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Abstract— When treating highly-infectious diseases such as
Ebola, health workers are at high risk of infection during
the doffing of Personal Protective Equipment (PPE). This is
due to factors such as fatigue, hastiness, and inconsistency
in training. The introduction of a semi-autonomous robot
doffing assistant has the potential to increase the safety of the
doffing procedure by assisting the human during high-risk sub-
tasks. However, using a robotic assistant requires transforming
a purely human task into a sequence of safe and effective
human-robot collaborative actions. Since diseases like Ebola
can spread through the mucous membranes of the face our
goal in synthesizing these actions is to keep the human’s hands
away from his or her face as much as possible. As a secondary
goal, we also seek to minimize the human’s effort. We segment
the doffing procedure into a sequence of human and robot
actions such that the robot only assists when necessary and
the human performs the more intricate parts of the procedure.
Our framework then synthesizes assistive motions for the robot
that perform parts of the tasks. Our experiments on five doffing
tasks suggest that the introduction of a robot assistant improves
the safety of the procedure in three out of four of the high-risk
doffing tasks while reducing effort in all five tasks.

I. INTRODUCTION

One of the most dangerous steps in the process of treat-
ing highly-infectious diseases like Ebola is the doffing of
Personal Protective Equipment (PPE) worn by health-care
workers who interact with infected patients and contami-
nated facilities. According to the Center for Disease Control
(CDC), the removal of used PPE is “a high-risk process that
requires a structured procedure, a trained observer, and a
designated area for removal to ensure protection. PPE must
be removed slowly and deliberately in the correct sequence to
reduce the possibility of self-contamination or other exposure
to Ebola virus” [1]. Because the doffing process involves
numerous steps (24 steps in the most recent guidelines [1])
and must be repeated often under stressful conditions, it
poses a significant risk of infection for health-care workers.

This paper presents a method that seeks to enable less-
risky and less-strenuous doffing by using a human-supervised
dual-arm manipulator (Baxter) to assist with the process
(e.g., Figure 1). We propose a framework to synthesize
motions for helping in the removal of certain pieces of
PPE while reducing the risk of infection to the human and
reducing the effort required to perform the task. The robot
performs the doffing task in collaboration with the human,
either by holding the PPE in a key position while the human
removes a body part from inside it (which we call support
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Fig. 1: Baxter helping in the removal of the apron.

motion) or by removing the PPE from the human’s body
itself (which we call transfer motion). Since many infectious
diseases (including Ebola) can be spread through the mucous
membranes of the eyes, ears, nose, and mouth, we synthesize
support and transfer motion so as to maximize the distance
between the worker’s hands and his or her face during the
doffing process. A secondary goal is to assist with doffing
in a way that is not strenuous for the human (we measure
strain using the RULA [2] and REBA [3] metrics). Finally,
we aim to make robot’s motion as intuitive for the human
as possible while considering the above metrics. Note that
the robot executes its motion for each step of the procedure
autonomously but, for safety, an operator supervises the
robot. The operator decides when the robot and human are
ready to advance to the next step and which motion, out of
a small set of autonomously planned motions, it should use.

We compared the performance of robot-assisted doffing
against unassisted doffing in five PPE component removal
tasks. Our experiments suggest that assisted doffing lessens
the average risk of infection in three out of four high-
risk tasks. Furthermore, assisted doffing reduced the average
effort exerted by subjects in all of the tasks.

II. RELATED WORK

Recent compliant robots, such as Baxter, have allowed
robots to interact with humans in close proximity. Several
researchers have explored using robots as household com-
panions and assistants [4], [5]. However, these works did
not perform collaborative manipulation with the human. [6]
presented a framework based on imitation and reinforcement



learning for learning to generate robot motions for collabo-
rative manipulation tasks with humans. However, their work
focused on the manipulation of rigid objects and did not have
the robot and the human in very close proximity, as we do
in this work.

