
Using Previous Experience for Humanoid Navigation Planning

Yu-Chi Lin1 and Dmitry Berenson1

Abstract— We propose a humanoid robot navigation planning
framework that reuses previous experience to decrease plan-
ning time. The framework is intended for navigating complex
unstructured environments using both palm and foot contacts.
In a complex environment, discrete-search-based contact space
planners trade-off between high branching factor and action
flexibility. Although approaches such as weighted A*, ARA*
and ANA* could speed up the search by compromising on op-
timality, they can be very slow when the heuristic is inaccurate.
In the proposed framework, an experience-retrieval module is
added in parallel to ANA*. This module collects previously-
generated motion plans and clusters them based on contact
pose similarity to form a motion plan library. To retrieve an
appropriate plan from the library for a given environment, the
framework uses a distance between the contact poses in the plan
and environment surfaces. Candidate plans are then modified
with local trajectory optimization until a plan fitting the query
environment is found. Our experiments show that the proposed
framework outperforms planning-from-scratch in success rate
in unstructured environments by at least 28% and can navigate
difficult environments such as rubble and narrow corridors.

I. INTRODUCTION

Humanoid robots designed for disaster response are ex-
pected to operate in very complicated and unstructured
environments with limited rescue time. Although a robot
can be commanded by a human with remote control, with
limited communication bandwidth, the robot still needs to
plan its motion quickly. When humans navigate in an un-
structured environment, such as stepping through rubble, we
not only find appropriate footsteps, but also make contact
with our hands to achieve more stable movement. Using
both palm and foot contacts is also important when the
robot is deployed in an environment subject to disturbances,
such as aboard a ship. However, existing discrete-search-
based contact space planners suffer from the high branching
factor induced by using both palms and feet. The approach
proposed in this paper adds an experience-retrieval module
in parallel to ANA* [1], which reduces the planning time by
reusing previous experience.

In the proposed framework, there are two modules running
in parallel: the Planning-from-Scratch (PFS) module and the
Retrieve and Adapt (RA) module, as shown in Figure 1.
Planning in Configuration Space (C-Space) for humanoid
locomotion is very computationally expensive due to the
high number of degrees of freedom. Therefore, contact
space planners [2]–[8] trade the completeness properties
of planning in C-space for the computational efficiency of
planning in contact space. Our PFS module likewise follows
this approach by first planning in contact space without

1Yu-Chi Lin and Dmitry Berenson are with the University of Michigan
linyuchi@umich.edu, berenson@eecs.umich.edu

Fig. 1. Left: A humanoid follows a planned sequence of contact poses to
navigate in a complex unstructured environment modeled as a set of contact
regions. Right: The structure of the proposed framework

considering collision with the environment (except for the
end-effector links). The resulting sequence of contact poses
is then interpolated, inverse kinematics is computed, and
the entire sequence of configurations is optimized locally to
avoid obstacles. We call the output of this process a ”motion
plan.” A feasibility database is also introduced to speed up
the evaluation of state feasibility within the planner.

RA, on the other hand, provides solutions by retrieving
motion plans from a library. RA stores and clusters motion
plans generated by the framework to form a motion plan
library based on the contact poses of each plan. Given a new
environment, RA queries the library to find an appropriate
plan based on its contact poses and modifies it to fit the
environment. Both modules start planning simultaneously
and the one that finishes first stops the other one. Finally,
the generated motion plan is added to the library if it differs
significantly from other plans in the library.

The main contributions of this paper are: (1) A framework
for building humanoid robot motion plan libraries based
on contact pose sequences; (2) A fast distance function
for retrieving feasible plans from the library for a new
environment; and (3) A feasibility database that speeds up
state feasibility checks during planning.

Our experiments show that the proposed framework
achieves a higher success rate in unstructured environments
compared to planning-from-scratch. Additionally, the frame-
work is agnostic to the PFS module, so new developments
in navigation planning can be integrated easily.

II. RELATED WORK

Reusing pre-computed plans has been studied in computer
animation [9] and trajectory optimization [10]. However, us-
ing path libraries for high-dimensional humanoid locomotion
planning with balance and collision constraints and both hand
and foot contact has not yet been explored.

