teleop-
erated by selecting predefined tasks for the robot
to perform. Our approach is based on traded con-
trol as the operator only specifies the target valve
and its properties to initiate the task, which is then
performed by the robot using autonomous motion
planning and execution.

Collaborative control
This mode corresponds to high-level supervision
where the robot is considered to be a peer of the
operator. The role of the operator shifts from an
operator who dictates every movement, to a super-
visor who guides at a high-level. This approach is
often used for unmanned systems controlled from a
central command post [3, 29].

When a team of operators controls a robot in any
of those modes the strategy is called “Cooperative”.
The method presented in this paper is a form of Coop-
erative Traded Control. While a comparative study
between different teloperation methods is not within
the scope of this paper, in Section 6 we discuss the
evolution of our approach and compare it to alternative
control strategies.

2.3 Teleoperation with Low Bandwidth

Highly unstructured disaster environments, such as
those we target in this work, provide a challenge
where communication can be difficult due to the
unknown properties of the building materials, mak-
ing transmission and reception of signals unreliable
[31]. While communication over unreliable channels
has been studied extensively for many years, in partic-
ular Shannon’s seminal work [42], we are concerned
with controlling a robot over a limited-bandwidth net-
work where the underlying unreliability of the channel
has been mitigated by the use of TCP. Low-bandwidth
communication covers a broad range of research,
which can be categorized by the amount of delay
that the system attempts to handle. Typically, these
categories are roughly 0–2 seconds, 2–10 seconds,
and greater than 10 seconds latency [8]. For instance,
many surgical systems operate between zero and two
seconds of latency sometimes across distant locations
[27]. Latency greater than two seconds is typically
found in research related to earth orbit or farther sys-
tems, such as Lunar robots [8, 34]. Latency greater
than ten seconds extends even farther including the
Mars rovers, which have a delay of many minutes
[7]. The system we present in this paper is meant to
operate seamlessly with a latency between zero and
five seconds, with packet loss and periodic dropouts
that are analogous to communication in a demolished
building.

2.4 Service-Oriented Architectures

The system we present has been developed within
a Service-Oriented Architecture (SOA). An SOA is
a system architecture that consists of discrete soft-
ware modules that communicate with each other.
SOAs have become a popular choice for robotics since
they allow the software to be highly modular and
adaptive [35]. A range of SOAs are currently avail-
able, including Microsoft Robotics Developer Studio
(MRDS) [24], Joint Architecture for Unmanned Sys-
tems (JAUS), Hierarchical Attentive Multiple Models
for Execution and Recognition (HAMMER) [40], and
Robot Operating System (ROS) [36]. We chose ROS
for our system due to its extensive proven ability to
control high-DOF robots such as the PR2. ROS has
also been applied to more anthropomorphic humanoid
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robots such as the Nao [1], Robonaut 2 [16], and
TU/e TUlip [21]. Additionally, ROS was chosen for
its extensive libraries, such as TF, which maintains
the transformations between all frames of the robot,
and its built-in visualization tool (RVIZ) which allows
for fast user interface development. However, ROS
does not perform well in unreliable network con-
ditions. We describe how we overcame this in
Section 4.2.

3 Problem Description

The valve-turning task of the DRC poses a number
of significant challenges to a robot. In the task itself,
the robot must perceive the location, size, and pose
of the valve, compute a suitable placement, and turn
the valve. Besides these characteristics of the task, the
time-limited and competitive nature of the DRC Tri-
als imposes additional challenges of communications,
supervisory control, and testing.

3.1 Perception

The robot must be able to reliably locate the tar-
get valves in a potentially-unstructured environment.
In the worst case, the robot must be able to locate
valves of unknown size and shape, in the pres-
ence of unknown obstacles, with a range of ambient
lighting and visibility. This requirement is extremely
challenging, particularly since the perception sub-
system must be robust enough to be suitable for
competition use.

3.2 Base Placement

In the presence of obstacles, finding a robot placement
suitable for completing a manipulation task (such
as turning the valve) requires finding a) a base/foot
placement and b) a set of configurations for turning
the valve that allow the robot to maintain balance.
Base/foot placement defines the shape and the loca-
tion of the support polygon that the robot needs to
stay in balance throughout the task. This is a prob-
lem intertwined with the problem of finding a set
of configurations for the manipulation task, since the
projection of the center of mass of the robot must lie
in the support polygon at all times for balance.

3.3 Manipulation

The core challenge of the valve-turning task is manip-
ulation of the valve. In our approach, manipulation in
this task consists of two stages; first, the motion gener-
ation stage, which must generate trajectories that obey
constraints of balance and closed-chain kinematics,
and second, the execution of these trajectories.

For legged and high-DoF robots such as DRCHubo,
movements of the upper body can make the robot
unbalanced. As a result, it is important to consider
the center of mass when generating the robot manip-
ulation motions. However, to be able to turn valves
with high friction and stiction, the robot must use its
maximal capabilities (i.e., using both arms). Thus, the
hands must move in a coordinated manner. Our motion
planning component, based on the CiBRRT algorithm
[6], is able to account for those constraints given the
pose and shape of the manipulated object.

3.4 Operation

A critical and wide-reaching design choice for the sys-
tem is the selection of the operator control approach.
This choice involves not just a selection of operat-
ing mode from those discussed in Section 2.2, but
the development of the operator interface and opera-
tional protocol. An important consideration present in
the DRC is that the operator interface must be robust
enough for competition use and efficient enough to
complete a time-limited task.

