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Abstract— A humanoid robot navigating in an unstructured
environment requires knowledge of the affordances which allow
it to make contact with the environment. This knowledge often
comes from a perception system, which processes data from
3D sensors such as LIDAR and extracts available areas for
the robot to make contact. Because perception systems run
independently of the robot’s planner, without knowledge of
the robot’s goal, they must process the entire visible area.
In large environments, or those with complex geometry, the
perception system may spend significant time processing areas
of the environment that the planner will never consider visiting.
By integrating the perception process with the planner, we are
able to improve the speed with which the robot can compute a
motion plan by only processing those areas of the environment
which are considered by the planner for navigation. Two
experiments with simulated and real-world point cloud data
suggest that our framework can produce comparable plans up
to seven times faster than the perceive-then-plan approach.

I. INTRODUCTION

Systems for autonomous robot operation in unstructured
environments traditionally consist of three parts: a perception
system, which builds a model of the environment from sensor
data, a motion planner, which computes a plan for moving
through the environment to reach a goal, and a controller,
which executes that plan on the robot. Controller efficiency
is governed by real-time concerns, but both perception and
planning run before robot motion starts. The combined
runtime of the perception and planning systems determines
how quickly the robot can begin task execution. Improving
the speed of perception and planning decreases the time
spent before the robot begins acting, which is important in
time-sensitive tasks such as disaster response or human-robot
interaction.

The relationship between the time costs of the percep-
tion and planning systems depends on the chosen envi-
ronment representation. Those representations vary, but the
implementation we consider describes the environment in
terms of affordances. The term afforance was introduced
by J.J. Gibson in the context of cognitive psychology to
describe the possible actions suggested by the shape or
other visible features of an object [1]. For example, a chair
affords “sitting”, small objects afford “lifting”, and a floor
affords “support”. Gibson argued that these affordances were
directly perceptible by the organism without the need for
an intermediate representation, and that this perception was
economical, only extracting the necessary information rather

1Will Pryor is with Worcester Polytechnic Institute (WPI), Worcester,
MA, USA jwpryor@wpi.edu

2Yu-Chi Lin and Dmitry Berenson are with the University of
Michigan, Ann Arbor, MI, USA linyuchi@umich.edu,
berenson@eecs.umich.edu

(a) Input point cloud (b) Affordances after first iteration

(c) Affordances after planning
completes

(d) Executing plan

Fig. 1. Integrated Planning and Affordance Detection only identifies the
affordances in areas considered by the planner. The start position is shown
as a blue sphere and the goal as a green sphere. The computed path, using
foot (red and green) and hand (yellow and blue) contacts, is shown along
with all the affordances that have been detected. In the background more
points are visible which were not processed because affordances there are
not necessary to reach the specified goal. This data was collected from a
ship environment using a laser scanner mounted on a quadcopter.

than modeling the entire environment. We extend this idea of
economical perception by limiting the affordances perceived
to only those which may be of use to the planner. This
allows the robot to avoid the effort of perceiving many of
the affordances in the environment, reducing the time spent
performing perception.

In order to do this, the perception system must be aware
of which areas of the environment may be of use to the
planner. We make use of the fact that common planners,
including A* and its variants, build paths iteratively, and each
iteration is constrained to use affordances near those used by
the previous iteration. This allows us to define a volume of
interest for each new node considered by the planner which
contains every affordance that can be used at that node. Our
key contribution is an integrated planning and perception
system which is capable of performing affordance detection
in small volumes of the environment without sacrificing ac-
curacy and which integrates with the Anytime Nonparametric
A* (ANA*) planner [2] to detect affordances on demand
as the planner considers potential actions (see Figure 1).
In this paper we limit the types of affordances detected to
planar support surfaces, however, the technique can extend to
other geometric primitives. Because complex, unstructured



environments with potential disturbances require both the
hands and feet to be used to either traverse the environment
or to mitigate disturbances, we wish to detect both hand
and foot affordances, i.e. any planar region which will be
useful for locomoting to a goal. We also wish to operate in
environments where disturbances are expected, such as on
board a ship, which necessitates the use of hand contacts to
ensure stability.

