
Planning and Resilient Execution of

Policies For Manipulation in Contact

with Actuation Uncertainty

Calder Phillips-Grafflin1 and Dmitry Berenson2

1Worcester Polytechnic Institute, 2University of Michigan

Abstract. We propose a method for planning motion for robots with
actuation uncertainty that incorporates contact with the environment
and the compliance of the robot to reliably perform manipulation tasks.
Our approach consists of two stages: (1) Generating partial policies us-
ing a sampling-based motion planner that uses particle-based models of
uncertainty and simulation of contact and compliance; and (2) Resilient
execution that updates the planned policies to account for unexpected
behavior in execution which may arise from model or environment in-
accuracy. We have tested our planner and policy execution in simulated
SE(2) and SE(3) environments and Baxter robot. We show that our
methods efficiently generate policies to perform manipulation tasks in-
volving significant contact and compare against several simpler methods.
Additionally, we show that our policy adaptation is resilient to significant
changes during execution; e.g. adding a new obstacle to the environment.

1 Introduction

Many real-world tasks are characterized by uncertainty: actuators and sensors
may be noisy, and often the robot’s environment is poorly modelled. Unlike
robots, humans effortlessly perform everyday tasks, like inserting a key into a
lock, which require fine manipulation despite limited sensing and imprecise actu-
ation. We observe that humans often perform these tasks by exploiting contact,
compliance, and resilience. Using compliance to safely make contact and move
while in contact allows us to reduce uncertainty. We also exhibit resilience: when
an action fails to produce the desired result, we may withdraw and try again.
Seminal motion planning work by Lozano-Pérez et al. [1] shows that incorporat-
ing contact and compliance is critical to performing fine motions like inserting a
peg into a hole. Building from this work and our observations of human motions,
we have developed a motion planner that incorporates contact, compliance, and
resilience to generate behavior for robots with actuation uncertainty.

Motion in the presence of actuation uncertainty is an example of a continuous
Markov Decision Process (MDP), adding in sensor uncertainty, the problem
becomes a Partially-Observable Markov Decision Process (POMDP). Solving an
MDP or POMDP is often framed as the problem of computing an optimal policy

π∗ that maps each state to an action a that maximizes the expected reward (e.g.
the probability of reaching the goal). This paper focuses on motion planning with
actuation uncertainty, and thus we frame the problem as an MDP. This MDP
formulation is representative of the challenges face by low-cost and compliant
robots such as Baxter or Raven, which have accurate sensing but noisy actuators.

Instead of planning in the configuration or state-space of the robot, we rep-
resent the uncertainty of the state of the robot as a probability distribution over
possible configurations, and plan in the space of these distributions—the belief

space1. The computational expense of optimal motion planning leads us to adopt
a thresholding approach from conformant planning [2]. Instead of attempting to
find a global optimal policy, we seek to generate a partial policy that allows a
robot with actuation uncertainty to move from start configuration qstart to reach
goal qgoal within tolerance ǫgoal with at least planning threshold Pgoal probabil-
ity. A partial policy, which maps a subset of possible states to actions rather
than a global policy that maps all states to actions, simplifies the problem and
is appropriate for the single-query planning problems we seek to solve.

The complexity of robot kinematics and dynamics preclude analytical mod-
eling of compliance and contact for practical, high-dimensional problems, and
thus we rely on the ability to forward simulate the state of the robot given a
starting state and action. In the presence of uncertainty, individual actions may
have multiple distinct outcomes: for example, when trying to insert a key into
a lock, some attempts will succeed in inserting the key, while some will miss
the keyhole. In advance of performing such an action, we cannot select between
desired outcomes (as is assumed in [3]). However, we can distinguish between the
outcomes after the action is executed. We directly incorporate this behavior into
our planner using splits and reversibility. Splits are single actions that produce
multiple distinct outcomes, which we distinguish between using a series of clus-
tering algorithms. Reversibility is the ability of a specific action and outcome to
be “undone” and return to the previous state, which allows the robot to attempt
the action again. Of course, the planner may not accurately model the outcomes
of every action, so we incorporate an online adaptation process to update the
planned policy during execution to reflect the results of actions.

Our primary contributions are thus 1) incorporating contact and compliance
into policy generation, thus allowing contacts that other planners would dis-
card but that, in fact, can be used to reduce uncertainty; and 2) introducing
resilience into policy execution and thus significantly increasing the probabil-
ity of successfully completing the task. Our experiments with simulated test
environments suggest that our planner efficiently generates policies to reliably
perform motion for robots with actuation uncertainty. We apply our methods to
problems in SE(2), SE(3), and a simulated Baxter robot (R7) and show perfor-
mance improvements over simpler methods and the ability to recover from an
unanticipated blockage.

1 The term belief is borrowed from POMDP literature, which assumes that the state
is partially-observable. Though this paper considers only MDPs, we nevertheless use
“belief” as it is a convenient and widely-used term for a distribution over states.

2

2 Related Work

Planning motion in the presence of actuation uncertainty dates back to the sem-
inal work of Lozano-Pérez et al. [1], which introduced pre-image backchaining.
A pre-image, i.e. a region of configuration space from which a motion command
attains a certain goal recognizably, was used in a planner that produced actions
guaranteed to succeed despite pose and action uncertainty. However, construct-
ing such pre-images is prohibitively computationally expensive [4, 5].

In its general form, belief-space planning is formulated as a Partially-Observable
Markov Decision Process (POMDP), which are widely known to be intractable
for high-dimensional problems. However, recent developments of general approx-
imate point-based solvers such as SARSOP [6] and MCVI [7] have made consid-
erable progress in generating policies for complex POMDP problems. For some
lower-dimensional robot motion problems like [8], the POMDP can be simplified
by extracting the part of the task that incorporates uncertainty (e.g. the posi-
tion of an item to be grasped) and applying off-the-shelf solvers to the problem.
Others have investigated learning approaches [9] for similar problems; however,
we are interested in planning because we want our methods to generalize to a
broad range of tasks without collecting new training data.

