
Learning Object Orientation Constraints and
Guiding Constraints for Narrow Passages from

One Demonstration

Changshuo Li1 and Dmitry Berenson2

1Worcester Polytechnic Institute, 2University of Michigan

Abstract. Narrow passages and orientation constraints are very com-
mon in manipulation tasks and sampling-based planning methods can
be quite time-consuming in such scenarios. We propose a method that
can learn object orientation constraints and guiding constraints, repre-
sented as Task Space Regions, from a single human demonstrations by
analyzing the geometry around the demonstrated trajectory. The key
idea of our method is to explore the area around the demonstration
trajectory through sampling in task space, and to learn constraints by
segmenting and analyzing the feasible samples. Our method is tested
on a tire-changing scenario which includes four sub-tasks and on a cup-
retrieving task. Our results show that our method can produce plans
for all these tasks in less than 3 minutes with 50/50 successful trials for
all tasks, while baseline methods only succeed 1 out of 50 times in 30
minutes for one of the tasks. The results also show that our method can
perform similar tasks with additional obstacles, transfer to similar tasks
with different start and/or goal poses, and be used for real-world tasks
with a PR2 robot.

Keywords: Learning from Demonstration, Constraints Learning, Ma-
nipulation Planning

1 Introduction

Many manipulation tasks, such as changing the tire on a car, require several op-
erations where the robot must navigate an object through a narrow passage (e.g.
removing a nut from a stud or removing the tire from the hub). These narrow
passages are induced by the geometries of the objects. There are also some ma-
nipulation tasks where pose constraints must be obeyed, such as not tilting a cup
of water. These requirements further constrain the motion of the object. While
motion planning algorithms capable of performing such tasks exist, they cannot
easily be biased to search the relevant parts of the space when the constrains
come from narrow passages or require manual input of pose constraints. These
methods are either time-consuming or require significant domain knowledge on
the part of the user.

In this paper we propose to learn the relevant area of the C-space to search
from human demonstration of the task. Our framework is able to do this, not by
attempting to follow the demonstration, but instead by inferring constraints from
it; exploring regions around it by sampling, analyzing the geometric properties
of the samples, and then extracting a relevant feasible area represented as a set
of Task Space Regions (TSRs) [4]. The TSRs derived from this analysis allow

This work was supported in part by the ONR grant N00014-13-1-0735.



us to generate plans for similar tasks much faster than planning without such
constraints in the case of narrow passages and allow performing the task without
violating pose constraints on the object.

Our key contribution is that instead of requiring multiple demonstrations
to form statistical models of how the object should move [2, 15] we learn pose
constraints (specifically constraints on the object’s orientation necessary for the
task) and guiding constraints (i.e. constraints that limit our search space to
only the relevant parts of the C-space) from a single demonstration. The results
show that the constraints we learn allow planning for tire-changing and cup-
retrieval tasks which outperforms other methods in terms of computation time
and success rate. These constraints can also transfer to similar tasks, and can
be used for real-world tasks with a PR2 robot.

The remainder of this paper is arranged as follows: Section 2 reviews related
work in this area. We describe the problem we address in Section 3. Our method
is then explained in detail in Section 4. Results of experiments in simulation
and real world mock-ups are presented in Section 5. Finally, we discuss some
drawbacks of our method, and conclude the paper in Section 6.

2 Related Work
Previous methods for learning constraints from demonstration can be divided
into two classes according to the type of input: 1) Kinesthetic demonstrations,
such as in [1, 11, 15]. The advantage of this kind of input is that the task is
demonstrated in the robot’s C-space directly, so there is no retargeting problem;
but this kind of input requires the demonstrator to have a good understanding
of the robot’s kinematics, especially in high-DOF cases, otherwise the demon-
stration can be noisy and redundant. 2) Natural human motion, such as in [3, 9]
with some also gathering verbal comments, e.g. [10]. In this case, we only need
the demonstrator to act naturally, but retargeting the demonstrated motion is
a challenge.

Most methods that learn constraints from demonstration require multiple
demonstrations, which are often used to compute the variance along the tra-
jectory. Some additional pre-processing, such as data alignment [1, 15], is also
needed. Given the aligned data, represent the multiple demonstration trajec-
tories [5] or key frames [1] as Gaussian Mixture Models (GMMs), and then
a solution for the task is given by Gaussian Mixture Regression (GMR). The
drawback of these methods is that they do not generalize to new environments
where the task is similar but new obstacles are present and/or the start/goal
are moved. To overcome this limitation, [15] learns a cost function from multiple
demonstrations, and uses a sampling-based planner to find a feasible path with
low cost.