Given a bounding-box query from the ANA* planner
based on the location of the robot at a given node and the
proposed transition, our affordance detection method detects
every affordance within the bounding box from a point
cloud representation of the environment. New affordances
within the volume are identified using a combination of
Region-Growing Segmentation (RGS) and Random Sample
Consensus (RANSAC). New affordances are then expanded
to identify points outside the query volume which also belong
to the affordance. Once every point within the affordance is
identified, the polygon describing the affordance is computed
and the affordance is stored for future use. The newly
detected affordances are combined with previously detected
affordances which are wholly or partially contained within
the given volume to form the set of affordances within
the volume. The ANA* planner uses this set of detected
affordances to determine if the transition it is evaluating is
feasible. In this way, the ANA* planner computes a plan
as a sequence of palm/foot contacts, where every contact is
inside an affordance.

We test our method on two environments using simu-
lated and real-world point cloud data. In these experiments,
our method outperforms the standard perceive-then-plan ap-
proach by a factor of 1.6x in a simple, low-noise environment
and by over 7x in a complex, noisy environment. The exper-
iments also show that the paths produced are of comparable
quality to paths produced by a standard perceive-then-plan
approach.

II. RELATED WORK

Several works have adapted the theory of affordances from
its original psychological context to the field of autonomous
robotics. Some, such as [3], [4], [5], investigate learning
affordance types from experimentation. Others, such as [6],
[7], [8], [9], address the identification of specific instances
of affordances within a given environment.

In [6], affordances identified by human operators and
refined using model fitting techniques are used to build a
task-level plan. In [7], [8], a pipeline is introduced which
identifies available affordances of predetermined types in the
environment according to rules and uses these affordances to
construct a motion plan. In [9], objects within the environ-
ment are identified and a classifier is used to assign affor-
dances to these objects. However, to our knowledge, there
have been no publications which make use of information
from the planner to reduce the number of affordances which
must be identified.

With the exception of [6], which relies on human assis-
tance, all methods described above incorporate a segmenta-

tion step to separate the objects in the environment before
assigning affordances. We consider only affordances associ-
ated with planes, and therefore segment the environment into
planar surfaces.

This problem of plane detection has been extensively
studied outside the context of affordances. Algorithms to do
so generally fall in three categories. The first is the Hough
transform, used in [10], [11], which defines a parameter
space into which the input data is transformed. That parame-
ter space is then clustered to find the representative planes in
the environment. The second are RANSAC-related methods,
including [12], [13], [14], which repeatedly generate a large
number of models from randomly-selected minimal sets
of points and select the one which is most successful at
explaining the data until no additional models can be found.
The last category includes region-growing methods, such as
[15], [16], which expand point clusters outwards from seed
points according to cluster membership tests, which often
include Euclidean distance and difference of point normals.
A variation on point-based region growing algorithms are
superpixel- or subwindow-based region growing methods,
including [17], [18], [19]. In these methods, the points
are divided into subwindows, each of which is subjected
to a plane fitting. Region growing is performed over the
subwindows with successfully fitted planes. In [19], points
within subwindows to which planes could not be fit are
included by a point-based region growing step which takes
place after subwindow-based region growing. We use similar
approaches to region growing, however, the key contribution
of our approach is to do this within the planner so that only
the necessary points are processed.

III. PROBLEM STATEMENT

We consider the problem of locomotion planning for a
humanoid robot, which is the problem of finding a sequence
of actions which result in the robot occupying some specified
goal region while maintaining geometric, static balance, and
collision constraints. The affordances required for this task
are those which allow the robot to move itself through the
environment and to maintain balance. We assume that all
static planar surfaces within the environment offer these
affordances.

