
Interleaving Planning and Control for
Deformable Object Manipulation

Dale McConachie, Mengyao Ruan, and Dmitry Berenson

Key words: motion planning, deformable object manipulation
Abstract We present a framework for deformable object manipulation that in-
terleaves planning and control, enabling complex manipulation tasks without re-
lying on high-fidelity modeling or simulation. The key question we address is when
should we use planning and when should we use control to achieve the task? Plan-
ners are designed to find paths through complex configuration spaces, but for highly
underactuated systems such as deformable objects achieving a specific configura-
tion is very difficult even with high-fidelity models. Conversely, controllers can be
designed to achieve specific configurations, but they can be trapped in undesirable
local minima due to obstacles. Our approach consists of three components: (1) A
global motion planner to generate gross motion of the deformable object; (2) A lo-
cal controller for refinement of the configuration of the deformable object; and (3)
A novel deadlock prediction algorithm to determine when to use planning versus
control. By separating planning from control we are able to use different represen-
tations of the deformable object, reducing overall complexity and enabling efficient
computation of motion. We demonstrate that our framework is able to successfully
perform several manipulation tasks in simulation which cannot be performed using
either our controller or planner alone.

1 Introduction
Examples of deformable object manipulation range from domestic tasks like folding
clothes to time and safety critical tasks such as robotic surgery. One of the challenges
in planning for deformable object manipulation is the high number of degrees of
freedom involved; even approximating the configuration of a piece of cloth with a
4 × 4 grid results in a 48 degree of freedom configuration space. In addition, the
dynamics of the deformable object are difficult to model [8]; even with high-fidelity
modeling and simulation, planning for an individual task can take hours [2]. Local
controllers on the other hand are able to very efficiently generate motion, however,
they are only able to successfully complete a task when the initial configuration is
favorable [3, 19].

The central question we address in this work is how can we combine the strengths
of global planning with the strengths of local control while mitigating the weak-

University of Michigan, Ann Arbor, MI, USA, 48109. e-mail: {dmcconac,ruanmiao}@umich.edu,
berenson@eecs.umich.edu. This work was supported in part by NSF grant IIS-1656101 and ONR
grant N000141712050.

1

2 Dale McConachie, Mengyao Ruan, and Dmitry Berenson

Fig. 1 Three example manipulation tasks for our framework. In the first two tasks, the objective
is to cover the surface of the table (indicated by the red lines) with the cloth (shown in green). In
the first task, the grippers (shown in blue) can freely move however the cloth is obstructed by a
pillar. In the second task, the grippers must pass through a narrow passage before the table can be
covered. In the third task, the robot must navigate a rope (shown in green in the top left corner)
through a three-dimensional maze before covering the red points in the top right corner. The maze
consists of top and bottom layers (purple and green, respectively). The rope starts in the bottom
layer and must move to the target on the top layer through an opening (bottom left or bottom right).

ness of each? We propose a framework for interleaving planning and control which
uses global planning to generate gross motion of the deformable object, and a lo-
cal controller to refine the configuration of the deformable object within the local
neighborhood. By separating planning from control we are able to use different rep-
resentations of the deformable object, each suited to efficient computation for their
respective roles. In order to determine when to use each component, we introduce a
novel deadlock prediction algorithm that is inspired by topologically based motion
planning methods [4, 13]. By answering the question “Will the local controller get
stuck?” we can predict if the local controller will be unable to achieve the task from
the current configuration. If we predict that the controller will get stuck we can then
invoke the global planner, moving the deformable object into a new neighbourhood
from which the local controller may be able to succeed. The key to our efficient pre-
diction is forward-propagating only the stretching constraint, assuming the object
will comply to contact.

We seek to solve problems where we need to arrange the object in a particular
way (e.g. covering a table with a tablecloth) but where there is also complex envi-
ronment geometry preventing us from directly completing the task. While we can’t
claim to solve all problems in this class (in particular in environments where the
deformable object can get snagged), we can solve an important sub-class; in this
work we restrict our focus to controllers of the form described in Sec. 4.1, and tasks
suited to these controllers. Examples of these types of tasks are shown in Fig. 1.
In our experiments we show that this iterative method of interleaving planning and
control is able to successfully perform several interesting tasks for one-dimensional
and two-dimensional deformable objects (i.e. rope and cloth) where our planner or
controller alone are unable to succeed.

2 Related Work
Robotic manipulation of deformable objects has been studied in many contexts rang-
ing from surgery to industrial manipulation (see [16] for an extensive survey).

Interleaving Planning and Control for Deformable Object Manipulation 3

Motion planning for manipulation of deformable objects is an active area of re-
search [14]. Saha et al. [26] present a Probabilistic Roadmap (PRM [15]) that plans
for knot-tying tasks with rope. Rodriguez et al. [24] study motion planning in fully
deformable simulation environments. Their method, based on Rapidly-exploring
Random Trees (RRTs [18]), applies forces directly to an object to move it through
narrow spaces while using the simulator to compute the resulting deformations. Re-
cently Frank et al. [9] presented a method that pre-computes deformation simula-
tions in a given environment to enable fast multi-query planning. Other sampling-
based approaches [1, 6, 10, 17, 20, 25] rely on being able to explicitly define the
goal region for the deformable object, whereas our approach uses an error-function-
based task definition. Also, the above methods rely on potentially time-consuming
physical simulation of the deformable object, while our method does not.

