
Bandit-Based Model Selection for Deformable

Object Manipulation

Dale McConachie and Dmitry Berenson

University of Michigan, Ann Arbor MI 48109, USA
dmcconac@umich.edu, berenson@eecs.umich.edu

Abstract. We present a novel approach to deformable object manipula-
tion that does not rely on highly-accurate modeling. The key contribution
of this paper is to formulate the task as a Multi-Armed Bandit problem,
with each arm representing a model of the deformable object. To “pull”
an arm and evaluate its utility, we use the arm’s model to generate a
velocity command for the gripper(s) holding the object and execute it.
As the task proceeds and the object deforms, the utility of each model
can change. Our framework estimates these changes and balances ex-
ploration of the model set with exploitation of high-utility models. We
also propose an approach based on Kalman Filtering for Non-stationary
Multi-armed Normal Bandits (KF-MANB) to leverage the coupling be-
tween models to learn more from each arm pull. We demonstrate that our
method outperforms previous methods on synthetic trials, and performs
competitively on several manipulation tasks in simulation.

1 Introduction

One of the primary challenges in manipulating deformable objects is the diffi-
culty of modeling and simulating them. The most common simulation methods
use Mass-Spring models [1, 2], which are generally not accurate for large defor-
mations [3], and Finite-Element models [4, 5], which require significant tuning
and are very sensitive to the discretization of the object. Approaches like [6, 7]
bypass this challenge by using offline demonstrations to teach the robot specific
manipulation tasks; however, when a new task is attempted a new training set
needs to be generated. In our application we are interested in a way to manipu-
late a deformable object without a high-fidelity model or training set available
a priori. For instance, imagine a robot encountering a new piece of clothing for
a new task. While it may have models for previously-seen clothes or training
sets for previous tasks, there is no guarantee that those models or training sets
are appropriate for the new task. Also, depending on the state of the clothing
different models may be most useful at different times in the manipulation task.

Rather than assuming we have a high-fidelity model of a deformable object
interacting with its environment, our approach is to have multiple models avail-
able for use, any one of which may be useful at a given time. We do not assume
these models are correct, we simply treat the models as having some measurable
utility to the task. The utility of a given model is the expected reduction in task

error when using this model to generate robot motion. As the task proceeds, the
utility of a given model may change, making other models more suitable for the
current part of the task. However, without testing a model’s prediction, we do
not know its true utility. Testing every model in the set is impractical, as all
models would need to be tested at every step, and performing a test changes the
state of the object and may drive it into a local minimum. The key question is
then which model should be selected for testing at a given time.

The central contribution of this paper is framing the model selection problem
as a Multi-Armed Bandit (MAB) problem where the goal is to find the model
that has the highest utility for a given task. An arm represents a single model of
the deformable object; to “pull” an arm is to use the arm’s model to generate and
execute a velocity command for the robot. The reward received is the reduction
in task error after executing the command. In order to determine which model
has the highest utility we need to explore the model space, however we also want
to exploit the information we have gained by using models that we estimate to
have high utility. One of the primary challenges in performing this exploration
versus exploitation trade-off is that our models are inherently coupled and non-
stationary; performing an action changes the state of the system which can
change the utility of every model, as well as the reward of pulling each arm. While
there is work that frames robust trajectory selection as a MAB problem [8], we
are not aware of any previous work which either 1) frames model selection for
deformable objects as a MAB problem; or 2) addresses the coupling between
arms for non-stationary MAB problems.

In our experiments, we show how to formulate a MAB problem with coupled
arms for Jacobian-based models. We perform our experiments on three synthetic
systems, and on three deformable object manipulation tasks in the Bullet [9]
simulator. We demonstrate that formulating model selection as a MAB problem
is able to successfully perform all three manipulation tasks. We also show that
our proposed MAB algorithm outperforms previous MAB methods on synthetic
trials, and performs competitively on the manipulation tasks.

2 Related Work

Deformable Object Modeling : One of the key challenges in manipulating de-
formable objects is the difficulty inherent in modeling and simulating them.
While there has been some progress towards online modeling of deformable
objects [10, 11] these methods rely on a time consuming training phase for
each object to be modeled. Of particular interest are Jacobian-based models
such as [12] and [13]. In these models we assume that there is some function
F : SE(3)G → R

N which maps a configuration of G robot grippers q ∈ SE(3)G

to a parameterization of the deformable object P ∈ R
N , where N is the dimen-

sionality of the parameterization of the deformable object. These models are

2

then linearized by calculating an approximation of the the Jacobian of F :

P = F (q)

∂P

∂t
=
∂F (q)

∂q

∂q

∂t

Ṗ = J(q)q̇ . (1)

Computation of an exact Jacobian J(q) at a given configuration q is often
computationally intractable and requires high-fidelity models and simulators,
so instead approximations are frequently used. A shared characteristic of these
approximations is some reliance on tuned parameters. This tuning process can
be tedious, and in some cases needs to be done on a per-task basis.

In this paper we consider two types of approximate Jacobian models. The
first approximation we use is a diminishing-rigidity Jacobian [12] which assumes
that points on the deformable object that are near a gripper move “almost
rigidly” with respect to the gripper while points that are further away move
“less rigidly”. This approximation uses deformability parameters to control how
quickly the rigidity decreases with distance. The second approximation we use
is an adaptive Jacobian [13] which uses online estimation to approximate J(q).
Adaptive Jacobian models rely on a learning rate to control how quickly the
estimation changes from one timestep to the next.

