
Obeying Constraints During Motion Planning

Dmitry Berenson

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Constraint Definition and Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Defining Constraints on Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Challenges of Constrained Path Planning for Humanoids . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Sampling on Constraint Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Collision Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Pose Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Task Space Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Task Space Region Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Closed-Chain Kinematics Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Balance Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Example Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.1 Reaching to Grasp an Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 Reaching to Grasp Multiple Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.3 Placing an Object into a Cluttered Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.4 The Maze Puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.5 Closed-Chain Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.6 Simultaneous Constraints and Goal Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.7 Manipulating a Passive Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.8 Runtimes for Rejection and Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

D. Berenson (�)
Department of Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI, USA
e-mail: berenson@eecs.umich.edu; dberenson@cs.wpi.edu

© Springer Science+Business Media B.V. 2017
A. Goswami, P. Vadakkepat (eds.), Humanoid Robotics: A Reference,
https://doi.org/10.1007/978-94-007-7194-9_58-1

1

mailto:berenson@eecs.umich.edu
mailto:dberenson@cs.wpi.edu
https://doi.org/10.1007/978-94-007-7194-9_58-1


2 D. Berenson

1 Introduction

Every practical motion planning problem in robotics involves constraints. Whether
the robot must avoid collision or joint limits, there are always states that are not
permissible. Some constraints are straightforward to satisfy, while others can be so
stringent that feasible states are very difficult to find. What makes planning with
constraints challenging is that, for many constraints, it is impossible or impractical
to provide the planning algorithm with the allowed states explicitly; it must discover
these states as it plans. This chapter focuses on constraints relevant to motion
planning for humanoids.

Motion planning for humanoid robots gives rise to a rich variety of tasks that
include constraints on collision avoidance, torque, balance, closed-chain kinemat-
ics, and end-effector pose. Many researchers have developed representations and
strategies to plan with these kinds of constraints, and the goal of this chapter is to
provide an overview of both the representations of the constraints and the strategies
used to enforce them in practical scenarios.

Some of the most important constraints for humanoid robots are functions of
the pose of the robot’s end-effectors, so a large part of this chapter is devoted to
constraints on end-effector pose. However, we also discuss constraints on collision,
balance, and closed-chain kinematics. This chapter focuses on the constraint
representations and techniques to generate configurations that satisfy the constraints.
To see how a sampling-based motion planner can use these kinds of constraint
representations and strategies, the reader is referred to [1].

The techniques presented in this chapter can be applied to tasks where the con-
straints are evaluated as functions of a robot’s configuration (not including velocity
variables). While dynamic motion planning for humanoids is clearly desirable for
many tasks, the planning problem becomes much more difficult, and often only local
methods, such as trajectory optimizers, can be used. Planning without dynamics
restricts the domain to motions that can be performed arbitrarily slowly and thus
excludes domains like dynamic walking. However, quasi-static motion planning is
still applicable to many practical tasks, for instance, many manipulation tasks in
a domestic or industrial environment. Additionally, a sampling-based approach to
planning with the kinds of pose constraints described here has been shown to be
probabilistically complete [2].

In the following sections, we first define the types of constraints we consider
and then present the constrained path planning problem. Next we discuss three
types of methods to generate configurations that satisfy constraints: direct sampling,
rejection sampling, and projection sampling. The sections that follow discuss how
to represent constraints on collision, pose, closed-chain kinematics, and balance,
as well as describing direct, rejection, and projection methods relevant for each
constraint. We conclude with several example problems that show how to specify
constraints for practical tasks, including results for running a motion planner on
these problems.



Obeying Constraints During Motion Planning 3

2 Constraint Definition and Strategies

Depending on the robot and the task, many types of constraints can limit a robot’s
motion. One of the most common distinctions in the robotics literature is between
holonomic and nonholonomic constraints. A holonomic constraint is one that can
be expressed as a function of the configuration of the robot q (and possibly time
t ) and has the form F .q; t/ D 0. A nonholonomic constraint is one that cannot be
expressed in this way. It is important to note that the definition of holonomic above
does not allow inequalities, i.e., it must be a bilateral constraint. This fact implies
that constraints that are typically thought of as holonomic in robotics literature such
as collision avoidance are in fact nonholonomic. To preserve consistency with the
robotics literature, we will relax the definition of holonomic constraints to include
inequality constraints for the purposes of this chapter.