Model-based visual servoing approaches [11, 28, 30] bypass planning entirely,
and instead use a local controller to determine how to move the robot end-effector
for a given task. Our recent work [3, 19] as well as [22] bypass the need for an
explicit deformable object model, instead using Jacobian approximation controllers
to drive the deformable object to the attractor of the starting state. Rather than using
just a planner or just a controller, our framework uses both components, each when
most useful.

Approaches based on learning from demonstration [12, 27] avoid planning and
deformable object modelling challenges entirely by using offline demonstrations to
teach the robot specific manipulation tasks; however, when a new task is attempted
a new training set needs to be generated. In our application we are interested in
a way to manipulate a deformable object without a high-fidelity model or training
set available a priori. For instance, imagine a robot encountering a new piece of
clothing for a new task. While it may have models for previously-seen clothes or
training sets for previous tasks, there is no guarantee that those models or training
sets are appropriate for the new task.

Our planning method has some similarity to topological [4, 13] and tethered
robot [5, 29] planning techniques; these methods use the topological structure of the
space to define homotopy classes, either as a direct planning goal, or as a way to
help inform planning in the case of tethered robots. Planning for some deformable
objects, in particular rope or string, can be viewed as an extension of the tethered
robot case where the base of the tether can move. This extension, however, requires
a very different approach to homotopy than is traditionally used, particularly when
working in three-dimensional space instead of a planar environment. In our work
we use visiblity deformations from [13] as a way to encode homotopy-like classes
of configurations.

3 Problem Statement

Let the robot be represented by a set of G grippers with configuration q ∈ SE(3)G.
We assume that the robot configuration can be measured exactly. In this work we
assume the robot to be a set of free floating grippers; in practice we can track the
motion of these with inverse kinematics. We use the Lie algebra [21] of SE(3) to

4 Dale McConachie, Mengyao Ruan, and Dmitry Berenson

represent robot gripper velocities. This is the tangent space of SE(3), denoted as
se(3). The velocity of a single gripper g is then q̇g =

[
vT

g ωT
g
]T ∈ se(3) where vg

and ωg are the translational and rotational components of the gripper velocity. We
define the velocity of the entire robot to be q̇ =

[
q̇T

1 . . . q̇T
G
]T ∈ se(3)G.

The configuration of a deformable object is a set P ⊂ R3 of P = |P| points.
We assume that we have a method of sensing P . We define a task based on a set
of T target points T ⊂ R3, a function ρ which measures the alignment error be-
tween P and T , and a termination condition Ω . Let a robot controller be a function
C (q,P,T ,ρ,Ω) which maps the system state (q,P) and task (T ,ρ,Ω) to a desired
robot motion q̇cmd . In this work we restrict our discussion to tasks and controllers of
the form introduced in our previous work [3, 19]; these controllers are local, i.e. at
each time t they choose an incremental movement q̇cmd which reduces the alignment
error as much as possible at time t +1.

Let E(q̇cmd ,q,P) = q̇act be the true motion of the robot when q̇cmd is executed
for unit time; in this work we will be predicting the future state of the system, thus
it is not sufficient to consider only q̇cmd , we must also consider q̇act . Modelling
inaccuracies as well as manipulation in contact can lead to meaningful differences
between q̇cmd and q̇act .

The problem we address in this work is how to find a sequence of Ne robot
commands {q̇cmd,1, . . . , q̇cmd,Ne} = Q̇cmd such that each motion is feasible, i.e. it
should not bring the grippers into collision with obstacles, should not cause the
object to stretch excessively, and should not exceed the robot’s maximum velocity
q̇max. Let these feasibility constraints be represented by A(q̇) = 0. Then the problem
we seek to solve is:

find Q̇cmd

s.t. Ω(PNe) = true

A(q̇act,t) = 0, t = 1, . . . ,Ne

(1)

where PNe is the configuration of the deformable object after executing Q̇cmd .
Solving this problem directly is impractical in the general case for two major

reasons. First, modeling a deformable object accurately is very difficult in the gen-
eral case, especially if it contacts other objects or self-collides. Second, even given
a perfect model, computing precise motion of the deformable object requires FEM
simulation and is very time consuming. We seek a method which does not rely on
high-fidelity modelling and simulation; instead we present an incremental solution
which leverages the strengths of both global planning and local control in order to
efficiently perform the task. This paper focuses on the case of using two grippers,
but our method could be extended to the multi-gripper case.