Robot motion libraries have been used to speed up motion
planning in C-Space [11]. However, the distance metric of
[11] is not adequate in our context because it does not
consider contact with the environment, which is key for hu-
manoid robot navigation. Recently [12] improved on [11] by
storing the experience in a sparse roadmap spanner. However,
humanoid navigation involves multiple contact switches,
necessitating that the robot travel through manifolds of
differing dimension, which cannot be done with this sparse
roadmap spanner. [13] also proposed a motion plan library
framework by learning the mapping between environments
and plans. However, this approach may overlook plans that
come from an environment which is not similar to the query
environment, but are nevertheless a good fit.

Humanoid footstep planning has been studied extensively:
[2]–[6] are discrete-search-based approaches, which use A*-
like algorithms. We also use such an algorithm in the
planning-from-scratch module. Here we address both palm
and foot contact, which induces a very high branching
factor in the search, causing search-based techniques to
perform slowly in difficult contact scenarios. There are also
optimization approaches, which deform an existing series of
steps to follow the constraints [7], [8]. Our path library can
provide a good path to initialize these kinds of methods.

For humanoid navigation in unstructured environments
using multiple contacts, [14] used optimization to find con-
tacts in the neighborhood of a “rough” trajectory. However,
its planning time is prohibitively long. [15] proposed a
humanoid robot planner that used learned motion primi-
tives. Unlike their approach, we focus on the retrieval and
adaptation of the full motion plan from the start to the
goal. Contact-consistent Elastic Strips (CES) [16] combined
discrete-search-based contact space planning with a local
trajectory optimizer. They generated an initial trajectory only
obeying the reachability constraint, and locally optimize it
to be feasible. However, they do not consider the use of
previous experience. In our framework, we use CES to adapt
motion plans to the query environment.

III. PROBLEM STATEMENT

We address the humanoid navigation planning problem.
Given an environment represented as a set of contactable
surfaces, we wish to output a feasible trajectory from the
start configuration to a goal region, defined as an area the
feet must be within. We are interested in using the hands
to help balance the robot against potential disturbances.
Therefore, a feasible path should have at least three end-
effectors in contact at any time, and must obey balance
and collision constraints. We assume (as in [17]) that the
robot can generate sufficient torque to balance itself. We also
assume the friction coefficients are known.

IV. METHOD OVERVIEW

Our framework consists of two modules running in paral-
lel: PFS and RA (see Figure 1). PFS plans a contact sequence
from start to goal with Anytime Non-parametric A* [1], and

Fig. 2. Left: Step transition model used in PFS module. (57 steps) Right:
The projections to get the next step pose.

interpolates the contact sequence to form a trajectory which
is then optimized with the CES algorithm [16].

RA, which is the focus of this paper, consists of two
parts: learning (i.e incrementally building the library) and
querying the library. In the first part, the plans generated by
the motion planner are collected. Note that we do not store
the environment corresponding to each motion plan, which
saves memory. The motion plans are clustered into small
groups based on the contact pose distance between plans
using the K-means algorithm. In each cluster, the motion plan
with the minimum sum of squared distances to other motion
plans in the cluster is selected as the cluster representative.

In the query part, each cluster representative is modeled as
a series of contacts, and the query environment is modeled as
a set of contact regions. The RA module determines whether
plans inside the cluster are worth searching by calculating
the contact distance between the cluster representative and
the environment, and tests the clusters in order of increasing
distance. Finally, the motion plans in the best untested cluster
are mapped to the environment and modified with CES[16]
one-by-one until a feasible plan is found. We describe PFS
and RA in greater detail below.

CES [16] is a local trajectory optimization algorithm
which focuses on multi-contact motions based on null-space
projection of Jacobian matrices. The primary task in CES is
to ensure that the contact poses of consecutive configurations
converge to the same pose when in contact. Movements for
collision avoidance and maintaining balance are projected
into the null-space of this primary task.

V. PLANNING-FROM-SCRATCH MODULE

The PFS module first plans a sequence of contacts using
ANA* and then uses inverse kinematics and CES to construct
a feasible trajectory from the contacts. The contact space
ANA* planner considers reachability, balance, and self-
collision constraints. To verify if the constraints are met
for a given set of contact poses, Inverse Kinematics (IK)
is required. Computing IK and checking balance at every
planner node is computationally expensive. To speed up the
process, we introduce a feasibility database to store and reuse
the results of previous IK and balance queries.