Several sampling-based belief-space planners have been developed [3, 10–13].
Others have evaluated the belief-space distance functions [14] and show that the
selection of distance function greatly impacts the performance of the planner.
Additionally, approaches using LQG and LQR controllers [12, 15, 16] and tra-
jectory optimizers [17, 18] have been proposed. These approaches use Gaussian
distributions to model uncertainty, but such a simple distribution cannot accu-
rately represent the belief of a robot moving in contact with obstacles, where
belief may lose support in one or more dimensions, or the state may become
trans-dimensional. Other approaches like [3] use a set of particles to model be-
lief like a particle filter; while we also use a particle-based representation, our
approach more accurately captures the behavior of splits and also includes re-
silience during execution.

The importance of compliance has long been known, with [1] demonstrating
the important role of compliance in performing precise motion tasks. Sampling-
based motion planning for compliant robots has been previously explored in
[19], albeit limited to disc robots with simplified contact behavior. We draw
from these methods, but our approach differs significantly from previous work
by incorporating contact and compliance directly into the planning process by
using forward simulation like the kinodynamic RRT [20]. A major advantage
over existing methods is that the policies we generate are not fixed; instead, we
update them online during execution, which allows us to reduce the impact of
differences between our planning models and real-world execution conditions.

3 Problem Statement

We consider the problem of planning motion for a controlled compliant robot R
with configuration space Q in an environment with obstacles E. For given start

3

(qstart) and goal (qgoal), we seek to produce motion which allows the robot to
reach qgoal within tolerance ǫgoal with at least Pgoal probability.

The robot is assumed to have actuation uncertainty modelled by qt+1 =
qt + (∆qt + r∆q) in which the next configuration qt+1 is the result of the previ-
ous configuration qt , control input∆q and actuation error r∆q . We assume that a
function F, which models the probability distribution of the uncertainty, is avail-
able from which to sample r∆q ∼ F(∆q) for a given ∆q. Due to this actuation
uncertainty, when executing actions in our planner the result is a belief distri-
bution b. The robot is compliant, meaning that for a motion from collision-free
qcurrent to colliding qdesired , the resulting configuration qresult will be in contact
and the robot will not damage itself or the environment.

Since the motion of the robot is uncertain, a path τ that is a discrete sequence
of configurations may not be robust to errors. Instead, we wish to produce a
partial policy π : Q′ → A that maps Q′ ⊆ Q to actions A such that for a
configuration q ∈ Q′, the policy returns an action to perform. Even π may
not always be robust to unexpected errors, therefore during execution we wish
to detect actions that do not reach their expected results; i.e. when an action
produces qresult /∈ Q′. In such an event, we wish to adapt Q′ and π such that
qresult ∈ Q′ and continue attempting to complete the task.

4 Methods

We have developed a motion planner consisting of an anytime RRT-based global
planner and a local planner that uses a kinematic simulator to model robot
behavior. Together, they produce a set of solution paths S, where each solution
s ∈ S is a sequence of nodes ni = (bi, ai), in which bi is the belief distribution
for ni and ai is the action that produced bi. Using this set of solution paths, we
construct a single partial policy π. As π is queried during execution, we update
the policy to reflect the “true” state observed during the execution process.

Because it is difficult to model the belief state in contact using a parametric
distribution, we use a particle-based approach similar to [3] in which we represent
the belief bi of node ni with a set of configurations q1, q2, ..., qn that are forward-
simulated by the local planner. Like previous work [3], we expect that performing
some actions will result in multiple qualitatively different states as illustrated in
Figure 1 (e.g. in contact with an obstacle some particles will become stuck on the
obstacle while others slide along the surface). These distinct parts of the belief
state, which we refer to as splits, are distinguished in our planner by a series
of clustering operations. To ensure that all actions are adequately modeled, a
fixed number of particles Nparticles is used to simulate every action; since splits
reduce the number of particles at a given state, a new set of particles must be
resampled for these states to avoid particle starvation.

It is important to understand that we cannot select between the different
result states of a split when performing the action; however, we can distinguish

using our clustering methods if we have reached an undesirable result. To be
resilient to such errors, we incorporate the ability to reverse the action back

4

Fig. 1. Our belief-space RRT extending toward a random target (red X) from b4 . Due
to compliance, the particles (dots) can slide along the obstacles (gray). Solid blue edges
denote 100% probability edges, dashed edges denote a split resulting in multiple states;
solid magenta edges denote 100% reversible edges, while dashed edges denote lower
reversibility. Because the extension is attempting to move through a narrow passage,
particles separate and a split occurs, resulting in three distinct states (b5 , b6 , b7).

to the previous state and try the action again. Clearly, not all actions will be
reversible, so we perform additional simulation to estimate the ability to reverse
each action after identifying the resulting states.

We first introduce our RRT-based global planner that uses a simulation-based
local planner and a series of particle clustering methods to generate policies in-
corporating actuation uncertainty, and then discuss our online policy execution
and adaptation that enables resiliency to unexpected behavior encountered dur-
ing execution.

4.1 Global planner

Until it reaches time limit tplanning , our global planner iteratively grows a tree
T using the local planner to extend the tree towards a sampled configuration
qtarget . Like the RRT, qtarget is either a uniformly sampled qrand ∈ C, or with
some probability, the goal qgoal . Each time we sample a qtarget , we select the
closest node in the tree nnear = argminni∈TProximity(bi, qtarget). The local
planner plans from nnear towards qtarget and returns new nodes Nnew and edges
Enew that grow the tree. We check each new node nnew ∈ Nnew to see if it meets
the goal conditions, and if so, add the new solution path to S.