4 Interleaving Planning and Control
Global planners are effective at finding paths through complex configuration spaces,
but for highly underactuated systems such as deformable objects achieving a spe-
cific configuration is very difficult even with high-fidelity models; this means that
we cannot rely on them to complete a task independent of a local controller. In or-

Interleaving Planning and Control for Deformable Object Manipulation 5

der for the local controller to complete the task, the system must be in the correct
basin of attraction. From this point of view it is not the planner’s responsibility to
complete a task but rather to move the system into the right basin for the local con-
troller to finish the task. By explicitly separating planning from control we can use
different representations of the deformable object for each component; this allows
us to use a highly-simplified model of the deformable object for global planning
to generate gross motion of the deformable object, while using an independent lo-
cal approximation for the controller. The key question then is when should we use
global planning versus local control? We answer this question by considering the
limitations of a given controller.

4.1 Local Control
For our local controller we use a controller of the form introduced in [3, 19]. These
controllers locally minimize error ρ while obeying the constraints of the system.
For every target point Ti ∈ T we define a potential field pointing towards Ti us-
ing Dijkstra’s algorithm. This gives us the shortest collision-free path between any
point in the workspace and the target point, as well as the distance travelled along
that path. These potential fields are used to define the best direction to manipu-
late the deformable object in order to locally reduce error as much as possible at
each timestep. This error reduction term is then combined with stretching avoidance
and gripper collision avoidance methods to generate robot motion commands while
obeying velocity constraints. Full details can be found in [19].

One limitation of this approach is that the individual potential fields are defined
and applied independently of each other; this means that the potential fields that
are combined to define the direction to move the deformable object can cause the
controller to move the grippers on opposite sides of an obstacle, leading to poor local
minima. Examples of this scenario are shown in Figures 2, 4, and 5. In addition,
while this local controller can avoid obstacles, it does not explicitly have any ability
to go around obstacles as shown in Figure 3. In order to address these limitations we
introduce a novel deadlock prediction algorithm to detect when the system (qt ,Pt)
is in a state that will lead to deadlock if we continue to use the local controller.

4.2 Predicting Deadlock
Predicting deadlock is important for two reasons; first we don’t want to waste time
executing motions that will not achieve the task. Second, we want to avoid the com-
putational expense of planning our way out of a cul-de-sac. By predicting deadlock
before it happens we address both of these concerns.

We consider a controller to be deadlocked if the commanded motion produces
(nearly) no actual motion, and the task termination condition is not met:

q̇act,t ≈ 0
Ω(Pt) = false.

(2)

6 Dale McConachie, Mengyao Ruan, and Dmitry Berenson

Algorithm 1 PredictDeadlock(qt ,Pt ,Bt ,Path,T ,Lmax,Np)

1: ConfigurationHistory← [ConfigurationHistory,qt]
2: ErrorHistory← [ErrorHistory,ρ(Pt)]
3: for n = 0, . . . ,Np−1 do
4: if Path 6= /0 then
5: Pt+n+1← FollowVectorField(Pt+n,T)
6: q̇cmd,t+n+1←Csimple (qt+n,Pt+n,T ,ρ,Ω)
7: qt+n+1← qt+n + q̇cmd,t+n
8: else
9: qt+n+1← qt+n+ FollowPath(Path)

10: end if
11: Bt+n+1← ForwardPropagateBand(Bt+n,qt+n+1)
12: end for
13: if PredictOverstretch(Lmax) or NoProgress() then
14: return true
15: else
16: return false
17: end if

In general we cannot predict if the system will get stuck in the limit; our controllers
and the system itself are complex, and as such we do not have a good way to evaluate
the attractor of the current state. Instead we predict if the system will get stuck within
a prediction horizon Np timesteps. We divide our deadlock prediction algorithm
into three parts and discuss each in turn: 1) estimating gross motion; 2) predicting
overstretch; and 3) progress detection.

4.2.1 Estimating Gross Motion

The idea central to our prediction (Alg. 1) is that while we may not be able to de-
termine precisely how a given controller will steer the system, we can capture the
gross motion of the system and estimate if the controller will be deadlocked. We
split the prediction into two parts; first we assume that controller C is able to ma-
nipulate the deformable object with a reasonable degree of accuracy within a local
neighbourhood of the current state. This allows us to approximate the motion of the
deformable object by following the task defined potential fields for each Pi ∈ P .
Examples of this approximation are shown in Figures 2-5. Next we use a simplified
version of C which omits the stretching avoidance term to predict the commands
sent to the robot. This term is omitted as it can be sensitive to the exact configura-
tion of the deformable object, which is not considered in this approximation. If we
are executing a path then we can use the planned path directly to predict overstretch.

4.2.2 Predicting Overstretch

Next we introduce the notion of a virtual elastic band between the grippers. This
virtual elastic band is based on Quinlan’s path deformation algorithm [23] and is
used both in deadlock prediction as well as global planning (Sec. 4.3) to determine if
a given gripper trajectory will stretch the deformable object beyond a task specified
maximum stretching factor λ . This is designed to detect when the deformable object
can get caught on an obstacle, preventing forward motion of the grippers. At each

Interleaving Planning and Control for Deformable Object Manipulation 7

timestep the elastic band is initialized with the shortest path between the grippers
through the deformable object, and then “pulled” tight using the internal contraction
force described in [23] and a hard constraint for collision avoidance. The endpoints
of the band track the predicted translation of the grippers. This band represents the
constraint that must be satisfied for the object not to tear. By considering only this
constraint on the object in prediction, we are implicitly relying on the object to
comply to the contacts as it is moved by the grippers. We discuss the limitations of
this assumption in the discussion (Sec. 6).