We infer the extents and locations of the static planar
surfaces in the environment from data collected from onboard
sensors immediately before planning. This enables planning
on previously-unmodeled environments, such as those in a
disaster site. Such sensors produce data in the form of a point
cloud, which is an unordered, finite set of points P ⊂ R3

where each point lies on a surface in the environment.
To describe the affordances offered by static surfaces, we

approximate the environment with a set of planar surfaces
S, where each surface s ∈ S is defined by a set of points in
P which are assumed to be sampled from a single surface in
the environment with sensor noise. For a surface s, we wish
to define an estimated plane πs with normal n̂s equal to the
outer surface normal. We also define the surface’s estimated
area as a polygon as = 〈vs, es〉, where vs is a set of vertices
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Fig. 2. The incremental affordance detection and the non-integrated approach are shown together. Steps in the proposed method are shown in green,
steps in the non-integrated method are shown in orange, and steps common to both are shown in blue. Solid arrows connect consecutive steps while dotted
arrows connect corresponding store and query steps. In the non-integrated approach the Detect Surfaces step runs before any affordance queries can be
received, while in the proposed method the point cloud is simply stored. When an affordance query is received, the proposed method performs detection
using only the points within the query region, then expands the detected affordances. These new surfaces are combined with the result of querying known
surfaces and are returned to the planner. In the non-integrated approach, only the Query Known Surfaces step is performed for each affordance query.

lying on the plane πs and es is a set of edges. We also wish
to define a triangle mesh ms, for the purposes of checking
robot-environment collisions in the planner.

The action associated with the locomotion and balance
affordances is that of making one or more contacts with the
environment. Each state in the planner is described as a set of
contacts between the environment and an end effector of the
robot. We define E as the set of end effectors of the robot. A
contact set C = {c1,p1

, c2,p2
, . . .} is a set of contacts which

should be satisfied simultaneously, where ci,pi denotes that
the end effector with index i should be placed at some pose
pi ∈ SE(3). A contact is valid if the contact area of the
end effector contact surface (i.e. palm or sole) lies entirely
within the polygon of any s ∈ S. A contact set C is valid
if every contact in C is valid and there exists at least one
configuration of the robot which achieves every contact of the
set while meeting the reachability and balance constraints. A
valid path is a sequence of valid contact sets where the first
contact set is satisfied by the robot’s initial configuration,
the last contact set places the robot in the goal region, and
every contact set except the first differs from its predecessor
by the addition, removal, or change in pose of one contact.
Once such a sequence of contact sets is obtained we can
use interpolation and Inverse Kinematics (IK) to construct
a whole-body trajectory for the humanoid robot. The goal
of the method in this paper is to decrease the computation
time of the entire perception and planning process needed to
generate this trajectory.

IV. INCREMENTAL AFFORDANCE DETECTION

We observe that many of the affordances in a complex
environment are not used in the computed plan. We also
observe that, for planners which build the plan iteratively,
each iteration will only require knowledge of the affordances
within a volume bounded by the robot geometry. Using this
information we can limit the affordance detection to only
those affordances which lie at least partially within the union
of those volumes. In large or complex environments, this

total volume will often contain only a small fraction of the
affordances within the environment, greatly reducing the time
required to perform the perception.

Such a system will necessarily require integrating affor-
dance detection with the planner, since the volume to be con-
sidered at each iteration depends on the contact set which was
determined at a previous iteration. We also observe that the
volumes frequently overlap between subsequent transitions.
Because of this large degree of overlap, affordance detection
must be able to store the results of each detection rather than
duplicating work. We refer to an affordance detection system
with this ability as incremental affordance detection.

Our incremental affordance detection algorithm is de-
scribed in Algorithm 1 and diagrammed in Figure 2. It
receives a request for affordances within a specified volume,
which we represent as an oriented bounding box b, and
responds with a list of every surface in the environment that
is at least partially within b. It maintains a set of pending
points Ppending , which includes all points that have not yet
been identified as members of any surface or as outliers to all
surfaces, and a set of previously-detected surfaces Sknown.