Nonholonomic constraints are ones that are impossible to represent as a function
of only the configuration of the robot and time. A classical example of such a
constraint is the kinematics of the unicycle, which can move forward and back and
rotate about the center of the wheel but cannot move sideways. This constraint can
be expressed as

F . Px; Py; �/ D Px sin � � Py cos �: (1)

Some constraints that depend on the derivatives of configuration variables can
be integrated into holonomic constraints, but the above one cannot; thus it is
nonholonomic. This is the reason that nonholonomic constraints are sometimes
referred to as nonintegrable constraints.

There is also a distinction between constraints with respect to their dependence
on time. If a constraint depends on time (among other variables), it is referred to as
rheonomic; otherwise it is referred to as scleronomic.

2.1 Defining Constraints on Configuration

In motion planning for humanoid robots, a common and effective approach is to
plan paths in the configuration space of the robot and then track those trajectories
with appropriate controllers [3]. Thus this chapter focuses on constraints that are
functions of the robot’s configuration only, i.e., scleronomic holonomic constraints.
After a path in C-space is computed, it is then necessary to retime the path to assign
a time index to each configuration, i.e., creating a trajectory, which can then be
executed.

Let the configuration space of the robot be Q. A path in that space is defined by
� W Œ0; 1� ! Q. We consider constraints evaluated as a function of a configuration
q 2 Q in � . The location of q in � determines which constraints are active at that
configuration. Thus a constraint is defined as the pair fC.q/; sg, where C.q/ 2 R �

0 is the constraint evaluation function and s � Œ0; 1� is the domain of the constraint.



4 D. Berenson

C.q/ determines whether the constraint is met at that q and s specifies where in the
path � the constraint is active. To say that a given constraint is satisfied, we require
that C.q/ D 0 8q 2 �.s/. For instance, we may require that � start at a given
configuration qstart:

C.q/ D

�
0 if q D qstart

1 otherwise
for q D �.0/ (2)

We may also require that � be collision-free everywhere along the path. The
collision-avoidance constraint is then defined as

C.q/ D

�
1 if InCollision.q/
0 otherwise

8q 2 �.Œ0; 1�/: (3)

Each constraint defined in this way implicitly defines a manifold in Q where �.s/
is allowed to exist. Given a constraint, the manifold of configurations that meet this
constraint MC � Q is defined as

MC D fq 2 Q W C.q/ D 0g: (4)

In order for � to satisfy a constraint, all the elements of �.s/must lie within MC .
If 9q …MC for q 2 �.s/, then � is said to violate the constraint.

In general, we can define any number of constraints for a given task, each with
their own domain. Let a set of n constraint-evaluation functions be C and the set
of domains corresponding to those functions be S . Then we define the constrained
path planning problem as

find � W q 2MCi 8q 2 �.Si /
8i 2 f1: : :ng:

(5)

Note that the domains of two or more constraints may overlap in which case an
element of � may need to lie within two or more constraint manifolds. For example,
to specify a reaching task for a humanoid, we define three pose constraints: The first
two pose constraints keep the feet fixed through the entire motion (S1 D Œ0; 1�, S2 D
Œ0; 1�), and the third pose constraint specifies that the arm’s end-effector should be at
a certain pose at the end of the path (S3 D 1). Thus all configurations along the path
must have the feet fixed, while at the last configuration in the path, the feet must be
fixed and the arm’s end-effector must be at the goal pose.

2.2 Challenges of Constrained Path Planning for Humanoids

Two main issues make solving the constrained path planning problem difficult for
humanoids. First, constraint manifolds are difficult to represent, even for low-DOF



Obeying Constraints During Motion Planning 5

1
0

–1

–1.5

1.5

1

–1

–0.5

0.5

0

–3
–2

–1

a

b

Fig. 1 (a) Pose constraint for a three-link manipulator: The end-effector must be on the line with
an orientation within ˙ 0:7 rad of downward. (b) The manifold induced by this constraint in the
C-space of this robot

robots. There is no known analytical representation for many types of constraint
manifolds (including pose constraints), and the high-dimensional C-spaces of
humanoids make representing the manifold through exhaustive sampling or dis-
cretization prohibitively expensive. It is possible to parameterize some constraint
manifolds; however this can be insufficient for planning paths because the mapping
from the parameter space to the manifold can be non-smooth (see Fig. 1). Thus,
although we can construct a smooth path in the parameter space, its image on
the constraint manifold may be disjoint. Restrictions imposed on the mapping to
render it smooth, like imposing a one-to-one mapping from pose to configuration,
compromise on completeness.