Let Lt+n be the length of the path defined by the virtual elastic band Bt+n at
timestep n in the future, and Lmax be the longest allowable band length. To use this
length sequence to predict if the controller will overstretch the deformable object,
we perform three filtering steps: an annealing low-pass filter, a filter to eliminate
cases where the band is in freespace, and the detector itself which predicts over-
stretch. We use a low-pass annealing filter with annealing constant α ∈ [0,1) to
mitigate the effect of numerical and approximation errors which could otherwise
lead to unnecessary planning:

L̃t+1 = Lt+1

L̃t+n = αL̃t+n−1 +(1−α)Lt+n ,n = 2, . . . ,Np .
(3)

Second, we discard from consideration any bands which are not in contact with
an obstacle; we can eliminate these cases because our local controller includes an
overstretch avoidance term which will prevent this case in general. Last we compare
the filtered length of any remaining band predictions to Lmax; if after filtering, there
is a estimated band length L̃ that is larger than Lmax then we predict that the local
controller will be stuck. An example of this type of detection is shown in Figure 2,
where the local controller will wrap the cloth around the pole, eventually becoming
deadlocked in the process.

4.2.3 Progress Detection

Last, we track the progress of the grippers and task error to estimate if the controller
C is making progress towards the task goal. This is designed to detect cases when
the grippers themselves are trapped against an obstacle. Naively we could look for
instances when q̇act = 0 however due to sensor noise, actuation error, and using dis-
crete math in a computer, we need to use some threshold instead. At the same time
we want to avoid false positives, where the grippers are moving slowly however task
error is decreasing. To address these concerns we introduce three parameters: history
window Nh, error improvement threshold βe, and configuration distance threshold
βm. If over the last Nh timesteps, the improvement in error is less than βe, and the
grippers have moved less than βm, then we predict that the controller will not be
able to reach the goal from the current state and trigger global planning.

4.3 Global Planning
In order to enable efficient planning, we need to approximate the configuration of
the deformable object in a way that captures the gross motion of the deformable ob-

8 Dale McConachie, Mengyao Ruan, and Dmitry Berenson

ject without being prohibitively expensive to use. We use the same approach from
Sec. 4.2.2, but the interpretation in this use is slightly different; the virtual elas-
tic band is a proxy for the leading edge of the deformable object. In this way we
can plan to move the deformable object to a different part of the workspace with-
out needing to simulate the entire deformable object, instead the deformable object
conforms to the environment naturally.

We also do not consider the orientation of the grippers while planning, instead
treating the grippers as spheres. The resulting space that we are planning in is
R3G×V , where V represents the space of virtual elastic band configurations. For our
global planner we use a conventional RRT-Connect approach as the central planning
mechanism (Alg. 2). We cannot explicitly sample V as the state of the band depends
on the path the grippers take, hence we sample only the position of the grippers,
forward-propagating the virtual elastic band from the nearest neighbour towards the
sampled gripper positions until the grippers collide with an obstacle, or the length
of the virtual elastic band L exceeds Lmax.

In order to make progress towards achieving the task, we want to set the goal for
the RRT to be a configuration that we have not explored with the local controller.
We do so in two parts; we find the set of all target points TU which are contributing
to task error, split these points into two clusters, and use the cluster centers to define
the goal position of the grippers, qxyz,goal . Second, we set the goal configuration of
the virtual elastic band to be any configuration that is not similar to a blacklist of
virtual rubber bands. This blacklist is the set of all band configurations from which
we predicted that the local controller would be deadlocked in the future (Sec. 4.2).

To define similarity we use Jaillet and Siméon’s visibility deformation [13] def-
inition to compare two virtual elastic bands. Intuitively two virtual elastic bands
are similar if you can sweep a straight line connecting the two bands from the start
points to the end points of the two bands without intersecting an obstacle. Unlike
the original use, we do not constrain the start and end points of each path to match,
but the algorithm is identical. We use this as a heuristic to find states that are dis-
similar from states where we have already predicted that the local controller would
be deadlocked. Let VisCheck(B,Blacklist)→ {0,1} denote this visibility deforma-
tion check, returning 1 if B is similar to a band in the blacklist and 0 otherwise.
Let Rgoal = {(qxyz,goal ,Bgoal) | VisCheck(Bgoal ,Blacklist) = 0} be the goal region
defined by the gripper target above.