Others have explored using a linear-chain Conditional Random Field paired
with motion-based features to detect and extract the rigid constraints which
arise between pairs of objects [3, 9]. After that they use an interactive GUI to
refine the learned constraints. In our approach we wish to have the user provide
the minimum information possible, so we limit our input to the demonstration
alone.

2



What distinguishes our work from those above is 1) We learn from only a
single demonstration; 2) Our method does not require any input beyond the
demonstration; 3) Our method does not require transferring a human motion to
the robot (i.e. solving the retargeting problem); 4) The constraints we learn can
transfer to similar tasks (i.e. a different start/goal pose or additional obstacles;
and 5) Our method scales to tasks in SE(3), such as changing a tire.

3 Problem Statement

A task is defined by a moving object, a reference object, a start pose and a goal
pose of the moving object w.r.t. the reference object. The information we extract
from the human demonstration is a trajectory of the moving object in the task
space, which is SE(3). This trajectory should be feasible and should connect
the start pose and the goal pose of the task. So the input of our algorithm is a
trajectory of poses of the moving object, the id of the moving object, the id of the
reference object and the geometric model of the demonstration environment. The
output of our algorithm is a pose constraints represented as Task Space Region
(TSR)1 [4] in the world frame and a series of guiding constraints represented as
TSRs in the frame of the reference object.

The goal of our algorithm is to learn pose constraints and guiding constraints
from the input, which will allow us to achieve fast planning across similar tasks.
A similar task is defined as a feasible task which has the same moving object
and reference object as the demonstrated task and either the start transform or
the goal transform of the moving object w.r.t. the reference object is the same
as the demonstrated task. The environment may or may not have a different
arrangement of obstacles.

4 Technical Approach

Our algorithm is described in Fig. 1. First, we capture the demonstration motion
using a motion capture system. From the demonstrated series of poses, we learn
the pose constraints, which represent the range of orientations the moving object
can have in this task. We then seek to learn the guiding constraints. As part
of this process we calculate the ratio of feasible object poses samples vs. total
samples around the demonstrated trajectory by rejection-sampling poses around
every demonstrated pose of the moving object. The demonstration trajectory is
then segmented based on this ratio. After segmentation, a guiding constraint
is learned from the samples of each segment. These constraints are represent
by TSRs. Finally the learned guiding constraints (TSRs) are input into the
sampling-based planner CBiRRT [4] to generate a path for a robot to perform
the task. We describe each step in detail below.

4.1 Learning Pose Constraints from Demonstrated Poses

Unlike geometric constraints, which are induced by the geometries of the objects
in the environment, pose constraints are often induced by additional require-
ments of the task, such as not tilting a cup of water. In many of these cases, the

1 A TSR, defined by a reference transform, an offset transform, and a matrix of bounds
on each dimenions of SE(3) represents a volume in SE(3).

3



Fig. 1. A diagram of our constraint learning algorithm

pose constraints are only related to the orientation of the moving object, such
as keeping the cup upright regardless of its position. Thus our pose constraints
are the allowable range of orientations of the moving object.

We choose the Euler angles (Roll, Pitch and Yaw) as the parametrization of
the orientations. Similar to Principle Component Analysis (PCA), we wish to
find a reference frame in which the principal components or components with
the largest weight are aligned with the axes. But the Euler angle space is not
a linear space, so instead we try to find a reference frame in which the volume
of the Axis-Aligned Bounding Box (AABB) of the demonstrated orientations is
the smallest. A Random Volume Decent method is used to achieve this:

First, we start with an arbitrary reference frame, and calculate the volume
of the AABB in this frame. Then, we apply a small random rotation to the
reference frame and get the volume of the AABB in this new frame. If the
volume decreases, we start from this new frame and try to find a better one;
otherwise we go back to the old reference frame, generate a new small random
rotation, and try again. The process terminates when we cannot find a better
reference frame after T consecutive trials.

In the resulting reference frame, we calculate the range of the demonstrated
orientations in all three dimensions (Roll, Pitch and Yaw). Then we say a dimen-
sion is unconstrained if the range of this dimension is greater than an angle α;
otherwise this dimension is constrained and the orientation of the moving object
should not go out of the range of this dimension. These rotation constraints are
then input into a TSR which has unbounded position constraints to produce the
pose constraint for the task.