Second, and acutely important for the pose constraints needed for humanoid
motion planning, is the fact that constraint manifolds can be of a lower dimen-
sion than the ambient C-space. Lower-dimensional manifolds cannot be sampled
using rejection sampling (the sampling technique employed by most sampling-
based planners), and thus more sophisticated sampling techniques are required.
A key challenge is to demonstrate that the distribution of samples produced by
these techniques densely covers the constraint manifold, which is necessary for
probabilistic completeness.

To overcome these challenges, a planner must be able to generate configurations
on (possibly lower-dimensional) constraint manifolds in high-dimensional spaces.
Below we discuss three strategies that can be used to generate such configurations
through sampling.



6 D. Berenson

2.3 Sampling on Constraint Manifolds

We describe three sampling strategies for generating configurations on constraint
manifolds: rejection, projection, and direct sampling (see Fig. 2).

In the rejection strategy, we simply generate a random sample q 2 Q and check
if C.q/ D 0; if this is not the case, we deem q invalid. This strategy is effective
when there is a high probability of randomly sampling configurations that satisfy
this constraint; in other words, MC occupies some significant volume in Q. This
strategy is used to satisfy torque, balance, and collision constraints, among others.

The projection strategy is robust to more stringent constraints, namely, ones
whose manifolds do not occupy a significant volume of the C-space. However this
robustness comes at the price of requiring a function to evaluate how close a given
configuration is to the constraint manifold, i.e., C.q/ needs to encode some measure
of distance to the manifold. The projection strategy first generates a q0 2 Q and then
moves that q0 onto MC . The most common type of projection operator relevant for
our application is an iterative gradient descent process. Starting at q0, the projection
operator iteratively moves the configuration closer to the constraint manifold so that
C.qiC1/ < C.qi /. This process terminates when the gradient descent reaches a
configuration on MC , i.e., when C.qi / D 0 (numerically, a small threshold is used
to determine when the projection terminates). A key advantage of the projection
strategy is that it is able to generate valid configurations near other configurations
on MC , which allows us to use it in algorithms based on the RRT [4]. This strategy
is used to sample on lower-dimensional constraint manifolds, such as those induced
by end-effector pose or closed-chain kinematics constraints.

Finally, the direct sampling strategy uses a parameterization of the constraint to
generate samples on MC . This strategy is specific to the constraint representation,
and the mapping from the parameterization to MC can be arbitrarily complex.
Though this strategy can produce valid samples, it can be difficult to generate
samples in a desired region of MC , for instance, generating a sample near other
samples (a key requirement for building paths). Thus this strategy is mainly
used when sampling goal configurations, not to build paths – e.g., using inverse

Fig. 2 The three sampling strategies used in our framework. Red dots represent invalid samples
and green dots represent valid ones. (Left) rejection sampling, (center) projection sampling, (right)
direct sampling from a parameterization of the constraint



Obeying Constraints During Motion Planning 7

kinematics to determine a goal configuration of the robot given a set of target end-
effector poses.

A given constraint may be sampled using one or more of these strategies. The
choice of strategy depends on the definition of the constraint as well as the path
planning algorithm. Sometimes a mix of strategies may be appropriate. For instance,
a PRM [5] planning with pose constraints may use the direct sampling strategy
to generate a set of map nodes but may switch to the projection strategy when
constructing edges between those nodes.

We now discuss constraints commonly used for humanoid robot motion planning
and which strategies are effective for which constraints. This chapter focuses mainly
on pose constraints, as they are especially important for humanoid motion.