Given that we are only sampling the position of the grippers and the use of Vis-
Check to define the goal region, we need to carefully define the distance and Near-
estNeighbour (Alg. 3) functions. Let qxyz,rand be the sampled gripper configuration.
Let Rtree be the set of all nodes ri = (qxyz,i,Bi) in the tree. Then the distance be-
tween the sample and a node in the tree is the Euclidean distance betweeen gripper
positions:

d(qxyz,rand ,ri) = ‖qxyz,rand−qxyz,i‖ . (4)

Let Rcomp = {(qxyz,B) | qxyz = qxyz,goal} \ Rgoal be the set of all RRT configura-
tions whose gripper positions match the goal configuration, but whose virtual elas-
tic bands are similar to the Blacklist. Then the distance between any configuration

Interleaving Planning and Control for Deformable Object Manipulation 9

Algorithm 2 PlanPath(qt ,Pt ,Bt ,T ,Lmax,Blacklist)
1: TU ← UncoveredTargetPoints(Pt ,T)
2: qxyz,goal ← ClusterCenters(TU)
3: qxyz,goal ← ProjectOutOfCollision(qxyz,goal)
4: rstart ← (qxyz,t ,Bt)
5: Rgoal ←{(qxyz,goal ,Bgoal) | VisCheck(Bgoal ,Blacklist) = 0}
6: Rnnbl ← /0
7: Path← RRTPlan(rstart ,Rgoal ,Rnnbl ,Lmax)
8: if Path 6= Failure then
9: return ShortcutSmooth(Path)

10: else
11: return Failure
12: end if

Algorithm 3 NearestNeighbor(qrand ,qxyz,goal ,Rtree,Rnnbl)

1: if ‖qrand −qxyz,goal‖= 0 and Rtree \Rnnbl 6= /0 then
2: rnear ← argminr∈Rtree\Rnnbl

d(qrand ,r)
3: Rnnbl ← Rnnbl ∪{rnear}
4: else
5: rnear ← argminr∈Rtree

d(qrand ,r)
6: end if
7: return (rnear,Rnnbl)

rcomp ∈Rcomp and any rgoal ∈Rgoal is zero. If Rtree∩ Rcomp 6= /0 then when the goal is
sampled, the closest node in the tree cannot be extended towards the goal. To address
this issue, we maintain a set of nodes that we have extended towards the goal Rnnbl .
When qxyz,goal is selected as qxyz,rand , we first consider any nodes r ∈ Rtree \Rnnbl
which we have not yet extended towards the goal, returning the closest such node.
If Rtree \Rnnbl = /0 then we have extended every node in the tree towards the goal
already. In this case, we default to standard nearest neighbor behavior. While this
possibility is remote it can happen, particularly near the start of planning when there
are few nodes in the tree. If the random sample is not the goal, then we use standard
nearest neighbour behavior, setting rnear to the closest configuration in Rtree.

The combination of local control, deadlock prediction, and global planning are
shown in the MainLoop function (Alg. 4). Because the virtual elastic band is an
approximation we need to predict deadlock while executing the planned path. We
use the same prediction method for path execution as for the local controller.

To set the maximum band length Lmax used by the global planner and the dead-
lock prediction algorithms, we calculate the geodesic distance between the grippers
through the deformable object when it is relaxed and scale it by the task specified
maximum stretching factor λ .

5 Experiments and Results
Table 1 Deadlock prediction parameters

Prediction Horizon Np 10
Band Annealing Factor α 0.3
History Window Nh 100
Error Improvement Threshold βe 1
Configuration Distance Threshold βm 0.03

We now present four example tasks to
demonstrate our algorithm, two with cloth,
and two with rope. In the first and second
tasks, two grippers manipulate the cloth so

10 Dale McConachie, Mengyao Ruan, and Dmitry Berenson

Algorithm 4 MainLoop(λ ,Np)

1: D← GeodesicDistanceBetweenGrippers(Prelaxed) //
2: Lmax← λD; t← 0 // Initialization
3: Blacklist← /0; Path← /0 //
4: q0← SenseRobotConfig(); P0← SensePoints() //
5: while ¬Ω(Pt) do
6: T ← GetTargets(Pt)
7: Bt ← InitializeBand(Pt)
8: if PredictDeadlock(qt ,Pt ,Bt ,Path,T ,Lmax,Np) then
9: Blacklist← Blacklist ∪{Bt} //

10: Path← PlanPath(Pt ,Bt ,T ,Lmax,Blacklist) //
11: if Path = Failure then // Global planning
12: return Failure //
13: end if //
14: end if
15: if Path 6= /0 then
16: q̇cmd ← FollowPath(Path)
17: if PathFinished(Path) then
18: Path← /0
19: end if
20: else
21: q̇cmd ←C(qt ,Pt ,T ,ρ,Ω) // Local controller
22: end if
23: CommandConfiguration(qt + q̇cmd) //
24: qt+1← SenseRobotConfig(); Pt+1← SensePoints() // Update
25: t← t +1 //
26: end while
27: return Success

that it covers a table. In the first task the cloth is obstructed by a pillar while in the
second task the grippers must pass through a narrow passage before the table can be
covered. The third and fourth scenarios require the robot to navigate a rope through
three-dimensional maze before aligning the rope with a line traced on the floor (see
Figure 1).1

All experiments were conducted in the open-source Bullet simulator [7], with ad-
ditional wrapper code developed at UC Berkeley. The cloth is modeled as a triangle
mesh using 1500 vertices with a total size of 0.3m×0.5m. The rope is modeled as
a series of small capsules linked together by springs. In the first rope experiment we
use 39 capsules for a 0.78m long rope, and 47 capsules for a 0.94m rope in the last
experiment. We emphasize that our method does not have access to the model of the
deformable object or the simulation parameters. The simulator is used as a “black
box” for testing. We set the maximum stretching factor λ to 1.17 for the cloth and
1.1 for the rope. All tests are performed using an i7-7700K processor. We use the
same deadlock prediction parameters for all tasks, shown in Table 1.