A query response begins by querying the set of pending
points Ppending for all points which could lie on a surface
within the query box b. We then run a surface detection step
on the resulting points, described in Section IV-A, resulting
in a set of new surfaces Snew. This is followed by a surface
expansion step on the newly detected surfaces, described
in Section IV-B, which identifies additional area in each
surface outside of b. We refine the estimated plane using
the expanded points and compute the representation used by
the planner as described in Section IV-C. Simultaneously,
the set of previously-detected surfaces Sknown is queried
for surfaces which intersect with the query box Sknown,b.
Finally, Snew∪Sknown,b is returned to the planner. After the
data is returned we remove all identified inliers and outliers
from Ppending and add Snew to Sknown.

In order to ensure correctness, the response must be
guaranteed to contain every affordance within the requested



Algorithm 1: Incremental Afforadance Detection
input : b: The query bounding box

Ppending: Points which have not yet been
processed

Sknown: Surfaces which have been detected
output: Sb: All surfaces within b
b+ ← b with each extent increased by wmin ;
Pb+ ← Ppending ∩ b+ ;
Sknown,b ← Sknown ∩ b ;
Snew ← detectSurfaces(Pb+) ;
Snew ← expandSurfaces(Snew, Ppending) ;
for s ∈ Snew do

πs ← estimateP lane(s) ;
as ← computePolygon(s) ;
ms ← computeMesh(s) ;

P ← {p ∈ P | p 6∈ b ∧ ∀s ∈ Snew p 6∈ s } ;
Sknown ← Sknown ∪ Snew ;
return Snew ∪ Sknown,b ;

volume. If this guarantee were not met, the planner may
incorrectly discard potential contacts. However, we must
estimate the surface’s plane in the presence of noisy input
data, and such estimation is inaccurate in cases where the
distribution of points on any axis parallel to the plane is
not wider than the distribution of the points perpendicular to
the plane. We therefore impose a minimum width wmin on
all detected surfaces, both to ensure accuracy and to avoid
considering surfaces which are too narrow to contain any
end effector of the robot. We maintain the guarantee that all
affordances within the given area are detected by expanding
the query box by wmin in all directions. We refer to the
resulting padded query box as b+.

A. Surface Detection

The surface detection algorithm, described in Algorithm
2, detects all surfaces within b+. The surface normal at
each point in Ppending within the volume b+ is computed
using Moving Least Squares (MLS) Estimation [20], which
computes every point’s normal vector by fitting a plane to
its neighbors within a specified radius rmls. This normal
information is used in Region Growing Segmentation (RGS)
[21], which identifies surfaces in the environment by repeat-
edly growing randomly-seeded regions by recursively adding
all neighbors within a distance d‖ of existing points whose
normal vectors are within a specified angle θrgs of the seed
point’s normal. RGS yields a set RRGS of regions, where
each region r ∈ RRGS is a set of points on the same surface
or on adjacent, nearly co-planar surfaces.

Each region in RRGS is then subdivided into one or
more planar surfaces using Random Sample Consensus
(RANSAC) Segmentation [22]. RANSAC fits a plane model
to a set of points by repeatedly choosing three points at
random to define a plane, finding all points which lie within
some distance d⊥ of this plane, and re-computing the plane
model using the inliers. This process is repeated many times
for each region and the plane with the highest number

Algorithm 2: Surface Detection
input : Pb+: Points from which to detect surfaces
output: Snew: Set of newly-detected surfaces
Snew ← {} ;
N ←MLS(Pb+) ;
RRGS ← RGS(Pb+, N) ;
RRANSAC ← RANSAC(RRGS , N) ;
R← EuclideanSegmentation(RRANSAC) ;
for r ∈ R do