3.5 Communication

As specified in the DRC rules, communications
between the robot and supervisor workstation are both
limited in bandwidth and subject to high latency. This
poses a considerable challenge to development and
operation. Ideally, sensor data from the robot, con-
sisting primarily of joint values, camera images, and
pointclouds, would be promptly transmitted to the
user, yet the ability to send this data is extremely lim-
ited by poor network conditions. Given the time limits,
simply waiting for data to transmit is not a viable solu-
tion. To account for this, the system must be designed
to minimize bandwidth use, and the system compo-
nents (including the role(s) of human operators) must
be devised to require as little data as infrequently as
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possible. Specifically, for the DRC, DARPA speci-
fied bandwidth between 1 Mbit/sec and 100 Kbit/sec,
with latency between 100 milliseconds and 1000 mil-
liseconds, intended to simulate the unreliable and
varying communications available in a disaster zone
[48].

3.6 Testing

Since the DRC Trials are a competition, not only must
the entire system be tested, but operators must also
be trained to effectively and efficiently operate the
robot. Given the limited development time available,
this system testing/operator training must take place
concurrently with system development. In light of sys-
tem complexity and shifting challenge rules, devising
a test procedure that is representative of challenge
conditions is difficult. The training process must pro-
duce operators who are experienced with not only
robot behavior, but robot behavior in error condi-
tions, something that often requires real-world tests to
uncover.

An important component of devising such a testing
procedure is the method used to assess performance;
this must cover not just the individual software and
hardware components on the robot, but the overall per-
formance of the teleoperated robot system, including
both hardware, software, and the human operators. In
the context of the DRC, we assessed the performance
of our system using scoring criteria inspired by the
DRC rules (before the publication of the final criteria)

and specified by DARPA (after the publication of the
final scoring criteria) [48], as discussed in Section 5.
This scoring criteria specifies both tasks to complete
(i.e. turning each of a set of valves) and time limits on
setting up for and completing the tasks.

4 Framework Description

Our manipulation framework is intended for high-
DoF robots. We have applied a preliminary version
of it to PR2 and Hubo2+ robots, as shown in Fig. 3
[2]. In this paper, we focus on the final version
applied to the DRCHubo robot, developed by the
Korean Advanced Institute of Science and Technol-
ogy (KAIST). DRCHubo, an evolution of the Hubo2+
humanoid, has two 6 DoF legs, two 7 DoF arms, and
a 2 DoF head. The hands each possess three fingers,
with all fingers controlled by a single DoF. DRCHubo
is equipped with a sensor head containing a tilting
Hokuyo LIDAR for providing pointcloud data and
three cameras for stereo vision, configured to provide
three different stereo baselines as needed.

4.1 Architecture Overview

The system architecture, shown in Fig. 4, shows the
data flow through the system. Software modules run-
ning on the robot are shown on the left (yellow), while
those running on the operator workstations are shown
on the right (blue).

Fig. 3 Preliminary versions of our framework were applied to the PR2 robot (a) and the Hubo2+ humanoid (b)
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Fig. 4 System diagram showing data flow through the framework. Operator interaction in white boxes

On the robot, the data aggregation module reads
sensor output and packages it into compact messages.
The control module receives trajectories and then
monitors their execution.

On the workstations, the Graphical User Interface
(GUI) displays data received from the data aggre-
gation system to the operators. The GUI allows an
operator to specify the object pose and dimension
and send commands to the motion generation sys-
tems. Finally, the motion trajectories from the walking
generation and the manipulation planning systems are
sent to the robot through the data link.

The implementation of the framework relies on
ROS [36] for the communication between modules,
RViz for the user interface, and OpenRAVE [14]
for the motion planning and pre-visualization of tra-
jectories. The walking generation code is based on
KAIST’s Rainbow walking framework. All data trans-
mission between the robot and the workstation hap-
pens over ROS, however we have implemented our
own data-link software to throttle data rates and limit
communication to only necessary information.

The primary function of the data-aggregation sys-
tem is to reformat sensor data used on the workstation
so that communication across the restricted datalink
is limited. As shown in Fig. 4, it simultaneously pro-
cesses camera images, pointclouds, encoder values,

and force sensors allowing the framework to be highly
modular and quickly adaptable to different robots, as
well as being suitable for both real and simulated
environments. The system can also be reconfigured
during operation to handle changes in the available
sensor data, such as selecting an alternate image or
pointcloud source, or changing the quality of data
received.

For communication with Hubo’s motor controllers,
we use Hubo-Ach, a real-time control daemon that
uses a high-speed, low-latency IPC called Ach [13].
Hubo-Ach implements a real-time loop in which all of
the motor references and state data are set and updated
respectively. The bridge component of the data aggre-
gation system combines joint angle and motor control
sensor values read through Hubo-Ach and republishes
them as ROS messages. The head sensors (i.e., cam-
era and LIDAR for DRCHubo), are controlled through
ROS nodes.

4.2 Robot–Workstation Data Link

The data link between the robot and operator worksta-
tion is responsible for the transfer of sensor data from
the robot to the operator(s) and commands from the
the operator(s) to the robot. To simplify development,
as with robot and workstation, this data link uses ROS.
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This means the software running on robot and work-
station behave as a single distributed system. ROS is a
combination of a distributed node-based inter-process
communication (IPC) system and a family of libraries
built atop it. Natively, ROS IPC is a single-master
system in which a single master node coordinates
inter-node communications. In distributed ROS sys-
tems, this means that one of the computers (usually
one aboard or connected to the robot itself – in our use,
the robot) runs the master node. Experimental multi-
master systems exist in which multiple master nodes
are responsible for separate sets of nodes. Of particular
importance among the libraries included in ROS is TF,
which provides transformations between all frames of
a robot via the TF tree.