Model Selection: In order to accomplish a given manipulation task, we need
to determine which type of model to use at the current time to compute the next
velocity command, as well as how to set the model parameters. Frequently this
selection is done manually, however, there are methods designed to make these
determinations automatically. Machine learning techniques such as [14, 15] rely
on supervised training data in order to intelligently search for the best regres-
sion or classification model, however, it is unclear how to acquire such training
data for the task at hand without having already performed the task. The most
directly applicable methods come from the Multi-Armed Bandit (MAB) liter-
ature [16–18]. In this framework there are multiple actions we can take, each
of which provides us with some reward according to an unknown probability
distribution. The problem then is to determine which action to take (which arm
to pull) at each time step in order to maximize reward.

The MAB approach is well-studied for problems where the reward distribu-
tions are stationary ; i.e. the distributions do not change over time [16, 19]. This
is not the case for deformable object manipulation; consider the situation where
the object is far away from the goal versus the object being at the goal. In the
first case there is a possibility of an action moving the object closer to the goal
and thus achieving a positive reward; however, in the second case any motion
would, at best, give zero reward.

Recent work [20] on non-stationary MAB problems offer promising results
that utilize independent Kalman filters as the basis for the estimation of a non-
stationary reward distribution for each arm. This algorithm (KF-MANB) pro-
vides a Bayesian estimate of the reward distribution at each timestep, assuming
that the reward is normally distributed. KF-MANB then performs Thompson

3

sampling [19] to select which arm to pull, choosing each in proportion to the be-
lief that it is the optimal arm. We build on this approach in this paper to produce
a method that also accounts for dependencies between arms by approximating
the coupling between arms at each timestep.

For the tasks we address, the reward distributions are both non-stationary as
well as dependent. Because all arms are operating on the same physical system,
pulling one arm both gives us information about the distributions over other
arms, as well as changing the future reward distributions of all arms. While
work has been done on dependent bandits [21, 22], we are not aware of any
work addressing the combination of non-stationary and dependent bandits. Our
method for model selection is inspired by KF-MANB, however we directly use
coupling between models in order to form a joint reward distribution over all
models. This enables a pull of a single arm to provide information about all
arms, and thus we spend less time exploring the model space and more time
exploiting useful models to perform the manipulation task.

3 Problem Statement

Let the robot be represented by a set of G grippers with configuration q ∈
SE(3)G. We assume that the robot configuration can be measured exactly; in
this work we assume the robot to be a set of free floating grippers; in practice
we can track the motion of these with inverse kinematics on a real robot. We use
the Lie algebra [23] of SE(3) to represent robot gripper velocities. This is the
tangent space of SE(3), denoted as se(3). The velocity of a single gripper g is

then q̇g =
[

vTg ωT
g

]T
∈ se(3) where vg and ωg are the translational and rotational

components of the gripper velocity. We define the velocity of the entire robot

to be q̇ =
[

q̇T1 . . . q̇TG
]T

∈ se(3)G. We define the inner product of two gripper
velocities q̇1, q̇2 ∈ se(3) to be 〈q̇1, q̇2〉 = 〈q̇1, q̇1〉c = vT1 v2 + cωT

1 ω2, where c is a
non-negative scaling factor relating rotational and translational velocities.

The configuration of a deformable object is a set P ⊂ R
3 of P points. We

assume that we have a method of sensing P. To measure the norm of a deformable

object velocity Ṗ =
[

ṖT
1 . . . ṖT

P

]T
∈ R

3P we will use a weighted Euclidean norm

‖Ṗ‖2W =

P
∑

i=1

wiṖ
T
i Ṗi = ṖT diag (W)Ṗ (2)

where W =
[

w1 . . . wP

]T
∈ R

P is a set of non-negative weights. The rest of the
environment is denoted O and is assumed to be both static, and known exactly.

Let a deformation model be defined as a function φ : se(3)G → R
3P which

maps a change in robot configuration q̇ to a change in object configuration Ṗ.
Let M be a set of M deformable models which satisfy this definition. Each
model is associated with a robot command function ψ : R3P × R

P → se(3)G

which maps a desired deformable object velocity Ṗ and weight W (Sec. 5.2) to a
robot velocity command q̇. φ and ψ also take the object and robot configuration

4

(P, q) as additional input, however this is omitted for clarity. When a model m
is selected for testing, the model generates a gripper command

q̇m(t) = ψm(Ṗ(t),W (t)) (3)

which is then executed for one unit of time, moving the deformable object to
configuration P(t+ 1).

The problem we address in this paper is which model m ∈ M to select in
order to to move G grippers such that the points in P align as closely as possible
with some task-defined set of T target points T ⊂ R

3, while avoiding gripper
collision and excessive stretching of the deformable object. Each task defines a
function ρ which measures the alignment error between P and T . The method
we present is a local method which picks a single model m∗ at each timestep
to treat as the true model. This model is then used to reduce error as much as
possible while avoiding collision and excessive stretching.

m∗ = argmin
m∈M

ρ(T ,P(t+ 1)) (4)

We show that this problem can be treated as an instance of the multi-arm non-
stationary dependent bandit problem.