Recent work has explored the use of a robot to assist in
upper-body dressing for humans with movement limitations
[7]. Gaussian Mixture Models were used to model the move-
ment of the user’s upper body enabling the user to move into
the clothing while the robot holds it still. [8] also addressed
the problem of dressing by creating primitive actions which
constitute complex motions in human dressing. Using these,
they were able to create a simulation and animation of how
humans put on pieces of clothing. Furthermore, they were
able to identify robotics-oriented properties such as grasp
points, end-effector motion, and release motions. Shinohara
et al. proposed using reinforcement learning to learn motor
skills necessary to interact with non-rigid materials [9][10].
They focused on the topological relationship between the
robot’s configuration and material, simplifying the problem
by assuming that fine details about the material (e.g. wrin-
kles) are irrelevant to perform most tasks. Yamazaki et al.
[11] focused on developing a vision-based state-estimator
for the materials and learning the mappings between robot
motions and material states and were able to perform lower-
body dressing on a mannequin. While these works present
ideas which may be beneficial to our problem, they are both
highly dependent on obtaining accurate perception of the
object using computer vision, which is very difficult in real-
world scenarios with cloth that can be occluded. In contrast,
our approach relies on the human’s ability to perceive the
clothing thus we do not require vision data.

Learning from Demonstration (LfD) [12] is a common
approach for synthesizing robot motions from human demon-
strations. LfD has been used in robotics for the generation
of control policies in tasks such as biped walking [13] and
grasping [14]. However, LfD is difficult to use in human-
robot interaction tasks because the policies will change
depending on the person the robot is working with. In this
work, we use demonstration motions as an initial guide for
removing a piece of PPE but the path can be changed by an
optimizer to meet constraints (e.g. reachability).

Our method requires generating a robot trajectory that
is similar to a human’s demonstration. Several trajectory
optimization methods exist for this kind of task [15] [16][17].
The TrajOpt [15] method we use has been shown to work
well with high degree-of-freedom problems and generates
plans quickly even when complex constraints and cost func-
tions are present.

III. DEFINITIONS

A configuration of the human is defined as qh ∈ Qh,
we use different human models with different numbers of
degrees of freedom according to which PPE component is
being considered. The configuration of the robot is qr ∈ Qr.
To address the complexity that deformable objects introduce
into state definition and estimation as well as to motion

planning, specifically for manipulation [18], we make the
assumption that the PPE models we receive as input are
composed of rigid parts; i.e. a (articulated) rigid body. We
can then define the state of a PPE component in terms of its
pose Tppe ∈ SE(3).

IV. CLASSIFYING AND QUANTIFYING HUMAN
MOTIONS

Before discussing our framework for robot-assisted doff-
ing, we introduce key concepts that will be used to classify
and evaluate human motion in the framework. We also
present metrics which evaluate these motion classes with
respect to their overall safety. These metrics will later be used
in generating a predicted human motion and in comparing
the final human-robot motions to the original demonstration.

A. Classification

We classify demonstrated human motion according to the
changes in the state of both the PPE and the human. Motions
are divided into three classes:

1) Transfer Motion—where the body part, which the PPE
component being doffed is attached to, remains in a
nearly-static pose throughout the motion while the PPE
component undergoes changes that lead to it being
detached from the person. E.g., removing the goggles
from the head.

2) Support Motion—where the PPE component remains
in a nearly-static state while the person moves the
attached body part away from it. E.g., taking the foot
out of the boot.

3) Adjustment Motion—where the PPE component, the
attached body part, or both undergo a series of small
rapid movements. E.g. removing the inner gloves.

We observed that doffing motions performed by humans
are usually neither pure transfer nor support motions; they
are sequences of adjustment motions with either dominant
transfer or support characteristics. This means that to pre-
serve the human’s behavior the robot would need to move
simultaneously with the human. This makes generating robot
motion very difficult because we do not know how the human
will react and the robot must sense and move quickly to com-
pensate. Instead, in our framework we convert adjustment
motions to transfer and support motions so that the robot
and human do not need to move simultaneously.

B. Assessing Human Motion Quality

To ensure that the new sequence of actions has less risk
and effort than the original one, we propose the use of
several metrics which represent how much risk an action
carries. The first metric considers the distance between the
worker’s hands and their face, which is important because
the hands perform tasks that expose them to harmful agents
(e.g. handling infected materials, touching patients, etc.).
The hands-to-face metric thus aims to capture the risk of
contamination during a doffing task. For planning purposes,
we can directly compute the distance of the human model’s
hands to its face in simulation. However in the physical



Fig. 2: Diagram showing the robot-assisted doffing framework. After segmenting and processing the demonstration trajectory, we run
the support pipeline and transfer pipeline which generate candidate motions for robot-assisted removal. The motion evaluation section
determines which motion is best and sends it to the robot.