4



4.2 Exploring Task Space Near the Demonstration Trajectory

We sample poses of the moving object around each of the poses in the demon-
stration trajectory in order to explore the feasibility of the local task space
so that we can compute appropriate guiding constraints. The sampling can be
considered as a random rotation and translation of the moving object in the
demonstrated pose frame. The random translation is uniformly chosen from a
cube centered at the origin of R3, and the size of the cube is decided by the
size of the moving object. Here we use unit quaternions as the parametrization
of the rotations. A random rotation is generated by a uniformly random spin
around a uniformly random axis. We intentionally use this random axis-angle
method instead of the more common uniformly-random quaternion method [13]
because the axis-angle method’s distribution is denser around the demonstrated
pose than the the uniformly-random quaternion. This is useful in our applica-
tion because the nearer a pose to the demonstrated pose, the higher chance it
is feasible and informative. We then discard a pose sampled in this way if it is
outside the learned pose constraint described in Section 4.1.

Next, we check collision for each sampled pose to evaluate feasibility. Both
the sampled pose and its feasibility are recorded for later use. The sampling
terminates when either the number of feasible samples or the number of total
samples reaches a predetermined threshold.

Fig. 2. The grey region is an ob-
stacle, the blue cross is the demon-
strated pose, the red circles are the
feasible sampled poses, the black
dashed lines show the sampling
range. In this case, the samples are
divided into two class, the left and
the right. Only the left class can
be reached from the demonstrated
pose, so samples in the right class
are also treated as infeasible.

After sampling, we need to examine the
connectivity of the feasible samples (not all
feasible poses are reachable from the demon-
strated pose due to obstacles). This is illus-
trated in Fig. 2. The connectivity is examined
by a local planner, which tries to connect sam-
ples by a straight line in SE(3). This connec-
tivity check can divide the feasible samples
into several classes. Due to the inconsistency
between the real world and the simulation en-
vironment, the demonstrated poses may not
always be feasible. Thus if the demonstrated
pose is feasible, then the set of samples that
can be connected to the demonstrated pose by
the local planner is chosen to be the feasible
connected class; otherwise, the class nearest
to the demonstrated pose is chosen.

Finally we calculate the feasible sample ra-
tio, the ratio of the number of samples of the
feasible connected class vs. the total number
of samples. We compute this sample ratio for every demonstrated pose, thus
obtaining a series of ratios for the entire trajectory.

4.3 Trajectory Segmentation

We wish to segment the trajectory using the feasible sample ratio because differ-
ent regions of a task have significantly different constraints, and they should be

5



represented by different TSRs. For example, when removing a nut from a stud,
the nut is highly constrained when it is on the stud, and is free when it is off the
stud. The key to segmenting the trajectory into regions where different guiding
constraints are active is to identify points where there are significant changes in
the feasible sample ratio. To do this, we represent the feasible sample ratio as a
time-varying signal across the duration of the demonstrated trajectory. We then
smooth this signal using Total Variation Denoising (TDV) [12]. TDV has the
advantage that it smooths noise in relatively flat stages while not shifting step
edges [14]. Each step change in the smoothed signal implies a significant change
of the feasible sample ratio and represents the start of a new segment.

We then need to fit a series of step functions to the smoothed signal (i.e.
a “staircase” function). Each flat region of the staircase is a segment. Given a
number of stairs k, the fitting problem can be formulated as [8]:

Yn = Xnβ
n + εn = XnNkβ

k + εn , (1)

where n is the length of the signal, Yn is a n-by-1 vector of the feasible sample
ratios, Xn is a n-by-n lower triangular matrix with non-zero elements equal to
one, εn is a n-by-1 vector of the residual error, and βn is a n-by-1 vector having
all its components equal to zero except those k numbers corresponding to the
start of a new stair. We then rewrite βn as Nkβ

k, where βk is a k-by-1 vector
of all k non-zero elements, and Nk is a n-by-k matrix, each column of which is
one of the trivial orthonormal basis of Rn. Then the optimal k-stair function is
the one has the minimum residual squared error over all possible Nk and βk:

N̂k = argmin
Nk

{min
βk
{(Yn −XnNkβ

k)T (Yn −XnNkβ
k)}} . (2)

For a given Nk, the inner optimization is a trivial linear fitting problem.
A straightforward way to solve the above optimization problem is to run over
all possible Nk, which means to try all possible k-combinations of the trivial
orthonormal basis of Rn. Note that there is always a stair at the first point, so
[1, 0, · · · , 0]T should always be included in the k-combinations. We set an upper
limit on k to test, which is defined as Kmax.