To smooth the path returned by the RRT, at each iteration we randomly select
either a single gripper or both grippers and two configurations in the path. To smooth
between the configurations we use the same forward-propagation method for the

1 The video accompanying this paper (https://youtu.be/548ypyLOgPA) shows the task executions.

Interleaving Planning and Control for Deformable Object Manipulation 11

1: Initial state

4: Path execution

2: Deadlock prediction

5: Path finished

3: Planned path

6: State reached by controller

Fig. 2 Sequence of snapshots showing the execution of the first experiment. The cloth is shown
in green, the grippers are shown in blue, and the target points are shown as red lines. (1) The
approximate integration of the potential fields from error reduction over Np timesteps, shown in
magenta, pull the cloth to opposite sides of the pillar. (2) A sequence of virtual elastic bands
between the grippers is shown in black and teal, indicating the predicted gripper configuration over
the prediction horizon as the local controller follows the potential fields. The elastic band changes
to teal as the predicted motion of the grippers moves the cloth into an infeasible configuration.
(3 - 5) The resulting plan by the RRT, shown in magenta and teal, moves the system into a new
neighbourhood. (6) Final system state when the task is finished by the local controller.

virtual elastic band as used in the planning process. If we have selected only one
gripper for smoothing, we do not change the configuration of the second gripper
during that smoothing iteration. We also forward-propagate the virtual elastic band
to the end of the path to ensure that the band at the end of the smoothed path is
disimilar from the blacklist. We perform 500 smoothing iterations for experiments
1, 2, and 4; and 1500 for experiment 3 due to the larger environment.

5.1 Single Pillar

Table 2 Local controller and deadlock prediction
avg. computation time per iteration for each type
of deformable object, averaged across all trials.

GetTargets()
Time (s)

Predict
Deadlock()

Time (s)

Local
Controller
Time (s)

Cloth 0.0108 0.0136 0.0056
Rope 0 0.0216 0.0029

In the first example task, the objective
is to spread the cloth across a table that
is on the far side of a pillar (see Fig-
ure 2). We uniformly discretize the sur-
face of the table to create the target
points T , with each discretized point
creating a potential field that pulls the
closest point on the deformable object
towards the target. These target points

12 Dale McConachie, Mengyao Ruan, and Dmitry Berenson

Table 3 Planning statistics for the first plan for each example task, averaged across 10 trials.

RRT Planning Smoothing

Samples States
NN

Time
(s)

Validity
Checking
Time (s)

Total
Time

(s)
Iterations

Validity
Checking
Time (s)

Visibility
Deformation

Time (s)

Total
Time

(s)
Single Pillar 369 2401 ∼ 0.0 2.9 3.0 500 2.4 ∼ 0.0 2.5
Double Slit 723 3204 ∼ 0.0 3.0 3.1 500 6.2 ∼ 0.0 6.2
Rope Maze 5099 9886 0.2 9.7 10.1 1500 12.6 ∼ 0.0 12.8
Repeated
Planning

578 1626 0.1 2.9 3.0 500 4.7 ∼ 0.0 4.7

are set slightly above the surface to allow for collision margins within the simulator.
A single point on the cloth can have multiple “pulls” or none. Task error ρ is defined
as the sum of the Dijkstra’s distances from each target point to the closest point on
the cloth. If a target point in T is within a small-enough threshold of their nearest
neighbors in P , then these points are considered “covered” and do not influence task
error or any other calculation. Our results show that even though the global planner
is only planning using the gripper positions and a virtual elastic band between them,
it is able to find the correct neighbourhood for the local controller to complete the
task. On average we are able to find and smooth a path in well under 10 seconds
(Table 3), with the majority of the time spent on forward propagation of the virtual
elastic band as part of the validity check for a potential movement of the grippers. In
all 10 trials the global planner is only invoked once, with the local controller com-
pleting the task after the plan finishes. The average times for the local controller and
deadlock prediction algorithms are shown in Table 2, averaged across all trials of all
experiments.

5.2 Double Slit
The second experiment uses the same setup as the first, with the only change being
replacing the single pillar obstacle with a wide wall with two narrow slits (Fig-
ure 3). This adds a narrow passage problem and also demonstrates the utility of the
progress detection filter. In this example the local controller is trying to move the
deformable object straight forward, but with the wall in the way it is unable to make
progress; the local controller cannot explicitly go around obstacles. This experiment
shows comparable planning time, but it takes longer to smooth the resulting path (as
expected given that the virtual elastic band forward propagation takes longer near
obstacles). The local controller is again able to complete the task after invoking the
planer a single time on all 10 trials.