environment this distance can be computed from point-cloud
data gathered by the Kinect sensor:

FD(qh) = min
i,j

(d(faceqh [i], handsqh [j])), (1)

where d is the Euclidean distance function, faceqh and
handsqh are arrays representing the location of geometries
(solid bodies in simulation or point clouds in execution) for
their respective body parts. We then compute the sum of
all the positive differences between these distances above
a threshold εd across all frames. We filter out distances
from actions which can be deemed low-risk and increase
the penalty for actions which can be considered high-risk
(with respect to infection probability) using a quantity we
call the Hands-to-Face Distance Score:

λ(τh) =

|τh|∑
i=1

max(εd − FD(τh,i), 0)). (2)

Lower values of λ represent better infection safety.
We also aim to reduce the overall effort exerted by the

worker during the doffing procedure. For this we use the
Rapid Upper Limb Assessment (RULA)[2] and Rapid Entire
Body Assessment (REBA)[3], which are methods used to
quickly evaluate the effort of a given human configuration.
In the doffing procedure low-strain postures are expected and
unavoidable, and we do not want to them to influence the
effort score. Instead we will capture the effect of postures
with a significant strain using this effort scoring function:

E(τh) =

|τh|∑
i=1

max(R(τh,i)− εe, 0)mi, (3)

where τh,i is the ith posture being held by the subject, εe
is an effort score which represents the minimum effort we
want to be considered as significant, mi is the amount of
time the ith posture is held, and R is the REBA function.
This scoring function allows us to filter out postures which
can be considered negligible effort using εe. Lower values
of E signify that less significant effort was exerted during
the task.

V. FRAMEWORK OVERVIEW

Due to the difficulty of having the robot and human
move simultaneously, we have created a framework that
decomposes a doffing task into a sequence of human or
robot actions and then plan robot motions which best assist
the human. The framework (see Figure 2) takes as input
the task demonstration represented by the human trajectory
τh and PPE component trajectories in τppe. Each trajectory
is represented as a discrete sequence of n waypoints. The
framework has five major blocks:

A. Demonstration Segmentation

We use changes in the grasp of the PPE to partition a
complex task into a series of sub-tasks. Because accurate
detection of human grasps is not within the scope of this
work, we perform this segmentation manually.

B. Demonstration Processing

To avoid the problem of adapting to the human’s reactions,
the motion of the PPE component is purified into support
and transfer motions. Let the human’s body be discretized
into a set of rigid bodies H , the target body part b is the



one with the greatest cumulative displacement from the PPE
component during a demonstration:

b = argmin
h∈H

|τh|∑
i=1

|tppe,i − th,i|

 , (4)

where t represents a 3×1 translation vector and i is the index
of a point in the trajectory. Using b, we define the goal state
as the pose of the PPE component in b’s frame at the end of
the demonstration: T ppeb,n . The motion of the PPE component
relative to b is then used to obtain the change in pose of the
PPE component (transfer) or b (support).

These motions are used to consider either moving the PPE
component along a smooth trajectory (transfer) or keeping its
pose static (support). As the robot performs either of these,
the human will be able to make adjustment motions. This
block outputs two trajectories; one for the PPE component
and the other for b, which will be used to generate robot and
expected human motions.

C. Transfer Pipeline

This block generates a human configuration and robot
trajectory corresponding to the doffing motion where the
human holds a static posture and the robot removes the PPE
component from the human. To do this, we first discretize
the space of human standing poses (a 2-dimensional xy
grid and discretized angles of rotation about the z-axis).
We then apply the transform of each standing pose to the
entire trajectory and check if all the points have valid Inverse
Kinematics (IK) solutions for one or both (depending on the
task) of the robot’s manipulators. We output all such feasible
trajectories.

If no standing pose allowing a feasible trajectory is found
this block computes a set of closest-fit τr trajectories (using
a Jacobian-based, gradient-descent IK method) and the set
of standing poses for which the start and end transforms
of the adjusted transfer motion are reachable. New transfer
motions τr, which will allow the robot to remove the PPE
from a nearly-motionless human, are generated using motion
planning by trajectory optimization (Section VI) with the
closest-fit trajectories and feasible transformations as input.
This component also generates the configuration which the
human must hold while the robot removes the PPE from his
or her body. Since we do not model the human and PPE with
high accuracy, we require an operator-in-the-loop to select
which trajectory will be best suited for the current doffing
task during execution.