4 Bandit-Based Model Selection

The primary difficulty with solving (4) directly is that the effectiveness of a
particular model in minimizing error is unknown. It may be the case that no
model in the set produces the optimal option, however, this does not prevent a
model from being useful. In particular the utility of a model may change from one
task to another, and from one configuration to another as the deformable object
changes shape, and moves in and out of contact with the environment. We start
by defining the utility um(t) ∈ R of a model as the expected improvement in task
error ρ if model m is used to generate a robot command at time t. If we know
which model has the highest utility then we can solve (4). This leads to a classic
exploration versus exploitation trade-off where we need to explore the space
of models in order to learn which one is the most useful, while also exploiting
the knowledge we have already gained. The multi-armed bandit framework is
explicitly designed to handle this trade-off.

In the MAB framework, each arm represents a model in M; to pull arm m

is to command the grippers with velocity q̇m(t) (Eq. 3) for 1 unit of time. We
then define the reward rm(t + 1) after taking action q̇m(t) as the improvement
in error

rm(t+ 1) = ρ(t)− ρ(t+ 1) = um(t) + w (5)

where w is a zero-mean noise term. The goal is to pick a sequence of arm pulls
to minimize total expected regret R(Tf) over some (possibly infinite) horizon Tf

E[R(Tf)] =

Tf
∑

t=1

(E[r∗(t)]− E[r(t)]) (6)

5

where r∗(t) is the reward of the best model at time t. The next section describes
how to use bandit-based model selection for deformable object manipulation.

5 MAB Formulation for Deformable Object Manipulation

Algorithm 1 MainLoop(O, β, λ)
1: t← 0
2: D ← GeodesicDistanceMatrix(Prelaxed)
3: M← InitializeModels(D)
4: InitialzeBanditAlgorithm()
5: P(0)← SensePoints()
6: q(0)← SenseRobotConfig()
7: while true do

8: m← SelectArmUsingBanditAlgorithm()
9: T ← GetTargets()
10: Ṗe,We ← ErrorCorrection(P(t), T)
11: Ṗs,Ws ← StretchingCorrection(D,λ,P(t))
12: Ṗd,Wd ← CombineTerms(Ṗe,We, Ṗs,Ws)
13: q̇d ← ψm(Ṗd,Wd)
14: q̇ ← ObstacleRepulsion(q̇d,O, β)
15: CommandConfiguration(q(t) + q̇)
16: P(t+ 1)← SensePoints()
17: q(t+ 1)← SenseRobotConfig()
18: UpdateBanditAlgorithm()
19: t← t+ 1
20: end while

Our algorithm (Alg. 1) can
be broken down into four ma-
jor sections and an initial-
ization block. In the initial-
ization block we pre-compute
the geodesic distance between
every pair of points in P
when the deformable object
is in its “natural” or “re-
laxed” state and store the re-
sult in D. These distances are
used to construct the defor-
mation models (Sec. 5.3), as
well as to avoid overstretch-
ing the object (Sec. 5.2). At
each iteration we: 1) pick a
model to use to achieve the
desired direction (Sec. 5.1); 2)
compute the task-defined de-
sired direction to move the de-
formable object (Sec. 5.2); 3) generate a velocity command using the chosen
model (Sec. 5.3); 4) modify the command to avoid obstacles (Sec. 5.2); and 5)
update bandit algorithm parameters (Sec. 5.1).

5.1 Algorithms for MAB

Previous solutions [16, 20] to minimizing (6) assume that rewards for each arm
are normally and independently distributed and then estimate the mean and
variance of each Gaussian distribution. We test three algorithms in our experi-
ments: Upper Confidence Bound for normally distributed bandits UCB1-Normal,
Kalman Filter Based Solution to Non-Stationary Multi-arm Normal Bandits
(KF-MANB), and our extension of KF-MANB, Kalman Filter Based Solution
to Non-Stationary Multi-arm Normal Dependent Bandit (KF-MANDB).

UCB1-Normal : The UCB1-Normal algorithm [16] treats each arm (model) as
independent, estimating an optimistic Upper Confidence Bound (UCB) for the
utility of each model. The model with the highest UCB is used to command the
robot at each timestep. This algorithm assumes that the utility of each model
is stationary, gradually shifting from exploration to exploitation as more infor-
mation is gained. While our problem is non-stationary and dependant, we use

6

UCB1-Normal as a baseline algorithm to compare against due to its prevalence
in previous work. The algorithm is shown in App. A.1 for reference.

KF-MANB : The Kalman Filter Based Solution to Non-Stationary Multi-arm
Bandit (KF-MANB) algorithm [20] uses independent Kalman filters to estimate
the utility distribution of each model, and then uses Thompson sampling [19]
to chose which model to use at each timestep. Because this algorithm explicitly
allows for non-stationary reward distributions, it is able to “switch” between
models much faster than UCB1-Normal. The KF-MANB algorithm is shown in
App. A.1 for reference.

KF-MANDB : We also propose a variant of KF-MANB, replacing the inde-
pendent Kalman filters with a single joint Kalman filter. This enables us to
capture the correlations between models, allowing us to learn more from each
pull. We start by defining utility as a linear system with Gaussian noise with
process model u(t+1) = u(t)+v and observation model r(t) = Cu(t)+w where
u(t) is our current estimate of the relative utility of each model, while v and w
are zero-mean Gaussian noise terms. C is a row vector with a 1 in the column of
the model we used and zeros elsewhere. The variance on w is defined as σ2

obsη
2.

η is a tuning parameter to scale the covariance to match the reward scale of the
specific task, while σobs controls how much we believe each new observation.