5.3 Moving a Rope Through a Maze
In the third task, the robot must navigate a rope through a three-dimensional maze
before aligning the rope with a line traced on the floor (Figure 4). In this task, the
correspondences between the target points T and the deformable object points P
are fixed in advance, thus the GetTargets function does not have to do any work,
as shown in Table 2. Task error ρ is defined in the same way as in the first two

Interleaving Planning and Control for Deformable Object Manipulation 13

1: Initial state

4: Path execution

2: Deadlock prediction

5: Path finished

3: Planned path

6: State reached by controller

Fig. 3 Sequence of snapshots showing the execution of the second experiment. We use the same
colors as the previous experiment (Figure 2), but in this example instead of detecting future over-
stretch in panel (2), we detect that the system is stuck in a bad local minimum and unable to make
progress.

experiments. Again the planner is invoked a single time per trial, and planning time
is comparable to the previous tasks, but we do spend more time smoothing for this
example. This is a function of the size of the environment rather than any particular
difference in the difficulty of performing the smoothing. This task has the most
potential for a planned path to move the deformable object into a configuration
from which the local controller cannot finish the task (by wrapping the rope around
an obstacle near the goal), however our framework is able to address this as shown
in the next example.

5.4 Repeated Planning
The fourth task is a variant of the third, with the start point for the rope moved near
the goal region on the top layer of the maze. For this experiment we reduce the
size of the planning arena to only the goal area, and the immediate surroundings
on the top layer (Figure 5). From this starting position, the planner is more likely
to find the incorrect neighbourhood for the local controller on the first attempt. In
4 of the 10 trials, the planner was invoked twice, in 4 other trials it was invoked
three times, and in one trial it was invoked four times. These additional planning
and smoothing stages took on average an additional 40.9 seconds, but the task was
completed successfully in all 10 trials.

14 Dale McConachie, Mengyao Ruan, and Dmitry Berenson

1: Initial state

7: Path execution

2: Deadlock prediction

8: Path finished

3: Planned path

9: State reached by controller

4: Path execution 5: Path execution 6: Path execution

Fig. 4 Sequence of snapshots showing the execution of the third experiment. The rope is shown
in green starting in the top left corner, the grippers are shown in blue, and the target points are
shown in red in the top right corner. The maze consists of top and bottom layers (green and purple,
respectively). The rope starts in the bottom layer and must move to the target on the top layer
through an opening (bottom left or bottom right).

6 Discussion and Conclusion
We have presented a method to interleave global planning and local control for
deformable object manipulation that does not rely on high-fidelity modeling or sim-
ulation of the object. Our method combines techniques from topologically-based
motion planning with a standard RRT implementation in order to generate gross
motion of the deformable object. The purpose of this gross motion is not to achieve
the task alone, but rather to move the object into a position from which the local
controller is able to complete the task. This division of labour enables each com-
ponent to focus on their strengths rather than attempt to solve the entire problem
directly. As part of our framework, we introduced a novel deadlock prediction al-
gorithm to determine when to use the local controller and when to use the global
planner. Our experiments demonstrate that our framework is able to be applied to
several interesting tasks for rope and cloth, including an adversarial case where we
setup the planner to fail on the first attempt. In principle, these techniques can be
used to extend our work beyond two grippers by using a virtual rubber band between
every pair of grippers, however we have not experimented with such a task.

Interleaving Planning and Control for Deformable Object Manipulation 15

2: Potential fields1: Initial state 3: Deadlock prediction 4: Planned path 5: Path finished

7: Planned path6: Deadlock prediction 8: Path execution 9: Path finished 10: Task finished

Fig. 5 Sequence of snapshots for the fourth experiment. We use the same colors as the previous
experiment (Figure 4), but in this example the local controller gets stuck twice, in panels 3 and
6. In panel 7 the global planner finds a new neighbourhood that is distinct from previously-tried
neighbourhoods.

While we have included elements to handle the need to plan multiple times, there
are several issues left unaddressed. In particular environments with “hooks” can
cause problems due to our approximation methods; the virtual elastic band we use
for constraint checking and planning assumes that there is no minimum length of
the deformable object. This assumption means that our planner cannot detect cases
where the excess material can get snagged on corners or hooks, preventing the mo-
tion plan from being executed. In addition we have no explicit method to avoid
twisting or knot-tying behaviour. While shortcut smoothing can potentially mitigate
the worst effects, this is not something that is within the scope of this work. Last, we
cannot guarantee that we can achieve any given task in general; our sampling and
nearest neighbour functions do not guarantee probabilistic completeness, and while
our blacklisting method is designed to encourage exploration of the state space, it
also has the potential to block regions of the state space from which the local con-
troller can achieve the task. Despite these limitations we find that our framework is
able to reliably perform complex tasks where neither planning nor control alone are
sufficient.

In future work we plan to address these weaknesses, in particular the snagging
and twisting limitations which are artifacts of our approximation methods. We also
seek to extend our framework to a broader range of tasks, beyond coverage and point
matching applications.