D. Support Pipeline

This block generates an expected human trajectory and
robot configuration corresponding to the doffing motion
where the robot holds a PPE component in place and the
human moves out ofthe PPE component. This block performs
trajectory optimization (Section VI) to create a new support
motion for the human. It also uses the first transform of
the trajectory to generate a static robot configuration, using
inverse kinematics, for the robot which will be used to hold

the PPE in place. The robot will grasp the PPE upon the
human’s command, once the human places the appropriate
parts of the PPE in the robots gripper(s). We again used an
operator to select the best trajectory for the doffing task.

E. Motion Evaluation

This block uses metrics to assign a scalar-valued score
to the motion and compares the generated transfer and
support motions to determine which of them should be used
for the task. The human’s trajectory is evaluated using the
manipulability metric MS defined in Section VI. The overall
score of a motion is then:

S(τr, τh) = E(τh) + λ(τh) +
1

MS(τr)
. (5)

The motion with the lowest S value is the one used to doff
the PPE component.

VI. TRAJECTORY OPTIMIZATION

In this section, we describe how we generate transfer and
support motions for both the human and the robot using
the TrajOpt [15] trajectory optimizer. TrajOpt’s flexibility
in specifying constraints and cost functions allows us to
use our motion assessment metrics as well as giving us the
freedom to insert other metrics which enable us to generate
appropriate plans in the presence of a human. Robot motions
are planned for transfer motions while human motions are
planned to create an expected motion for the human for
support motions.

A. PPE Simulation

Simulating the motion of the PPE accurately would pro-
vide the best accuracy when determining segmentation points
as well as provide collision information to our planner.
The difficulty in simulation lies in properly representing the
object’s physical parameters (e.g. stiffness, friction, etc.) [19]
[20] [21], which we do not assume are available. To address
this problem, we use a conservative geometric representation
of the PPE as a chain of rigid bodies. We also assume that
once the robot has grasped the PPE, it is rigidly attached to
the end-effector(s). We do these for two reasons: (1) This
allows us simulate the moving parts of the PPE by adding
them as joints. For example, the strap on the goggles was
treated as a prismatic joint which collapses when it is not in
contact with the human. (2) This allows us perform collision
checking using distance computation [22] in TrajOpt

B. Change-point identification

We observed that for portions of the demonstration where
the PPE component is detached from the human, there should
be more freedom in planning the robot motions. For example,
once the PPE is removed, the robot need not follow the
demonstrated path in order to dispose of the PPE. Thus we
segment the input trajectory into two phases: the removal
phase and the placement phase. These phases are separated
at the point where the PPE component is considered to
be removed from the person. This point is determined by
running the demonstration in our simulator and finding the



point in the trajectory where there are changes to the PPE
component’s state (e.g. the goggles’ strap has snapped off
the head).

In the event of there being multiple phase separation
points, we take the point with the lowest index. Trajectory
optimization is then performed at each of these phases, with
all of the costs applied to the first (removal) phase and only
Legibility (defined below) for the second (placement) phase.
The resulting trajectories from each phase are concatenated
to produce the final trajectory.

Within each phase, we segment again to determine critical
points in the motion. These are points where the translation
of the PPE significantly changes direction.

xprev,i = tppe,i − tppe,i−1 (6)
xnext,i = tppe,i+1 − tppe,i (7)

ρxi = arccos

(
xprev,i · xnext,i)
‖xprev,i‖‖xnext,i‖

)
(8)

ψxi
= arctan 2(sin(ρxi

), cos(ρxi
)), (9)

where ρ is the angle between the vectors xprev,i and xnext,i
and ψ is that angle constrained to the set [−π, π]. We define
a significant change in direction to be when ψxi exceeds
a threshold εa. We also check for points where the linear
or angular velocity of the motion undergoes a significant
increase or decrease, i.e. a change exceeding a threshold εv .

The poses of the PPE during these critical points, along
with the goal state pose, are then considered to be pose
constraints on the PPE component and are used as pose
constraints for the end-effector path (i.e. the robot should
move the PPE through these critical points in its path).