We also incorporate several features distinct from the RRT. First, using
Proximity we consider more than distance when selecting the nearest neighbor
node nnear . We want to bias the growth of the tree toward nodes that can be
reached with higher probability and have more concentrated bi, so we incorpo-
rate weighting using P (nstart → ni), the probability the entire path from nstart

5

to ni succeeds, and var(ni), the variance of bi. The proximity of a node ni to a
configuration q is given by the following equation:

Proximity(ni, q) = dist(expect(bi), q)

∗ [(1− P (nstart → ni)) ∗ αP + (1− αP)][erf(|var(bi)|1) ∗ αV + (1− αV)] (1)

Here, expect(bi) = qexpected is the expected value of the belief distribution
bi and dist(qexpected , q) is the C-space distance function. Two weights αP and
αV control the effect of the probability and variance weighting, respectively.
Values of αP and αV closer to 1 increase the effect of the weighting, while values
closer to 0 increase the effect of the C-space distance.Using the error function
erf(x) = 2/

√
π

∫ x

0
e−t2dt maps variance in the range [0, inf) to the range [0, 1) to

simplify computation. Previous work in belief-space planning has used a range of
distance functions, such as L1, Kullback-Leibler divergence, Hausdorff distance,
or Earth Mover’s Distance (EMD) [14]; however, many of these choices only
provide useful distances between belief states with overlapping support. While
EMD encompasses both the C-space distance and probability mass of two beliefs,
it is expensive to compute. Since most of our distance computations are between
beliefs with non-overlapping support, the C-space distance between expected
configurations is an efficient approximation [14].

Second, we cannot simply test if nnew = qgoal , since the P (nstart → nnew)
may be low; instead, we check if a new solution has been found. To be a solution,
the probability nnew reaches the goal must be greater than Pgoal , i.e. the product
of P (nstart → nnew) and |q ∈ bnew |dist(q, qgoal) ≤ ǫgoal |. Finally, once a path to
the goal has been found, we continue planning to find alternative paths. We want
to encourage a diverse range of solutions, so once a solution path has been found,
we remove nodes on solution branches from consideration for nearest neighbor
lookups. This process recurses towards the root of the planner’s tree T until it
either reaches the root node nstart or a node ni which is the result of a split.
Once the base of the solution branch is found, we remove the branch from nearest
neighbors consideration and continue planning until reaching tplanning .

4.2 Local planner

Our local planner grows the planner tree T from nearest neighbor node nnear to-
wards a target configuration qtarget by forward-propagating belief using Extend

to produce one or more result nodes nnew ∈ Nnew and edges enew ∈ Enew (recall
that splits may occur). To improve the time-to-first-solution, the local plan-
ner operates like RRT-Connect, repeatedly calling Extend, until a solution is
found, whereupon it switches to RRT-Extend, calling Extend only once, to
improve coverage of the space and encourage solution diversity. Note that the
RRT-Connect behavior is stopped if an extension results in a split.

Extend forward-simulates particles Qinitial from node nnear towards qtarget ,
clusters the resulting particles Qresults into new nodes Nnew , and computes the
transition probabilities. As previously discussed, we simulate every action with

6

the same number of particles. If node nnear is not the result of a split, and
thus bnear contains a full set of particles, then we simply copy bnear to use for
simulation. If, instead, nnear is the result of a split, then we uniformly resample
Nparticles particles from bi. We then simulate the extension toward qtarget for each
particle. Any simulation engine that simulates contact and compliance could be
used, but the simulation should be as fast as possible to minimize planning time.
In our experiments, we used an approximate kinematic simulator described in
Appendix A. The resulting particles are then grouped into one or more clusters
using ClusterParticles, which we describe in Section 4.3. For each cluster
Qcluster , we form a new node nnew = (bnew , anew) with belief bnew = Qcluster

and action anew = qtarget . In the case of splits, where multiple nodes are formed,
we assign P (nnear → nnew ,i) = |bnew ,i |/Nparticles . We then estimate the proba-
bility that action anew can be reversed from node nnew by simulating Nparticles

particles back towards node nnear . Note that some particles may become stuck
while reversing, and thus the probability of reversing the action may not be 1.

The ability to reverse an action allows us to detect an undesired outcome,
reverse to the parent node, and retry the action until we either reach the desired
outcome or become stuck. Thus, we estimate the effective probability P (nnear →
nnew)effective for each node nnew by estimating the probability that a particle
has reached nnew after Nattempt attempts, where at each attempt, particles that
have not reached the nnew try to return to nnear and try again.

Analysis – The planner always stores Nstored = NactionsNparticles parti-
cles. For every action Nparticles particles are forward-simulated, and all of them
are stored in Nnew . In the worst case, where every action produces Nparticles

distinct nodes, the number of particles that must be simulated Nsimulated =
Nnodes(Nparticles +1), as each node itself is the product of one initial simulation
and Nparticles simulations are required to estimate reverse probability. In prac-
tice, as we discuss in Section 5.1, the space requirements to perform complex
tasks are low as most actions produce a small number of nodes, and the time
cost can be reduced by simulating particles in parallel.

4.3 Particle clustering

Intuitively, we want every configuration in a cluster to be reachable from every
other one using the local planner. However, testing this directly is computa-
tionally expensive, so we also consider two approximate methods. All clustering
methods use two successive passes to cluster the configurations resulting from
forward simulation: first, a spatial-feature-based pass that groups configurations
based on their relationship to different parts of the workspace, and second, a
distance-based pass that refines the initial clusters. All of our clustering meth-
ods use complete-link hierarchical clustering, as it produces smaller, more dense
clusters, while not requiring the number of clusters to be known in advance [21,
3]. Below we discuss the ideal approach and our two approximations, shown in
Figure 2. We compare the performance of these methods in Section 5.1.