π = PrincipalComponent(r) ;
if width(r, π) ≥ wmin then

Snew ← Snew ∪ {r} ;

return Snew ;

Algorithm 3: Surface Expansion
input : Snew: Surfaces to expand

P : Points which have not yet been processed
output: Snew: Set of expanded surfaces
for s ∈ Snew do

Pplane ← {p ∈ P | −d⊥ ≤ SD(p, s) ≤ d⊥} ;
Plimit ← {p ∈ P | d⊥ < SD(p, s) ≤ d‖} ;
for pinlier ∈ s do

plimit ← nearest neighbor to pinlier in Plimit ;
d← min(d‖, projectedDist(pinlier, plimit)) ;
s← s ∪ points within d of pinlier in Pplane ;

return Snew ;

of inliers is returned. After each application of RANSAC,
if more than a specified number of points nmin remain,
the process is repeated on the remaining points to identify
another surface.

The plane model of each region r identified by RANSAC
is then re-estimated using Principal Component Analysis
(PCA), with the last principal component selected as the
plane’s normal vector. If the minimum width of the plane
in any direction is at least wmin, the surface defined by r is
added to the set of surfaces to return. Because we guarantee
that every surface within b is detected (by using the padded
query box b+), and every surface’s inliers are identified,
we know that every inlier point within b will be found.
We therefore know that all other points within b must be
outliers, and can be deleted from Ppending without affecting
any affordance that has not yet been detected.

B. Surface Expansion

Once a contact is placed on a surface by the planner,
that surface’s plane model cannot be changed without the
possibility of invalidating that contact. However, the surfaces
identified by Surface Detection only contain inliers within
b+, which may only be a small part of the affordance.
Position error due to misalignment of the plane model in-
creases with distance, and errors which may be insignificant
across the small distance within b+ have the potential to
lead to large errors if the surface is later found to be much



larger than b+. Any adjustment to the plane model after
its first use by the planner requires either a potentially-
costly re-validation for existing contacts or breaking surfaces
into multiple parts, artificially introducing seams which the
planner must unnecessarily avoid.

To avoid problems caused by returning partial repre-
sentations of affordances we run an expansion algorithm,
described in Algorithm 3, on each surface identified by
Surface Detection. This expansion algorithm identifies all
points that belong to a partially-detected surface without the
need to run the costly Surface Detection step on the entire
environment.

Surface Expansion on a surface s behaves similarly to
Region Growing Segmentation limited to the plane πs.
However, rather than compute the normal vectors of every
point, we use the presence of nearby points above but not
within the plane of s to indicate whether a given area belongs
to a different surface. We define the signed distance SD(p, s)
from any point p to a surface s as the projection of the vector
from p to any point on s onto n̂s. We consider a point p to be
above the surface if the signed distance SD(p, s) is positive,
and nearby the surface if the magnitude of SD(p, s) is less
than d‖ but greater than the inlier distance threshold d⊥. We
refer to points which are both above and nearby the surface
as limit points, denoted Plimit.

Every point in P , and therefore every point in Plimit, was
sampled from either the surface currently being expanded s
or another surface in the environment. We assume that d⊥
is sufficiently large that there is a negligible probability of
encountering a set of points in Plimit which were sampled
from s and are dense enough to prevent expansion into their
enclosed area. Every point in Plimit sampled from a surface
other than s indicates the presence of either a surface above
s or a surface which intersects πs. In either case, the area of
the surface below the limit points does not afford stability
or locomotion, and so points in that area are excluded from
the set of inliers.

Surface expansion on a surface s begins by computing
Pplane as the set of all points in Ppending which are within
d⊥ of the plane and Plimit as the set of all points in
Ppending between d⊥ and d‖ of the plane, i.e. points which
indicate the presence of another surface. We then examine
the neighborhood of every inlier point pinlier ∈ s. We define
the size of the neighborhood d to be the smaller of d‖ or the
distance between pinlier and its nearest limit point along
the plane of the surface, as shown in Figure 3. We then
add every point in Pplane within distance d of pinlier to the
surface s. This process continues recursively until there are
no remaining points within the neighborhood of any points in
s. Once every point in s has been considered, s approximates
the set of every point sampled from a single surface in the
environment.

