
Improving Path Execution in Deformable Environments Using Reactive
Cost-space Control

Calder Phillips-Grafflin and Dmitry Berenson
Worcester Polytechnic Institute

{cnphillipsgraffl, dberenson}@wpi.edu

I. INTRODUCTION

We present a reactive controller designed to improve the
execution of cost-space paths in the presence of sensor and
modeling error that would otherwise result in significantly
increased cost. In particular, we are concerned with the
execution of paths planned in deformable environments, such
as those produced using our cost-space planners [1]. In
our previous work, executions of paths produced by these
planners have suffered from significant unexpected object
deformation.

Execution of planned paths in cost spaces is complicated
by errors and inaccuracy in the robot’s sensors, uncertainty
in modeling the environment, error in the robot’s controllers,
and fundamental limitations of the motion planner. When
executed, these paths can incur significantly higher cost than
predicted by the planner’s cost function. Modeling and sen-
sor limitations are particularly pronounced with deformable
environments, as the available models for deformable objects
trade accuracy for reduced computational complexity [2],
[3], [1]. To produce motion plans in acceptable time limits,
existing planners use lower resolution or simplified models
such as the voxel-based model introduced in our previous
work [1]. Because these simplified models are inherently
inaccurate, planners using them will fail to fully capture the
behavior of the deformable objects.

Similar issues are faced with rigid environments when
using multiple-resolution models [4], [5], however, in these
cases an accurate high-resolution model can be used inside
the planning process [5] or for post-processing such as [6],
[7] using trajectory optimizers such as AICO [8], CHOMP
[9], or STOMP [10]. Such an approach can compensate for
planning with a reduced resolution to improve planning time.
However, since an accurate model of a deformable environ-
ment may not be available (indeed, it may be infeasible to
simulate the deformable behavior), it may not be practical
(or possible) to optimize paths in deformable environments
before execution.

Another challenge arises from the object deformations
themselves. Since manipulation with deformable objects of-
ten involves actively changing the environment itself, we are
often limited in the range of useful sensor information. For
example, depth cameras may provide an accurate view of the
undeformed obstacles ahead, but they cannot capture how the
obstacles will deform when in contact. In contrast, touch or
pressure sensors can provide a much better estimate of the

deformation of the environment around the robot, but can
only provide information on the current state. This is similar
to the problem that occurs with operating in the presence
of moving obstacles, where an accurate model of the entire
environment is not available prior to execution.

In cases with rigid objects, this problem has been ad-
dressed in a variety of ways, such as [6], [7], [11], [12];
provided accurate information on the moving objects is
available, the path can be deformed online to increase
clearance. Alternatively, reactive control can be combined
into the motion planning process a priori, such as [13],
effectively anticipating changes during execution. In contrast,
because of the aforementioned sensor limitations when using
deformable objects, accurate information on the deformed
environment may only be available at very short range
or while in contact with obstacles, preventing any broader
adaptation or optimization of the path. For robots operating
in rigid environments with similar limits on sensor horizon,
several planning and control schemes have been proposed
[14], [15].

Our proposed reactive controller modifies a cost-space
path on-the-fly during execution in an attempt to locally
optimize the planned path to the real environment. While
trajectory optimization techniques have already been applied
to motion planning with deformable objects [2], our approach
differs by performing the optimization incrementally online
in a manner similar to path deformation [6], [7], [11],
[12]. This approach combines the main strengths of motion
planning, namely the completeness properties and global
scope of the motion planner producing the initial path, with
the reactive strengths of local control. Using the planner to
provide a “guiding path” for local control addresses well-
known problems of local control such as becoming stuck
in local minima and failing to reach the goal. Complement-
ing this, the local controller addresses one of the inherent
limitations of most motion planning - the inability to react
to unexpected changes or differences in the environment
without expensive re-planning.

II. REACTIVE CONTROLLER

Our controller, initially proposed in [16], also referred
to as the “Gradient Rejection Controller” (GRC), uses the
local cost-space gradient to adapt the path during execution.
This control strategy allows for local corrections to the path
without compromising the global topology of the path, which
could result in the controller becoming stuck in a dead end.



(a) (b) (c) (d)

Fig. 1: Illustration of the Gradient Rejection Controller used with zero-step lookahead (a, b) and one-step lookahead (c, d). (a, c) Using
the gradient, the controller computes a corrected version of Qn, Qn∗ that falls on the correction hyperplane. (b, d) Back-projection of
constraints from successive states of the path: an initial corrected Qn∗ violating the constraints for Qn+1 is brought back to the intersection
of the correction hyperplanes at Q′

n.