Standard ROS systems, be they single-master or
multi-master, are vulnerable to network problems.
Low-bandwidth and high-latency conditions like those
experienced in the DRC can (and, in our experience,
do) result in the failure of time-sensitive operations
such as TF queries and the loss of synchronization
in synchronized data. The latter is a problem partic-
ular to ROS; camera images and the relevant camera
model information are transmitted separately but rely
on synchronization via timestamps. Synchronization
failure for these messages results in the failure of all
operations attempting to use the camera data.

Equally troublesome, ROS provides limited built-
in functionality for data throttling and de-duplication.
Natively, each node subscribed to a particular data
topic receives its own copy of the data. In distributed
systems, this means that duplicate copies of the same
data will be be sent over bandwidth-constrained net-
work links. Similarly, there is no way for nodes to
directly control the rate at which they receive data –
for example, in our system, joint state data is produced
at the same rate as the real-time loop aboard the robot
(200 Hz), a far higher rate than that needed by the
motion planner on the control workstation.

While we considered both single- and multi-master
ROS architectures, we selected a single-master design
due to the development simplicity and familiarity it
offered. This choice came at the cost of significant
development to address the limitations of ROS and
single-master systems. Our solution to these limita-
tions, consisting of a dedicated toolkit for degraded
networks [33], allows for robust single-master ROS
systems over network conditions like those experi-
enced in the DRC (and worse) without imposing

additional constraints or limitations on developers. In
particular, our toolkit addresses several critical issues:

TF
The high bandwidth demands and sensitivity to
latency preclude the use of a single TF tree for
the robot and workstation. Instead, we use sepa-
rate “divorced” trees; one tree is generated directly
on the robot, while the second is generated on the
workstation from periodic joint state updates. This
approach greatly reduces the bandwidth demands
of TF, as static transforms are never transmitted,
and joint state updates are considerably smaller
(and sent far less frequently) than the equivalent
transforms.

Reliable transport and throttling
Data transport between robot and workstation
is provided by rate-limited relays that replace
the standard publisher-subscriber model. These
relays, based on ROS’s non-persistent service calls,
replace the simple equivalents provided in ROS and
implement automatic detection of network failures,
notification and warnings to the operator, and auto-
matic recovery of broken network sockets. Relays
provide fine-grained rate control, ranging from
request-only to free-flowing – however, to avoid
flooding the network, they only transmit new data
after previous transmissions have completed. While
considerably different in implementation from stan-
dard ROS topics, these relays expose the same basic
interfaces and require no modifications to exist-
ing ROS nodes. To improve performance, generic
relays are used for lightweight data such as joint
states, while image and pointcloud-specific relays
are used as necessary.

Synchronization
Synchronization of paired topics is solved by our
rate-limiting relays. These relays ensure that paired
messages are synchronized prior to transmission,
and by transmitting them together, they ensure that
synchronization is maintained until delivery.

Data compression
Reduction in bandwidth needed for image data is
achieved with a combination of resizing and JPEG
compression implemented in the image relay. This
combination results in a factor of 1000 reduction in
size for images (from approximately 5 MB uncom-
pressed to 5 KB compressed). In the pointcloud
relay, pointclouds produced from LIDAR scans are
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Table 1 Data sizes for
different compression ratio
and frequency of
transmission

Data No compression ratio 1 ratio 2 Freq. used

Joint State 0.82 KB − − 10Hz

Camera 5120 KB 230 KB 4.97 KB 0.5Hz

Pointcloud 10 MB ≈ 100 KB ≈ 50 KB On demand

compressed using a voxel filter and a selection
of pointcloud compression algorithms2 including
ZLIB and PCL’s Octree-based compression [38].
Using this approach, we can reduce the data usage
of pointclouds by over 95 %. For both images
and pointclouds, the compression process is com-
pletely transparent to other nodes and requires no
modifications to existing code.

In addition to the development of a dedicated
toolkit to improve performance on degraded networks,
we limited the bandwidth demands of our system by
aggressively limiting the rate of data transfer. From
our remote testing experience, we were able to reduce
the frequency of data transfer to the minimum required
for task completion. Table 1 reports the data sizes
and frequency used for communication between the
robot and workstation. The compressed camera frame
correspond to lower resolution (320x240) with JPEG
compression quality for ratio 1 and ratio 2 of 50 and
20, respectively. The compression of pointclouds cor-
responds to the compression algorithms mentioned
above with no voxel filtering for ratio 1 and filtering
with voxel size of 0.02 m for ratio 2.

4.3 User Interface

When teleoperating the robot, the operator must be
able to monitor the robot state as well as its sur-
roundings to maintain situation awareness. Thus, our
GUI, shown in Fig. 5, provides monitoring capabili-
ties through 2D camera images as well as a 3D display
of the robot configuration and pointcloud data. The
user can switch what data is displayed on screen using
RViz’s built-in features. In addition to sensor data,
the GUI displays the motion planner error conditions
and the control system’s state through panels, text and
color codes.