To define the process noise v we want to leverage correlations between mod-
els; if two model predictions are similar, the utility of these models is likely
correlated. To measure the similarity between two models i and j we use the
angle between their gripper velocity commands q̇i and q̇j . This similarity is then
used to directly construct a covariance matrix for each arm pull:

v ∼ N
(

0, σ2
trη

2(ξΣ + (1− ξ) I)
)

Σi,j =
〈q̇i, q̇j〉

‖q̇i‖‖q̇j‖
= cos θi,j .

(7)

σtr is the standard Kalman Filter transition noise factor tuning parameter. ξ ∈
[0, 1] is the correlation strength factor; larger ξ gives more weight to the arm
correlation, while smaller ξ gives lower weight. When ξ is zero then KF-MANDB
will have the same update rule as KF-MANB, thus we can view KF-MANDB as
a generalizion of KF-MANB, allowing for correlation between arms.

After estimating the utility of each model and the noise parameters at the
current timestep, these values are then passed into a Kalman filter which es-
timates a new joint distribution. The next step is the same as KF-MANB; we
draw a sample from the resulting distribution, then use the model that yields
the largest sample to generate the next robot command. In this way we auto-
matically switch between exploration and exploitation as the system evolves; if
we are uncertain of the utility of our models then we are more likely to choose
different models from one timstep to the next. If we believe that we have accu-
rate estimates of utility, then we are more likely to choose the model with the
highest utility.

5.2 Determining q̇

7

Fig. 1. Top Line: moving the point does not
change the error, thus the desired move-
ment is zero, however, it is not important
to achieve zero movement, thus Wd = 0.
Bottom Line: error is at a local minimum;
thus moving the point increases error.

Algorithm 2 ErrorCorrection(P, T)

1: Ṗe ← 03P×1, We ← 0P×1

2: for i ∈ {1, 2, . . . , T} do
3: k ← argminj∈{1,2,...,P} ‖Ti − Pj‖

4: Ṗe,k ← Ṗe,k + Ti − Pk

5: We,k ← max(We,k, ‖Ti − Pk‖)
6: end for

7: return {Ṗe,We}

Algorithm 3

StretchingCorrection(D,λ,P)

1: E ← EuclidianDistanceMatrix(P)
2: Ṗs ← 03P×1, Ws ← 0P×1

3: ∆← E −D
4: for i ∈ {1, 2, . . . , P} do
5: for j ∈ {i+ 1, . . . , P} do
6: if ∆i,j > λ then

7: v ← ∆i,j(Pj − Pi)
8: Ṗs,i ← Ṗs,i +

1

2
v

9: Ṗs,j ← Ṗs,j −
1

2
v

10: Ws,i ← max(Ws,i, ∆i,j)
11: Ws,j ← max(Ws,j , ∆i,j)
12: end if

13: end for

14: end for

15: return {Ṗs,Ws}

Error Correction We build on pre-
vious work [12], splitting the desired
deformable object movement into two
parts: an error correction part and
a stretching correction part. When
defining the direction we want to
move the deformable object to min-
imize error we calculate two val-
ues; which direction to move the de-
formable object points Ṗe and the im-
portance of moving each deformable
object point We. This is analogous
to computing the gradient of error,
as well as an “importance factor” for
each part of the gradient. We need
these weights to be able to differenti-
ate between points of the object where
the error function is a plateau versus
points where the error function is at a
local minimum (Fig. 1). Typically this
is achieved using a Hessian, however
our error function does not have a sec-
ond derivative at many points. We use
the ErrorCorrection (Alg. 2) func-
tion to calculate these values. Each
target point Ti ∈ T defines a potential
field, pulling the nearest point on the
deformable object Pk towards Ti. We

is set to the maximum distance Pk is
being pulled by any target point. This
allowsWe to be insensitive to changes
in discretization.

Stretching Correction Our al-
gorithm for stretching correction is
similar to that found in [12], with
the addition of a weighting term
Ws, and a change in how we com-
bine the two terms. We use the
StretchingCorrection function (Alg. 3) to compute Ṗs and Ws based on a
task-defined stretching threshold λ ≥ 0. First we compute the distance between
every two points on the object and store the result in E. We then compare E to
D which contains the relaxed lengths between every pair of points. If any two
points are stretched by more than λ, we attempt to move the points closer to
each other. We use the same strategy for setting the importance of this stretch-

8

ing correction Ws as we use for error correction. When combining stretching
correction and error correction terms (Alg. 4) we prioritize stretching correc-
tion, accepting only the portion of the error correction that is orthogonal to the
stretching correction term for each point.

Algorithm 4

CombineTerms(Ṗe,We, Ṗs,Ws)

1: for i ∈ {1, 2, . . . , P} do

2: Ṗd,i ← Ṗs,i +
(

Ṗe,i − ProjṖs,i
Ṗe,i

)

3: Wd,i ←Ws,i +We,i

4: end for

5: return {Ṗd,Wd}

Algorithm 5 ObstacleRepulsion(O, β)

1: for g ∈ {1, 2, . . . , G} do
2: Jpg , ẋpg , dg ← Proximity(O, g)
3: γ ← e−βdg

4: q̇c,g ← J+

pg ẋpg

5: q̇c,g ←
q̇max,o

‖q̇c,g‖
q̇c,g

6: q̇g ← γ
(

q̇c,g +
(

I− J+

pgJpg
)

q̇g
)

+
(1− γ)q̇g

7: end for

8: return q̇

Obstacle Avoidance In order to
guarantee that the grippers do not
collide with any obstacles, we use
the same strategy from [12], smoothly
switching between collision avoidance
and other objectives (see Alg. 5). For
every gripper g and an obstacle set O
we find the distance dg to the near-
est obstacle, a unit vector ẋpg

pointing
from the obstacle to the nearest point
on the gripper, and a Jacobian Jpg

between the gripper’s DOF and the
point on the gripper. The Proximity

function is shown in Appendix C. β >
0 sets the rate at which we change be-
tween servoing and collision avoidance
objectives. q̇max,o > 0 is an internal
parameter that sets how quickly we
move the robot away from obstacles.