Instead of a simple combination of the gradient and path
which could result in undesirable behavior such as reversing
or becoming stuck, the gradient is rejected onto the path so
that only the components of the gradient orthogonal to the
path are used to compute the correction. This combination is
shown in Figures 1a and 1c, where the cost-space gradient
is rejected onto the vector

−−−−−→
Qn−1Qn to produce the vector−−−−−−→

Qn−1Qn∗ that defines the corrected state Qn∗.
As a result of the rejection operation, all corrected Qn∗

fall onto a hyperplane orthogonal to the vector
−−−−−→
QnQn−1,

which we refer to as the “correction hyperplane”. To prevent
corrected Qn∗ from deviating too far from the original path,
two constraints are applied to bound the GRC. The first
bound limits the euclidean distance between Qn and Qn∗
to a user-defined scalar multiple α of the euclidean distance
between Qn−1 and Qn.

The second bound ensures that corrections cannot result in
invalid future corrections or reversing. In certain pathological
cases, corrections obeying the first constraint may effectively
“skip” the next state of the path – Qn∗ may fall ahead of the
correction hyperplane for Qn+1∗, which would require either
that the controller reverse to follow the path or skip Qn+1

entirely. To prevent this type of correction, potential values
of Qn∗ are compared against the correction hyperplane for
Qn+1. As shown in Figures 1b and 1d, Qn∗ values that
violate this constraint are restricted so that they fall on the
intersection of the correction hyperplanes for Qn and Qn+1.
This ensures that Qn+1∗ remains viable (albeit potentially a
negligible distance from Qn∗) for any path.

III. GRADIENT

To compute the correction at each state, our controller
requires a cost-space gradient. Ideally, this would be the
actual gradient at the next state Qn, since this gradient
provides the best information about the neighborhood of
Qn. However, computing this gradient requires sensors with
sufficient range, which may not be available. In many cases,
such as a robot with touch sensors or whiskers, the sensors
are only capable of providing information on the current state
Qn−1, which means we are only able to compute the gradient
at Qn−1. Thus, we can divide different controller modes
based on the “lookahead” range offered by the onboard

sensors. We use the term “zero-step lookahead” to refer
to cases where we are only able to compute the gradient
at Qn−1 as shown in Figure 1a, and the term “one-step
lookahead” to describe cases where we have sufficient sensor
information to compute the gradient at Qn as shown in
Figure 1c.

IV. RESULTS

We have tested our controller using a test environment
similar to that used in our previous work [1]. The test envi-
ronment is constructed out of blocks of deformable plastic
foam securely attached to a clear acrylic sheet to prevent the
blocks from shifting or rotating during deformation. This
deformable test environment, shown in Figure 2a, allows
for three degrees-of-freedom (two translation, one rotation)
while also allowing the compression of the environment to
be tracked online via camera. This tracking provides us with
a “ground truth” value of the actual cost incurred during
the execution of a path. As with our previous work, paths
for the L-shaped “robot” (shown in Figure 2) were executed
using a PR2 robot. For planning purposes, cost is assessed
using the cost function introduced in our previous work [1];
during execution, cost is assessed by measuring the change in
area (pixels) of the deformable objects visible to the tracking
system.

To simulate sensor error in the initial planning stage, the
environment model used by the planer and the actual physical
environment are distinctly different. To produce this differ-
ence, the passages through the environment were arbitrarily
narrowed and offset, and the shapes of each foam block
slightly altered. These differences were designed to result
in significantly higher cost-as-executed for paths executed
with open-loop control without changing the topology of the
environment (thus ensuring that the planned paths remain
feasible). Notably, these simulated errors create three distinct
high-cost passages in the environment, as shown in Figure 2a.
Each successive passage differs more from the environment
model, and as a result, results in successively higher cost-
as-executed.

Using an initial path produced using the A*-derived plan-
ner introduced in [1], the path was executed with three
separate methods: First, using open-loop control to measure
the “baseline” cost-as-executed of the path. Second, using



(a) (b) (c) (d) (e)

Fig. 2: (a) Test environment and L-shaped robot with high-cost passages marked. Execution in high-cost passages: (b) passage 2 with
zero-step lookahead, (c) passage 2 with one-step lookahead, (d) passage 3 with zero-step lookahead, and (e) passage 3 with one-step
lookahead. Note the high penetration in (b) and (d) caused by oscillation during execution.

(a) (b)

Fig. 3: Performance of our controller executing a path in the test environment, showing (a) the incremental cost at each state with the
three high-cost passages highlighted, and (b) the cumulative cost of execution, averaged over 10 executions with each control mode.
Open-loop execution with no added control is shown in blue, execution with zero-step lookahead in green, and execution with one-step
lookahead in magenta. Shading indicates the range between minimum and maximum values for the 10 executions.

GRC with zero-step lookahead. Third, using GRC with one-
step lookahead. The path was executed ten times with each
method, for a total of 30 executions. For both zero- and one-
step lookahead, cost-space gradients were computed using a
signed distance field generated from the tracking camera.
The incremental and cumulative costs measured during the
execution of each mode are shown in Figure 3.

As shown in Figure 3b, using our reactive controller
significantly reduces cost-as-executed using both zero- and
one-step lookaheads. This reduction in cost-as-executed is
particularly clear in Figure 3a, which shows the cost reduc-
tions for each of the three high-cost passages. This indicates
that our controller is suitable for use both in cases with
limited-range sensor data is (one-step lookahead) and in
cases with only contact sensor data (zero-step lookahead).

