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Abstract— In this paper we explore discrete search-based
contact space planning for humanoids using both palm and
foot contact in complex unstructured environments. With a
high branching factor and sparse contactable regions, it is
challenging for the planner to find a contact sequence in
such environments quickly. Therefore, we propose to learn
a function which predicts traversability—a measure of how
quickly the contact space planner can generate contact se-
quences to traverse a certain region. By including a learned
traversability estimate into the heuristic function of the contact
space planner, we can bias the planner to search the areas with
more contactable regions, and thus find contact sequences more
efficiently. In this paper we propose and evaluate two kinds
of feature vectors for estimating traversability: Exact Contact
Checking (ECC) and Approximate Contact Checking (ACC),
which make different trade-offs between speed and accuracy.
The experimental results show that the proposed approach
using ACC outperforms both ECC and the baseline heuristic for
contact space planning; ACC increases the planning success rate
by 19% and reduces average planning time by 24% compared
to the baseline in difficult environments with uneven terrain.

I. INTRODUCTION

In humanoid robot locomotion planning, the introduc-
tion of palm contacts can help the robot locomote more
robustly under disturbances as well as allowing navigation
through unstructured environments, such as disaster sites.
However, adding palm contacts complicates the problem
by significantly increasing the branching factor of search-
based planners. Furthermore, balance checking with multiple
non-coplanar contacts is also expensive to compute. Using
discrete search-based planners [13], [19] to compute a se-
quence of contacts thus becomes inefficient because the high
branching factor and expensive state validity check leads to
very large computation times. Our approach to overcoming
this problem is to create a more informative heuristic for
discrete search-based planners that plan in the combined foot
and palm contact space.

In unstructured environments with uneven terrain, con-
ventional distance-based heuristics do not capture the en-
vironment geometry, and may cause the planner to waste
a large amount of time exploring in a cul-de-sac due to a
lack of contactable surfaces in a certain region. Therefore,
we propose to estimate the traversability of a region in the
environment as part of the planner’s heuristic, as shown
in Figure 1. Traversability is a measurement on how easy
the contact space planner can generate contact sequences to
traverse through a certain region. In order to be effective,
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Fig. 1. Left: A humanoid follows a planned sequence of contact poses
to navigate in a complex unstructured environment. Right: The structure of
the proposed framework. We focus on traversability estimation to guide the
robot to avoid difficult regions in the environment.

our estimate of traversability needs to be computed quickly,
but this is difficult because computing whether the robot can
truly move through a certain region requires expensive geo-
metric tests, collision checks, and balance checks. Instead we
propose a learning framework to estimate the traversability
of a region in the environment.

To guide contact space planning, we first generate a torso
policy to inform the contact space planner’s heuristic to avoid
obstacles and move toward the goal. The torso policy is
computed by treating the robot as a mobile robot traveling on
a map represented as a grid, and contains a path from each
cell of the grid to the goal. Our key contribution is that we
extend the standard guiding policy computation [10] to also
consider the traversability of each transition of the torso with
an estimate learned directly from the trials generated by the
planner, thus taking into account contacts in the environment.
For a given torso transition on the grid, we measure the
traversability as the number of useful footstep combinations
corresponding to the transition.

Computing this value however is computationally expen-
sive, so we use learning to predict traversability. We propose
two kinds of features to estimate traversability: Exact Contact
Checking (ECC) and Approximate Contact Checking (ACC).
For a given torso pose and its surrounding environment, ECC
checks collision for each possible foot or hand transition
target. ACC, on the other hand, approximates the collision
check by using a scoring function to measure the distance of
the potential new contact position to the closest obstacle.
Since ACC replaces collision check with a simple table
lookup, it is much more efficient than ECC. For both ECC
and ACC, we evaluate learning regressors with Support
Vector Regression (SVR) and Nearest Neighbor (NN).

Our results suggest that using ACC to generate the es-
timate of traversability as part of the heuristic improves
both the success rate and planning time of navigating



through difficult environments as compared with the baseline
heuristic and with the heuristic using ECC. Furthermore,
SVR outperforms NN for both ECC and ACC in terms of
planning time and success rate, which shows that SVR helps
generalize from the training data.