3 Collision Constraints

Perhaps the most important and widely studied type of constraint in motion planning
is the constraint that no link of the robot may collide with any other link (called
“self-collision”) or an obstacle in the environment. Collision detection has been
studied extensively in the context of computer graphics (see [6] for a survey), as well
as in robotics. Though 3D shapes can be represented in a variety of ways, in robotics
applications, links and obstacles are often represented as either composites of
geometric primitives (e.g., cylinders, boxes, and spheres) or triangle meshes. Com-
posites of primitives are advantageous because computing whether two primitives
intersect can be done very efficiently. However, composites of primitives usually
overestimate the volume of the link, thus resulting in a conservative approximation.
For particularly complex links, many primitives may be necessary, which impacts
computation time. Triangle meshes are the most expressive representation, but
checking for intersection between them can be computationally expensive. Several
open-source libraries have been adopted by the robotics community for computing
triangle mesh intersections [7, 8].

In many robotics applications, self-collisions and collision with the environment
are checked using the same methods. However, because of the large number of
humanoid links, specialized methods for humanoid self-collision checking have
been proposed. These methods prune the number of collision checks to perform
using a table of links that have the potential to collide. This table can be constructed
using heuristic or exhaustive search methods [9, 10]. Convex hulls can also be
constructed around complex links to increase the speed of self-collision checking
[11], which again usually overestimate the geometry of the links.

Some strategies used to generate collision-free configurations require not only a
binary check for determining if a link is in collision but also a distance measurement
between a link and the nearest obstacle. Collision libraries often include this
distance-checking feature (most notably the PQP library [7]), though computing
distances between triangle meshes is generally more expensive than checking for
collision.



8 D. Berenson

The manifold of collision-free configurations is usually assumed to have the same
dimension as the C-space; thus the most common strategy for finding collision-
free configurations of a robot is rejection sampling. In this strategy, a configuration
generated by a planner is set on the robot using forward kinematics, and a collision
query is used to determine if any link of the robot is in collision. This strategy
is effective when the manifold of configuration-free configurations has significant
volume in the configuration space. However, the task the robot needs to perform
may require traversing a part of the C-space where the collision-free manifold
narrows, i.e., a narrow passage. In such cases, specialized narrow-passage sampling
methods can be used to bias the rejection sampling [12–14]. For humanoids, narrow
passages can have significantly different width in different C-space dimensions. For
example, one arm of the humanoid may be in a collision-free area, while the other
arm must navigate through a narrow opening. In such cases, methods that estimate
the variance of samples in different dimensions can be used to create more effective
samplers [15].

Researchers have also investigated using projection-based methods to generate
configurations that meet collision constraints. In this approach, if a configuration is
in collision, local projection methods can be used to retract the configuration to the
obstacle boundary. Computing the closest configuration on the obstacle boundary
can be expensive for an articulated robot due to the need to compute the C-space
penetration depth (though penetration depth can be computed for two free bodies in
3D [16]). Instead, projection to the obstacle boundary can be accomplished locally
by using the pseudo-inverse of the Jacobian. The Jacobian is computed for a point
p on a link that has penetrated an obstacle, and along with a vector that points out
of the obstacle from p, the Jacobian can be used to iteratively “push” the colliding
configuration to the obstacle boundary [17, 18].

4 Pose Constraints

The pose of a manipulator’s end-effector is represented as a point in SE.3/, the
six-dimensional space of rigid spatial transformations. Many practical manipulation
tasks, like moving a large box or opening a refrigerator door, impose constraints
on the motion of a robot’s end-effector(s) as well as allowing freedom in the
acceptable goal pose of the end-effector. For example, consider a humanoid robot
placing a large box onto a table. Although the humanoid’s hands are constrained to
grasp the box during manipulation, the task of placing the box on the table affords
a wide range of box placements and robot configurations that achieve the goal.
Sampling-based motion planning for tasks with pose constraints has been explored
by several researchers [1, 19–21], with the differences among methods being in
the representation of the constraints and the sampling methods used to generate
configurations on constraint manifolds. Below we present the task space region
(TSR) representation of pose constraints, as it has been shown to be particularly
useful for planning manipulation tasks for humanoids [22]. The ability of TSRs to
capture constraints relevant to humanoid manipulation is shown in Sect. 7.