References
1. Anshelevich, E., Owens, S., Lamiraux, F., Kavraki, L.: Deformable volumes in path planning

applications. In: ICRA (2000)
2. Bai, Y., Yu, W., Liu, C.K.: Dexterous Manipulation of Cloth. Computer Graphics Forum 35(2),

523–532 (2016)
3. Berenson, D.: Manipulation of deformable objects without modeling and simulating deforma-

tion. In: IROS (2013)
4. Bhattacharya, S., Likhachev, M., Kumar, V.: Topological constraints in search-based robot

path planning. Autonomous Robots 33(3), 273–290 (2012)

16 Dale McConachie, Mengyao Ruan, and Dmitry Berenson

5. Brass, P., Vigan, I., Xu, N.: Shortest path planning for a tethered robot. Computational Geom-
etry 48(9), 732–742 (2015)

6. Burchan Bayazit, O., Jyh-Ming Lien, Amato, N.: Probabilistic roadmap motion planning for
deformable objects. In: ICRA (2002)

7. Coumans, E.: Bullet physics library. Open source: bulletphysics.org (2010)
8. Essahbi, N., Bouzgarrou, B.C., Gogu, G.: Soft Material Modeling for Robotic Manipulation.

In: Applied Mechanics and Materials (2012)
9. Frank, B., Stachniss, C., Abdo, N., Burgard, W.: Efficient motion planning for manipulation

robots in environments with deformable objects. In: IROS (2011)
10. Gayle, R., Lin, M., Manocha, D.: Constraint-Based Motion Planning of Deformable Robots.

In: ICRA (2005)
11. Hirai, S., Wada, T.: Indirect simultaneous positioning of deformable objects with multi-

pinching fingers based on an uncertain model. Robotica 18(1), 3–11 (2000)
12. Huang, S.H., Pan, J., Mulcaire, G., Abbeel, P.: Leveraging appearance priors in non-rigid

registration, with application to manipulation of deformable objects. In: IROS (2015)
13. Jaillet, L., Siméon, T.: Path deformation roadmaps: Compact graphs with useful cycles for mo-

tion planning. The International Journal of Robotics Research 27(11-12), 1175–1188 (2008)
14. Jiménez, P.: Survey on model-based manipulation planning of deformable objects. Robotics

and Computer-Integrated Manufacturing 28(2), 154–163 (2012)
15. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path

planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Au-
tomation 12(4), 566–580 (1996)

16. Khalil, F., Payeur, P.: Dexterous robotic manipulation of deformable objects with multi-
sensory feedback – a review. In: In-Teh (ed.) Robot Manipulators, Trends and Development,
chap. 28, pp. 587–621 (2010)

17. Lamiraux, F., Kavraki, L.E.: Planning Paths for Elastic Objects under Manipulation Con-
straints. The International Journal of Robotics Research 20(3), 188–208 (2001)

18. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge, U.K. (2006)
19. McConachie, D., Berenson, D.: Bandit-Based Model Selection for Deformable Object Manip-

ulation. WAFR (2016)
20. Moll, M., Kavraki, L.E.: Path Planning for Deformable Linear Objects. IEEE Transactions on

Robotics 22(4), 625–636 (2006)
21. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation,

vol. 29. CRC Press (1994)
22. Navarro-Alarcon, D., Liu, Y.h., Romero, J.G., Li, P.: On the visual deformation servoing of

compliant objects: Uncalibrated control methods and experiments. The International Journal
of Robotics Research 33(11), 1462–1480 (2014)

23. Quinlan, S.: Real-time modification of collision-free paths. Ph.D. thesis, Department of Com-
puter Science, Stanford University (1994)

24. Rodriguez, S., Amato, N.: An obstacle-based rapidly-exploring random tree. In: ICRA (2006)
25. Roussel, O., Borum, A., Taı̈x, M., Bretl, T.: Manipulation planning with contacts for an ex-

tensible elastic rod by sampling on the submanifold of static equilibrium configurations. In:
ICRA (2015)

26. Saha, M., Isto, P., Latombe, J.C.: Motion planning for robotic manipulation of deformable
linear objects. In: Proc. International Symposium On Experimental Robotics (ISER) (2006)

27. Schulman, J., Ho, J., Lee, C., Abbeel, P.: Learning from demonstrations through the use of
non-rigid registration. In: Springer Tracts in Advanced Robotics, vol. 114, pp. 339–354.
Springer International Publishing (2016)

28. Smolen, J., Patriciu, A.: Deformation Planning for Robotic Soft Tissue Manipulation. In:
2009 Second International Conferences on Advances in Computer-Human Interactions, pp.
199–204 (2009)

29. Soonkyum Kim, Likhachev, M.: Path planning for a tethered robot using Multi-Heuristic A*
with topology-based heuristics. In: IROS (2015)

30. Wada, T., Hirai, S., Kawarnura, S., Karniji, N.: Robust manipulation of deformable objects by
a simple PID feedback. In: ICRA (2001)