A. Contact Space Planning

In the PFS module, the contact space planning problem
includes both palm and foot contacts, and is formulated
as a graph search, which is solved with ANA*. The state
of the planner is defined as the set of the contact poses
corresponding to each end-effector. The end-effectors should

be on one of the contact regions, and free from collision with
all the surfaces except for the contact surface. The robot
should also be in static balance in every configuration.

An action in the planner is defined as the robot switching
one of the end-effectors’ contact poses. Given a state, the
possible next actions are described as a pre-defined transition
model relative to the current end-effector poses. We do not
specify the order of end-effector transitions other than re-
quiring that the same end-effector is not used in consecutive
actions. To determine the next foot contact, we first project
the standing foot contact pose to the XY plane along the
global Z axis, use the transition model to find the next step
in the XY plane, and then project the pose to the ground to
get the next foot contact pose, as shown in Figure 2.

For palm contacts, we first approximate the shoulder
position based on the foot poses, and project palm contacts
from the approximated shoulder point to the environment to
get the possible next palm contact poses.

For each action a, the edge cost ∆g is defined as:

∆g(a) = de(a) + wθdθ(a) + ws (1)

where de is the translation of the moving end-effector, dθ is
the difference in robot orientation (defined as the mean of
the two feet’s rotation about the Z axis), and wθ and ws are
the weight for robot orientation difference and the step cost,
respectively. Adding step cost helps reduce the number of
steps used in the plan.

The heuristic for each state x used in the planner is:

h(x) = wθhθ(x) +

|end-effectors|∑
i

he,i(x) + ws
he,i(x)

de,i,max
(2)

where hθ is the difference between the current and goal robot
orientations, he,i is the Euclidean distance between the pose
of end-effector i and the goal, and de,i,max is the maximum
possible translation for end-effector i in one action.

To obtain the final robot trajectory, the contact sequence
returned by the contact space planner is interpolated with
parabolic trajectories for each contact transition. IK is com-
puted for the interpolated poses and the sequence of resulting
configurations is then optimized with the CES algorithm to
avoid obstacles in the environment.

B. State Feasibility Check

The contact space planner targets planning in unstructured
environments. When expanding the planner tree, the dis-
cretized foot and palm contacts are projected to environment
surfaces to get the contact poses. Therefore, we must decide
a state’s feasibility online.

Besides obeying joint limit and self-collision constraints,
the robot must be able to reach the specified contact poses
and maintain balance when moving from the parent state to
the current state. A typical approach to address reachability
in contact space planning is to derive a contact transition
model in which all possible moves are within a conservative
bound of reachability. Since we expect the robot to navigate
in an unstructured environment, such a boundary is hard to

Fig. 3. The state feasibility database. The blue/red mark on the end-
effectors represent whether the end-effector is/is not in contact.

derive without sacrificing significant reachability. To better
describe the robot’s reachability, we filter out impossible
transitions with a loose bound based on the length of the
manipulators, and then use Jacobian-based IK to directly
check reachability. Joint limit and self-collision constraints
are also checked.

Checking balance at a large number of configurations
along a contact transition path is computationally expensive.
To speed up this process, we approximate this check by
only checking the beginning of the path where the foot/palm
has just broken contact and the end of the path where the
foot/palm is about to make contact. These are generally
(though not always) the worst-case configurations for bal-
ance. Note that the final plan (after optimization) does check
balance at a fine discretization for each step to ensure the
plan is feasible. We use the method in [17] to check static
balance with non-coplanar contacts.

C. Feasibility Database

Although IK and balance checking determine the feasibil-
ity of each state, this approach is slow and performs duplicate
queries of (nearly) identical contact poses. To speed up the
feasibility check, we record each IK query result to construct
a feasibility database and reuse it when a similar set of
contact poses is revisited.

The feasibility database is separated into two layers - the
reachability database and the balance database, as shown in
Figure 3. To encode the key for the reachability database, we
first select an end-effector as the base link, and concatenate
the relative pose of every other end-effector to the base link.
All the dimensions of the keys are densely discretized, and
every new entry is mapped to a discrete cell. If a query is
mapped to an occupied cell, the feasibility database reuses
the result in the cell. As the robot plans in the environment
more and more times, it will collect more IK results, reducing
the number of IK queries for each plan, and speeding up the
feasibility query process.

