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Abstract— This paper presents an approach to formulat-
ing the cost function for a motion planner intended for
human-robot collaboration on manipulation tasks in a shared
workspace. To be effective for human-robot collaboration a
robot should plan its motion so that it is both safe and efficient.
To achieve this, we propose two factors to consider in the
cost function for the robot’s motion planner: (1) Avoidance of
the workspace previously-occupied by the human, so that the
motion is as safe as possible, and (2) Consistency of the robot’s
motion, so that the motion is as predictable as possible for the
human and they can perform their task without focusing undue
attention on the robot. Our experiments in simulation and a
human-robot workspace sharing study compare a cost function
that uses only the first factor and a combined cost that uses
both factors vs. a baseline method that is perfectly consistent
but does not account for the human’s previous motion. We
find that using either cost function we outperform the baseline
method in terms of task success rate without degrading the task
completion time. The best task success rate is achieved with the
cost function that includes both the avoidance and consistency
terms.

I. INTRODUCTION

While factory automation has been studied for many years,
many manufacturing tasks have proven difficult to automate
fully because they must be performed in close proximity
to a human, or because parts of the task require human-
level perception and/or manipulation capabilities not yet
achievable by robots. To overcome this difficulty, a robot
and human can collaborate to perform manufacturing tasks.
However, when humans and robots share a workspace, the
robot must be able to avoid interference with the human and
potential collisions so that the task can be completed safely
and efficiently.

A robot motion planning algorithm that is used in such
a collaborative workspace must consider human safety and
the human’s expectations in the trajectories it produces. This
paper investigates how to formulate a cost function for the
robot’s motion planner such that both safe and efficient task
execution results. Two fundamental factors are considered
in the formulation of the cost function: (1) Avoidance of
the workspace previously-occupied by the human, and (2)
Consistency of the robot’s motion.

The first factor is motivated by our observations of humans
collaborating on structured manipulation tasks where they
are asked to repeatedly reach to the same areas in a shared
workspace. After an initial period where the participants may
try different strategies, their motion becomes very similar
and they consistently enter the workspace of their partner

Fig. 1. Pipeline for the method. A human trajectory in the workspace is
captured by a motion capture system. This data is sent to the simulation
environment where an occupancy grid is updated. Finally, occupancy grids
for both the human and robot are queried to generate two cost functions
to be used in trajectory optimization. Planned trajectories are fed back into
the occupancy grid to further describe robot lanes of traversal.

with high speed while avoiding collision. We hypothesize
that this behavior is akin to forming separate “lanes” that
the humans move in. For instance one person may reach
closer to the table (e.g. elbow down) while the other reaches
over the first’s arm (elbow up). In this paper we investigate
if this apparent lane-forming can be exploited for human-
robot workspace sharing tasks by biasing the robot’s motion
planner to avoid the lanes created by the human.

However, considering the first factor alone may not be
sufficient because the human’s motion is affected by their
partner’s motion. This necessitates considering the second
factor: consistency. Again, considering this factor is mo-
tivated from observations of previous human-robot collab-
oration experiments: When the robot’s behavior (or even
the robot itself) is new to the human, the human tends to
move very cautiously. We hypothesize that this is because
the human finds the robot’s motion difficult to predict.
However, as the two continue to move in the same space for
a consistent set of tasks, the human usually becomes bolder
in their motion around the robot, increasing their velocity
and exploiting free work space around the robot’s motion.
Thus we also consider the consistency of the robot’s motion
as part of the cost function. To produce more consistent
motion, we bias the planner to move the robot through the
same workspace it used previously. A central challenge in
this work is representing both the avoidance and consistency
factors using cost functions in a way that works well in the
TrajOpt [1] trajectory optimizer we use for motion planning.
We propose a human lane penetration cost function to enable
the avoidance of the human and a robot self-lane cost
function to bias the robot toward consistent motion.