The operator controls the robot by specifying a
set of parameters that are sent to the motion planner

2Full details of the pointcloud compression algorithms avail-
able, including a comparison of performance and features, can
be found in the documentation of [33]

and the walking generation module (i.e., end-effector
pose, turn angle, etc). We use interactive markers
[19] and control panels to determine and input those
parameters. Distance and direction for the walking
generation are determined using an interactive marker.
Valve size, turn amount, and choice of manipulator
for the task are determined using both an interactive
marker and the control panels. Before querying the
motion planner all parameters can be verified at a
glance by looking at the control panels, which greatly
reduces the possibility to incorrect commands being
sent to the robot.

Interactive markers (see Fig. 2) provide six-DoF
handles, three translation DoFs and three rotation
DoFs, which enable the operator to quickly define a
pose in a 3D display. Since we use interactive mark-
ers to simultaneously select and localize the object to
manipulate, we avoid the use of complex object detec-
tion and localization algorithms, instead relying on the
operator for these capabilities. The shape attached to
the interactive marker can be a box, a disk, or a trian-
gle mesh. To specify the pose and dimensions of an
object (e.g., lever or disk valve) the operator aligns the
shape to pointcloud data using the interactive marker.
In the DRC, when localizing the valve for walking to a
standing position in front of it, the pose estimate does
not have to be as precise as for manipulation, usually
only requiring mild accuracy in terms of distance from
the robot to estimate the walking distance. Hence the
average time to align the marker over one trial while
operating the robot are 9.3 secs for walking and 41.6
secs for manipulation (when a much more accurate
alignment is needed).

Once the object is localized and the planner param-
eters are selected, the operator can send a planning
request. The resulting motion can be pre-visualized at
will in a dedicated 3D GUI component (see Fig. 2).
This phase limits potential mistakes made by the
operator as well as dangerous robot behavior.

In addition to operator input and feedback, the GUI
controls the data flow over the unreliable link to the
robot. The operator can request pointclouds and turn
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Fig. 5 Screen capture of the Graphical User Interface (GUI). 1 video feed of the lever and round valve, 2 display of pointcloud and
interactive marker, 3 planner-settings panel

on and off the camera image request loop. Thus data
from the robot is transmitted only when necessary to
minimize communication.

4.4 Motion Planning and Execution of Trajectories

Once the object pose and dimensions are set by the
operator, the operator can generate the robot’s motion
using the motion planning component. The paths pro-
duced by the motion planner are collision-free and
respect end-effector pose and balance constraints.
After validation by the operator, the trajectories pro-
duced by the planner are sent through the data link and
executed by the control system aboard the robot.

4.4.1 Motion Planning

For valve turning, each manipulation task involves
three subtasks : 1) Ready: a fullbody motion that sets
the robot’s hands close to the valve ready to grasp
it, with knees bent, lowering the center of gravity
to be more stable 2) Turn: An arm(s) motion that
grasps the valve, performs a turn motion, releases the
valve and returns to the initial configuration (so it can

be repeated without re-planning, assuming that the
environment is static) 3) End: fullbody motion that
brings the robot back to the walking configuration.
While these motions are specialized for valve turn-
ing the motion planner can be easily reconfigured to
manipulate other objects by inputting a different set of
constraints.

The motion planning component of the system
is built upon the CBiRRT algorithm [6], which is
capable of generating constrained quasi-static motion
for high-DoF robots with balance constraints. While
a number of motion planning algorithms are capa-
ble of planning constrained motion [45, 49], we
chose CBiRRT for its explicit incorporation of bal-
ance and closed kinematic chain constraints in addi-
tion to support for end-effector constraints. All three
types of constraints are essential to the valve turn-
ing problem – without any one of them, the robot
would fall over, fail to turn the valve, or dam-
age itself. CBiRRT generates collision-free paths by
growing Rapidly-exploring Random Trees (RRTs)
in the configuration space of the robot while con-
straining configurations to configuration-space man-
ifolds implicit in the constraints. Average planning
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Table 2 CBiRRT average and stdev planning time in seconds
for DRCHubo on the three valve turning subtasks

Valve type Ready Turn End

Lever 1.91 (1.11) 0.99 (0.39) 1.72 (0.91)

Circular 2.71 (1.12) 2.72 (1.55) 2.38 (1.72)

time of CBiRRT for each subtask are reported in
Table 2.

In the valve turning task, the motion must obey
constraints defined by the valve pose provided by
the operator (as explained in Section 4.3). The end-
effector pose constraints are specified as Task Space
Regions (TSR) [6]. A TSR consists of three parts:

– T 0
w : transform from the origin to the TSR frame

w;
– T w

e : end-effector offset in the coordinates of w;
– Bw : 6 × 2 matrix of bounds in the coordinates of

w:

In our implementation for valve-turning we have
defined three tasks that the robot can perform: 1) Turn
a lever with the right hand 2) Turn a lever with the left
hand 3) Turn a circular valve with both hands. Each of
these tasks corresponds to a TSR constraint definition.

In all cases, iterative Jacobian pseudo-inverse
inverse kinematics are performed to find a whole
body configuration given the location and radius of
the manipulated object. The TSRs are then defined
according to the hand locations when grasping the
object and the pose of the object. For instance, the
TSR for one-arm lever motions is defined as follows:

T 0
w = T valve

w

where T valve
w is the valve pose in the world.

T w
e = (T valve

w )−1 ∗ T H
w

where T H
w is the hand pose in the world when grasping

the valve.

Bw =
[
0 0 0 θ 0 0
0 0 0 0 0 0

]T

where θ is the desired rotation angle of the lever. When
planning for full-body motions, we also define TSRs
for the feet to keep their position and orientation fixed
in the world. In order to perform large turns on the cir-
cular valve, we have implemented an algorithm that
iterates through interpolated hand placements along
the valve to find valid start and goal IK solutions that
maximize the turn angle (see Fig. 2).