Preliminary work on this topic was presented as a work-
shop paper [14] and focused on the implementation of ECC.
In this paper we introduce a new feature vector, ACC,
which greatly improves the performance of the contact space
planner and perform extensive new comparisons.

II. RELATED WORK

Humanoid footstep planning has been studied extensively:
[1], [3], [10], [12], [15] are discrete-search-based approaches,
which use A*-like algorithms. Here we address both palm
and foot contact, which induces a very high branching
factor in the search, causing search-based techniques to
perform slowly in difficult contact scenarios. There are also
optimization approaches, which deform an existing series of
steps to follow the constraints [7], [11]. Among these works,
[3] is the most related to our work. [3] described several
ground geometry features and used A* search or best-first
search to guide the robot away from obstacles, steep slopes
and uneven terrain. However, in their environment, there
exists some part of the environment which is flat or piecewise
flat, so that the robot can effectively avoid difficult regions.
In our work, we seek to identify regions that are easier to
traverse even if the region is as geometrically cluttered as
other regions.

There is also recent work addressing humanoid navigation
in unstructured environments using multiple contacts. [9]
used optimization to find contacts in the neighborhood of
a “rough” trajectory. However, the planning time was pro-
hibitively long. [5] combined discrete-search-based contact
space planning with a local trajectory optimizer to quickly
compute a whole-body trajectory using multiple contacts.
[18] used reachability volumes as a hint to plan for a robot
guiding path first, and then planned for contact placement
along this path, which significantly sped up the planning
process. We share the idea of using a guiding path to reduce
the search space. However, in the test cases of these works,
the contactable region is either rich or is identified before
planning, so the planner is less likely to be stuck in a cul-
de-sac. In this paper, we are developing methods that work
with limited information about where contactable regions
exist and aim to avoid wasting time searching a region with
sparse contactable surfaces.

There has been work proposing traversability estimation
algorithms for mobile robots, [6], [16], [17]. These methods
learn models to estimate the terrain types based on visual,
range or thermal inertia sensor data. The goal is to avoid
certain types of terrain which may cause the mobile robot
to slip or be stuck. In our work, the traversability does
not measure the effect of the texture of the terrains for
navigation, instead, it measures the richness of the space for
humanoid robot contact placement.

Researchers have investigated predicting traversability for
quadruped robots [4], [21]. They computed traversability
features such as slope, terrain roughness and step height from
visual data. Those features are combined in a weighted-sum
cost function, which guides the robot. In our approach, we
not only capture features from the environment, but also use
simulation to learn a model to predict the actual traversability
of the robot in the environment.

III. PROBLEM STATEMENT

We address the humanoid navigation planning problem.
Given an environment represented as a set of contactable
surfaces, we wish to output a feasible path from the start
configuration to a goal region in the workspace. The path
is defined as a series of foot and palm placements. When
executing this path, the robot must obey balance and collision
constraints at all times. We are interested in using the hands
to help balance the robot against potential disturbances and
to assist in traversing uneven terrain. Therefore, on uneven
terrain, a feasible path should have at least three end-effectors
in contact at any time. We assume that the robot can generate
sufficient torque to balance itself. We also assume the friction
coefficients are given. Our goal is to compute a feasible path
for the robot as quickly as possible.

IV. PROPOSED APPROACH

To navigate through a complex environment, it is com-
mon to plan the contact sequence of the humanoid robot
using a discrete search-based approach. In our work we use
the ANA* algorithm [19] because of its anytime planning
properties and lack of tuning parameters. However, any
discrete search-based method that uses heuristics can benefit
from the method we propose here. In the proposed planning
framework, the contact space planner is guided by a torso
policy. The torso policy is generated by treating the robot as
a mobile robot and planing a shortest path from each grid
cell in a grid over the environment to the goal while avoiding
infeasible regions, such as walls or holes. The contact space
planner will query the torso policy as part of its heuristic
to evaluate which nodes are most promising to expand. Our
key contribution is that we compute the torso policy while
accounting not only for the length of a transition (as in
previous work [10]), but also the traversability of each region
in the environment. In the following sections, we first explain
the discrete search-based planner used in this paper and
then introduce a learning approach to estimate traversability,
which is combined with a standard heuristic to speed up
contact space planning.