C. Robot planning costs
We assign a pose-space deviation cost to the generated

robot motions to minimize deviation from the demonstration
motion. This cost, denoted Ω, is the difference of the ith
planned trajectory point’s pose between the target body part
b and the PPE and the ith demonstration point’s relative pose
between the same objects:

DP (Ta,Tb) =


tTa

Tb

arctan 2(RTa

Tb32
,RTa

Tb33
)

− arcsin(RTa

Tb31
)

arctan 2(RTa

Tb21
,RTa

Tb11
)

 (10)

Ω(τp, τd, i) = |‖DP (PPEτp,i , bτp,i)‖− (11)
‖DP (PPEτd,i , bτd,i)‖|, (12)

where τp denotes the planned trajectory, τd denotes the
demonstration trajectory, and DP denotes pose difference
between two transforms (t is the translation vector and R
is the rotation matrix). We also add a cost which penalizes
deviation from the curvature of the demonstration. We cal-
culate ψxi and ψxdi

, for each point from the planned and
demonstration trajectories, respectively. The cost is then

ζ(xi) = |ψxi
− ψxdi

|. (13)

For two-arm planning, we calculate ζ(xi) for the end-effector
points of each arm and take the sum as the cost.

We use the manipulability measure [23] to bias the tra-
jectory away from singularities. Given a trajectory τr the
manipulability MS is:

M(qr) =
√
det(J(qr)J(qr)T ) (14)

MS(τr) =

|τr|∑
i=1

M(τr,i), (15)

where M calculates the manipulability of a configuration,
J(qr) is the Jacobian of the robot’s end-effector at qr. For
two-arm planning, we calculate the manipulability of each
arm and take the sum as the score.

It is also easier for the human to cooperate with the
robot if they know what to expect from the robot’s motion.
Dragan et al. formalized notions of motion predictability and
legibility [24]. They proposed mathematical models for these
based on the principle of rational actions and used these
models to generate legible motion for a robot using trajectory
optimization [25]. Given a trajectory τ and a single goal qgoal,
we compute motion legibility L[τ ] as:

C[τ ] =
1

2

∫ (
dτ(t)

dt

)2

dt (16)

P (G|τqstart→q) =
exp(−C[τqstart→q]− C[τ∗q→qgoal

])

exp(−C[τ∗qstart→qgoal
])

(17)

L[τ ] =

∫
P (GR|τqstart→τ(t))(T − t)dt∫

(T − t)dt
, (18)

where C[τ ] is a cost function that computes the sum-squared
velocity of τ and τ∗q1→q2 is the optimal trajectory from q1 to
q2 under C. We use L as a cost function during our placement
phase to keep our trajectories smooth as well as communicate
to the human that the PPE is being placed away from them.

D. Robot closed-chain kinematics constraint (two arm tasks)

Two-arm planning tasks involve maintaining a kinematic
closure constraint which preserves the pose between the
robot’s end-effectors. To impose this constraint, we use the
idea of active and passive sub-chains [26]: The first arm is
unconstrained, while the second is constrained to maintain a
fixed end-effector transform to the first arm’s end-effector.

E. Human planning cost functions

To generate expected human motion we used hands-to-face
distance score as a cost to prevent excessive arm movement,
thus biasing most of the movement to the torso kinematic
chain. We wish to also use the REBA cost R to minimize the
effort. However, the problem with R is that there is no well-
defined gradient (which is necessary for TrajOpt); scores are
defined on a series of if-else blocks with various ranges for
the joint values. Thus, to obtain a gradient, we modify our
computation of the REBA cost for planning purposes.

We observed that the REBA metric divides a human’s con-
figuration space into equal-cost subspaces. I.e. the R function
produces a set of cost plateaus in Qh. Within a plateau the
gradient of R is zero, thus TrajOpt will not be able to move
a configuration within or out of a subspace. Thus we change



the cost function such that it varies throughout the subspace
should the subspace not be the optimal one (not having the
lowest R score possible). This new cost function, which we
call the boundary distance score BS, assigns the cost of
a point to be the distance to the boundary of the closest
adjacent subspace of least-cost (see Fig. 3). We describe how
to compute BS below:

Let the human’s configuration space Qh be partitioned into
a set of axis-aligned bounding boxes B = {�1,�2, ...}. The
bounds of the boxes in B are defined by the REBA scoring
process, which also assigns a score to each box. The REBA
score of a configuration is the same for any configuration
inside a box; i.e. R(qh,1) = R(qh,2) if qh,1, qh,2 ∈ �i.