5.3 Jacobian Models

Every model must define a prediction function φ(q̇) and has an associated robot
command function ψ(Ṗ,W). This paper focuses on Jacobian-based models whose
basic formulation Eq. (1) directly defines the deformation model φ

φ(q̇) = Jq̇. (8)

When defining the robot command function ψ, we use the weights W to focus
the robot motion on the important part of Ṗ. This is done by using a weighted
norm in a standard minimization problem

ψ(Ṗ ,W) = argmin
q̇

‖Jq̇ − Ṗ‖2W s.t. ‖q̇‖2 < q̇2max,e. (9)

We also need to ensure that the grippers do not move too quickly, so we add the
constraint that the robot moves no more than q̇max,e > 0. To solve (9) we use the
Gurobi [24] optimizer. We use two different Jacobian approximation methods in
our model set; a diminishing rigidity Jacobian, and an adaptive Jacobian, which
are described below.

9

Diminishing Rigidity Jacobian The key assumption used by this method [12]
is diminishing rigidity : the closer a gripper is to a particular part of the de-
formable object, the more that part of the object moves in the same way that
the gripper does (i.e. more “rigidly”). The further away a given point on the
object is, the less rigidly it behaves; the less it moves when the gripper moves.
Details of how to construct a diminishing rigidity Jacobian are in Appendix B.
This approximation depends on two parameters ktrans and krot which control
how the translational and rotational rigidity scales with distance. Small values
entail very rigid objects; high values entail very deformable objects.

Adaptive Jacobian A different approach is taken in [13], instead using online
estimation to approximate J(q). In this formulation we start with some estimate
of the Jacobian J̃(0) at time t = 0 and then use the Broyden update rule [25] to
update J̃(t) at each timestep t

J̃(t) = J̃(t− 1) + Γ

(

Ṗ(t)− J̃(t− 1)q̇(t)
)

q̇(t)T q̇(t)
q̇(t)T . (10)

This update rule depends on a update rate Γ ∈ (0, 1] which controls how quickly
the estimate shifts between timesteps.

6 Experiments and Results

We test our method on three synthetic tests and three deformable object ma-
nipulation tasks in simulation. The synthetic tasks show that the principles we
use to estimate the coupling between models are reasonable; while the simu-
lated tasks show that our method is effective at performing deformable object
manipulation tasks.

6.1 Synthetic Tests

For the synthetic tests, we set up an underactuated system that is representative
of manipulating a deformable object with configuration y ∈ R

n and control input
ẋ ∈ R

m such that m < n and ẏ = Jẋ. To construct the Jacobian of this system

we start with J =

[

Im×m

0(n−m)×m

]

and add uniform noise drawn from [−0.1, 0.1]

to each element of J . The system configuration starts at
[

10 . . . 10
]T

with the
target configuration set to the origin. Error is defined as ρ(t) = ‖y(t)‖, and the
desired direction to move the system at each timestep is ẏd(t) = −y(t). These
tasks have no obstacles or stretching, thus β, λ, and q̇max,o are unused. Rather
than setting the utility noise scale η a priori, we use an annealing filter

η(t+ 1) = max(10−10, 0.9η(t) + 0.1|r(t+ 1)|) . (11)

This enables us to track the changing available reward as the system gets closer
to the target. All other parameters are shown in App D.

10

Table 1. Synthetic trial results showing total regret with standard deviation in brackets
for all bandit algorithms for 100 runs of each setup.

of Models n m UCB1-Normal KF-MANB KF-MANDB

10 3 2 4.41 [1.65] 3.62 [1.73] 2.99 [1.40]
60 147 6 5.57 [1.37] 4.89 [1.32] 4.53 [1.42]
60 6075 12 4.21 [0.64] 3.30 [0.56] 2.56 [0.54]

To generate a model for the model set we start with the true Jacobian J

and add uniform noise drawn from [−0.025, 0.025] to each element of J . For an
individual trial, each bandit algorithm uses the same J and the same model
set. Each bandit algorithm receives the same random number stream during a
trial, ensuring that a more favourable stream doesn’t bias results. We ran one
small test using a 3× 2 Jacobian with 10 arms in order to yield results that are
easily visualised. The second and third tests are representative of the scale of
the simulation experiments, using the same number of models and similar sizes
of Jacobian as are used in simulation. A single trial consists of 1000 pulls (1000
commanded actions); each test was performed 100 times to generate statistically
significant results. Our results in Table 1 show that KF-MANDB clearly performs
the best for all three tests.

6.2 Simulation Trials

We now demonstrate the effectiveness of multi-arm bandit techniques on three
example tasks, show how to encode those tasks for use in our framework, and
discuss experimental results. The first task shows how our method can be applied
to a rope, with the goal of winding the rope around a cylinder in the environment.
The second and third tasks show the method applied to cloth. In the second
task, two grippers manipulate the cloth so that it covers a table. In the third
task, we perform a two-stage coverage task, covering portions of two different
cylinders. In all three tasks, the alignment error ρ(P, T) is measured as the sum
of the distances between every point in T and the closest point in P in meters.
Figure 2 shows the target points in red, and the deformable object in green. The
video accompanying this paper shows the task executions.