4.4.2 Trajectory Execution and Control

The path generated by the motion planner is first
retimed using piece-wise linear interpolation before
being sent over the data link to the control system.
Trajectories are executed aboard the robot by feeding
waypoints at 200Hz to the on-board controllers, which
track the waypoints with PID controllers running at
1KHz. The operator is informed of the end of the tra-
jectory execution by a monitoring system based on a
ROS Action Server that returns success or failure if
the robot has reached the end of the trajectory in the
time constraints.

4.5 Human-Robot Interaction and Team Command

Due to the number of modules, the complexity of the
system can easily generate too much cognitive load on
a single operator. Single-operator use of our system
is possible – indeed, many of the remote tests were
done primarily by a single operator – but tasking a sole
operator with simultaneously monitoring and control-
ling the robot was inefficient and led to mistakes. To
reduce errors and improve the efficiency of operation,
we defined a multi-operator scheme that distributes
different parts of the task among multiple operators. In
our multi-operator approach, each member is assigned
a particular function (see Fig. 6), and we make use
of checklists and a “playbook”, summarizing failure
cases and possible strategic decisions to be made, to
dictate the operators’ tasks. To clarify responsibility
for decisions and improve responsiveness in failure
cases, we adopted an explicit chain of command and
responsibility between the various operators.

The team roles were the following:

Captain
Dispatches the different sub-tasks to the other oper-
ators and keeps track of the current strategy (e.g.,
the order in which to perform the environment
scans, where to walk, and the manipulation tasks).
Effectively, the core function of the Captain is to
maintain task-wide situation awareness and con-
vert this knowledge into timely commands. This
operator should have a good understanding of the
system as well as precise knowledge of the primary
and alternate strategies developed a priori in the
“playbook.”

GUI operator
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Fig. 6 Operator roles while teleoperating DRCHubo on the valve turning task at DRC

Prepares queries for the motion planner by local-
izing the objects (e.g., valves) using interactive
markers, sends the trajectory to the robot after visu-
alization and approval by the Captain. The GUI
operator should have extensive experience with
both the user interface and the motion planner;
should the motion planner fail (for instance, when
there is no valid IK solution), they will be best
positioned to work around the error.

Robot process operator
In addition to starting and stopping the software
running aboard the robot (i.e., control and data
aggregation systems), the robot process operator
monitors debugging information logged by the var-
ious software components running on the robot.
This operator should understand the system soft-
ware architecture and have experience operating the
robot. Should errors onboard the robot occur, this
operator will both be the first to discover them and
the best-equipped to address them.

Walking operator
Commands and monitors walking execution. This
operator must be extremely familiar with the walk-
ing control of the robot, so that they can execute
movement commands as quickly and efficiently as
possible.

Network monitoring operator
In the DRC Trials, network communication with
the robot can degrade dramatically. Thus it is use-
ful to have an operator monitor the current network
conditions. For instance, this operator can help the
captain in his/her decisions to request sensor data
or change sensor data rates and quality, which can
overload the data link if made in a period of partic-
ularly poor network conditions. The network mon-
itoring operator uses standard network diagnostics
tools (for example, ping) to monitor network qual-
ity. The additional role of this operator, once again
specific to the DRC Trials, is to serve as an on-field
representative of the operating team during event
setup and interventions.3 This operator should have
extensive test experience with the robot, so that
they can assist in decision making both among the
operators and on the field with the robot.

Because each operator’s mental load is reduced
using this cooperative control approach, adopting

3Interventions are five minute time-outs in which the robot can
be serviced in person by the operators. A limited number (three)
of interventions can happen in each task, either called for explic-
itly by the operators, or automatically triggered by the robot
falling.
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these roles enhances the robustness of the control pro-
cess. Each operator is only responsible for a small
number of tasks and the critical operations are mon-
itored by at least two operators (i.e., the Captain and
the operator responsible for the action). We also make
use of a communication protocol where the name of
the target operator is called prior to communicating to
reduce the risk of mis-communication. For instance,
in the valve-turning task, when the captain asks if the
robot computers have received the trajectory, stating
the robot process operator’s name avoids ambiguity in
the request which could unnecessarily load the other
operators. This protocol is especially important in the
distracting and stressful DRC Trials environment.

Reducing the cognitive load of each operator
enables acting in a safer and more effective manner.
While these tasks can be completed by lone operators
– as we have done multiple times – in our experi-
ence, single operators are both slower and usually
unable to quickly recover from errors. We believe
team operation of a humanoid robot is especially effi-
cient in scenarios where the robot must act under tight
time constraints. Considerable precedent for this team
structure exists; very similar operational modes are
commonly found when operating large vehicles such
as tanks or aircraft [11].

5 Testing

Preliminary versions of our system were tested on
both the PR2 and Hubo2+ robots [2]. While these

tests were suitable for debugging and evaluating the
performance of various framework components, this
testing was insufficient to discover all errors and
limitations in our system. Moreover, it was not suit-
able for training the human operators; we dedicated
little time to understanding how to recover from
errors or how to expedite task completion. With
preliminary development complete, we developed a
testing schedule designed explicitly to test system
performance and prepare operators for the DRC Tri-
als. We believe similar methods could be used when
developing systems and training operators for disaster
response.