Let �qh ∈ B be the box that contains qh. Let A�qh
⊆ B

be the set of boxes adjacent to �qh . We can then define the
set of lowest-cost boxes adjacent to �qh as:

A∗�qh
= {�i ∈ A�qh

|R(�i) = min
�j∈A�qh

R(�j)}. (19)

Let d(qh,�i) ∈ R be the distance between configuration
qh and the boundary of �i. d(qh,�i) = 0 if qh ∈ �i. Then
BS is:

BS(qh) = min
�i∈A∗

�qh

d(qh,�i). (20)

TrajOpt then uses the numerical gradient of BS with
the differentiation step size εc to minimize the effort of an
expected human motion.

VII. RESULTS

A. Experiment Setup

To verify our hypothesis that a robot assistant can make
the doffing procedure safer and less strenuous for the human,
we conducted an experiment where 10 volunteers (7 male,
3 female, ages 18-30) performed the doffing procedure
with and without the robot. None of the participants had
previously performed the doffing procedure. We focused on
the doffing of five separate PPE components: the apron,
goggles, faceshield, hood, and coverall. Each subject was
required to don the complete PPE to simulate an actual field
deployment scenario.

For the unassisted doffing, subjects were instructed to
remove the components of the PPE in a specific order, taking
great care to follow the CDC guidelines [1]. If a component
of the PPE was mishandled the entire process was repeated.
For the robot-assisted doffing, we used Rethink Robotics’
Baxter robot equipped with two parallel grippers for some
tasks and a single vacuum gripper for others. Subjects are
instructed to avoid touching their face during the entire
doffing procedure. A kill switch was used to stop the robot in
case of an emergency. To ensure that the proper actions are
taken during both assisted and unassisted doffing procedures,
each subject was trained by watching a series of videos
detailing the proper donning of the PPE, the CDC guidelines
for PPE doffing, and the steps and removal phases in the
robot-assisted doffing. Subjects practiced these procedures
until they were done correctly. After training, the subjects
performed doffing once with the robot and once without

Fig. 3: 2D example of how the REBA metric partitions the human
configuration space. The orange box has the highest effort score,
followed by the yellow boxes, and then the green box. P1 and P2
are two points in the same box and their gradients point in the
same direction. P4 shows how we assign a cost should there be
two adjacent boxes with equivalent better scores, with the dark
blue arrow indicating a smaller distance as compared to the light
blue arrow. The x’s on the arrows show that we do not consider
adjacent boxes that are higher cost.

and each trial was recorded. Subjects were observed by
four cameras: two webcams, an audio-visual camera, and
a Microsoft Kinect2.

B. Algorithm Setup

The constants in our algorithms were defined as εa =
15◦, εd = 0.1m, and εe = 7 REBA units, the maximum
score a posture can get before being deemed high-effort
[3]. For reachability checking, we use a grid cell size of
0.05m and θ discretization of π/4. We disregarded x and y
displacements greater than 0.6m and 0.3m from the robot,
respectively, as well as θ displacements where |θ| ≤ π/4.
For trajectory optimization, εc = 1e−5 and we used a joint-
velocity cost coefficient of 250, a continuous collision cost
coefficient of 500, and a discrete collision coefficient cost
of 250—only for the placement phase (these are standard
cost functions available in TrajOpt). For our cost functions,
we used coefficients of 375 and 125 the translation and
rotation components of Ω, respectively, 50 for ζ, 100 for
L, and 1 for M . These coefficients were manually-tuned to
achieve a balance between minimizing S while keeping the
motions smooth and predictable. Demonstration motions and
grasp locations which are typical for removal of the PPE
components were provided to the algorithm by the authors
in order to synthesize the robot’s motions (using the process
in Fig. 2).

C. Human Model and Metric Assessment

We set up the human model for each task as follows: we
first take measurements of of the subject’s height, shoulder
width, and arm length, and create an anatomically similar
human model. For the goggles and faceshield removal tasks,
we put an extra rigid block on top of the model’s head. This
block serves as an extra obstacle TrajOpt has to avoid to be



Task |Qh| # Robot Manipulators Gripper Type |Qr|
Apron 18 2 Parallel-jaw 14
Faceshield 18 1 Suction 7
Goggles 18 1 Suction 7
Hood 18 2 Parallel-jaw 7
Coverall 0 2 Parallel-jaw 7

TABLE I: Human and robot DOF for the five tasks
clear of the subject’s head. Finally, we set the active DoFs
of the human model to be the entire body except for the
coverall removal. We also include an XYZ translation joint
at the feet of the human model to move it along the ground.
This is to avoid having to plan footsteps and balance for the
support motions. We did not plan support motions for the
coverall because the only way to remove it was a sequence
of transfer and support motions, so the robot is assumed to
be static. See Table I for details about each task setup.