Under the assumption of sufficient joint torque, static bal-
ance only depends on the poses of end-effectors in contact,
the friction coefficient, and the position of the Center of Mass
(CoM) [17]. If there exists a CoM for which the robot can be
in static balance in a given state, this state obeys the balance
constraint. Since the reachability database already encodes
the relative poses of each end-effector to the base link, the
balance database is constructed under each reachable entry
of the reachability database by specifying the rotation of the
base link in the world frame and which end-effectors are in
contact with the environment.

The proposed feasibility database can be considered as
a discretization of the contact space. In implementation,
the databases are constructed as hash tables. Although the
dimension is extremely high, the database is sparse, and built
from past experience. Therefore, it can focus on a class of
environments over time and need not densely cover the entire
space of possible contact poses.

VI. LEARNING PART OF THE RA MODULE

To efficiently retrieve a feasible motion plan in a new
environment, the RA module needs to identify promising
plans in the library quickly. This is achieved by clustering
the motion plans. Motion plans inside each cluster are rep-
resented by a cluster representative, so that the RA module
can find promising motion plans by checking these cluster
representatives instead of the entire library. We denote the
motion plan library as L, which can also be represented as
K clusters of motion plans: L = [C1, C2, ..., CK].

Each new motion plan Pnew generated by the proposed
framework is first examined by the motion plan manager. If
the motion plan’s distance to other motion plans in the library
is above a user-defined threshold dmin, it will be added to
the library. The algorithm used in the learning part of the
RA module is shown in Algorithm 1.

A. Motion Plan Feature Extraction

To find promising motion plans, the RA module should
measure how close the contacts of the motion plan are to
the surfaces in the query environment. The set of contact
poses C(P) is extracted from each motion plan P :

C(P) = {〈pk, ek〉 |pk = 〈Xk,Qk〉 ∈ SE(3); k = 1, 2, ..., N}
(3)

where N is the number of contact poses, ek is an index
which indicates the corresponding end-effector, and Xk and
Qk are the translation vector and the rotation quaternion,
respectively. As suggested in [18], the distance between two
contact poses is:

δ(〈pi, ei〉 , 〈pj, ej〉)

=

{
|Xi −Xj|+ wr · (1− |Qi ·Qj|), wr > 0 , ei = ej

∞ , ei 6= ej
(4)

To calculate the distance between motion plans, the motion
plans need to be aligned. We define the start and goal point
of the motion plan as the mean position of the feet in the

Algorithm 1: Learning Part of the RA Module

close to existing motion plan← False;
for i in 1 to K do

Ci ← L [i];
for j in 1 to |Ci| do

Pi,j ← Ci [j];
if d(Pi,j , Pnew) < dmin then

close to existing motion plan← True;
end

end
end
if not close to existing motion plan then

L← L ∪ Pnew;
K ← 1;
do

[C1, C2, ..., CK]← K-means(L,K);
L

′ ← [C1, C2, ..., CK];
[dC1

, dC2
, ..., dCK

]← Get In-Cluster Dist(L
′
);

dC ← max ([dC1
, dC2

, ..., dCK
]);

K ← K + 1;
while dC > dmax;
L← L

′
;

end
return L;

first and last configurations of the trajectory. We then align
the start points of the two plans and subsequently rotate the
C(P) of one plan about the global Z axis to align the start
and the goal points of both motion plans on the same line.

The distance between a pair of motion plans P1 and P2 is
defined as the Hausdorff distance of the between their sets
of contact poses:

d(P1, P2) = max{ sup
〈pi,ei〉

inf
〈pj,ej〉

δ(〈pi, ei〉 , 〈pj, ej〉),

sup
〈pj,ej〉

inf
〈pi,ei〉

δ(〈pi, ei〉 , 〈pj, ej〉)}
(5)

where 〈pi, ei〉 ∈ C(P1) and 〈pj , ej〉 ∈ C(P2). Hausdorff
distance allows comparisons between motion plans with dif-
ferent numbers of contacts, automatically separating motion
plans with different lengths. The drawback of Hausdorff
distance is its sensitivity to outlying data. However, it is
not an issue in our context because the contact poses are
bounded by the reachability and balance constraints.

B. K-Means Clustering

The motion plans in the library are clustered with the
K-means algorithm using the Hausdorff distance described
in Eq. 5. The K is determined by running K-means with
iteratively increasing K until the maximum distance between
every motion plan pair in each cluster is below a user-defined
bound dmax. Lowering the bound can increase the similarity
in each cluster, but it also increases the number of clusters
and lengthens the time to evaluate all clusters.