Obeying Constraints During Motion Planning 9

4.1 Task Space Regions

TSRs are a straightforward pose constraint representation that can capture many use-
ful tasks. For more complex tasks, we have also developed TSR Chains (Sect. 4.2),
which are defined by linking a series of TSRs. TSRs build on a long history of
constraint-based problem specification. Seminal theoretical work in this area was
done by Ambler and Popplestone [23], who specify geometric constraints between
features of two objects and then solve for the pose of a robot which assembles these
objects using symbolic methods. The AL system [24, 25] encoded pose constraints
on object placement as inequalities of position and rotation variables, which is
similar to the bounds of a TSR. The AutoPASS system [26] allowed specifying
pose constraints for primitive motions of a manipulator.

More recent work in sampling-based planning involves planning to a goal pose
[27, 28] or set of goal poses [29] for the end-effector. The representations used
in this work are subsumed by TSRs. Stilman [19] presented a representation for
pose constraints on the robot’s path, which is also subsumed by TSRs. Finally, a
representation similar to TSRs was used by De Schutter et al. [30] for a controller
that maintained the pose of a frame on the robot in a set defined relative to a frame
in the environment.

Task space regions (TSRs) describe end-effector constraint sets as subsets of
SE.3/. These subsets are particularly useful for specifying manipulation tasks
ranging from reaching to grasp an object and placing it on a surface or in a volume
to manipulating objects with constraints on their pose such as transporting a glass
of water without spilling or sliding a milk jug on a table.

TSRs are specifically designed to be used with sampling-based planners. As
such, it is straightforward to specify TSRs for common tasks, to compute distance
from a given pose to a TSR (necessary for the projection strategy), and to sample
from a TSR using direct sampling. Furthermore, multiple TSRs can be defined for a
given task, which allows the specification of multiple simultaneous constraints and
affordances.

TSRs are not intended to capture every conceivable constraint on pose. Instead
they are meant to be simple descriptions of common manipulation tasks that
are useful for planning. Section 4.2 presents a more complex representation for
articulated constraints called TSR Chains.

4.1.1 TSR Definition
Throughout this section, we will be using transformation matrices of the form
Tab , which specifies the pose of b in the coordinates of frame a. Tab , written in
homogeneous coordinates, consists of a 3 � 3 rotation matrix Ra

b and a 3 � 1
translation vector tab :

Tab D
�

Ra
b tab

0 1

�
(6)



10 D. Berenson

A TSR consists of three parts:

• T0w: transform from the origin to the TSR frame w
• Tw

e : end-effector offset transform in the coordinates of w
• Bw: 6 � 2 matrix of bounds in the coordinates of w:

Bw D

2
66666664

xmin xmax
ymin ymax
zmin zmax
 min  max
�min �max
�min �max

3
77777775

(7)

The first three rows of Bw bound the allowable translation along the x-, y-, and
z-axes (in meters), and the last three bound the allowable rotation about those axes
(in radians), all in the w frame. Note that this assumes the roll-pitch-yaw (RPY)
Euler angle convention, which is used because it allows bounds on rotation to be
intuitively specified.

In practice, the w frame is usually centered at the origin of an object held by the
hand or at a location on an object that is useful for grasping. We use an end-effector
offset transform Tw

e , because we do not assume that w directly encodes the pose of
the end-effector. Tw

e allows the user to specify an offset from w to the origin of the
end-effector e, which is extremely useful when we wish to specify a TSR for an
object held by the hand or a grasping location which is offset from e; for instance,
in between the fingers. For some example Tw

e transforms, see Fig. 3.