7

(a) a (b) b (c) c (d) d

Fig. 2. Our proposed spatial-feature particle clustering methods. (a) The positions of
particles after an extension of the planner. (b) Actuation center clustering, with clusters
(red, blue) and the straight-line paths for each cluster. (c) Weakly Convex Region
Signature clustering, with the three convex regions shown and labeled. (d) Particle
movement clustering, with successful particle-to-particle motions shown dashed for the
main cluster (red) and two unconnected particles (blue, green).

Particle Connectivity (PC) Clustering We run the local planner from every
configuration to every other configuration and record which simulations reach
within ǫgoal of the target. For a pair of configurations q1, q2, going from q1 to
q2 may fail while the opposite succeeds; however, to be conservative, we only
record success if both executions succeed. We then perform clustering using
the complete-link clustering method with distance threshold 0, where successful
simulations correspond to distance 0 and unsuccessful simulations correspond to
distance 1. Note that this method is very expensive, since it requires simulating
N2 −N particles for N configurations considered.

Weakly Convex Region Signature (WCR) Clustering Intuitively, in
many environments a robot can move freely from q1 to q2 if both configura-
tions reside entirely in the same convex region of the workspace. This is also
true for some slight concave features, so long as the features do not block the
robot. Conversely, for configurations in clearly distinct regions, it is less likely
that the robot can move from one configuration to the other.

Illustrated in Figure 2c, we capture this intuition by recording the position
of the robot relative to weakly convex regions of the free workspace, to form
what we call the convex region signature. These regions form a weakly convex
covering: individual regions may contain slight concavity, and multiple regions
overlap. Techniques such as [22] exist to automatically compute these regions,
but for simple environments these regions can be directly encoded. The convex
region signature of a configuration q, WCR(q), records the region(s) occupied
by every point of the robot at q. Distance metric DWCR between two region
signatures WCR(q1) and WCR(q2) is the percentage of points in the robot that
do not share a common region between the signatures. Using this metric, we
perform complete-link clustering. We test different thresholds for DWCR in Sec-
tion 5.1. This method allows configurations with some points in a shared region
to be clustered together, while separating configurations that share no regions.
At runtime, this method requires N computations of WCR(q) and (N2−N)/2
evaluations of DWCR to compute all pairwise distances.

8

Actuation Center (AC) clustering We observe that many successful motions
in contact occur when the actuation (or joint) centers of the starting and ending
configuration can be connected by collision-free straight lines, so this method
checks the straight-line path from the joint centers of one configuration to those
of the other configuration. As with the particle movement clustering approach,
configurations with successful (collision-free) paths have distance 0, while those
with unsuccessful (colliding) paths have distance 1. Like the previous approach,
clusters are then produced using complete-link clustering with threshold 0. At
runtime, this method requires (N2−N)/2 checks of the straight-line paths.

4.4 Partial policy construction

Once the global planner has produced a set of solution paths S, we construct a
partial policy π. Policy construction consists of the following steps:

1. Graph construction – An explicit graph is formed, in which the vertices of the
graph are nodes ni ∈ S, and the edges correspond to the edges forming the
paths in S. An edge ni → ni+1 is assigned an initial cost 1/P (ni → ni+1)).
This means that likely edges receive low cost, which is necessary to compute
maximum-probability paths through the graph.

2. Edge cost updating – The edge costs are updated to reflect the estimated
number of attempts needed to successfully traverse the edge by multiplying
the cost of the edge by the estimated number of attempts required to reach
P (ni → ni+1) ≥ Pgoal . This estimate is the complement of the effective
probability discussed in Section 4.2; instead of computing the probability of
reaching a node after a fixed number of attempts, we compute the number of
attempts needed to reach the node with Pgoal probability. The fewer attempts
necessary to traverse the edge, the faster the policy can be executed, and
thus this cost represents an expected execution time.

3. Dijkstra’s search – The optimal path from every vertex in the graph to
the goal state is computed using Dijkstra’s algorithm. This determines the
optimal next state (and thus action to perform) for every state in the graph.

4.5 Partial policy execution and adaptation

At every step during execution, the partial policy π is queried for the next action
to perform. While we could simply find the “closest” node in the policy using a
distance function like Equation 1, doing so would discard important information.
Not only do we know the configuration qcurrent that results from executing an
action, but we also know the action aperformed we attempted to perform. Using
this information, we know exactly which nodes(s) in π the robot should have
reached. As shown in Algorithm 1, we first collect all potential result nodes (i.e.
those nodes ni with actions ai = aperformed). We then use our particle clustering
method to cluster qcurrent with the belief bi of each ni. This clustering tells us
if the robot reached a given state (if a single cluster is formed) or not (multiple
clusters). In the unlikely (but possible) event that qcurrent clusters with multiple

9

Algorithm 1 Partial policy query algorithm

procedure PolicyQuery(S, π, qcurrent , aperformed)
Npotential ← {ni ∈ S | ai = aperformed}
Nmatching ← {ni ∈ Npotential | |ClusterParticles(bi ∪ qcurrent)| = 1}
if Nmatching 6= ∅ then

nreached ← argminni∈Nmatching
DijkstraDistance(ni)

IncreaseProbability(nreached , aperformed);
for ni ∈ Npotential | ni 6= nreached do

ReduceProbability(ni, aperformed)

π ← ConstructPolicy(π)
if P (nreached → qgoal) ≥ Pgoal then

anext ← π(nreached)
return anext

else

return failure
else

nobserved ← {{qcurrent}, aperformed}
S ← S ∪ nobserved

return PolicyQuery(S, π, qcurrent , aperformed)

potential result nodes, we select the “best” matching node nreached using the
distance-to-goal computed via Dijkstra’s algorithm.