5.1 Testing Process

Our testing process consisted of a series of scheduled
remote testing sessions. Remote tests were conducted
over a VPN connection between our development
team in Worcester, Massachusetts, USA and the robot
at Drexel University in Philadelphia, Pennsylvania,
USA. Remote testing time was split between ses-
sions used to test newly-developed or modified fea-
tures and “mock trial” sessions testing whole-system
performance and the skills of the operators. These
mock trials served as training tools for the operators,
as they were representative of conditions encoun-
tered during the DRC Trials: no ability to observe
the robot, limited communication with team members
physically managing the robot, and degraded network
conditions between the robot and operators. Though
we did not store information on the quality of the

Fig. 7 Evolution of the task specs. provided by DARPA: a initial unstructed environment, b second specification with horizontal and
vertical valve placements at different heights, c final task description with only vertically placed valves at a single height
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network connection used for remote testing, we fre-
quently observed latencies greater than 1 second and
packet loss greater than 5 % – worse than the network
conditions specified by DARPA.

The task specifications for the valve turning task are
shown in Fig. 7, and the physical setup of our tests are
shown in Fig. 8, with the robot standing in front of
the valve. In all but the last remote test, the robot was
already in position in front of the valve, while for the
final remote test, the robot first walked up to the valves.

5.2 Testing Results

Remote tests were conducted over the course of three
months, comprising eleven separate testing sessions,
in which we performed the valve turning task in an
environment similar to Fig. 8. Like the DRC Trials,
each test was divided in two phases: setup time (15
minutes) and run time (30 minutes). Depending on the
time taken by setup, we ran between one and three
trials per session. The average setup time, run time and
results are reported in Fig. 9.

Since our testing began before the DRC Trials’
scoring rubric was published, we defined our own
scoring criteria for our tests. However, since the task
specification and score rubric published by DARPA
changed multiple times our scoring rubric did not
match the one used at the DRC trials. In the first phase
of the tests we focused on turning a large circular
valve three full turns. DRC rules were changed later
to require only one turn on three valves in the setting
presented in Fig. 7c. Our rubric was:

– 1 point - Grasping the valve
– 2 points - One full turn
– 3 points - Three full turns

Figure 9 reports the evolution of the average setup
and run times in minutes, as well as the average scores.
During the first test sessions, our code was unstable
and startup was largely manual, as evidenced by the
high setup and run time and the low average points.
However, after the first two test sessions the aver-
age number of points per run was 2.26, setup time
was 21.6 minutes and run time was 24.92 minutes.
Those results indicate that we were able to perform
over one turn of the valve at each trial and shows
the overall reliability of the framework. On test seven
we could not score points due to hardware failure in
the setup increasing our setup-time and preventing us
from completing a valid run.

On the last run (i.e., test 11, which is not reported
in Fig. 9) we integrated the walking component from
KAIST and adopted the final scoring rubric provided
by DARPA. We aimed to turn all three different valves
in a setting similar to Fig. 7c. On that test run the
operational protocol as well as the software frame-
work were the same as those used in the challenge.
We scored four points according to DARPA’s rubric
by turning each valve a full turn within 30 minutes and
not requiring any interventions.

Additional successful tests were conducted at the
DRC Trials venue prior to competition. During the
competition run we succeeded in turning the lever
valve with the left hand. However, after complet-
ing a successful turn of the large round valve and
releasing it, the robot lost balance and fell forward.
The successful turning of the valve suggests that our
approach for localizing the valve and turning it were
effective, despite the limited compliance of the robot.
While we cannot determine precisely the cause for
the robot falling (a similar error did not occur in
our previous tests), we believe the robot fell as a
result of calibration error combined with insuffi-
cient balance control and the unexpected slope of the
ground.

6 Lessons Learned

The system presented in Section 4 is the result of
design and testing cycles in which significant trade-
offs have been made to maximize its performance on
the valve-turning task.

The different iterations of the DRC rules regard-
ing robot–workstation communications and mockup
specifications acted as a moving target to our devel-
opment. Initially, the vague requirements for the task,
shown in Fig. 7a, encouraged us to implement a more
autonomous approach. However, as the requirements
became more precisely defined (e.g., no obstacles,
only horizontal valves, single height for valve place-
ments) and as automated techniques proved to be
less effective than human operators, we moved back
from autonomy towards a traded cooperative control
approach.

In this section, we discuss our experience and
lessons learned addressing each of the challenges dis-
cussed in Section 3. A common thread among these
lessons is a shift from autonomy to teleoperation and,
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Fig. 8 DRCHubo performing the task: testing in a mockup environment at Drexel with a the operator’s view in our user interface and
b the robot turning the valve, and c the robot at the DRC Trials

with it, an increasing role for the human operator(s).
We then discuss broader lessons learned implement-
ing and using the cooperative traded control approach
in relation to other teleoperation approaches.

6.1 Perception

A high level of autonomy in perception implies auto-
matic detection and localization of objects in the
scene. We avoided object detection because we did
not have an appearance model of the object (i.e.,

color, the exact shape), however localization in a
pointcloud can be performed by the Iterative Closest
Point (ICP) algorithm when given a good initial
guess by the operator and a parametrized model. ICP
“snaps” the points on the surface of the object to
the nearby points in the pointcloud. In fact, our pre-
liminary system design incorporated ICP in the user
interface [2].