In each cluster the plan with the minimum sum-of-squared
distance to every other motion plan is selected as the cluster

Algorithm 2: Query part of the RA Module

Lsorted ← Env Match and Sort(L) ;
for i in 1 to K do

Ci ← Lsorted [i];
Ci,sorted ← Env Match and Sort(Ci);
for j in 1 to |Ci,sorted| do

Pj ← Ci,sorted [j];
Poptimized ← CES (Pj);
if Poptimized is feasible then

return Poptimized;
end

end
end
return Failure

representative. The cluster representative is used to estimate
how well the plans in this cluster fit the query environment.

VII. QUERY PART OF THE RA MODULE

In the query part, the input is a combination of a goal and
a query environment modeled as a set of contact regions.
The objective is to generate a feasible motion plan as soon
as possible. The RA module first calculates the distance of
each cluster representative to the query environment. The
clusters are then sorted by the distance, and searched in that
order. The plans in the searched cluster are also sorted in
the same manner, and then deformed by the CES algorithm
[16] to adapt to the query environment one-by-one until a
feasible motion plan is found (see Algorithm 2).

A. Contact Region Extraction

The environment can be viewed as a union of possible
contact poses for each end-effector. In this representation, the
distance between any end-effector pose to the environment
is simply the distance between the end-effector pose and
the nearest contact pose in the environment. Therefore, it is
important to convert the environment into the contact pose
union representation in order to define the distance between
a motion plan and an environment.

We adopt the idea in [16] to express the environment
as a union of circular contact regions. We sample multiple
circle origins with a pre-defined density, and sequentially
grow circular regions from samples not covered by other
regions. The circular regions aim to cover all possible contact
poses of the environment. If the radius of a region is smaller
than the density, the process will iteratively increase the
sampling density in its neighborhood until reaching a density
bound dcr,min. We denote the set of contact regions as
CR. Since the contact region does not consider rotation
about the contact normal, this representation is a conservative
estimation of the available contact poses in the environment,
as shown in Figure 4, but it can be generated automatically.
Note that end-effector size is considered in the generation
of contact regions. The start and goal regions are modeled
as circles centered at the specified start/goal position and
bounded by the nearest obstacles or surface boundaries.

Fig. 4. Contact region sampling

Fig. 5. Contact pose vs. contact region distance.

B. Environment to Motion Plan Cluster Matching

In order to find a promising plan to navigate through the
query environment, we define a distance between a motion
plan and an environment. Based on the assumption that
a motion plan is more likely to be modified to become
feasible in the environment if its contact poses are closer
to the contact regions in the environment, we match a
motion plan to an environment based on the distance between
contact poses in the motion plan and the contact regions in
the environment. This is done in the Env Match and Sort
function in Algorithm 2 as follows:

We define a contact region’s frame by aligning the Z axis
to the contact region normal, and X axis to an arbitrary vector
on the surface. The distance between a pose p and a contact
region cr ∈ CR is defined as:

γ(p, cr) =
√
d2xy + d2z + wrdori

dxy = max
(
0,
∣∣(x′p, y′p)∣∣− rcr) , dz =

∣∣z′p∣∣
dori = 1− n′

p · [0, 0, 1]
T

(6)

where
(
x′p, y

′
p, z

′
p

)
and n′

p are the contact position and
normal in the contact region frame, wr ∈ R+ is a weighting
factor, and rcr is the radius of the contact region. Further-
more, we can define the projection of the contact pose to
the contact region by shifting the contact pose to the closest
point inside the contact region, and rotate the pose to align
the contact pose normal to the contact region normal, as
shown in Figure 5.

Since a motion plan starts and stops inside circular regions,
there exist an infinite number of alignments of the plan
before deformation of the contact poses. If we treat the whole
contact series of a motion plan as a rigid body with 4 degrees
of freedom: translation in the X, Y and Z directions, and
rotation about the Z axis, expressed as (xrp, yrp, zrp, θrp),
the initialization problem is then to find a transform of the
entire plan that minimizes the distance between the plan and
the environment. We call this representation of a plan as a
rigid body a rigid plan. Finding a globally-optimal alignment
of the rigid plan is costly so we find a local solution using
a Jacobian-based approach. This approach “snaps” the rigid
plan to the nearest set of contact surfaces.