Our experiments in simulation and a human-robot



workspace sharing study compare a cost function that avoids
only the human lanes and a combined cost that uses both
factors vs. a baseline method that is perfectly consistent
but does not account for the human’s previous motion. An
overview of our experimental framework is shown in Figure
1. We find that using either cost function we outperform the
baseline method in terms of success rate of the human’s task
without degrading task completion time. The cost function
that accounts for both avoiding the human’s lane and the
consistency of the robot’s motion has the best success rate.
These results suggest that our method produces collabora-
tions that interfere less with the human, allowing humans to
move with less error and therefore making the task execution
more efficient.

The remainder of this paper describes related work, the
implementation of the cost functions and their use in the Tra-
jOpt motion planner [1], and the results of our experiments.
We conclude with a summary and prospects for future work.

II. RELATED WORK

Because human-robot collaboration is necessary for ad-
vanced automation, planning for a robot while maintaining
human safety is an active research topic. Most safety efforts
in this area appear to fall into two categories based on
whether the robot is assumed to be functioning in an active
or passive role when interacting with a human.

In the case where a robot is assumed to be taking an active
role, the human is generally considered to take the role of a
more passive observer. Planned motions are thus made to be
more understandable to the human. For example, [2] aims
to generate more human-like motions by first generating a
reachability map that is used to choose an ergonomic and
understandable goal configuration. Unlike this work, our goal
focuses on generating robot trajectories that can avoid human
motions in the shared workspace environment. Similarly,
[3] takes into account a human’s visibility, comfort and
reachability in the robot’s configuration space. This approach
is useful when performing hand-over tasks to a human,
however, we focus on applications in which a human and
robot perform simultaneous pick-and-place tasks in a shared
workspace. Finally, [4] aims to convey manipulation intent
by purposefully bending a trajectory to better communicate
which goal is being reached for. We focus more on gen-
erating robot motions that are consistent and avoid human
workspace lanes rather than focusing on conveying human
intent through motion generation.

In pick-and-place manufacturing tasks, a human should
feel safe enough to work freely in a workspace; giving min-
imal consideration to its robot counterpart. In this scenario,
to maintain safety the robot must take an observational role
of the “active” human. As a result, research in this case
generally aims to predict a human’s future motion. Our
previous work [5] uses a library of human motions per-
formed in isolation to create pre-computed Gaussian Mixture
Models that are queried on-line to predict a human’s future
workspace occupancy. [6] uses Inverse Optimal Control to
predict a human’s motion in human-human collaborations.

Fig. 2. Example of samples taken on the PR2’s manipulator

However, these methods gather human motions either in
isolation or in human-human collaboration. In this work
the costs functions we create are derived from the human’s
motion in collaboration with the robot. Koppula et al. [7]
used Conditional Random Fields (CRFs) to model affor-
dances of objects and 3D trajectories of the human hand.
This work has been recently extended in [8] to predict high-
dimensional trajectories. Here we avoid parametric modeling
of the human’s motion, using the workspace occupancy
directly. We also consider the consistency of the robot’s
motion, which is not addressed in the above methods.

While the principles of human motion have been investi-
gated in [9],[10],[11],[12], these works take a more low-level
approach by considering muscle activation or neural activity
with respect to motion. However, our approach is more high-
level in that we learn regions of the workspace to use or avoid
in relation to a human. Our approach thus does not require
a complex bio-mechanical model of the human.

Other works such as [13] [14] attempt to account for
dynamic obstacles in motion planning. While the human may
be considered a dynamic obstacle, we would like to avoid
re-planning as much as possible due to its time cost. Our
method aims to generate motions that could be used with
with a dynamic planner, but we aim to minimize the need
for re-planning under the assumption that areas with low
human lane penetration cost are likely to be collision-free.