We then need to determine the optimal k, which we call k∗. Inspired by [7],
we assume that as k grows larger, the improvement of total residual square error
should be large if k < k∗; while the improvement should be small if k > k∗. Thus
the optimal k∗ is found by successively fitting with larger k values until a large
drop in improvement is observed. To avoid over-fitting, we stop testing larger ks
when the residual squared error is less than 1% of the total squared error. The
residual square error at k is:

σ2
k = min

βk
{(Yn −XnN̂kβ

k)T (Yn −XnN̂kβ
k)} . (3)

Then we define the improvement at k as:

Ik = σ2
k−1/σ

2
k . (4)

And the optimal k∗ satisfies:

k∗ = min{k|Ik+1 < Kmax} . (5)

Then the segmentation results can be extracted from the corresponding N̂k∗ .

6



4.4 Constraint Learning

For each segment determined above we learn a guiding constraint from all the
samples of this segment. As mentioned before, guiding constraints are repre-
sented as TSRs, so our goal is to find the limits of each dimension in task space.
In order to make sure the TSR includes at least one solution, the demonstrated
poses have to be included (or if a demonstrated pose is in collision, the nearest
sample of the feasible connected class has to be included in the TSR). We do
not want to set the bounds of the TSR to be too large in a narrow passage,
as we would loose the power of the TSR to narrow our search space. On the
other hand, the TSR should not be too small, as it will not generalize well when
new obstacles are introduced or objects are moved (as this may require taking
a somewhat different path than was demonstrated).

If the feasible sample ratio of the entire segment is close to 1, i.e. greater than
1− ε, which means the moving object is almost free around this segment, then
we say there is no constraint on this segment, or the guiding TSR is unbounded.
Otherwise, we first calculate a core TSR which is the smallest axis-aligned box
in SE(3) that includes only the demonstrated poses (or nearest samples) of that
segment. Then we put all the samples of this segment together, and calculate a
TSR that tightly includes all the feasible connected class samples of this segment
by setting the TSR bounds to be the bounds of this set. We call this the feasible
TSR. We then iteratively delete the feasible connected class sample which is
the farthest from the core TSR (the distance between a pose and a TSR is
defined in [4]), and then recalculate the feasible TSR. Thus the feasible TSR
iteratively shrinks. During the shrinking process, we keep tracking the ratio of
feasible connected class samples over all samples inside the feasible TSR. The
process terminates when this ratio exceeds 0.5, or the feasible TSR has become
the same as the core TSR. The resulting feasible TSR is the guiding constraint
for this segment.

The output of the above algorithm depends on the reference frame we choose.
Since SE(3) is not linear, we cannot use methods like PCA to choose the frame.
Again, we use a Random Volume Descent method instead. First, given an arbi-
trary reference frame, we can calculate the volume of the core TSR. Then, we
apply a small random rotation on the reference frame, and calculate the vol-
ume of the new core TSR. If the volume decreases, we set this new frame as
the reference frame. We repeat this process until no improvement is made in T
consecutive iterations.

5 Results

Our method is tested in a retrieve-cup-from-shelf task and in a tire-changing
scenario, which includes four important sub-tasks: remove nut from stud, insert
nut onto stud, unhang tire from hub and hang tire on hub, as shown in Fig. 3. All
of these tasks require traversing at least one narrow passage. In the experiment,
we simplify the tasks by removing the threads from the nut and stud. First, some
intermediate results of the unhang tire tasks are presented. Then the results of
our method on the five tasks are compared with those of baseline methods.
After that the generalization ability of our method is shown. Finally we present

7



Fig. 3. Snapshots from humans demonstrating the five tasks. We only use the poses
of the moving object and the reference object in our method. From top to bottom are
remove nut, insert nut, unhang tire, hang tire and retrieve cup, respectively.

snapshots from the execution of plans generated by this approach on a physical
PR2 robot. We used the following parameter values: Kmax = 5, T = 500, α =
π/4, ε = 0.05.

5.1 Intermediate Results of Unhang Tire Task

In this section, we show some intermediate results of the unhang tire task to
illustrate how our method works. Fig. 4(a) shows the feasible samples at one
demonstrated pose. After the connection check, the feasible samples are divided
into 4 classes, shown in different colors. Fig. 4(b-e) shows a sample of each class.
We can see that due to the complex geometry of the tire, there can be several
classes around the demonstrated pose, and many feasible samples around cannot
be connected to the demonstrated pose by the local planner.