Despite our initial use of ICP, the approach pre-
sented in Section 4.3 relies on the operator for both
detection and localization of objects by manually

Fig. 9 Average setup time and run time in minutes (left) and average of points scored over 10 testing sessions (right). A test session
comprise one to three tests
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aligning shapes to the pointcloud data. In practice,
operator localization of an object without using ICP
was found to produce faster and more accurate results
than using ICP. Indeed, ICP could find the object
pose quickly when given a good initial guess [2],
however, due to the sparsity of the data the operator
often needed to provide several initial guesses, making
the process slower than specifying a precise pose
directly.

Summary Human-assisted perception can be signif-
icantly faster and more reliable than automated or
semi-automated perception when used with experi-
enced operators.

6.2 Base Placement

In unstructured environments, it is crucial to account
for the robot’s manipulation capabilities when select-
ing the placement location to perform a manipulation
task. Initially, we pursued an autonomous solution to
that problem based on reachability maps [52] to com-
pute foot placements and configurations suitable for
completing the task. Using a kinematic capability map
of the robot, “promising” end-effector poses could be
estimated. Using these poses, a set of foot placements
could be computed. If a valid set of robot configura-
tions could be found for both estimated end-effector
poses and foot placements, then a suitable placement
would be found.

However, as the DRC Trials rules developed, it
became clear that the valve task environment would
be highly structured, with few obstacles to complicate
foot placement (see Fig. 7). We found that a skilled
human operator was able to determine a successful
placement faster than the autonomous algorithm in
such a structured environment. In this case, a simple
estimate of distance to the valve from the pointcloud
data using an interactive marker by the operator was
satisfactory. To assist the operators in making this
selection, we tested a range of potential placements
using our motion planner. From these tests we were
able to determine distance ranges that would lead to
successful valve turning.

Summary In simple structured environments, base
placement selection for humanoid robots can be effi-
ciently performed by experienced operators rather
than by generating placements autonomously.

6.3 Manipulation

Our motion planner, CBiRRT, is able to account for
obstacles as well as kinematic and balance constraints
and thus can produce statically-stable motions. It has
been very effective throughout our testing. In par-
ticular, when combined with our user interface, it is
extremely good at encapsulating the complexities of
humanoid manipulation. However, the algorithm does
not account for uncertainty introduced by imperfect
sensing. This uncertainty in valve position and obsta-
cle locations can result in unexpected collisions or the
hands of the robot becoming stuck on the valve. In
the initial set of tests, sensing errors caused the robot
to fall, as the robot collided with the valve when per-
forming the End operation. While methods exist to
account for uncertainty in sampling-based planning,
we found that a simple solution based on adding way
points in the reaching and extraction trajectories was
sufficient. These way points are placed before grasp-
ing and after releasing the manipulated object, and the
object’s volume is augmented when planning motion
to and from these way points. This procedure guaran-
tees that the arms keep a minimal safety distance with
the object to be manipulated as they perform the
Ready and End motions. We found this solution effec-
tive enough to avoid collisions with the valves at all
times.

Execution of planned trajectories is, alone, insuf-
ficient to confirm task completion. For the valve, a
range of conditions, such as the hands slipping, miss-
ing the valve entirely due to sensing error, or being
unable to turn the valve could prevent the task from
being completed. Errors in task execution (i.e., when
the task is not performed as intended) can be iden-
tified by using the dynamic programming technique
Dynamic Time Warping (DTW) to match executed
trajectories against a library of known successful and
unsuccessful trajectories [2]. DTW iteratively calcu-
lates the best alignment between elements of two or
more time sequenced data [41] and produces a met-
ric that quantitatively represents the similarity of those
sequences to either the successful or unsuccessful
class, which facilitates error detection during execu-
tion. This technique gave reasonable results in testing
with the PR2 (correct identification rate of 88 %).
However, even this performance can be easily sur-
passed by an experienced human operator watching
camera images of the task. Once it became clear that
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a constant camera feed, albeit at low frequency and
quality, could be maintained throughout the task, we
switched to manual monitoring of execution.

Summary An effective motion planner is important
to relieve the operators from the complexities of
high-DoF manipulation. However, monitoring the sta-
tus of task execution was more reliably performed
by experienced human operators than by automated
approaches.

6.4 Operation

Our operating protocol, with its division of work
between multiple operators and clear chain of com-
mand, was effective at maintaining situation aware-
ness and task performance. As noted before, our
system was designed to be usable by a single oper-
ator if necessary; in fact, a significant number of
remote tests were conducted partly or entirely by
a single operator. However, single-person operation
was marked by the difficulty of maintaining situation
awareness while also completing the task quickly.
In particular, recovering from errors was time-
consuming and complicated for a single operator
needing to monitor the state of the task, the robot, the
robot’s onboard software, and their user interface all
at once.

Our switch to multiple operators, in which over-
all situation awareness is explicitly tasked to the
“captain” separately from the robot operators, greatly
improved operation. The combined knowledge and
experience of the operating team allowed for more
effective and informed decision making. Multiple
operators working together and confirming each
other’s commands effectively eliminated the simple
user errors that were experienced early in testing, and
recovery from errors was made significantly more
efficient with operators each managing a separate
part of the system. An additional, unforeseen, ben-
efit of the greater situation awareness provided by
the multiple operator system was that the task could
be completed with significantly lower quality sensor
data. Compression artifacts and noise in sensor data
that would otherwise have increased single-operator
workload and chance for error instead posed minimal
additional difficulty to the multi-operator team able to
review the data and discuss any uncertainty together.
Taking advantage of this allowed us to decrease data

quality but increase the rate at which data (especially
pointclouds) could be requested.