III. APPROACH

Our approach to generating consistent, human-avoiding
reaching motions consists of a voxel based representation
of the workspace that records occupancy over time for both
a robot and human collaborator. These occupancy grids are
used to define two cost functions. The first of these cost
functions, the human lane penetration cost, aims to model the
avoidance factor by repelling robot configurations from the
areas of the workspace that should be reserved for traversal
by a human collaborator. The second, the robot self-lane
tracking cost, aims to model consistency factor by attracting
robot configurations toward previously used areas of the
workspace. These cost functions are then used in a trajectory
optimizer.

A. Workspace Modeling

Our method discretizes the shared workspace into two
voxel occupancy grids - H[i, j, k] for the human and
R[i, j, k] for the robot, where (i, j, k) is the index of the voxel
in the occupancy grids. We define a function m(p) = (i, j, k)
which maps a point p = (x, y, z) to an index of the voxel



in the occupancy grids. Each voxel H[i, j, k] and R[i, j, k]
is initialized with an occupancy value of 0.

To update the human and robot occupancy, we first pre-
compute a set of samples in the geometry of the each link
in the arm of both the human and robot simulation models,
as shown in Fig. 2. To model human motions in simulation
we use a motion capture system with inverse kinematics to
obtain a 23 DoF configuration of the human’s head, torso
and right arm. Each pre-computed sample, denoted as pj

i ,
represents the ith point on the robot/human model link j. At
each time step, the transformation matrix T 0

j between Fj , the
frame of link j and F0, the frame of workspace is computed.
We then transform pj

i to the workspace frame by T 0
j p

j
i . Thus

the human and robot occupancy grids are updated as follows:{
H[m(T 0

j p
j
i )] = H[m(T 0

j p
j
i )] + 1 if link j ∈ Human

R[m(T 0
j p

j
i )] = R[m(T 0

j p
j
i )] + 1 if link j ∈ Robot

This sampling and incrementing of voxels allows areas of
the workspace that are used most by their respective grid
owners(human/robot) to emerge over time.

B. Human Lane Penetration Cost
In order to generate motions that avoid areas of the

workspace used by a human, we define a human lane penetra-
tion cost function. The idea comes from the observation and
assumption that human motions are always constrained in a
subspace of the workspace when the human is working on a
set of repetitive tasks in a shared workspace. This constrained
subspace is similar to flight lanes used by aircraft. Each
aircraft is constrained to a specified lane such that they can
avoid each other without considering each other’s motion.
We likewise model the lanes used by a human through the
above occupancy grids. Rather than model human lanes as
solid obstacles that the robot needs to avoid completely, we
model human lanes as a cost map called lane penetration
cost, as the human lanes are not always entirely occupied by
the human and the human can also adapt their motions to
the robot.

Simply using the raw human occupancy value will assign
high cost to configurations that penetrate high use regions of
the workspace. However, this approach fails to provide lower
cost to configurations far from occupied regions relative to
configurations on the boundary of occupied regions. As a
result, we employ a combination of the occupancy value, and
the Signed Distance Field (SDF) of the human occupancy
grid as follows:

pen cost(H,p) = occH(H,p)sdfH(H,p) (1)

where p is any point in the workspace, occH(H,p) produces
the normalized occupancy grids value for point p, and
sdfH(H,p) is the normalized value of the SDF of the human
occupancy grid. The occH(H,p) is defined as:

occH(H,p)

{
log(0.9+1)

log(maxH+1) if H[m(p)] = 0
log(H[m(p)]+1)
log(maxH+1) if H[m(p)] > 0

(2)

where maxH is the maximum voxel value across the entire
human occupancy grid. We use 0.9 when the voxel value

is 0 in order to avoid flat regions of cost for the space
outside human lanes, as a flat region has no gradient, which
causes problems for the trajectory optimizer. We use the log
function to reduce the influence of the maximum voxel value,
as linear normalization of raw voxel values is overly sensitive
to the maximum voxel value. Consider an example in which
a human is standing at rest for numerous timesteps followed
by a quick reaching motion. The voxels which belong to
the reaching portion of the trajectory will be normalized to
nearly zero cost relative to the maximum cell value recorded
for the resting portion of the trajectory. Using a log here
ameliorates this issue. The sdfH(H,p) is defined as:

sdfH(H,p) =
arctan(maxSH)− arctan(sdf(H,p))

arctan(maxSH)− arctan(minSH)
(3)

where sdf(H,p) is the function that returns the SDF value
for a given occupancy grid and a given query point p.
maxSH and minSH are the maximum and minimum SDF
value for the human occupancy grids H . sdf(H,p) will
return a negative value when p is inside the occupied volume
described in the occupancy grids H , a positive value if p
is outside or 0 if p is on the boundary. The magnitude
is determined by how far p is from the boundary of the
volume, which, in our case, is the outside surface of the
lanes. We use the arctan function to give an upper bound
and a lower bound to the SDF value and keep it equal to 0
on the boundry, as we want to reduce the influence of the
points far away from the volume. Note that this normalization
function results in the most negative value of the SDF (the
innermost point in the lane) mapping to 1, and the most
positive value of the SDF (the point farthest from the lane)
mapping to 0. A two-dimensional slice of the human lane
penetration costmap can be seen in Figure 3.

C. Robot Self-Lane Cost

While the lane penetration cost aims to facilitate human
workspace avoidance, we also need to consider the consis-
tency of the robot’s motion. We define a robot self-lane cost
in a similar fashion to the lane penetration cost with the
intention of favoring motions which traverse the voxels most
used in the robot’s occupancy grid. The robot self-lane cost
is defined as follows:

self cost(R,p) = occR(R,p)sdfR(R,p) (4)

where occR(R,p) and sdfR(R,p) represent the normalized
voxel value of robot occupancy grids and normalized SDF
value of robot occupancy grids similar to the human lane
penetration cost. However, we invert the upper and lower
bound of the normalization for each term as the robot self-
lane cost is intended to attract the robot while the human
penetration cost aims to repel the robot. The occR(R,p)
and sdfR(R,p) are defined as follows:

occR(R,p)

{
1− log(0.9+1)

log(maxR+1) if R[m(p)] = 0

1− log(R[m(p)]+1)
log(maxR+1) if R[m(p)] > 0

(5)



(a) Normalized Occupancy Value (b) Normalized SDF Value (c) Occupancy Value * SDF Value

Fig. 3. A slice of the human lane penetration cost function from simulated data. From left to right, the first figure shows occH(H,p), the second figure
shows sdfH(H,p), while the third figure shows the resulting product of both values, pen cost(H,p)

(a) Normalized Occupancy Value (b) Normalized SDF Value (c) Occupancy Value * SDF Value

Fig. 4. A slice of the robot self lane cost function from simulated data. From left to right, the first figure shows occR(R,p), the second figure shows
sdfR(R,p), while the third figure shows the resulting product of both values, self cost(R,p).

sdfR(R,p) =
arctan(sdf(R,p))− arctan(minSR)

arctan(maxSR)− arctan(minSR)
(6)

where maxR is the maximum voxel value of the robot occu-
pancy grid R, and maxSR and minSR are the maximum
and minimum SDF value of the robot occupancy grid R.
The product of these normalized terms produces 0 cost in
voxels most occupied in the center of occupied regions, with
a smooth increase in cost of unoccupied regions. A two-
dimensional slice of the robot self lane costmap can be seen
in Figure 4.

Unlike the human lane penetration cost which accounts for
all observed human motion, regardless of the task the human
is performing (we do not assume the robot knows which task
the human is doing), the robot self-lane cost function aims to
model consistency for each task separately. Thus we maintain
one robot occupancy grid for each robot task.

D. Robot Trajectory Optimization

We use the TrajOpt [1] sequential convex optimization
algorithm to plan with the cost functions described in Sec-
tions III-B and III-C. We include collision, final end-effector
pose, and maximum end effector displacement constraints as
well as a weighted joint velocity cost. After trying a number
of different initial trajectories, we found the best initialization
was a path consisting of the first n− 1 configurations as the
starting configuration and the lowest-cost inverse kinematics
solution for the nth (final) configuration.