A. Contact Space Planner

We formulate contact space planning as a graph search
problem. We define each state of the planner as the set
of poses of all end-effectors which are in contact with the
environment. The actions connecting these states are either
shifting one contact to a new contacting pose or breaking
one contact. For each state, the set of actions—called the
transition model—is predefined. For foot contact transitions,



Fig. 2. Left: Foot contact transition model (57 steps) Right: The projections
to get the next step pose.

we follow the projection procedure shown in Figure 2. A
dense foot transition model is used because we expect the
robot to navigate in a complex environment. We denote the
set of all foot contact transitions as FC∆.

For palm contacts, we first approximate the torso pose pt
based on the poses of the feet with the following equations:

pt =
[
xlf+xrf

2
ylf+yrf

2
zlf+zrf

2 + zoffset 0 0
θlf+θrf

2

]T
(1)

where [xlf , ylf , zlf ] and [xrf , yrf , zrf ] are the left and right
foot positions, respectively, θlf and θrf are the rotations of
each foot about the z axis, and zoffset represents the nominal
body height relative to the feet.

Given the approximated torso pose in each state, we can
derive the approximated shoulder points of the robot. The
potential palm contacts are then computed by ray-casting
from the approximated shoulder points, as shown in Figure 3.
We denote the set of all palm contact transitions as PC∆.

Besides a transition model, search-based planners require
a function to estimate the cost of performing each action.
The cost of a foot transition action is defined as:

∆gf = dt + ws (2)

where dt is the distance the approximated torso travels in
this action, and ws is a fixed cost of taking a step. For the
palm action, we define the cost as:

∆gp = dp + ws (3)

where dp is the distance the palm travels in this action. Each
state is feasible if there exists a collision-free and statically-
balanced inverse kinematics solution based on the specified
end-effector poses. We use the method described in [2] as the
balance checker which is treated as a constraint in the inverse
kinematics solver. To speed up the process, we approximate
the balance check for the entire transition by checking two
critical configurations: the beginning of the contact transition
where the moving end-effector has just broken contact and
the end of the contact transition where the moving end-
effector is about to make contact.

As formulated above, the search problem has a very high
branching factor, 80 to 120 depending on the state, and thus
the search would be very time-consuming without biasing
the exploration. We thus need to use a heuristic function to
allow the planner to explore transitions in a goal-biased way.
To compute the heuristic for each state, we first plan with

Fig. 3. Left: Palm contact transition model Right: Torso pose transition
model in the torso pose grid. Note that we only show the translation for one
torso orientation here. To generate translation for other torso orientation, we
rotate the ellipse, which represents the moving range of the torso, to align
with the torso orientation and count all cells inside the ellipse as possible
translations for the torso orientation.

a more coarse robot model which only considers the robot
torso. This coarse planning produces a policy which is used
as a heuristic for subsequent contact space planning. With
this heuristic, the robot can avoid exploring paths that are
dead ends, contain holes in the ground, or are blocked by
large obstacles, such as pillars and walls.

B. Torso Pose Policy

To compute the robot torso policy, we discretize the robot
torso pose in x and y, and the rotation about the z axis, θ,
and call the resulting grid the torso pose grid. In this paper,
we assume that the robot is traveling on a surface, so z is
uniquely defined by the x and y coordinates. Thus we do not
include translation in z in the grid. The grid cells in which
there is no contactable surface or the torso collides with the
environment will be marked as invalid by the torso planner.
The possible transitions of the robot torso for one step are
shown in Figure 3. The ellipse shape captures the fact that
the robot can travel farther with a forward or backward step
than a lateral step.

Since the robot torso policy is used as the heuristic for the
contact space planner, the torso planning starts from the grid
cell where the goal is and expands to every other cell in the
torso pose grid using Dijkstra’s algorithm. This algorithm
outputs a policy (i.e. a direction to move for each cell) in
the form of a tree. Besides outputting the policy, we also
record the cost of each edge in the torso policy ∆gtp, and
the cost of each cell gtp for use in the contact space planner’s
heuristic function:

∆gtp (pt,parent, pt) = l
pt,parent
pt + ws

gtp (pt) =
∑

∆gtp = ltgoal(pt) + wsNs
(4)

where pt,parent is the parent cell of the cell containing pt in
the torso policy tree, ltgoal is the length of the path from the
cell containing pt to the goal cell, and Ns is the number of
steps taken along that path.