The key contribution of our policy execution is that we adapt the policy π to
reflect the results of actual execution. If a matching node nreached is found, we
then update π to increase the probability that nreached is the result of aperformed .
We assign a constant Aimportance ∈ N that reflects how much we value the
results of executing an action compared to the results of simulating a particle
during planning. To update the probability, we increase the counts of attempted
Nattempts actions and successful Nsuccessful actions, then recompute probability:

P (nprevious → nreached |a) =
Nsuccessful +Aimportance

Nattempts +Aimportance

(2)

Likewise, we reduce the probability for other potential result states:

P (nprevious → nother |a) =
Nsuccessful

Nattempts +Aimportance

(3)

This update process allows us to learn online, during execution, the true
probabilities of reaching states given an action. In effect, the probabilities com-
puted by the global planner serve as an initialization for this online learning.
Once updated, we rebuild policy π to reflect the new probabilities. If the prob-
ability of reaching the goal P (nreached → qgoal) is at least Pgoal , we query π for
the next action to take. If the probability of reaching the goal has dropped below
Pgoal , policy execution terminates.

10

However, sometimes no matching node nreached exists. This means a split
occurred during execution that was not captured in S during planning (e.g.
an obstacle that is not accurately modelled in E, or where the behavior of the
simulator diverges from the true robot). To handle this case, we insert a new node
nobserved with belief bobserved = {qcurrent} into S, and then retry the policy query
(which will now have an exactly matching state). To incorporate reversibility, we
initially assign new nodes a reverse probability Nattempts = Nsuccessful = 1. Thus,
the next action selected by the policy will be to return to the previous node.
Together with updating probabilities by inserting new states in this manner, we
can thus extend the policy to reflect behavior observed during execution that
was not captured during the planning process.

Analysis – In the worst case, a policy π cannot be executed successfully, and
performing every action a results in a new node nobserved . For any Aimportance ∈
N, Pgoal > 0, adapting the policy will detect failure and terminate in this case.

Proof – For every action ai+1 , ..., node nobserved will be created with a re-
verse prior P (nobserved → nprevious) = 1/1. If reversing to nprevious fails, we
update P (nobserved → nprevious) = 1/1+Aimportance . For the ith successive failed
reverse and nobserved,i generated, P (nobserved,i → nprevious) = Πi

1
1+Aimportance

.

As the number of failed actions increases P (nobserved,i → nprevious) → 0, and
thus P (nobserved,i → qgoal) ≤ P (nobserved,i → nprevious) → 0. Thus eventually
P (nobserved,i → qgoal) will fall below Pgoal > 0 and execution will terminate. �

5 RESULTS

We present results of testing our planner in simulated SE(2) and SE(3) environ-
ments and a simulated Baxter robot. For dynamic simulation during execution,
we use the Gazebo simulator. As our kinematic simulator does not consider fric-
tion, we use contact motion controllers to reduce contact forces (see Appendix
B). We present statistical results over a range of actuation uncertainty and clus-
tering methods and show that our planner produces policies that allow execution
of tasks incorporating contact and robot compliance. We also present statistical
results showing that our online policy updating adapts to unexpected behav-
ior during execution. All planning and simulation testing was performed using
2.4 GHz Xeon E5-2673v3 processors. Likewise, all planning was performed with
Proximity weights αP = αV = 0.75 (see Equation 1), Nattempt = 50 attempted
reverse/repeats of each action, and planning threshold Pgoal = 0.51, such that
solutions must be more likely than not to reach the goal.

5.1 SE(3) simulation

Peg-in-hole In SE(3)PegInHole, a version of the classical peg-in-hole task [1]
shown in Figure 3, the free-flying 6-DoF robot “peg” must reach the bottom of
the hole. This task is difficult for robots with actuation uncertainty, as the hole
is only 30% wider than the peg. Even without uncertainty, attempting to avoid
contact greatly restricts the motion of the robot entering the hole. Instead, as

11

(a) (b) (c) (d)

Fig. 3. (a) The SE(3)PegInHole task involves moving from the start (red) to the
bottom of the hole. (b) An example policy produced from 296 solutions, the (c) initial
action sequence (blue arrows), actions the policy will return if every action is successful,
and (d) the swept volume of the peg executing the policy. Note that the peg makes
contact with the environment to reduce uncertainty, then slides into the hole.

AC PC WCR with DWCR =
0.125 0.25 0.5 0.75 0.99

Pplan 1.0 1.0 1.0 0.97 0.97 0.97 0.97
Pexec 0.97 [0.17] 0.89 [0.19] 0.73 [0.42] 0.95 [0.18] 0.84 [0.34] 0.99 [0.02] 0.96 [0.18]

Table 1. SE(3)PegInHole particle clustering performance comparison (mean
[std.dev.]) of Pexec , the probability of reaching the goal with 300 seconds, between
policies produced using our planner with different clustering methods. Pplan is the
probability that a policy is planned within 5 minutes, averaged over 30 plans, and
Pexec is averaged over 40 executions on each successfully-planned policy.

Simplified Planned policies (WCR, DWCR = 0.75)
Simple RRT Contact RRT 24 particles 48 particles

γ Pplan Pexec Pplan Pexec Pplan Pexec Pplan Pexec

0 0 0 [0] 1 0.78 [0.38] 1 0.42 [0.48] 0.97 0.59 [0.47]
1/16 0 0 [0] 1 0.78 [0.39] 1 0.60 [0.43] 1 0.625 [0.43]
1/8 0 0 [0] 1 0.79 [0.38] 1 0.99 [0.18] 0.93 0.81 [0.37]
1/4 0 0 [0] 1 0.50 [0.37] 1 0.90 [0.28] 0.86 0.72 [0.41]

Table 2. SE(3)PegInHole policy performance comparison between simplified plan-
ners and our planner with 24 and 48 particles and actuation uncertainty γ.

shown in [1], the best strategy is to use contact with the environment and the
compliance of the robot to guide the peg into the hole. We assess the performance
of a policy approach in terms of Pexec , the probability that executing the policy
reaches the goal within a time limit of 300 seconds. For a given value of γ, linear
velocity uncertainty γv = γ (m/s) and angular velocity uncertainty γω = 1/4γ
(rad/s). Linear and angular velocity noise is sample from a zero-mean truncated
normal distribution with bounds [−γv ,ω, γv ,ω] and standard deviation 1/2γv ,ω.
While this differs from zero-mean normal distributions conventionally used to
model uncertainty, we believe the bounded truncated distribution better reflects

12

the reality of robot actuators, which do not exhibit unbounded velocity error.
Goal distance threshold ǫgoal was set to 1/2 the length of the peg.