C. Surface Representation

The combination of surface detection and expansion re-
sults in surfaces that are completely defined by a plane
equation and a set of inlier points. However, the planner

Fig. 3. A top-down view of an environment with a horizontal surface,
shown in blue, and a vertical surface, shown in red. Points in blue have
been identified as members of the horizontal surface, points in black are
in the plane of the horizontal surface, and points in red are limit points,
i.e. above the plane of the surface. The outlined point is being considered
for expansion. Because of the presence of a nearby limit point, the radius
to search is reduced from the dashed circle to the solid circle, preventing
expansion from including black points which are not members of the
horizontal surface.

requires each surface s be represented as a plane πs, a
polygon as, and a mesh ms. We define as as the 2D α-
shape of the points in s projected into the plane πs. The
α-shape of a set of points is a generalization of the convex
hull which can represent concavities in the set of input points
[23]. The parameter α controls the radius of the disc which
“carves out” areas of the convex hull, with negative values
corresponding to concave shapes. We use an α value of α =

1
−d‖/2

, which causes the α-shape to represent all concavities
large enough to inscribe an empty disc of diameter d‖.

According to the definition of the α-shape, every edge
in the resulting polygon as belongs to a triangle whose
circumscribed radius is at most d‖/2. Every edge in as
therefore has length less than d‖. However, many real-
world surfaces, especially in human-made environments, can
accurately be described with a small number of longer edges.
Reducing the number of edges in as is desirable because
it reduces the time required for a point-in-polygon test,
which is performed frequently in the planner. We therefore
apply the polygon simplification algorithm described in [24].
This algorithm removes every point which can be removed
without changing the polygon topology (e.g. introducing
intersections) or causing the distance between any original
vertex and the simplified boundary to exceed d‖.

The planner also performs a collision check on each
contact candidate to ensure it does not lie inside a surface.
This collision check uses a triangle mesh encompassing the
volume created by extruding the area covered by the surface’s
polygon by some small distance dextrude in the direction
opposite the plane normal.

V. PLANNER INTEGRATION

Our planner formulates the contact planning problem as
a graph search problem and solves it with ANA* [2]. Each
node in the search graph is defined as a contact set C =
{c1,p1 , c2,p2 , . . .} as described in Section III. Each contact



Fig. 4. The foot transition model specifies possible poses for each foot
as projections into the xy plane. The actual contact pose is determined by
projecting the transition model pose into the appropriate surface plane.

should place the end effector on the polygon of any one
surface sc in the environment, and should not place the
end effector into collision with any affordance except sc.
The robot should be able to achieve static balance while
satisfying every contact in the set. We require that both feet
appear in every contact set and allow the user to specify
the minimum size of the contact set. In our experiments we
specify a minimum size of three, requiring one hand to be
in contact at all nodes.

The actions available to the planner are adding one new
contact, removing one contact, and changing the pose of
one contact. The planner is constrained to not allow the
same end-effector to transition in subsequent actions. Given
a contact set, the possible poses of new and changed contacts
are described with a pre-defined transition model relative to
the current end-effector poses. To determine the next foot
contact, we first project the standing foot contact pose to the
xy plane along the global z axis, use the transition model
to find the next step in the xy plane, and then project the
pose to the plane of the corresponding surface to get next
foot contact poses, as shown in Figure 4. The corresponding
surface for a foot contact is the surface with the highest
projected contact pose for which the vertical distance from
the projected pose to the standing foot’s pose is no more than
some distance hstep and the end effector lies entirely within
the surface’s polygon. If no corresponding surface exists for
a given contact, the action which created that contact is not
added to the ANA* graph.