C. Heuristic for Contact Space Planning

The torso policy above will be queried as part of the
heuristic for contact space planning. However, since the torso
policy does not consider palm contact, we need to add a



component to estimate the cost of palm contact transitions
along the path to the goal. We define the palm component
of the contact space planner’s heuristic as:

hp (pt) = llp(Ppt) + lrp(Ppt) + ws

(
llp(Ppt)

dlp,max
+
lrp(Ppt)

drp,max

)
(5)

where Ppt is the path from the cell containing pt to the goal
in the torso policy, llp is the length of the portion of Ppt
where it is possible to make left and palm contact with the
environment, and likewise lrp for right palm contact. dlp,max
and drp,max are the maximum distances each palm contact
can travel in one action.

To evaluate the heuristic for each state in contact space
planning we find the grid cell containing pt, which is esti-
mated from the contact state using Eq. 1. We then combine
that cell’s cost gtp from the torso policy with the palm
component hp(pt) to arrive at the heuristic for the contact
space planner:

h (pt) = gtp (pt) + hp (pt) (6)

This heuristic is similar to the Dijkstra heuristic described in
[10] with the modification of adding hp.

D. Introducing Traversability into the Torso Policy

The heuristic function described above does not capture
the difficulty of navigating through uneven terrain. The robot
will try to follow the shortest path in the torso pose grid,
regardless of the difficulty of finding contact poses for the
feet and palms. For example, the ground may be cluttered
and may not have enough space for the robot to stand.
If such areas are in the neighborhood of the shortest path
given by the torso policy above, it forms a cul-de-sac and
the planner will spend significant time exploring this area
without making progress to the goal.

To better reflect the difficulty of moving through each part
of the environment, we add a traversability estimate ∆gtr to
the torso path cost defined in Eq. 4, and we denote this new
torso path cost gcombined.

∆gcombined (pt,parent, pt) = l
pt,parent
pt + ws + ∆gtr

gcombined (pt) =
∑

∆gcombined = ltgoal(pt) + wsNs + gtr
(7)

where gtr is the sum of the traversability estimate along the
torso path. Torso policies generated with the cost defined in
Eq. 7 will avoid areas with low traversability, which will
subsequently guide the contact space planner to avoid these
areas when possible.

It is important to note that traversability depends on the
direction we are moving in, so it must be evaluated for
every edge in the graph. To compute the true traversability
would require running a contact space planner to move
between every pair of adjacent cells, which is clearly too
time-consuming. Instead we propose two kinds of features
to estimate traversability using machine learning methods:

Algorithm 1: Compute Ground Truth Label in ECC

1 Input : pt, φ,FC∆,E, λ, t̂ ;
2 Γ← GetFeasibleFootstepCombinations (pt,FC∆,E);
3 Γ+ ← { };
4 for γ in Γ do
5 if ContactSequenceExists

(
γ, φ,E, λ, t̂

)
then

6 Γ+ ← {γ} ∪ Γ+;
7 return |Γ+|;

The first is Exact Contact Checking (ECC), which evaluates
the traversability by finding exact contact poses projected
to the environment, and checking if they are collision-free.
The other feature is Approximate Contact Checking (ACC),
which approximates collision checking and foot projection
with a scoring function. We describe ECC and ACC in the
following sections, and compare them in Section V.

E. Learning Traversability with Exact Contact Checking
(ECC)

The traversability estimator ∆gtr : {pt, φ,E} → R+ takes
as input a torso pose pt, a direction of motion φ, and a
local environment model E. The direction of motion φ is
a discretization of 360 degrees to 12 ranges of direction, so
each φ covers 30 degrees. Note that the traversability actually
depends on not only the direction of motion, but also the
distance moved. However, because of the high computation
cost of ECC, we only consider the direction of motion φ in
ECC to reduce the number of queries to the estimator. We
will consider distance moved when computing ACC in the
next section.