While the cumulative cost-as-executed suggests that zero-
and one-step lookahead result in similar performance, in
practice there are significant differences in the quality of
the execution. As illustrated in Figures 2b and 2d, using
zero-step lookahead can result in large oscillations (similar
to those encountered before [16]) that cause higher-than
expected penetration and risk damage to the environment.
In contrast, one-step lookahead largely eliminates these
oscillations, as seen in Figures 2c and 2e. The effects of

these oscillations are particularly pronounced in the third
passage, and this can be seen in Figure 3a, where the one-
step lookahead results in significantly reduced cost.

The significant oscillations encountered while using zero-
step lookahead are the result of states where the current
gradient provides insufficient or incorrect information on
the neighborhood of the next state. Two specific cases of
these oscillations are particularly notable: the first occurs
when moving closely beside an object, the second occurs
when moving down a narrow passage. When moving closely
beside an object, the gradient at state Qn provides sufficient
information to push the robot away from the object. However,
once the robot has been corrected away from the object at
state Qn+1, a gradient is no longer available, and the robot
returns to the original path at state Qn+2. This cycle contin-
ues until the path diverges from the obstacle. When moving
through certain narrow passages, following the gradient at
state Qn leads to an opposing gradient at the next state Qn+1,
resulting in oscillation between the two sides of the passage.
In both cases, the oscillations occur when the gradient at a
corrected state becomes inconsistent with the gradient at the
uncorrected next state.

Several approaches exist to reduce or eliminate these
oscillations. Ideally, sufficient sensor information is available



to use one-step lookahead, which eliminates the problem
by directly using the gradient at the uncorrected next state.
However, if this information is not available (for example,
pressure sensors), then past gradients (and the corrections
applied to the path) may be used to damp the oscillations
in a similar manner to the damping terms used in other
controllers. In practice, however, using this damping may
reduce oscillations at the expense of increased overall cost,
since the corrections will no longer reflect the true gradient
at the next state as accurately.

V. DISCUSSION

In future work we intend to augment controller behavior
by extending the lookahead window and using a combination
of path optimization and re-planning. Combining a larger
lookahead window with path optimization techniques such as
[8], [9], [10] allows the controller to optimize the path for the
entire window, rather than a single step at a time. In addition
to better path optimization, larger lookahead windows allow
early detection of unexpected high-cost regions which may
then be completely avoided (if possible) by re-planning the
path. Complementing further development of the controller,
we are also developing a specialized test platform that will
allow us to test our controller on tasks in a full three-
dimensional environment.

REFERENCES

[1] C. Phillips-Grafflin and D. Berenson, “A Representation Of De-
formable Objects For Motion Planning With No Physical Simulation,”
in ICRA, 2014.

[2] B. Maris, D. Botturi, and P. Fiorini, “Trajectory planning with task
constraints in densely filled environments,” in IROS, Oct. 2010.

[3] F. Faure, B. Gilles, G. Bousquet, and D. K. Pai, “Sparse meshless
models of complex deformable solids,” ACM Transactions on Graph-
ics, pp. 73–73, 2011.

[4] S. M. Lavalle, Planning Algorithms. Cambridge University Press,
2006.

[5] M. Pivtoraiko and A. Kelly, “Graduated Fidelity Motion Planning,” in
International Symposium on Combinatorial Search, 2011.

[6] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning
and control,” in ICRA, 1993.

[7] O. Brock and O. Khatib, “Elastic Strips: A Framework for Motion
Generation in Human Environments,” 2002.

[8] M. Toussant, “Robot Trajecotry Optimization using Approximate
Inference,” in International Conference on Machine Learning, 2009.

[9] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient Optimization Techniques for Efficient Motion Planning,” in
ICRA, 2009.

[10] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic Trajectory Optimization for Motion Planning,”
in ICRA, 2011.

[11] F. Lamiraux, D. Bonnafous, and O. Lefebvre, “Reactive path defor-
mation for nonholonomic mobile robots,” 2004.

[12] V. Delsart and T. Fraichard, “Navigating dynamic environments using
trajectory deformation,” in IROS, 2008.

[13] Y. Yang and O. Brock, “Elastic roadmaps – motion generation for
autonomous mobile manipulation,” 2010.

[14] T. Schouwenaars, J. How, and E. Feron, “Receding horizon path plan-
ning with implicit safety guarantees,” in American Control Conference,
2004.

[15] F. Andert and F. Adolf, “Online world modeling and path planning
for an unmanned helicopter,” 2009.

[16] C. Phillips-Grafflin and D. Berenson, “Path Planning and Execution
For Deformable Objects Using a Voxel-Based Representation,” in
European Workshop on Deformable Object Manipulation, 2014.


	Introduction
	Reactive Controller
	Gradient
	Results
	Discussion
	References