Given a query environment, the start region is at
(xs, ys, zs) with radius rs and the goal region is at
(xg, yg, zg) with radius rg . The distance between the start
and goal poses is lsg , and the distance between the first and
last poses of the rigid plan is lrp. The algorithm initializes
the rigid plan pose Trp = (x0,rp, y0,rp, z0,rp, θ0,rp) as:

x0,rp = xs + (lsg − lrp)
rs

rs + rg

|xg − xs|
lsg

y0,rp = ys + (lsg − lrp)
rs

rs + rg

|yg − ys|
lsg

z0,rp = (zs + zg) /2

θ0,rp = atan2(yg − ys, xg − xs)

(7)

This initialization guarantees the rigid plan’s first and last
poses will be inside the start and goal regions, respectively,
if lsg − rs − rg ≤ lrp ≤ lsg + rs + rg .

After initialization, we iteratively update Trp to move the
rigid plan’s C(P) closer to their nearest contact regions. At
each iteration, we find crmin,i, the closest contact region to
〈pi, ei〉 ∈ C(P). To ensure that the motion plan connects the
start and the goal, the foot poses of the start and the goal
configurations are matched to the start and the goal regions,
respectively. Jacobian Ji relates Ṫrp, the change in the rigid
plan pose, to ṗi, the desired change in the pose of contact
pi. We can then combine the Jacobians for all pi:

ṗ1

ṗ2

...
˙pN

 =

J1
J2
...
JN

 Ṫrp = JṪrp (8)

We then use the pseudo-inverse J+ to arrive at a Ṫrp that
takes into account the desired motion of all pi:

Ṫrp = J+
[
ṗ1

T , ṗ2
T , . . . , ˙pN

T
]T

(9)

The rigid plan pose will converge to a local minimum T′
rp

through iterative application of Eq. 9. The distance between
a rigid plan and the query environment is then defined as:

Γ(C(P), CR) =
1

N

N∑
i=1

γ (p′
i, crmin,i) (10)

where p′
i is the ith contact pose in C(P) transformed by

T′
rp. The clusters are sorted by this distance, and searched

in this order. Motion plans inside the searched cluster are
also sorted in the same manner.

C. Local Trajectory Optimization

The motion plan, expressed as a sequence of configura-
tions, is modified and optimized to fit the query environment
with CES [16]. Each configuration of the trajectory will
move its contact toward the nearest contact region, remain
balanced, and avoid obstacles simultaneously. Although each
contact pose converges to the nearest contact region accord-
ing to the contact constraint, the contact pose is also affected
by balance constraints and collision avoidance during each
iteration. Therefore, contact poses may not end in the initial

Fig. 6. Examples of staircase test environments

nearest contact region. In our setup the task priority of CES
was (1) obey joint limits; (2) three tasks in parallel: maintain
contact, remain in balance, avoid collision; and (3) “internal
forces” used to smooth the trajectory, as described in [19].

VIII. EXPERIMENTS

We test on the ESCHER humanoid robot. ESCHER had
33 degrees of freedom (DOF) in our setup: two 7-DOF
arms, two 6-DOF legs, one waist joint, and a 6-DOF base
transform. The robot is to be in contact with at least 3 of
its manipulators at any given time. We implemented our
algorithms and test examples in OpenRAVE [20] and also
tested in the Gazebo physics simulator[21]. All experiments
were run on an Intel Core i7-4790K 4.40 GHz CPU with
16GB RAM. The values of the parameters used in the
experiments are the following: wθ = 0.3m/rad, ws =
10m, dcr,min = 0.01m, wr = 0.5, dmin = 0.1, dmax = 0.5.
Time limit for each trial is 5 minutes.

A. Feasibility Database Test

To test the feasibility database, we set up a staircase with
wall environment with each stair’s height being a random
number uniformly distributed in [0, 0.3] m, as shown in
Figure 6, and plan motions with the PFS module alone. The
planner starts with an empty feasibility database, and collects
data from the randomly-generated environments in each trial.
We define the recall rate of the database as the number of
queries answered by the database over the number of total
queries. We run 1000 trials, and average results in every
50 trials to get the recall rate and planning time over the
number of trials, as shown in Figure 8. The recall rate of
the database grows higher as the number of trials increases,
and converges to 95% within 500 trials. Furthermore, the
planning time drops quickly because fewer direct queries of
the IK solver are needed. After 1000 trials, we evaluate the
accuracy of the feasibility database by running another 500
trials and comparing its result to direct IK solver queries.
The accuracy for the reachability database and the balance
database are 99.5% and 99.9%, respectively.