The final cost which TrajOpt uses is the weighted sum
of all above costs. We manually tuned the weights between
different costs using a pre-recorded training dataset. The

tuning process aims to find a weighting that is optimal in
terms of human lane penetration cost.

IV. RESULTS

In this section we present results illustrating the capability
of both of the above cost functions to generate human
lane-avoiding and consistent robot reaching motions. We
first show our cost functions’ ability to generate human
lane-avoiding motions in simulation by comparing generated
paths to a baseline. Next we test the impact of our cost
functions in a human subjects study by comparing robot
behavior produced by our cost functions to a baseline in
terms of the task completion time and task success rate. We
define the baseline for comparison as a straight-line path
in the robot’s configuration space from the robot’s initial
configuration to the inverse kinematics solution at the end-
effector goal for a given task that is closest to the initial
configuration. The baseline thus does not account for any
previous observations of the human and would correspond
to what the robot would do if it were performing its task
without the human. Importantly, these baseline trajectories
are optimally-consistent, as they never change for a given
task.

A. Recording Method

In order to record human workspace occupancy for sim-
ulated and experimental data, we used a Vicon motion
capture system. Human subjects wore a suit consisting of
four rigid plates and six individual markers which were
placed according to biomechanics industry standards [12].
We used as many rigid plates as possible as they provide



Fig. 5. Comparison of human lane penetration costs for baseline, human
lane avoidance (Pen), and human lane avoidance and robot self-lane con-
sistency (Pen and Self) trajectories in simulation

more robust tracking than their marker counterparts. From
our motion capture setup, we extract the center of rotation of
the human’s right wrist, elbow, shoulder and torso. We obtain
a 23 DoF configuration of the human’s right arm and torso
by performing inverse kinematics with these joint centers.

B. Experiments in Simulation

To evaluate our capacity to optimize trajectories for the
presented cost functions, we perform initial comparisons to
the baseline method in a simulated environment. Because
we are performing this analysis in simulation, we are unable
to evaluate the effects of consistent robot motion on a
human subject. Instead, in simulation we aim to show that
our optimization can produce paths of lower human lane-
penetration cost than the baseline method. This analysis
is performed in two phases: data collection and planning-
in-simulation. (1) In the data collection phase, we record
data of a human performing reaching motions to several
goals denoted by colored regions on a tabletop. We then
manually-segment the recordings into individual reaching
motions. (2) In the planning-in-simulation phase, we then
place a simulated PR2 robot at the side of the table opposite
the simulated human. We then forward-simulate segmented
human reaching motions until task completion, recording
workspace occupancy of each configuration in the human’s
motion. We then plan trajectories for the baseline, a trajectory
optimized according to Section III-D with the human lane
penetration cost (Pen), and a trajectory optimized with both
the human lane penetration cost and robot self-lane cost (Pen
and Self).

The three methods produce trajectories of varying length.
In order to produce a fair comparison between all three
types of trajectories, we insert a trajectory resampling step
prior to evaluation of a trajectory’s penetration cost, so that
trajectories are discretized at a fixed step size of 0.05rad .
The resampling step is necessary because, while the number
of waypoints used by TrajOpt is constant, the distance
between them is not.

Figure 5 provides a comparison, in terms of human lane
penetration cost, of the trajectories produced by the three
methods on the example scenario shown in Figure 6. The x

Fig. 6. An example of the human lane penetration cost map. Unoccupied
voxels not drawn.