We first compared the performance of our planner at a fixed γ = 1/8 and
Nparticles = 24 using the clustering approaches introduced in Section 4.3, includ-
ing several thresholds for DWCR = 0.125, 0.25, 0.5, 0.75, 0.99, with 30 plans per
approach (5 minutes planning time) and 40 executions of each planned policy.
As seen in Table 1, WCR clustering with DWCR = 0.75 clearly outperformed the
others in terms of policy success, reaching the goal in 99% of executions. Planning
time is overwhelmingly dominated by simulation, accounting for approximately
99.9% of the allotted time. Using WCR and DWCR = 0.75, we then compared
the performance of our planner against two simplified RRT-based approaches:

1. Simple RRT – Does not model uncertainty or allow contact, but like our
planner produces multiple solutions in the allotted planning time.

2. Contact RRT – Incorporates contact and compliance but does not model
uncertainty. Equivalent to planning with γ = 0 and one particle.

In addition, we tested our planner with both 24 and 48 particles to show the
effects of increasing the number of particles used. As before, we planned 30 poli-
cies for each, and executed each planned policy 40 times. Note that the Simple
RRT was unable to produce solutions in 5 minutes due to the confined narrow
passage. Results are shown in Table 2. With low actuator error the Contact
RRT performs better, as it does not expend planning time on simulating multi-
ple particles and instead produces more solutions. As error increases, our planner
clearly outperforms the alternatives. Note that increasing particles does not im-
prove performance, indicating that 24 particles is sufficient without requiring
unnecessary simulation. Low Pexec overall, in particular when planning with low
γ, is due to the mismatch between the planning simulator and the dynamics of
Gazebo (i.e. motions that are possible in the planner, but not in Gazebo) which
disproportionally affects motions near the entrance to the hole. In particular, the
planner at low values of γ overestimates how successfully motions at the edge of
the hole can be performed and thus results in a lower-than-expected Pexec .

In terms of the number of particles stored, the worst case was Nparticles =
48, γ = 0, with an average of 148894 (std.dev. 25015) particles stored. The
worst case for simulated particles was Nparticles = 24, γ = 1/4, with an average
268634 (std.dev. 16856) particles simulated. In practice, the storage and com-
putational expense is limited; the worst-case for particles stored requires a mere
15 megabytes, while for a planning time of 300 seconds and using eight threads,
the planner evaluated more than 100 particles per second per thread.

5.2 Baxter simulation

In addition to SE(3) and SE(2) tests, we apply our planner and policy execution
to a simulated Baxter robot shown in Figure 4, with the robot reaching into a
confined space. We compare the performance of our planner with Nparticles = 24
and WCR clustering method with DWCR = 0.1 with the simplified Contact

13

(a) (b) (c) (d)

Fig. 4. An execution of the Baxter task, from start (a) to goal (d), and environment
with confined space around the goal. The planned policy is shown in blue. Note the use
of contact with the environment to reduce uncertainty and reach the target passage.

RRT in terms of success probability Pexec for uncertainty γ = 0.1. To simu-
late Baxter’s actuation uncertainty γ defines a truncated normal distribution
with σ = 1/2γq̇i and bounds [−γq̇i , γq̇i] for each joint i with velocity q̇i . Goal
distance threshold ǫgoal = 0.15 radians. We generated 10 policies using each
approach with a planning time of 10 minutes to ensure both approaches would
produce multiple solutions, then executed each 8 times for up to 5 minutes. As
expected, Contact RRT finds solutions faster; on average 8.42s (std.dev. 2.61)
versus 65.4s (std.dev. 32.9) and policies contain more solutions; on average 17.2
(std.dev. 16.5) versus 6.33 (std.dev. 3.97) since each solution requires less sim-
ulation time. However, our planner incorporating uncertainty outperforms the
Contact RRT baseline with Pexec = 0.79 (std.dev. 0.30) versus Pexec = 0.70
(std.dev. 0.30). This suggests that, while planning with uncertainty does help
in this environment, our approach to policy execution and resilience also works
well when uncertainty is not accounted for in the planner, but we have a diverse
policy.

5.3 Policy adaptation

We performed tests in a planar SE(2) (3-DoF) environment to show that our pol-
icy adaptation recovers from unexpected behavior during execution. As shown in
Figure 5, the L-shaped robot attempts to move from the start (upper left) to the
goal (lower right). Due to the obstacles present, there are three distinct horizontal
passages. Using the same controllers and uncertainty models as the SE(3) tests
with uncertainty γ = 0.125 and WCR clustering method with DWCR = 0.75, 24
particles, and a planning time of 2 minutes, we generated 30 policies using our
planner. Goal distance threshold ǫgoal was set to 1/8 the length of the robot.

We evaluated the performance of the planned policies in the unmodified en-
vironment and an environment in which we blocked the horizontal passage used
by the initial path of each policy. Each was executed 8 times for a total of 240
policy executions, for a maximum of 600 seconds. In the unmodified environ-
ment, 97% of policies were executed successfully, with an average of 15.4 actions
(std.dev. 9.62). In the modified environment with policy execution importance

14

(a) (b) (c) (d)

Fig. 5. (a) Our planar test environment, in which the robot must move from upper
left (red) to lower right (green), with an example policy produced by our planner,
with solutions through each of the horizontal passages. (b) The initial action sequence
(blue arrows), showing actions the policy will return if every action is successful. (c)
Following the policy, the robot becomes stuck on the new obstacle (gray). (d) Once
the policy detects the failed action, it adapts to avoid the obstacle.