For hand contacts, we first approximate the shoulder
position based on the foot poses, and project hand contacts
along predefined rays from the approximated shoulder point
to the corresponding surface to get the possible next hand
contact poses, as shown in Figure 5. The corresponding
surface for a hand contact is the surface with the closest
projected contact pose to the approximated shoulder point
for which the distance between the projected contact pose
and the approximated shoulder point is no more than some
distance darm and the end effector lies entirely within the
surface’s polygon.

For both of these transition models it is possible to
determine an oriented bounding box which contains every
possible contact pose, and therefore contains every affor-
dance that will be of use to the planner. In the case of the
foot transition model, we align the z axis of the bounding
box with the global z axis. The extents of the bounding box
in the x and y directions are defined by the 2D bounding box

Fig. 5. The hand transition model specifies possible poses for each hand
as rays relative to the estimated shoulder position. The actual contact pose
is determined by finding the closest intersection with the ray and a surface.

of the step transition model, which is computed in advance.
The extent in the z direction is equal to 2hstep, and the
box is centered at the standing foot. For the hand transition
model, we align the z axis of the bounding box along the
vector between the approximated positions of the left and
right shoulder. The extent in the z direction is equal to darm.
The extents in the x and y directions are defined by the
2D bounding box of the intersections between the rays of
the transition model and a plane perpendicular to the z axis
at the distance darm from the shoulder. The box’s center
lies on the line between the approximated shoulder positions
at a distance of 1

2darm from the shoulder. At each step of
the planner, before each end effector’s transition model is
applied, the planner queries incremental affordance detection
to find all surfaces within the specified bounding box.

For each action a, the edge cost ∆g is defined as:

∆g(a) = de(a) + wθdθ(a) + ws (1)

where de is the translation of the moving end-effector, dθ is
the difference in robot orientation (defined as the mean of
the two feet’s rotation about the Z axis), and wθ and ws are
the weight for robot orientation difference and the step cost,
respectively. Adding step cost helps reduce the number of
steps used in the plan.

The heuristic for each state x used in the planner is:

h(x) = wθhθ(x) +

|E|∑
i

(
he,i(x) + ws

he,i(x)

de,i,max

)
(2)

where hθ is the difference between the current and goal robot
orientations, he,i is the Euclidean distance between the pose
of end-effector i and the goal, and de,i,max is the maximum
possible translation for end-effector i in one action.

To get the final robot trajectory, the contact sequence
returned by the contact space planner is interpolated with
parabolic trajectories for each contact transition. IK is com-
puted to obtain the robot configurations at each interpolated
pose set.



(a) Baseline: Affordances (b) Integrated: Affordances (c) Baseline: Plan (d) Integrated: Plan

Fig. 6. (a-b) Affordances detected by the baseline and integrated framework in the office environment. (c-d) Plans produced by the baseline and integrated
planner in this environment.

(a) Baseline: Affordances (b) Integrated: Affordances (c) Baseline: Plan (d) Integrated: Plan

Fig. 7. (a-b) Affordances detected by the baseline and integrated framework in the real-world ship environment. (c-d) Plans produced by the baseline and
integrated planner in this environment.

VI. RESULTS

To evaluate the improvement in planning time of our
method vs. the standard approach, we implemented a stan-
dard perceive-then-plan framework as a baseline by perform-
ing one query to the perception system with a bounding box
of 10m in every direction and then running ANA* on the
result. This baseline uses the same perception algorithms de-
scribed above so that the comparison is fair. We compare this
baseline to our integrated approach in two environments: The
“ship” dataset was collected from the internal area of a ship
using a laser scanner mounted on a quadcopter and contains
590,000 points. The “office” dataset contains 230,000 points
collected from a simulated office environment.