B. Navigating a Narrow Corridor

To show the versatility of the planner, we tested the robot’s
ability to navigate in a narrow corridor. Using our algorithm
with the same parameters as above, the robot is able to turn
its body and walk laterally with palms on opposite walls
(to balance against disturbances) in a narrow corridor, as

Fig. 7. Examples of plans in rubble-like environments. Planned contacts for left foot (red), purple (right foot), blue (left palm), and orange (right palm).

shown in Figure 9. This plan took 1.55s to compute using
the feasibility database.

C. Random Surface Environment Test

In this experiment, we set up complex random surface test
environments. We generate the environments with randomly
tilted quadrilateral surfaces, as shown in Figure 7. Each
environment is between 2m and 4m long. The surfaces may
cover or intersect with each other, and leave part of the
surface non-contactable, which causes the environment to
be very challenging. Since this environment is extremely
complex, the recall rate of the reachability and balance
databases in these test environments are 10.3% and 30.2%,
respectively with 1.5 million entries in the database. This
does not provide a significant improvement in planning time,
further motivating the need for the RA module.

To evaluate the proposed framework, we generated 100
random surface environments, and record the performance
of PFS alone (the baseline) vs. the proposed framework
with different sizes of motion plan libraries. If a trial’s
runtime exceeds 5 minutes, it is counted as a failure. For
the PFS module, the failure cases also include optimization
failure: the case when the local optimization after contact
space planning cannot find a feasible trajectory. For the RA
module, the case when no feasible motion plan can be found
in the library is counted as a failure. Examples of the test
environments and plans generated by our framework are
shown in Figure 7.

Figure 11 shows the success rate of the proposed frame-
work with different library sizes. Even with a small library
size, the proposed framework significantly improves the
success rate. One of the major reason is that CES used in
the RA module can shift contact poses in continuous space
to arrive at small contact regions. However, PFS may not
find feasible next contacts in the transition model, and needs
redundant contacts in order to adjust the standing foot to
find feasible contacts at the next transition. Those redundant
contacts increase the search depth and the planning time.

Furthermore, to navigate in such a complex environment,
PFS requires a large transition model that densely discretizes
the reachable space of the end-effectors. This entails a higher

Fig. 8. Left: recall rate, Right: planning time of the feasibility database

Fig. 9. Snapshots from the plan to navigate through a narrow corridor.

branching factor. When the heuristic is not accurate, this high
branching factor slows down the planner.

Figure 11 shows the average planning time of the success-
ful trials. Although the RA module takes more time to find a
solution with a larger library, the increase in planning time of
the successful trials is partly because the RA module with a
large library can find solutions in difficult cases which cannot
be solved within the time limit using a small library. For
a library with 20 entries, RA outperforms the PFS success
rate by 10%, and the combined framework outperforms PFS
by 28%. For a library with 200 entries, RA outperforms
the PFS success rate by 44%, and the combined framework
outperforms PFS by 49%.

In Figure 12, we can observe that the number of trials in
which the RA module finishes first increases as the size of
the motion plan library grows. However, the trend saturates
after the size exceeds 100. This is a mixture of two effects:

Fig. 10. Gazebo simulation of robot navigating through a rubble-like environment.

Fig. 11. Left: Success rate and Right: Average planning time of successful
trials for the PFS module, the RA module and the proposed framework with
different sizes of libraries

(1) The RA module can solve more problems with a larger
library. (2) The RA module requires more time to find a
feasible motion plan in a larger library. This effect can be
observed in Figure 12 as the successful and timeout cases
both increase with a larger library.

D. Testing in Physics Simulation

To verify the feasibility of trajectories produced by the
framework, we executed the plans in a random surface
environment in the Gazebo simulator. The robot can walk
through the “rubble” while using palm contacts for balance,
as shown in Figure 10 and the attached video.