To compute ∆gtr, we start by finding a set of feasible
footstep combinations Γ at pt. To compute Γ, we first use
the footstep transition model shown in Figure 2 and Eq. 1 to
find possible footstep combinations given pt = (xt, yt, θt).
For example, if a transition is that the right foot moves to(
xlfrf , y

lf
rf , θ

lf
rf

)
relative to the left foot, then the left foot and

right foot pose can be computed in the world frame as:

θlf = θt −
1

2
θlfrf ; θrf = θt +

1

2
θlfrf[

xrf
yrf

]
=

1

2

[
cos θlf − sin θlf
sin θlf cos θlf

] [
xlfrf
ylfrf

]
+

[
xt
yt

] (8)

The calculation is analogous for the left foot moving. These
3D poses of the feet will then be projected to the environment
to obtain the full 6D pose. If there exists a valid projection
on the environment for both feet, this footstep combination
is feasible. The above computation corresponds to GetFea-
sibleFootstepCombination function in Algorithm 1

Given an environment and a direction of motion, if the
contact space planner can generate a contact sequence which
applies both palm contacts and moves the robot torso more
than a short distance λ starting from a feasible foot combi-
nation γ ∈ Γ within a planning time limit t̂, we call such a γ
a useful footstep combination. The set of all useful footstep
combinations is denoted as Γ+ ⊂ Γ, as shown in Lines 3 to
7 in Algorithm 1.



Fig. 4. Two examples of the training environment

The number of useful footstep combinations, denoted
|Γ+|, can serve as an indicator for how difficult it is for
the planner to find a contact sequence moving in a certain
direction. Therefore, we would like to learn a regressor which
predicts |Γ+| based on features derived from the foot and
palm transitions given a torso pose.

The training data consists of features of the local environ-
ments in which the robot is expected to operate (described
below) with a corresponding |Γ+| produced by evaluating
each γ and with the contact-space planner given φ. In this pa-
per, we explore the case that the robot navigates in a corridor
with tilted surface patches. This is particularly challenging
because it is difficult to find collision-free contact and to
remain balance on tilted surface patches. To generate training
data we randomly generate corridors with different width and
orientation relative to the robot as well as different surface
dimensions, as shown in Figure 4. In many cases, the ground
is too steep for the robot to remain stable with only two foot
contacts, so the planner is constrained to keep the palms on
the wall in the corridor.

To calculate the feature vector, we perform a transition of
a foot contact from each γ ∈ Γ for only one step based on
the transition model shown in Figure 2. For a given φ, we
then count the number of γ ∈ Γ which have at least one
valid footstep transition in the φ direction, and denote it as
Nfc. The calculation of Nfc is summarized in Lines 4 to
9 in Algorithm 2. The palm contact direction also affects
the planner’s ability to move in a certain direction. For
example, if there exist only palm contacts in the direction
opposite to the direction of motion, the planner may not
be able to find a valid contact sequence. Therefore, we add
another feature: the number of valid palm contacts with the
environment in each quadrant of the torso frame: Np[i] for
the ith quadrant. The process of calculating palm contact
features is summarized in Line 10 to 13 in Algorithm 2.
Given the training data consisting of the 5D feature vector,
[Nfc, Np[1], Np[2], Np[3], Np[4]], and 1D output, |Γ+|, we
evaluate two learning methods: Support Vector Regression
(SVR) with an RBF kernel and Nearest Neighbor. A separate
regressor is learned for each φ, resulting in 12 regressor
functions.

F. Learning Traversability with Approximate Contact Check-
ing (ACC)

Although ECC provides useful information to estimate
traversability, it requires many collision checks for each torso
pose and direction of motion pair, which is time-consuming

Algorithm 2: Generate the Feature Vector in ECC

1 Input : pt, φ,E,FC∆,PC∆;
2 Γ← GetFeasibleFootstepCombinations (pt,FC∆,E);
3 Nfc ← 0; Np ← [0, 0, 0, 0];
4 for γ in Γ do
5 for fc in FC∆ do
6 γex ← TransitionAndProject (γ, fc);
7 if IsCollisionFree (γex) and

MovesInDirection (γ, γex, φ) then
8 Nfc ← Nfc + 1;
9 break;

10 for pc in PC∆ do
11 ppalm ← GetPalmPose (pt, pc);
12 iq ← GetPalmQuadrant (pt, ppalm);
13 Np[iq]← Np[iq] + 1;
14 return [Nfc,Np];

Algorithm 3: Compute Ground Truth Label in ACC

1 Input : pt, v,FC∆,E, λ, t̂ ;
2 Γ← GetFeasibleFootstepCombinations (pt,FC∆,E);
3 Γ+ ← { };
4 for γ in Γ do
5 if ContactSequenceExists

(
γ, v,E, λ, t̂

)
then

6 Γ+ ← {γ} ∪ Γ+;
7 return |Γ+|;

and thus reduces the benefit of learning traversability. There-
fore, based on ECC, we propose Approximate Contact
Checking (ACC), which approximates the collision checks
with a scoring function but is more efficient than ECC.