The perception method was implemented in C++ using
the normal estimation and segmentation implementations
in PCL [25] and the α-shape and polygon simplification
algorithm implementations in CGAL [26]. The planner was
implemented using the OpenRAVE planning environment
[27]. The robot is the ESCHER humanoid robot with six
degrees of freedom per leg, seven per arm, and one in the
waist. Tests were run on an Intel Core i7-3770K 3.40 GHz
CPU with 16GB RAM.

For all experiments we use a minimum plane width of
wmin = 0.15m, a Moving Least Squares radius rmls =
0.15m, a Region Growing Segmentation maximum angle of
θrgs = 0.1 radians, a minimum number of points nmin = 50,
and an extrusion distance dextrude = 0.02m. For the less
noisy office dataset we use an inlier point-to-plane distance
threshold d⊥ = 0.02m and a surface distance threshold
d‖ = 0.03. For the noisier ship dataset we use the values
d⊥ = 0.04m and d‖ = 0.08m. In the planner, for all

TABLE I
PERFORMANCE OF PROPOSED METHOD

Method Total (s) Perception (s) Coverage (%)

Ship Integrated 6.87 (0.116) 5.87 (0.112) 10.0 (0.00)1

Baseline 53.19 (2.69) 39.32 (2.70) 71.7 (0.00)1

Office Integrated 6.84 (3.66) 5.10 (2.46) 33.3 (4.40)
Baseline 11.13 (1.47) 4.93 (0.096) 78.8 (0.653)

1The ship point cloud is a recording of a real measurement and does not
change. Because of this, and because all algorithms which use randomness
are given a fixed seed, the result of the experiments is deterministic and

therefore has zero variance.

experiments we use a maximum step height hstep = 0.5m, a
maximum arm length darm = 0.7m, a maximum transition
distance de,i,max = 0.4m for the feet and 0.6m for the hands,
and cost weights wθ = 0.01 and wstep = 10.

Table I shows the average and standard deviation of the
combined perception and planning time and of the perception
time alone, as well as the percentage of the points in the envi-
ronment which were identified as part of a surface. Examples
of the paths and environment representations produced in
these experiments are shown in Figures 6 and 7. In our ex-
periments, the proposed method is able to compute a motion
plan from point cloud data more quickly than the baseline. In
the more complex ship environment, the speed improvement
is more than 7x. In the less complex office environment, the
combined perception and planner speed improvement is 1.6x.
The reason for the speed improvement is evident in the cov-
erage metric. In both cases, the integrated method identifies
many fewer surface inliers despite producing similar-quality
paths. In the ship environment the baseline finds 7x more
inliers, the same magnitude as the speed increase. In the
office environment the baseline finds 2.4x more inliers while



the speed is only improved by 1.6x. The smaller and simpler
office environment shows the effect of the overhead of
integrated affordance detection, which includes interprocess
communication and bounding box membership tests even
when there are no new affordances in the query volume.
However, the integrated method is still faster overall.

We also record the average and standard deviation of the
path length under each method, in number of steps and
in Euclidean distance, shown in Table II. We compute the
Euclidean distance of a path as the sum of the distances
between the mean foot poses of each consecutive pair of
contact sets. We can see that the number of steps and
Euclidean distance of plans produced by the two methods
are not meaningfully different. This suggests that, while the
paths produced using the proposed method are not identical
to paths produced using the baseline, the path qualities are
comparable and the paths are very similar in practice.

VII. CONCLUSION
A humanoid robot navigating in a complex environment

must perform some type of perception to detect available
affordances with which to make contact. These perception
systems may spend significant time processing areas of the
environment that the planner will never consider visiting
because the perception algorithms have no knowledge of
the robot’s goal. By implementing a combined perception
and planning system which limits perception to only areas
considered by the planner, we improved the speed with which
the robot can compute a motion plan by only processing
those areas of the environment where affordances may be
needed by the planner. Two experiments with simulated and
real-world point cloud data showed that our framework can
produce comparable plans up to seven times faster than the
standard perceive-then-plan approach.
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