Fig. 7. Comparison of human lane penetration costs for baseline, human
lane avoidance (Pen), and human lane avoidance and robot self-lane con-
sistency (Pen and Self) trajectories for each participant in the user study

axis on the figure shows the sequence of reaching targets for
the robot. Note that the voxel grids are updated between the
tasks with the human’s and robot’s previous motion. The re-
sults clearly show that optimization with the lane-avoidance
cost function produces significant improvements for avoiding
lanes over the baseline. Unsurprisingly, if we include the self-
lane tracking term in the optimization, the optimizer settles
to a solution that trades off self-lane following for avoiding
the human’s lane, thus we see that the lane-penetration cost
of the combined cost function is worse than optimizing for
lane-avoidance alone. In most cases, however, the combined
cost function still improves over the baseline in terms of
avoiding the human’s lane.

C. Human-Robot Experiments

While the results performed in simulation demonstrate
the capability of both methods to generate trajectories of
lower human lane penetration cost than a baseline, it is
unclear what effect such robot trajectories will have on a
human collaborator. We conducted a human subjects study
where a human performed pick-and-place motions while a
PR2 performed reaching motions in a shared workspace.
We evaluated each method in terms of task completion
time and task success rates. These metrics were chosen
under the assumption that workspace lane avoiding motions
from the robot will make human task execution simpler. To



ensure fairness between methods we consider the maximum
execution time between subjects and the PR2 as the task
completion time.

The experiment was designed so that the robot would need
to enter the human’s workspace to complete its task and vice
versa. The task was for the robot to reach to one of two
specified end-effector poses near the human and then return
to its initial configuration. Simultaneously, the human was
to perform two pick-and-place motions to targets near the
robot.

When a human moves at their natural speed, they can
perform their task much faster than we can safely execute
a robot trajectory, allowing the human to avoid the robot
entirely. As a result, we directed participants to place two
ping-pong balls balanced on top of 3D printed molds with
a slight dimple at two goal positions in sequence without
letting the balls roll off the molds. This constrained task
required the human to move at a speed comparable to the
robot. We define a successful completion of a task as a trial in
which both of the molds are placed directly in the predefined
goal regions and the ping-pong balls remain balanced on the
molds for the duration of execution.

Upon entering the experiment area, subjects were read a
script which briefly explained they were to perform a col-
laborative manipulation task. Next, the task to be performed
was verbally explained while being visually demonstrated in
unison. Participants were asked to move at a comfortable
speed while ensuring balance of the ping pong ball through-
out the task. Finally five demo executions were performed
to ensure basic task understanding.

After being introduced to the study, one of the three
methods was selected at random. The human performed a
sequence of twenty executions of the aforementioned task
which contained a balanced number of trivial executions in
which the PR2 reached to an unrelated area of the workspace
as well as conflicting executions in which the PR2 reached
to the same area of the workspace as the human (eg. Figure
9). The experimenter initiated the task by telling the human
which targets to place the molds on and simultaneously
starting the robot’s motion for its own target. A run of the
experiment was finished when the human and robot both
completed their tasks. A new robot trajectory is planned
prior to each task execution in the sequence. On average,
planning took 4.3ms, 6.82s, 15.39s with a standard deviation
of 3.5ms, 2.77s, 5.89s for the Baseline, Pen and Pen+Self
methods, respectively. Upon finishing the sequence subjects
were asked to play a simple video game for five minutes
before continuing to the next randomly selected method.
This is designed to encourage subjects to shift their attention
away from the robot and thus engage with each method with
similar familiarity.

We ran this experiment with 11 subjects, each performing
20 runs of each method generating a total of 660 human
reaching trajectories. We had 8 male participants and 3
female participants. The ages of the participants rage from
18 to 25. The median age is 24. Motions generated using
TrajOpt were initialized with a trajectory of 12 waypoints

as described in Section IV-B. The human lane penetration
cost was scaled with α = 0.7, the robot self-lane cost with
1−α, the weighted joint velocity cost was 1000×w where
w is an auto-generated weight vector for the PR2 robot. In
addition to this, a maximum displacement of 0.1 meters on
end-effector displacement between configurations was used
to encourage even spacing of configurations.