All experiments were conducted in the open-source Bullet simulator [9], with
additional wrapper code developed at UC Berkeley. The rope is modeled as a
series of 49 small capsules linked together by springs and is 1.225m long. The
cloth is modeled as a triangle mesh of size 0.5m × 0.5m for the table coverage
task, and size 0.5m×0.625m for the two-stage coverage task. We emphasize that
our method does not have access to the model of the deformable object or the
simulation parameters. The simulator is used as a “black box” for testing.

We use models generated using the same parameters for all three tasks with
a total of 60 models: 49 diminishing rigidity models with rotation and transla-
tional deformability values ktrans and krot ranging from 0 to 24 in steps of 4,
as well as 11 adaptive Jacobian models with learning rates Γ ranging from 1 to
10−10 in multiples of 10. All adaptive Jacobian models are initialized with the

11

1 2 3 4

1 2 3 4

1 2 3 4

Fig. 2. Sequence of snapshots showing the execution of the simulated experiments
using the KF-MANDB algorithm. The rope and cloth are shown in green, the grippers
is shown in blue, and the target points are shown in red. The bottom row additionally
shows Ṗd as green rays with red tips.

same starting values; we use the diminishing rigidity Jacobian for this seed with
ktrans = krot = 10 for the rope experiment and ktrans = krot = 14 for the cloth
experiments to match the best model found in [12]. We use the same strategy
for setting η as we use for the synthetic tests. App D shows all other parameters.

We evaluate results for the MAB algorithms as well as using each of the mod-
els in the set for the entire task. To calculate regret for each MAB algorithm, we
create copies of the simulator at every timestep and simulate the gripper com-
mand, then measure the resulting reward rm(t) for each model. The reward of
the best model r∗(t) is then the maximum of individual rewards. As KF-MANB
and KF-MANDB are not deterministic algorithms, each task is performed 10
times for these methods. All tests are run on an Intel Xeon E5-2683 v4 proces-
sor with 64 GB of RAM. UCB1-Normal and KF-MANB solve Eq. (9) once per
timestep, while KF-MANDB solves it for every model in M. Computation times
for each test are shown in their respective sections.

Winding a Rope Around a Cylinder : In the first example task, a single gripper
holds a rope that is lying on a table. The task is to wind the rope around a
cylinder which is also on the table (see Fig. 2). Our results (Fig. 3) show that at
the start of the task all the individual models perform nearly identically, starting
to split at 2 seconds (when the gripper first approaches the cylinder) and again
at 6 seconds. Despite our model set containing models that are unable to perform
the task, our formulation is able to successfully perform the task using all three

12

0 5 10 15

Time (s)

0

5

10

15

20

T
ot

al
 R

eg
re

t

UCB1-Normal
KF-MANB
KF-MANDB

Fig. 3. Experimental results for the rope-winding task. Top left: alignment error for
10 trials for each MAB algorithm, and each model in the model set when used in
isolation. UCB1-Normal, KF-MANB, KF-MANDB lines overlap in the figure for all
trials. Top right: Total regret averaged across 10 trials for each MAB algorithm with
the minimum and maximum drawn in dashed lines. Bottom row: histograms of the
number of times each model was selected by each MAB algorithm; UCB1-Normal (bl),
KF-MANB (bm), KF-MANDB (br).

bandit algorithms. Interestingly, while KF-MANDB outperforms UCB1-Normal
and KF-MANB in terms of regret, all three algorithms produce very similar
results. Solving Eq. (9) at each iteration requires an average of 17.3 ms (std.
dev. 5.5 ms) for a single model, and 239.5 ms (std. dev. 153.7 ms) for 60 models.

Spreading a Cloth Across a Table: The second scenario we consider is spread-
ing a cloth across a table. In this scenario two grippers hold the rectangular cloth
at two corners and the task is to cover the top of the table with the cloth. All of
the models are able to perform the task (see Fig. 4), however, many single-model
runs are slower than the bandit methods at completing the task, showing the
advantage of the bandit methods. When comparing between the bandit meth-
ods, both error and total regret indicate no performance difference between the
methods. Solving Eq. (9) at each iteration requires an average of 89.5 ms (std.
dev. 82.4 ms) for a single model, and 605.1 ms (std. dev. 514.3 ms) for 60 models.

Two-Part Coverage Task : In this experiment, we consider a two-part task.
The first part of the task is to cover the top of a cylinder similar to our second
scenario. The second part of the task is to cover the far side of a second cylinder.
For this task the GetTargets function used previously pulls the cloth directly
into the second cylinder. The collision avoidance term then negates any motion
in that direction causing the grippers to stop moving. To deal with this, we

13

0 0.5 1 1.5

Time (s)

0

10

20

30

40

50

60

70

E
rr

or

Diminishing Rigidity
Adaptive Jacobian
UCB1-Normal
KF-MANB
KF-MANDB

0 0.5 1 1.5 2

Time (s)

0

0.5

1

1.5

2

T
ot

al
 R

eg
re

t

UCB1-Normal
KF-MANB
KF-MANDB

Fig. 4. Experimental results for the table coverage task. See Fig. 3 for description.