Fig. 4. Results of the connection check of feasible samples at one demonstrated pose.
(a) 4 different connected classes shown in different colors, green is the feasible connected
class; (b-e) samples from the green, yellow, red, and blue classes, respectively.

In Fig. 5(a), we can see that the feasible sample ratio curve clearly has a
3-step shape. This shows that, during the demonstration, the tire goes from a
region with hardly any free space, to a region with some freedom, and finally

8



Fig. 5. (a) Results of smoothing and staircase fitting. The horizontal axis is the index
of the demonstrated trajectory. Top: feasible sample ratio; Middle: TVD smoothed;
Bottom: the optimal staircase function in red. (b) Learned TSR of segment 1 and (c)
Learned TSR of segment 2. Only the position boundaries are shown.

to a region with almost no constraints. After smoothing and staircase fitting,
the demonstration trajectory is divided into 3 segments. Fig. 5(b-c) shows the
position boundaries of the learned guiding constraints of segment 1 and 2. Since
the feasible sample ratio of segment 3 is nearly 1 it has no translation constraints.

5.2 Comparison to Planning with Learned Constraints

We compare three planning approaches to evaluate the contribution of our
method. All approaches use the CBiRRT sampling-based motion planner [4]
with different inputs or sampling strategies: 1) CBiRRT using ordinary sam-
pling and no guiding constraints, 2) CBiRRT using bridge sampling [6] (a method
that samples narrow passages); 3) CBiRRT using ordinary sampling and guiding
constraints learned from a single demonstration; and 4) CBiRRT using ordinary
sampling and both guiding and pose constraints learned from a single demon-
stration. Tests are performed in the OpenRAVE virtual environment but demon-
strations are gathered from live human demonstrations using motion capture.
50 trials are run for each planner on each primitive task. A trial that cannot find
a solution within 3 minutes is considered a failure.

Table 1 shows the success rate of the four methods for the tested tasks. The
first two variants of CBiRRT were not able to solve any of tasks in any of the
trials. Table. 2 shows the averages and standard deviations of the planning time
of successful trials using each planner (recall that there were no successful trials
for the first two planners). The results show that only CBiRRT with guiding
constraints and CBiRRT with both guiding and pose constraints can solve any

Table 1. Success Rate of the Planners

Planner Unhang Hang Remove Insert Retrieve
Tire Tire Nut Nut Cup

CBiRRT 0/50 0/50 0/50 0/50 N/A

CBiRRT with 0/50 0/50 0/50 0/50 N/A
bridge sampling

CBiRRT using 41/50 43/50 50/50 50/50 N/A
guiding constraints

CBiRRT using 50/50 50/50 50/50 50/50 50/50
guiding & pose constraints

9



Table 2. Planning Time of the Planners (avg.±std.(sec))

Planner Unhang Hang Remove Insert Retrieve
Tire Tire Nut Nut Cup

CBiRRT - - - - N/A

CBiRRT with - - - - N/A
bridge sampling

CBiRRT using 46.4 ± 38.0 84.9 ± 51.7 2.16 ± 1.15 2.52 ± 1.31 N/A
guiding constraints

CBiRRT using 18.4 ± 9.61 34.6 ± 27.7 0.345 ± 0.233 0.748 ± 0.263 2.46 ± 1.67
guiding & pose constraints

of the tasks in under 3 minutes. For the cup-retrieval task, since we should always
keep the cup upright and only the planner with pose constraints can guarantee
that, all other planners are not applicable for this task.

Comparing the results of the last two rows, we can see that CBiRRT with
both guiding and pose constraints has better performance. This is because pose
constraints consider how the moving object is manipulated by the demonstrator,
and rule out many poses that the robot’s end effector can not reach, even though
they are collision-free. So it is easier for CBiRRT to find a solution.

We also ran the first two planners on each tire-changing sub-task with a 30-
minute time limit, 10 trials for each setup. Out of all the tasks and trials, only
one trial of the remove-nut task using planner (1) succeeds with a planning time
of 685.01s.

5.3 Performance on Similar Tasks
To show the generalization capabilities of our method we first test our method on
a similar remove nut task. This task has the same start pose as the demonstrated
one, but has a different goal pose and an additional obstacle, as shown in Fig. 6(a-
c). Our method can solve this task with a success rate of 50/50 and the planning
time is 5.01± 2.07s. We then test our method on a similar insert nut task. This
time both the start and the goal poses are different. The demonstration is to
insert the nut on the top stud but in this test the robot is required to insert the
nut on the lower right stud (see Fig. 6(d-f)). Our method can solve this task
with a success rate of 50/50 and the planning time is 3.29± 2.31s. We also test
on a similar retrieve cup task. Both the start and the goal poses are different,
and there is an additional obstacle. As shown in Fig. 6(g-j). Our method can
solve this task with a success rate of 50/50 and the planning time is 4.20±1.80s.