IX. CONCLUSION

In this paper, we proposed a humanoid navigation planning
framework running two modules in parallel: Planning from
Scratch (PFS) and Retrieve and Adapt (RA). PFS is a
discrete-search-based contact space planner. RA stores and
clusters previously generated motion plans based on the
Hausdorff distance of the contact poses. When the robot
encounters a new environment, the module matches each
cluster representative to the environment, and searches mo-
tion plan clusters based on the distance between the motion
plan cluster representative and the environment. Each plan
in the searched cluster is then sorted by distance to the
environment and then modified by CES algorithm to fit
the environment until a valid plan is found. The results
show that the proposed framework outperforms the baseline
planning-from-scratch algorithm in success rate in difficult
unstructured environments. The design of the RA module
also opens the possibility of using parallel computing to
further speed up the framework, which we would like to
address in future work.

ACKNOWLEDGMENTS
This work was supported in part by the Office of Naval

Research grant N00014-15-1-2138. Special thanks to TREC
Lab, Virginia Tech, for technical support, and colleagues in
ARC Lab for feedback and discussion.

Plan
found

Opt.
Fail

Time
out

Lib.
Exhaust

PFS 35 21 44 -
RA(20) 45 - 0 55
RA(40) 52 - 1 47
RA(60) 61 - 2 37
RA(80) 65 - 6 29
RA(100) 69 - 6 25
RA(120) 75 - 4 21
RA(140) 69 - 10 21
RA(160) 75 - 7 18
RA(180) 69 - 11 20
RA(200) 79 - 10 11

Fig. 12. Left: Results with different library sizes; Right: Number of trials
in which PFS or RA finishes first for different library sizes.

REFERENCES

[1] J. van den Berg, R. Shah, A. Huang, and K. Goldberg, “Anytime
nonparametric A*,” in AAAI, 2011.

[2] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue,
“Footstep planning among obstacles for biped robots,” in IROS, 2001.

[3] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami, “Planning biped
navigation strategies in complex environments,” in Humanoids, 2003.

[4] P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade, “Vision-guided hu-
manoid footstep planning for dynamic environments,” in Humanoids,
2005.

[5] L. Baudouin, N. Perrin, T. Moulard, F. Lamiraux, O. Stasse, and
E. Yoshida, “Real-time replanning using 3d environment for humanoid
robot,” in humanoids,” in Humanoids, 2011.

[6] A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz, “Any-
time search-based footstep planning with suboptimality bounds,” in
Humanoids, 2012.

[7] O. Kanoun, E. Yoshida, and J. P. Laumond, “An optimization formu-
lation for footsteps planning,” in Humanoids, 2009.

[8] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in Humanoids, 2014.

[9] M. Lau and J. Kuffner, “Precomputed search trees: planning for
interactive goal-driven animation,” in SCA, 2006.

[10] H. Myung, J. Kuffner, and T. Kanade, “Efficient two-phase 3d motion
planning for small fixed-wing uavs,” in ICRA, 2007.

[11] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in ICRA, 2012.

[12] D. Coleman, I. Sucan, M. Moll, K. Okada, and N. Correll,
“Experience-based planning with sparse roadmap spanners,” in ICRA,
2015.

[13] N. Jetchev and M. Toussaint, “Fast motion planning from experience:
trajectory prediction for speeding up movement generation,” in Au-
tonomous Robots, 2013.

[14] A. Escande, A. Kheddar, S. Miossec, and S. Garsault, “Planning
support contact-points for acyclic motions and experiments on hrp-
2,” in ISER, 2008.

[15] K. Hauser, T. Bretl, K. Harada, and J. Latombe, “Using motion prim-
itives in probabilistic sample-based planning for humanoid robots,” in
WAFR, 2006.

[16] S. Chung and O. Khatib, “Contact-consistent elastic strips for multi-
contact locomotion planning of humanoid robots,” in ICRA, 2015.

[17] S. Caron, Q. Pham, and Y. Nakamura, “Leveraging cone double
description for multi-contact stability of humanoids with applications
to statics and dynamics,” in RSS, 2015.

[18] J. Kuffner, “Effective sampling and distance metrics for 3d rigid body
path planning,” in ICRA, 2004.

[19] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” in IJRR, 2002.

[20] R. Diankov, Automated Construction of Robotic Manipulation Pro-
grams. PhD thesis, Carnegie Mellon University, 2010.

[21] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IROS, 2004.