discretize the free space using a voxel grid, and then use Dijkstra’s algorithm
to find a collision free path between each cover point and every point in free
space. We use the result from Dijkstra’s algorithm to define a vector field that
pulls the nearest (as defined by Dijkstra’s) deformable object point pk along the
shortest collision free path to the target point. This task is the most complex
of the three (see Fig. 5); many models are unable to perform the task at all,
becoming stuck early in the task. We also observe that both KF-MANB and
KF-MANDB show a preference for some models over others. Two interesting
trials using KF-MANDB stand out; in the first the grippers end up on opposite
sides of the second cylinder, in this configuration the physics engine has difficulty
resolving the scene and allows the cloth to be pulled straight through the second
cylinder. In the other trial the cloth is pulled off of the first cylinder, however
KF-MANDB is able to recover, moving the cloth back onto the first cylinder. KF-
MANDB and UCB1-Normal are able to perform the task significantly faster than
KF-MANB, though all MAB methods complete the task using our formulation.
Solving Eq. (9) at each iteration requires an average of 102.6 ms (std. dev.
30.6 ms) for a single model, and 565.5 ms (std. dev. 389.8 ms) for 60 models.

7 Conclusion

We have formulated model selection for deformable object manipulation as a
MAB problem. Our formulation enables the application of existing MAB algo-
rithms to deformable object manipulation as well as introduces a novel utility
metric to measure how useful a model is at performing a given task. We have

14

0 5 10 15 20

Time (s)

0

10

20

30

40

50

60

T
ot

al
 R

eg
re

t

UCB1-Normal
KF-MANB
KF-MANDB

Fig. 5. Experimental results for the two-part coverage task. See Fig. 3 for description.

also presented Kalman Filtering for Non-stationary Multi-arm Normal Depen-
dent Bandits (KF-MANDB) to leverage coupling between dependent bandits to
learn more from each arm pull. Our experiments show how to perform several
interesting tasks for rope and cloth using our method.

One notable result we observe is that finding and exploiting the best model
is less important than avoiding poor models for extended periods of time; in
all of the experiments UCB1-Normal never leaves its initial exploration phase,
however it is able to successfully perform each task. We believe this is due to
many models being able to provide commands that have a positive dot-product
with the correct direction of motion.

One limitation of KF-MANDB is handling bifurcations; when very small
differences in command sent to the robot cause large differences in the result the
assumption of coupling between models in KF-MANDB does not hold. In future
work we seek to explore how to overcome this limitation, as well as using the
predictive accuracy of each model as an additional measure of model coupling.

8 Acknowledgements

This work was supported in part by NSF grants IIS-1656101 and IIS-1551219. We
gratefully acknowledge Calder Phillips-Grafflin for his assistance with Bullet.

References

1. Gibson, S.F.F., Mirtich, B.: A survey of deformable modeling in computer graphics.
Technical report, Mitsubishi Electric Research Laboratories (1997)

15

2. Essahbi, N., Bouzgarrou, B.C., Gogu, G.: Soft Material Modeling for Robotic
Manipulation. In: Applied Mechanics and Materials. (April 2012)

3. Maris, B., Botturi, D., Fiorini, P.: Trajectory planning with task constraints in
densely filled environments. In: IROS. (2010)

4. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real-time
deformations. In: SIGGRAPH. (2002)

5. Bathe, K.J.: Finite Element Procedures. Klaus-Jurgen Bathe (2006)
6. Schulman, J., Ho, J., Lee, C., Abbeel, P.: Learning from demonstrations through

the use of non-rigid registration. In: Springer Tracts in Advanced Robotics. Volume
114., Springer International Publishing (2016) 339–354

7. Huang, S.H., Pan, J., Mulcaire, G., Abbeel, P.: Leveraging appearance priors in
non-rigid registration, with application to manipulation of deformable objects. In:
IROS. (2015)

8. Koval, M.C., King, J.E., Pollard, N.S., Srinivasa, S.S.: Robust trajectory selection
for rearrangement planning as a multi-armed bandit problem. In: IROS. (2015)

9. Coumans, E.: Bullet physics library. Open source: bulletphysics.org (2010)
10. Jochen Lang, Pai, D.K., Woodham, R.J.: Acquisition of Elastic Models for Inter-

active Simulation. IJRR 21(8) (aug 2002) 713–733
11. Cretu, A.M., Payeur, P., Petriu, E.: Neural Network Mapping and Clustering of

Elastic Behavior From Tactile and Range Imaging for Virtualized Reality Appli-
cations. IEEE TIM 57(9) (sep 2008) 1918–1928

12. Berenson, D.: Manipulation of deformable objects without modeling and simulating
deformation. In: IROS. (2013)

13. Navarro-Alarcon, D., Romero, J.G.: Visually servoed deformation control by robot
manipulators. In: ICRA. (2013)

14. Maron, O., Moore, A.W.: Hoeffding Races: Accelerating Model Selection Search
for Classification and Function Approximation. In: NIPS. (1994)

15. Sparks, E.R., Talwalkar, A., Haas, D., Franklin, M.J., Jordan, M.I., Kraska, T.:
Automating model search for large scale machine learning. In: SoCC. (2015)

16. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time Analysis of the Multiarmed
Bandit Problem. Machine Learning 47(2/3) (2002) 235–256

17. Gittins, J., Glazebrook, K., Weber, R.: Multi-armed Bandit Allocation Indices.
John Wiley & Sons (2011)

18. Whittle, P.: Restless Bandits: Activity Allocation in a Changing World. Journal
of Applied Probability 25 (1988) 287

19. Agrawal, S., Goyal, N.: Analysis of Thompson Sampling for the multi-armed bandit
problem. Conference on Learning Theory (2012)