Since computing ACC is much faster than computing
ECC, we can afford more queries to the traversability estima-
tor in reasonable computation time. Therefore, when learning
traversability with ACC, we take both direction of motion
and distance moved into account. In ACC, we redefine the
traversability estimator as: ∆gtr : {pt, v,E} → R+. It
takes as input a starting torso pose pt, and a 2D torso pose
translation v in the XY plane, and a local environment model
E. Similar to φ used in computing ECC, we have a finite
set of v given a torso pose, as shown in Figure 3. We
denote the resulting torso pose of pt after translation v as
p′t = pt +

[
vT 0

]T
.

To compute ∆gtr, we follow Eq. 8 to obtain the set
of feasible footstep combinations Γ in pt. With the new
definition of the traversability estimator, we thus redefine
the useful footstep combination, Γ+, used in ACC as: Given
an environment, a torso pose translation v and a starting
footstep combination γ ∈ Γ, if the contact space planner
can generate a contact sequence which applies both palm
contacts and moves the torso to the cell to which p′t belongs
in the torso pose grid, the set of all such γ is Γ+. We
limit the number of palm contact poses that the planner can
explore, denoted np,lim. Therefore, the planner will return
failure only when the search tree is exhausted. The number
of useful footstep combinations, |Γ+| serves as an indicator



Fig. 5. The grid of contact points on a surface plane. The distance of each
contact point to the closest obstacle or surface boundary is marked in color
spectrum order. Note that the light gray surface is covered by the dark gray
surface, which causes part of its contact points to be infeasible.

for the traversability. The process computing the ground truth
is summarized in Algorithm 3. As in ECC, we randomly
generate corridor environments shown in Figure 4 to collect
training data.

To compute the feature vector with ACC, we first dis-
cretize each surface frame into a set of contact points Ci
which form a grid. We denote the set of all contact points,
which is also the union of all Cis from all surface, as C.
For each contact point c ∈ C, we cast a ray from each
contact point along the normal of each surface to check
if the contact point is collision-free. The distance of each
contact point to the closest obstacle, denoted as δ (c), is
approximated as the closest distance to any contact point
in collision. Figure 5 shows an example contact point grid
of a surface. We can define the following scoring function
to represent the clearance of each contact point:

S (c) =


0 δ (c) < rins

δ(c)−rins
rcir−rins

rins ≤ δ (c) < rcir

1 δ (c) ≥ rcir

(9)

rins and rcir are the radius of the inscribed and circumscribed
circle of the contact end-effector shape, respectively. For
each contact, if δ (c) is larger than rcir, there must exist
enough free space for any contact pose at the contact point c.
However, if δ (c) is lower than rins, it is impossible to make
contact at c regardless of the orientation of the contact.
S describes how likely a contact pose is feasible given its

corresponding contact point c. In other words, each collision
check is turned into a table lookup, which speeds up the
process. For foot contacts, based on the footstep transition
projection shown in Figure 2, we can further project all the
contact points on ground surfaces to a 2D grid on XY plane
so that S can be queried with only the X and Y coordinate
of the foot contact.

For each feasible foot combination γ ∈ Γ, we expand the
contact space planning search tree based on the transition
model shown in Figure 2 for only one step. For each
expansion, we can define a footstep translation tuple α as
α =

{
ttlf , ttrf , ttex

}
. ttlf and ttrf are the 2D translation of the

left foot and right foot in the torso frame in the XY plane,
and ttex is the 2D translation of the expanded footstep in
the torso frame in the XY plane. Following the definition of
torso pose pt in Eq. 1, each α corresponds to a translation
v in the torso grid. Since each position in α is in the XY