Aimportance = 500 (this high value results in rapid policy adaptation), 73% of
policies were executed successfully, with an average of 26.7 actions (std.dev.
12.3). This result shows that adapting the policy using our methods allows us to
circumvent the new obstacle, however, doing so may result in following a path
that is less likely to succeed.

6 Conclusion

We have developed a method for planning motion for robots with actuation un-
certainty that incorporates environment contact and compliance of the robot
to reliably perform manipulation tasks. First, we generate partial policies using
an RRT-based motion planner that uses particle-based models of uncertainty
and kinematic simulation of contact and compliance. Second, we adapt planned
policies online during execution to account for unexpected behavior that arises
from model or environment inaccuracy. We have tested our planner and policy
execution in simulated SE(2) and SE(3) environments and on the simulated
Baxter robot and show that our methods generate policies that perform ma-
nipulation tasks involving significant contact and compare against two simpler
methods. Additionally, we show that our policy adaptation is resilient to signif-
icant changes during execution; e.g. adding a new obstacle to the environment.

Acknowledgements This work was supported in part by NSF grants IIS-
1656101 and IIS-1551219.

References

1. Lozano-Prez, T., Mason, M.T., Taylor, R.H.: Automatic synthesis of fine-motion
strategies for robots. IJRR 3(1) (1984) 3–24

15

2. Goldman, R.P., Boddy, M.S.: Expressive planning and explicit knowledge. In:
Artificial Intelligence Planning Systems. (May 1996)

3. Melchior, N.A., Simmons, R.: Particle rrt for path planning with uncertainty. In:
ICRA. (April 2007)

4. Canny, J.: On computability of fine motion plans. In: ICRA. (May 1989)
5. Erdmann, M.: Using backprojections for fine motion planning with uncertainty.

The International Journal of Robotics Research 5(1) (1986) 19–45
6. Kurniawati, H., Hsu, D., Lee, W.S.: Sarsop: Efficient point-based pomdp planning

by approximating optimally reachable belief spaces. In: RSS. (2008)
7. Bai, H., Hsu, D., Kochenderfer, M., Lee, W.S.: Unmanned aircraft collision avoid-

ance using continuous-state pomdps. In: RSS. (June 2011)
8. Koval, M., Pollard, N., Srinivasa, S.: Pre- and post-contact policy decomposition

for planar contact manipulation under uncertainty. In: RSS. (July 2014)
9. Levine, S., Wagener, N., Abbeel, P.: Learning contact-rich manipulation skills with

guided policy search. In: ICRA. (May 2015)
10. Roy, N., Prentice, S.: The belief roadmap: Efficient planning in belief space by

factoring the covariance. IJRR 28(11-12) (2009) 1448–1465
11. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under

uncertainty. In: ICRA. (May 2011)
12. Agha-mohammadi, A.a., Chakravorty, S., Amato, N.M.: Firm: Sampling-based

feedback motion planning under motion uncertainty and imperfect measurements.
The International Journal of Robotics Research (2013)

13. Alterovitz, R., Simon, T., Goldberg, K.: The stochastic motion roadmap: A sam-
pling framework for planning with markov motion uncertainty. In: RSS. (June
2007)

14. Littlefield, Z., Klimenko, D., Kurniawati, H., Bekris, K.E.: The importance of a
suitable distance function in belief-space planning. In: ISRR. (September 2015)

15. Berg, J.V.D., Abbeel, P., Goldberg, K.: Lqg-mp: Optimized path planning for
robots with motion uncertainty and imperfect state information. In: RSS. (June
2010)

16. Huynh, V.A., Karaman, S., Frazzoli, E.: An incremental sampling-based algorithm
for stochastic optimal contro. In: ICRA. (May 2012)

17. Davis, B., Karamouzas, I., Guy, S.J.: C-opt: Coverage-aware trajectory optimiza-
tion under uncertainty. IEEE Robotics and Automation Letters 1(2) (July 2016)
1020–1027

18. Lee, A., Duan, Y., Patil, S., Schulman, J., McCarthy, Z., van den Berg, J., Gold-
berg, K., Abbeel, P.: Sigma hulls for gaussian belief space planning for imprecise
articulated robots amid obstacles. In: IROS. (Nov 2013)

19. Nieuwenhuisen, D., van der Stappen, A.F., Overmars, M.H.: Pushing using com-
pliance. In: ICRA. (May 2006)

20. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. IJRR 20(5)
(2001) 378–400

21. Sneath, P.H.A., Sokal, R.R.: Numerical taxonomy: the principles and practice of
numerical classification. Freeman (1973)

22. Asafi, S., Goren, A., Cohen-Or, D.: Weak convex decomposition by lines-of-sight.
Computer Graphics Forum 32(5) (2013) 23–31

16

Appendix A Fast kinematic simulation

(a) a (b) b (c) c (d) d

Fig. 6. The collision resolution process used by our lightweight simulator. From left to
right, (a) a robot represented by points (black) moving towards a target (light blue)
and an obstacle (gray) (b) collides with the object, triggering the collision resolution.
(c) point corrections ∆pn for each colliding point of the robot are computed from the
surface normals of the object and applied (d) so the robot complies to produce an
in-contact state.