Figure 7 shows a comparison of average human lane
penetration costs for all three methods for every subject
in the experiments. Similar with the simulation results,
optimization with the human lane penetration cost alone
shows significant improvement in terms of path cost when
compared to the baseline. Likewise, except for subject four,
motions planned including the robot self-lane cost yield
trajectories which outperform the baseline, yet are of slightly
higher cost than when optimizing for human lane penetration
cost alone.

The benefit of this improvement in lane penetration cost
for both of our methods can be seen in Figure 9, in which
individual robot configurations are visually compared. In
the figure, the robot is executing a task which conflicts
with the subject’s task. In the case of a trajectory planned
with the baseline, the PR2’s arm significantly occludes the
subject’s goal region, necessitating a pause in the subject’s
motion. Alternatively, trajectories which include the human
lane penetration term provide ample room for the subject to
execute his or her task fluidly.

Table 8 shows the average task completion time, task
success rate and human lane penetration cost for the entire
dataset. Both methods slightly outperform the baseline in
terms of task completion time. The method which aims to
only avoid the human has the lowest execution time while
the method with the added robot consistency term has a
better task success rate. This is what one would expect
as the pure avoidance method would sometimes generate
motions that would confuse or alert subjects, causing them
to lose balance of the ping-pong ball. Most surprisingly, the
optimally consistent baseline method had the lowest success
rate of all.

A more detailed break down can be seen in Figure 8 which
shows average task completion times and task success rates
for each human subject under each method. In every subject
excluding subject ten, one of the two methods outperforms
the baseline in terms of task completion time, though often
by a small margin. Additionally, the Pen+Self method consis-
tently outperforms the baseline and Pen method in terms of
task success rates. While the improvements of our methods
over the baseline may seem modest, it is important to note

Method Task completion Time Task Success Rate Cost

Baseline 6.94 ± 1.21 s 0.8591 ± 0.1443 2.00e4 ± 7.33e3
Pen 6.62 ± 1.23 s 0.9318 ± 0.0777 1.19e4 ± 2.57e3

Pen+Self 6.71 ± 1.17 s 0.9591 ± 0.0668 1.39e4 ± 3.81e3

TABLE I
COMPARISON OF AVERAGE TASK SUCCESS RATE, PATH COST, AND TASK

COMPLETION TIME FOR EACH METHOD OVER 11 SUBJECTS EACH

PERFORMING 20 TASK EXECUTIONS



Fig. 8. Comparison of task completion times (left) and task success rates (right) for baseline, human lane avoidance(Pen), and human lane avoidance and
robot self-lane consistency(Pen and Self) trajectories for each participant in the user study

Fig. 9. A comparison of robot configurations generated by the baseline
method (left) and the avoidance-only method (right). The baseline method is
occluding the human’s goal region while the avoidance-only method leaves
the goal region open.

that these are elementary reaching tasks and that many such
motions need to be performed in the course of a practical
manufacturing task (e.g. assembly), so the time savings can
add up to substantial amounts. Task errors, such as dropping
the ball, are especially important to avoid as they would
require the human to recover from the error and repeat the
task, thus requiring more time.

V. CONCLUSION

In this work we have presented two cost functions for
generating safer motions within proximity to a human in
a shared workspace. These costs aim to model avoidance
of regions of the workspace that are of importance to
human task manipulation, as well consistency in robot mo-
tion; factors which were identified as important to human
manipulation through observation of human collaboration.
To demonstrate the efficacy of the proposed cost functions
we provide both simulated results as well as results from
a human subjects study. We found that using either cost
function we outperform the baseline method in terms of task
success rate without degrading the task completion time and
the cost function that aims to produce consistent robot motion
while avoiding the human produces the highest success rate.
These results suggest that the proposed cost functions do
indeed improve the efficiency of human robot collaboration
in shared workspaces. In future work we aim to study the
effects of collaboration strategies on users with different
collaboration preferences (e.g. leading vs. following).
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