Algorithm 4: Generate the Feature Vector in ACC

1 Input : pt, v,E, A (v) ,PC∆,C;
2 Tpt ← GetTransformaionMatrix (pt);
3 Sf ← 0, Sp ← [0, 0, 0, 0];
4 for α in A (v) do
5 Sα ← 1;
6 for t in α do
7 cNearest ← GetNearestContactPoint (Tpt t,C);
8 Sα ← SαS(cNearest);
9 Sf ← Sf + Sα;

10 for pc in PC∆ do
11 ppalm ← GetPalmPose (pt, pc);
12 cNeareset ← GetNearestContactPoint (ppalm,C);
13 iq ← GetPalmQuadrant (pt, ppalm);
14 Sp[iq]← Sp[iq] + S(cNeareset);
15 return [Sf ,Sp];

plane, we can pre-compute all α, and label each α by its
corresponding nearest v. We denote the set of α for each v
as A (v).

Lines 4 to 10 in Algorithm 4 describe the process of
computing the footstep score Sf . We first iterate through
each α labeled as moving in the direction v. For each foot
placement in the tuple, we find its nearest contact point,
and the corresponding score using Eq. 9. The multiplication
shown in Line 9 captures the idea that the feasibility of each
footstep transition α requires all three foot contacts to be
collision-free. Finally we sum the scores for each α to obtain
the footstep score Sf .

For palm contacts, we project palm contacts with a given
torso pose pt as shown in Figure 3. Each projection returns
a nearest contact point c on one of the surfaces. Similar to
the process in ECC, we divide the palm scores into the four
quadrants of the torso frame: Sp[i] for the ith quadrant. This
process corresponds to Lines 10 to 14 in Algorithm 4.

Given the training data consisting of the 5D feature vector,
[Sf , Sp[1], Sp[2], Sp[3], Sp[4]], and 1D output, |Γ+|, we eval-
uate two learning methods: Support Vector Regression with
an RBF kernel and Nearest Neighbor. A separate regressor
is learned for each v, resulting in 30 regressor functions.

G. Heuristic with Traversability

With the |Γ+| predicted by SVR using ECC or ACC, we
define the traversability estimate ∆gtr as

∆gtr = wtre
−|Γ+|, wtr ∈ R+. (10)

Using this formulation gtr increases when traversability is
low, and the contribution of traversability saturates near
0 as |Γ+| increases, which reflects our observation that
the planning does not become significantly easier when
there is more than a sufficient number of useful footstep
combinations. We then use Eq. 7 to compute gcombined and
our proposed heuristic for contact space planning is:

hcombined (pt) = gcombined (pt) + hp (pt) (11)



Fig. 6. The five figures show the same test environment. From left to right: (a) The testing environment; (b) The paths returned by the homotopic
constrained planner; (c) The predicted number of useful footstep combinations for each step along the shortest torso path computed using 1) the standard
method and 2) using traversability as predicted by regressors learned with ECC and SVR; (d) Same as (c) but using the regressors learned with ACC and
SVR. The value range is smaller than the one in (c) because ACC discretizes the torso transition more finely; (e) The contact sequence returned by the
contact space planner with the heuristic with traversability estimated using ACC and SVR.

Note that hcombined is not admissible since the traversability
cost included in hcombined is an estimate from a learned regres-
sor, which may overestimate the true traversability. Further-
more, it is also too expensive to calculate the traversability as
part of the cost-to-come to a node in contact space planning,
therefore this is not included in a node’s cost and the heuristic
with traversability will necessarily overestimate the cost.
Thus we do not guarantee that our planner finds the optimal
path. However, in practice we find that the contact sequences
produced are not excessively long and local optimization can
be performed as a post-processing step to decrease the length
if necessary.

H. Reduced Torso Search Space for Practical Application

It takes 16 ms seconds on average to compute the feature
vectors for a torso pose and a direction of motion pair with
ECC, and 0.3 ms on average to compute the feature vectors
for a torso pose and torso transition pair with ACC. However,
since we consider both direction of motion and distance
moved in ACC, there are 10 to 15 times more feature vectors
calculated with ACC than with ECC. Nevertheless, it is too
expensive to compute hcombined for every cell using either
approach. Therefore, we reduce the computation time by
limiting the traversability computation to the proximity of
some “promising paths.” We first generate a homotopically-
diverse set of torso paths using A* with a naive Euclidean
distance heuristic using the method described in [20], and
we compute the traversability estimate only in the proximity
of these guiding paths. For cells not near the guiding paths,
we use ∆gtr = wtr.