The global and local planners rely on the presence of a computationally-
efficient simulator for the behavior of our controlled compliant robot. While
progress has been made in the performance of dynamic simulators, we require a
simulator capable of evaluating hundreds, if not thousands, of robot motions per
second to grow the planner’s tree in reasonable time. To improve computational
performance, we limit ourselves to kinematic simulation, though our planning
framework is agnostic to the simulator being used. Kinematic simulation is only
an approximation of true robot motion; however, we mitigate the discrepancy
between simulated and real dynamic behavior using policy adaptation to update
the planned policy with the results of real-world executions. For this work, the
robot is controlled via PD feedback controller with gains Kp ,Kd , for error eq =
qdesired − q the resulting control input is ∆q = Kpe +Kd ėq ; however, different
controllers can be used with the simulator. For a fixed time limit tsimulate , we
forward simulate the motion of the robot from the current configuration qt to
the next configuration qt+1 using the equation below.

eq = qtarget − qt (4)

∆q = Kpeq +Kdėq (5)

qt+1 = q +∆q + F(∆q) (6)

q′t+1 = ResolveCollisions(qt+1) (7)

Collision resolution and robot compliance are modelled byResolveCollisions,
which iteratively corrects colliding configurations qt+1 until an in-contact config-
uration q′t+1 is reached. For performance purposes, the environment E is mod-
elled using a voxel grid that stores the surface normals for all obstacles in E, and
the robot R is modelled using a set of points for each link. Collision checking of
a configuration q is performed by transforming every point of the robot into the

17

environment and checking if any of the corresponding voxels belong to an ob-
stacle. If any voxels belong to an obstacle, the collision is resolved by iteratively
applying corrections ∆q as shown in Figure 6. Each correction ∆q is the product
of the individual point corrections ∆pn for each colliding point, where ∆pn is the
product of the surface normal of the collided obstacle and penetration distance
of point pn, and the Jacobian J pseudoinverse of the robot for configuration q
and point pn as shown below:

∆q = J(q, p1, p2, ...)
+[∆pT1 , ∆pT2 , ...]

T (8)

Intuitively, this computes the change in configuration necessary to move
points p1, p2, ... out of collision, where the correct direction to move of out of
collision is approximated by the surface normal of the collided object. Note
that this approximation is only valid if the maximum penetration of an ob-
stacle is small; thus we use small timesteps in both ForwardSimulate and
ResolveCollisions to ensure that the workspace motion of the robot is small.
While our kinematic simulation does not consider surface friction which could
hamper sliding motions, we address this using a simple controller discussed in
Section B and our simulation results show that this limitation does not overly
impair the performance of our planner, though unexpected jamming could still
occur.

Appendix B Execution controllers

(a) a (b) b (c) c (d) d

Fig. 7. Our contact motion controller helps mitigate the effects of contact friction. (a)
The robot approaches contact while moving towards the goal in blue. (b) The robot
makes contact and becomes stuck on the surface, from which we estimate a plane
(green) that locally approximates the surface and adjust the goal by ǫadjust shown in
magenta to reduce contact force until (c) the robot resumes moving. (d) Alternatively,
the robot remains stuck for i iterations until iǫadjust = 1 and the controller terminates.

We use the Gazebo dynamics simulator in both planar and 3D environments
to simulate execution of robot motion including contact with obstacles. In the
kinematic simulator used during planning, a PD position controller attempts
to reach a target configuration qtarget by commanding velocities to the robot.
Likewise, we control the simulated robot in Gazebo using a position controller

18

that receives qtarget and commands velocities. To safely achieve those velocities
in collision and contact, a velocity controller commands forces and torques that
move the simulated robot. Unlike the kinematic simulator, which ignores friction
and dynamic effects to achieve faster runtime, the dynamic simulator incorpo-
rates friction between the robot and the environment. To mitigate the effects of
friction in execution, we use a contact motion controller illustrated in Figure 7
which adjusts qtarget to reduce contact forces that cause the robot to become
stuck.

When the contact motion controller receives a new target position, it first
commands qtarget without modification. For the duration of execution texec , at
each iteration the controller records the trajectory of the robot and checks if
the robot has become stuck, i.e. if the total motion over a sliding window of
the trajectory is below a threshold ǫstuck . If the robot is stuck, we assume that
the surface on which the robot is stuck can be locally approximated as a plane,
which we can estimate from the recent motion of the robot. Once the robot is
stuck, the controller then fits a plane defined by point Pplane and normal vector
−−−−→
Nplane to the sliding window of the trajectory and projects qtarget towards the
plane:

q′target = qtarget + (

−−−−−−−−−→
qtarget , Pplane ·

−−−−→
Nplane

−−−−→
Nplane ·

−−−−→
Nplane

−−−−→
Nplane)(iǫadjust) (9)

Here, on the ith stuck iteration of the controller (i.e. the robot has be stuck for

i consecutive iterations of the controller), the controller computes
−−−−−−−−−→
qtarget , Pplane ,

the vector from qtarget to Pplane , and projects it onto
−−−−→
Nplane to compute an

adjustment vector. The target configuration is then moved along the adjustment
vector towards the plane by iǫadjust , where ǫadjust is the amount to adjust at each
step. If the controller exceeds the time limit texec or iǫadjust ≥ 1, the controller
reports that the robot has become “completely stuck”. Intuitively, this controller
reduces contact forces (and thus the effects of friction) by moving qtarget towards
the surface of the obstacle approximated by fitting a plane to the trajectory. If
the robot continues to move, or if the robot resumes moving after being stuck, the
controller commands the original qtarget . For both SE(2) and SE(3) simulation
tests, we used ǫadjust = 0.01 (i.e. it will attempt 100 stuck iterations before
terminating the motion).

A structurally similar contact motion controller is used with the Baxter robot;
however, instead of fitting a plane in R(7) and projecting the target towards it,
we use the kinematic simulator to predict the next adjusted target configura-
tion. At a stuck configuration qstuck , we forward-simulate using the kinematic
simulator towards qtarget for a brief timestep, and record the resulting configu-
ration qsimulated . We then interpolate between qtarget and qsimulated by iǫadjust
to produce the new adjusted target q′target .

19