Summary Switching from a singe operator to a multi-
operator team allowed for better management of situ-
ation awareness and reduced operator errors. In addi-
tion, multiple operators allowed for effective operation
and situation awareness with less sensor data.

6.5 Communication

Specifications for the communications link between
the robot and operator workstation varied between
DRC kickoff and DRC Trials. Early rules incorpo-
rated bandwidth use into trials scoring, while the final
rules only specified bandwidth and latency limits. Ini-
tial concerns about these rules drove much of our
development focus towards autonomy and the initial
development of the data link toolkit (see Section 4.2).
As the task became more structured, our broader
switch to operator-guided teleoperation increased the
demands on the data link, since the operators were
now required to complete tasks that previously would
have been completed aboard the robot.

Accommodating this increase in data requirements
was made possible by the development of our data
link toolkit, which made possible the continuous trans-
mission of images from the robot and the use of
pointclouds when needed. This additional data greatly
increased the situation awareness of the human oper-
ators. In our drive to reduce bandwidth demands, we
discovered that experienced operators could reliably
complete the task with lower-quality data (i.e., lower
resolution, more compression artifacts, more noise)
than had been feasible with autonomous solutions.
The development of an extensive generic toolkit using
ROS, rather than a special-purpose data link specific
to the DRC, incurred additional up-front development
time but resulted in considerably easier testing and
implementation. Since all software could be tested
with or without using the data link, its development
could proceed in parallel to broader system develop-
ment. This flexibility also makes our toolkit appli-
cable to a wide range of robot use cases, including
both disaster-recovery operations (ex. communica-
tions between robots and operators or other robots
in disaster zones) and general robotics development
(ex. mobile robots operating inside buildings with
unreliable WiFi) in addition to its use in the DRC.
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Summary The development of an effective toolkit for
reducing bandwidth use provided for good situation
awareness using camera images and pointclouds while
remaining under tight bandwidth limits, and allowed
us to offload perception tasks to human operators.

6.6 Testing

Our testing process, composed of a set of intensive on-
site tests and extensive remote tests, was successful
both in testing our system and preparing the opera-
tors for the DRC Trials. The reliance on remote testing
forced the rapid development of our data link toolkit
and prepared operators for the task with conditions
representative of those encountered in the trials. In
particular, the combination of unscored and scored
remote tests allowed the development of new features,
the testing of those features, and the evaluation of
those features in terms of expected trial performance.
A major lesson learned from the testing process was
the inclusion of tests dedicated to the use of the sys-
tem, rather than just system performance. These tests
served to train the operators and identify usability
issues that might otherwise have been ignored in favor
of new feature development – for example, changes to
our user interface that improved the speed and reduced
the risk of error when commanding the planner.

Summary Testing of complex robotic systems should
focus both on the correctness and performance of the
system, but also the use of the system by its human
operators. This provides experience and training for
the users and identifies potential usability issues.

6.7 Teleoperation Method

The teleoperation method presented in Section 4 is
an instance of cooperative traded control [18], which
relies on an intermediate level of autonomy of the
robot. We also experimented with a direct control
approach as a fallback system for our framework,
which requires less autonomy (i.e. substituting the
motion planner for direct operator control of end-
effector pose from the GUI). As expected, this tele-
operation mode was significantly slower to use than
the control mode presented in Section 4. From dis-
cussions with other teams competing in the DRC, it
was indeed possible to use direct control for valve-
turning, along with stored end-effector trajectories

(e.g., a one-handed circle with a tool inserted into the
valve spokes) to execute the turning motions (this was
possible because the specifications for the valve loca-
tions were released not long before the competition).
To perform the task with this strategy, the robot needs
good balance control and arm strength to overcome the
mismatch between the stored trajectory and the true
valve pose and dimensions – which was not the case
of DRCHubo using our system.

Another way to control the robot is by using col-
laborative control (similar to high-level supervision),
in which the robot maintains more autonomy in task
completion. Though this was our initial aim, our expe-
rience suggests that critical components in such a sys-
tem may be less reliable or slower than direct human
operation. As a result, it is unclear if state-of-the-
art techniques would enable a collaborative control
system to outperform a cooperative traded control
approach.

Summary An intermediate level of autonomy, in
which the robot manages low level details, such as
the generation and execution of trajectories, while
the human operators handle perception and overall
task-level behavior, is an effective combination of
the complementary strengths of robots and human
operators.

7 Conclusions

We have presented a manipulation framework which
applied to the valve-turning task of the DARPA
Robotics Challenge. Our framework consists of a soft-
ware framework for teleoperating humanoid robots to
perform manipulation tasks with limited communica-
tion, an operating protocol designed to improve task
completion and efficiency, and a testing process that
simultaneously tested software and trained operators.
Our testing process, consisting of hands-on inten-
sive testing, remote testing, and remote practice runs,
demonstrates that our framework is able to perform
reliably and is resilient to unreliable network condi-
tions. We emphasize that our system, while applied
specifically to the valve-tuning task, can be applied
to a variety of teleoperated robotic tasks – multiple
components, with little or no modification, were used
to complete other DRC tasks on our DRC team. We
have analyzed our approach and discussed lessons
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learned designing our system. In particular, we discuss
several lessons which resulted in a system-wide shift
from autonomy to cooperative traded control and show
how those changes resulted in better performance than
our original design. Our experience designing and
using this system suggests that the key to building an
efficient teleoperation system is to identify where a
well-trained operator can surpass the performance of
software components to get the best of both autonomy
and human capabilities.
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