5.4 Real Robot Experiment
Using the pose and guiding constraints we learn from the demonstrations, we
are able to plan motions for PR2 robot to achieve those five tasks in real world
mock-ups. Snapshots of the execution of the most constrained parts of those
tasks are shown in Fig. 7. For more information of our real robot experiment,
please see the video accompanying the paper.

6 Discussion and Conclusion

A disadvantage of our method is that it cannot guarantee completeness. Two
reasons account for the loss of completeness: First, we only use a single demon-
stration, so we may easily detect pose constraints in cases that do not have such

10



Fig. 6. PR2 performing similar tasks to those demonstrated. (a-c) robot removing nut
while avoiding an obstacle; (d-f) robot inserting nut on the lower right stud; (g-j) robot
retrieving cup while avoiding an obstacle.

constraints, for example, we learned pose constraints in the unhang tire task.
While applying this pose constraint reduces the planning time by 59%, we may
loose some generalization ability to similar tasks where extremely different ro-
tation of the tire are necessary. Second, we only explore a limited region around
the demonstration trajectory, so solutions that outside of this region are not
considered. However, a conventional sampling-based planner can be run in par-
allel to the planner that uses the learned constraints to maintain probabilistic
completeness.

This paper proposed an algorithm that can learn pose and guiding constraints
from a single demonstration. The key idea of our algorithm is to explore the area
around the demonstration trajectory by sampling poses of the object, and to
learn constraints by segmenting and analyzing the feasible samples. We tested
our method in a cup-retrieval task and a tire-changing scenario, and verified that
this method can allow us to achieve fast planning across similar tasks. We also
showed that the trajectories planned by our approach can be used for real-world
tasks with the PR2 robot.

References

1. Akgun, B., Cakmak, M., Jiang, K., Thomaz, A.L.: Keyframe-based learning from
demonstration. International Journal of Social Robotics 4(4), 343–355 (2012)

2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robotics and autonomous systems 57(5), 469–483 (2009)

3. Baisero, A., Mollard, Y., Lopes, M., Toussaint, M., Lutkebohle, I.: Temporal seg-
mentation of pair-wise interaction phases in sequential manipulation demonstra-
tions. In: IROS (2015)

4. Berenson, D., Srinivasa, S.S., Kuffner, J.: Task space regions: A framework for
pose-constrained manipulation planning. IJRR (2011)

5. Calinon, S., Guenter, F., Billard, A.: On learning, representing, and generalizing a
task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 37(2), 286–298 (2007)

6. Hsu, D., Jiang, T., Reif, J., Sun, Z.: The bridge test for sampling narrow passages
with probabilistic roadmap planners. In: ICRA (2003)

11



Fig. 7. Snapshots of PR2 executing the five tasks. From top to bottom are remove nut,
insert nut, unhang tire, hang tire and retrieve cup, respectively.

7. Krzanowski, W.J., Lai, Y.: A criterion for determining the number of groups in a
data set using sum-of-squares clustering. Biometrics pp. 23–34 (1988)

8. Levy-leduc, C., Harchaoui, Z.: Catching change-points with lasso. In: Advances in
Neural Information Processing Systems. pp. 617–624 (2008)

9. Mollard, Y., Munzer, T., Baisero, A., Toussaint, M., Lopes, M.: Robot program-
ming from demonstration, feedback and transfer. In: IROS (2015)

10. Pardowitz, M., Knoop, S., Dillmann, R., Zollner, R.D.: Incremental learning of
tasks from user demonstrations, past experiences, and vocal comments. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 37(2), 322–
332 (2007)

11. Phillips, M., Hwang, V., Chitta, S., Likhachev, M.: Learning to plan for constrained
manipulation from demonstrations. Autonomous Robots 40(1), 109–124 (2016)

12. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)

13. Shoemake, K.: Uniform random rotations. In: Graphics Gems III. pp. 124–132.
Academic Press Professional, Inc. (1992)

14. Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total vari-
ation regularization. Inverse problems 19(6), S165 (2003)

15. Ye, G., Alterovitz, R.: Demonstration-guided motion planning. In: ISRR (2011)

12