20. Granmo, O.C., Berg, S.: Solving Non-Stationary Bandit Problems by Random
Sampling from Sibling Kalman Filters (2010)

21. Pandey, S., Chakrabarti, D., Agarwal, D.: Multi-armed bandit problems with
dependent arms. In: ICML, New York, New York, USA (2007)

22. Langford, J., Zhang, T.: The Epoch-Greedy Algorithm for Multi-armed Bandits
with Side Information. In: NIPS. (2008)

23. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Ma-
nipulation. Volume 29. CRC Press (1994)

24. Gurobi: Gurobi optimization library. Proprietary: gurobi.com (2016)
25. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations.

Mathematics of Computation 19(92) (1965) 577–593

16

A MAB Algorithm Blocks

A.1 UCB1-Normal

Reproduced from [16].

Loop: For each n = 1, 2, . . .

– If there is a machine which has been played less than ⌈8 log n⌉ times then
play this machine. If multiple machines qualify, we play the machine that
has been played less, selecting the machine with the lower index in the case
of a tie.

– Otherwise play machine j that maximizes

x̄j +

√

16 ·
qj − nj x̄

2
j

nj − 1
·
ln(n− 1)

nj
(12)

where x̄j is the average reward obtained from machine j, qj is the sum of
squared rewards obtained from machine j, and nj is the number of times
machine j has been played so far.

– Update x̄j and qj with the obtained reward xj .

A.2 KF-MANB

Algorithm 6 KF-MANB - reproduced from [20]

Input: Number of bandit arms L; Observation noise σ2
ob; Transition noise σ2

tr.
Initialization: µq[1] = µ2[1] = · · · = µL[1] = A; σ1[1] = σ2[1] = · · · = σL[1] = B; #

Typically, A can be set to 0, with B being sufficiently large

for N = 1, 2, . . . do

1. For each arm j ∈ {1, . . . , L}, draw a value xj randomly from the associated
normal distribution f(xj ;µj [N], σj [N]) with the parameters (µj [N], σj [N]).

2. Pull the arm i whose drawn xi is the largest one:

i = argmax
j∈{1,...,L}

xj .

3. Receive reward r̃i from pulling arm i, and update parameters as follows:
– Arm i:

µi[N + 1] =
(σ2

i [N] + σ2
tr) · r̃i + σ2

ob · µi[N]

σ2
i [N] + σ2

tr + σ2
ob

σ
2
i [N + 1] =

(σ2
i [N] + σ2

tr)σ
2
ob

σ2
i [N] + σ2

tr + σ2
ob

– Arm j 6= i:

µj [N + 1] = µj [N]

σ
2
j [N + 1] = σj [N] + σ

2
tr

end for

17

B Diminishing Rigidity Jacobian Construction

For every point pi ∈ P and every gripper g we construct a Jacobian Jrigid(q, i, g)
such that if pi was rigidly attached to the gripper g then

ṗi = Jrigid(q, i, g)q̇g =
[

Jtrans(q, i, g) Jrot(q, i, g)
]

q̇g . (13)

Let Di,g be a measure of the distance between gripper g and point pi. Then the
translational rigidity of point pi with respect to gripper g is defined as

wtrans(i, g) = e−ktransDi,g (14)

and the rotational rigidity is defined as

wrot(i, g) = e−krotDi,g . (15)

To construct an approximate Jacobian J̃(q) for a single point we combine the
rigid Jacobians with their respective rigidity values

J̃(q, i, g) =
[

wtrans(i, g)Jtrans(q, i, g) wrot(i, g)Jrot(q, i, g)
]

, (16)

and then combine the results into a single matrix

J̃(q) =

J̃(q, 1, 1) J̃(q, 1, 2) . . . J̃(q, 1, G)

J̃(q, 2, 1)
. . .

...

J̃(q, P, 1)

. (17)

C Obstacle Proximity Algorithm

Algorithm 7 Proximity(g,O) - reproduced from [12]

1: dg ←∞
2: for o ∈ {1, 2, . . . , |O } do
3: pg, po ← ClosestPoints(g, o)
4: v ← pg − po

5: if ‖v‖ < dg then

6: dg ← ‖v‖
7: ẋpg ←

v
‖v‖

8: Jpg ← GripperPointJacobian(g, pg)
9: end if

10: end for

11: return {Jpg , xpg , dg}

18

D Experiment Parameter Values

Table 2. Controller parameters

Synthetic
Trials

Rope
Winding

Table
Coverage

Two Stage
Coverage

se(3) inner product constant c - 0.0025 0.0025 0.0025
Servoing max gripper velocity q̇max,e 0.1 0.2 0.2 0.2
Obstacle avoidance max gripper velocity q̇max,o - 0.2 0.2 0.2
Obstacle avoidance scale factor β - 200 1000 1000
Stretching correction scale factor λ - 0.005 0.03 0.03

Table 3. KF-MANB and KF-MANDB parameters

Synthetic
Trials

Rope
Winding

Table
Coverage

Two Stage
Coverage

Correlation strength factor
(KF-MANDB only)

ξ 0.9 0.9 0.9 0.9

Transition noise factor σ2
tr 1 0.1 0.1 0.1

Observation noise factor σ2
obs 1 0.01 0.01 0.01

19