To assess risk, we used point cloud data collected from
the Kinect sensor at 30Hz to track the hands and face of
each subject during the doffing of the five specified PPE
components. We give each execution a score using Equation
2. To assess effort, we used the recordings from the audio-
visual camera (60Hz) and manually scored the posture in
each frame using Equation 3.

D. Experiment results

For each subject we tested both transfer and support
variants of the assisted tasks. For the analysis we took the
variant with the better (lower) hands-to-face distance score
from the trials and used its corresponding effort score.

Figure 4 shows snapshots from typical executions of each
robot-assisted task using transfer motions. Figure 5(a) shows
that the robot-assisted doffing outperformed the unassisted
doffing in three out of the four infection-risk tasks (i.e.
reducing the hands-to-face distance score on average). We do
not consider coverall doffing as an infection-risk task because
it is removed using the inner gloves, which are assumed
to be uncontaminated. It is clear that the unassisted hood
doffing is safer than its robot-assisted counterpart. This is
because in the unassisted doffing, the subject grasps the hood
from the top of his or her head, which naturally minimizes
hands-to-face distance score. In contrast, the robot-assisted
doffing of the hood requires the subject to grasp the lower
fringes of the hood, which are closer to the face than the
top part. It can also be seen that there is more variation
in the hands-to-face-distance scores in the faceshield and
hood assisted doffing. Both tasks required the subject to
properly adjust the respective PPE components for the robot
to achieve a secure grasp. Faceshield: The subject had to
hold the faceshield in place using the bottom lip of the shield
so that the vacuum gripper had a flat surface for successful
suction. Hood: Subjects found it difficult to place the fringes
onto the grippers as adjusting the hood blocked their line of
sight. Thus much of the placement was done by touch.

Figure 5(b) shows that assisted doffing required less effort
(on average) compared to unassisted doffing for all the tasks.
Although assisted doffing takes significantly more time, it
required less movement of the subjects. Assisted doffing
tends to bias the subject’s movements toward either the trunk

Fig. 4: Robot-Assisted doffing using transfer motions. Top-to-
bottom: Apron, Goggles, Faceshield, Hood, Coverall.

or arm regions. This leaves either the trunk region exerting
little to no effort during arm motions and vice-versa, which
places most of the assisted doffing effort scores below εe
(hence the zero scores for the apron, goggles, faceshield, and
hood tasks). Four out of five of the unassisted doffing tasks
required the subject to remove something by passing it over
their head using their arms. These tasks produced postures
wherein the torso and neck were bent and the arms were at
full extension, entailing high effort scores. For the coverall,
the bend-down motion subjects had to execute in order to
remove the PPE during unassisted doffing produced very
large increases in the effort score. In contrast, with Baxter
holding down the coverall, the subjects did not need to bend
down and grab the PPE.

VIII. CONCLUSION

We hypothesized that using a semi-autonomous robot
assistant during the doffing of PPE would reduce the risk
and strenuousness of the doffing procedure. We proposed
a framework which takes an existing, human-only doffing
demonstration and synthesizes human and robot motions to
produce a robot-assisted version of the task. We then tested
our framework using human subject trials with subjects



(a) Hands-to-Face Distance Score (Lower is Better) (b) Effort Score (Lower is Better)

Fig. 5: Box plots showing the assisted vs. unassisted hands-to-face distance score and effort scores for the PPE doffing tasks. Each
column represents data from 10 trials, one from each subject. The odd-numbered columns show the data for unassisted doffing, while
the even-numbered columns show the data for the robot-assisted doffing. The red horizontal lines are the means for each score, the blue
represent the quadrants, and the green diamonds are outliers.

performing both unassisted and assisted doffing of PPE. Our
experiments with 10 subjects suggest that for the majority
of PPE components which were removed with the help of
a robot assistant, one or both of either infection risk and/or
effort exerted were reduced in the robot-assisted variant of
the procedure. However, further experiments are required to
ensure the statistical significance of these results.
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