V. EXPERIMENTS AND RESULTS

We evaluate the performance of using our traversability
estimates in planning to navigate through random tilted
surface corridors. We compare the actual performance of
the planner using h, and using ECC and ACC to compute
hcombined in test environments similar to those in Figure 6.
We implemented our algorithms in OpenRAVE [8]. All
experiments were run on an Intel Core i7-4790K 4.40 GHz
CPU with 16GB RAM. We used the following parameter
values: λ = 0.1m, t̂ = 1s, np,lim = 6, ws = 10, wtr = 5.

To evaluate the performance of the traversability estimate,
we set up the test environment to be three parallel random
tilted surface corridors, as shown in Figure 6. The planner
will find a path through one of these corridors, and use both
palm and foot contacts when moving through the corridors.
We fix the start and the goal position, and measure the time
required for the planner to find a feasible contact sequence
from the start to the goal either using h (the baseline) or
hcombined (the proposed approach) with either ECC or ACC.
We set the time limit to be 300 seconds. A trial is counted
a success if a plan is returned within the time limit. We run
100 trials in different environment, among which 5 where
all planners fail. Since there is no evidence that a feasible
path exists in these environments, we do the evaluation on
the remaining 95 trials.

Since the model we trained to estimate the traversability
is based on the assumption that both palm and foot contacts
should be used, we only apply the traversability estimate in
the random tilted surfaces corridor part of the environment.
In the flat part of the environment, we do not consider the
traversability.

In the experiment, the standard planner, which uses the h
heuristic, would always take the middle corridor since this
path is slightly shorter than the other two. However, using
the proposed hcombined will also consider the difficulty of
going through each corridor, and may take a different path,
as shown in Figure 6.

Figure 7 shows the quantitative results of the planner
using the two heuristics. We compare the performance of
the standard planner and four planners using heuristics with
traversability. Among those four planners, two compute the
feature vector with ECC, and the other two use ACC. In each
pair of planners, one predicts traversability using SVR, and
the other finds the nearest neighbor of the feature vector in
the training dataset and returns its label (NN). NN serves as
a baseline to evaluate the learning performance of SVR.

The planners using heuristic with traversability outperform
the standard planner in number of successful trials except for
the one using ECC and NN. However, computing the feature
vectors with ECC is very time-consuming, which causes it
to be slower than the standard planner. The planners with



Fig. 7. Left: The number of successful trials using different heuristics
Right: The average planning time of successful trials using different heuris-
tics

Fig. 8. Number of trials in which the standard planner or each planner using
heuristics with traversability return a solution faster. Green bars show the
number of trials in which each indicated planner is faster than the standard
planner. Blue bars show the number of trials the standard planner is faster.
Red bars represent the trials that both planner fails.

traversability-ACC outperforms its counterpart using ECC in
terms of both the number of successful trials and planning
time. This is due to two reasons: First, ACC is much more
efficient than ECC in computing the feature vector. Second,
the regressors using ACC capture the torso pose transition
more precisely, which leads to a drop in planning time, and
thus increases the number of successful trials by reducing the
cases over time limit. We can also observe that using NN to
estimate traversability results in a much lower number of
successful trials than using SVR for both ECC and ACC.
This result shows the benefit of using SVR to generalize
from the training data.

From Figure 8, we further analyze the efficiency of each
planner compared to the standard planner by counting the
number of trials each planner returns a contact sequence
faster than the standard planner. Although the planner using
ECC and SVR has higher number of successful trials than the
standard planner, its long heuristic computation time causes
it to have fewer winning trials over the standard planner.
We can also tell from Figure 8 that the planners using
ACC outperform the standard planner in winning trials, and
applying SVR further improves the performance.

VI. CONCLUSION

In this paper, we propose a learning framework and two
kinds of features, ECC and ACC, for discrete search-based

contact space planning which learns to estimate environment
traversability. The results suggest that the proposed ACC
heuristic is both more robust and more efficient than conven-
tional distance-based heuristics in dealing with environments
with sparse contactable regions. For future work, we would
like to expand the application of traversability estimation to
allow the planner to apply different strategies in regions with
different traversability.
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