4.1.2 Distance to TSRs
When using the projection strategy with TSRs, it will be necessary to find the
distance from a given configuration qs to a TSR (please follow the explanation below
in Fig. 4). Because we do not have an analytical representation of the constraint
manifold corresponding to a TSR, we compute this distance in task space. Given
a qs , we use forward kinematics to get the position of the end-effector at this
configuration T0s . We then apply the inverse of the offset Tw

e to get T0s0 , which is

Fig. 3 The w and e frames used to define end-effector goal TSRs for a soda can and a pitcher



Obeying Constraints During Motion Planning 11

Fig. 4 Transforms and
coordinate frames involved in
computing the distance to
TSRs. The robot is in a
sample configuration which
has end-effector transform s

and the hand near the soda
can at transform e represents
the Tw

e defined by the TSR

the pose of the grasp location or the pose of the object held by the hand in world
coordinates:

T0s0 D T0s .T
w
e /
�1 (8)

We then convert this pose from world coordinates to the coordinates of w:

Tw
s0 D .T

0
w/
�1T0s0 (9)

Now we convert the transform Tw
s0 into a 6 � 1 displacement vector from the

origin of the w frame. This displacement represents rotation in the RPY convention
so it is consistent with the definition of Bw:

dw D

2
6664

tw
s0

arctan 2.Rw
s032
;Rw

s033
/

� arcsin.Rw
s031
/

arctan 2.Rw
s021
;Rw

s011
/

3
7775 (10)

Taking into account the bounds of Bw, we get the 6 � 1 displacement vector to
the TSR �x:

�xi D

8<
:
dw
i � Bw

i;1 if dw
i < Bw

i;1

dw
i � Bw

i;2 if dw
i > Bw

i;2

0 otherwise
(11)



12 D. Berenson

where i indexes through the six rows of Bw and six elements of �x and dw. k�xk
is the distance to the TSR. Note that we implicitly weigh rotation in radians and
translation in meters equally when computing k�xk, but the two types of units can
be weighed in an arbitrary way to produce a distance metric that considers one or the
other more important. Because of the inherent redundancy of the RPY Euler angle
representation, there are several sets of angles that represent the same rotation. To
find the minimal distance by our metric, we evaluate the norm of each of the possible
RPY angle sets capable of yielding the minimum displacement. This set consists of
the f�x4;�x5;�x6g defined above as well as the eight equivalent rotations f�x4˙
�;��x5 ˙ �;�x6 ˙ �g.

If we define multiple TSRs for a given manipulator, we extend our distance
computation to evaluate distance to all relevant TSRs and return the smallest.

4.1.3 Direct Sampling of TSRs
When using TSRs to specify goal end-effector poses, it will be necessary to
sample poses from TSRs. Sampling from a single TSR is done by first sampling a
random value between each of the bounds defined by Bw with uniform probability.
These values are then compiled in a displacement dw

sample and converted into the
transformation Tw

sample. We can then convert this sample into world coordinates after
applying the end-effector transform:

T0sample0 D T0wTw
sampleTw

e (12)

We observe that while our method ensures a uniform sampling in the bounds
of Bw, it could produce a biased sampling in the subspace of constrained spatial
displacements SE.3/ that Bw parameterizes. However this bias has not had a
significant impact on the runtime or success rate of our algorithms.

In the case of multiple TSRs specified for a single task, we must first decide
which TSR to sample from. If the bounds of all TSRs enclose six-dimensional
volumes, we can choose among TSRs in proportion to their volume. However a
volume-proportional sampling will ignore TSRs that encompass volumes of less
than six dimensions because they have no volume in the six-dimensional space.
To address this issue, we use a weighted sampling scheme that samples TSRs
proportional to the sum of the differences between their bounds:

�i D

6X
jD1

�
Bwi
j;2 � Bwi

j;1

�
(13)

where �i and Bwi are the weight and bounds of the i th TSR, respectively. Sampling
proportional to �i allows us to sample from TSRs of any dimension except 0 while
giving preference to TSRs that encompass more volume. TSRs of dimension 0, i.e.,
points, are given a fixed probability of being sampled. In general, any sampling
scheme for selecting a TSR can be used as long as there is a nonzero probability of
selecting any TSR.



Obeying Constraints During Motion Planning 13

4.1.4 Planning with TSRs as Goal Sets
TSRs can be used to sample goal end-effector placements of a manipulator, as would
be necessary in a grasping or object placement task. The constraint for using TSRs
in this way is

fC.q/ D DistanceToTSR.q/; s D Œ1�g: (14)

where the DistanceToTSR function implements the method of Sect. 4.1.2 and s
refers to the domain of the constraint (Sect. 2).

To generate valid configurations in the MC corresponding to this constraint,
we can use direct sampling of TSRs (Sect. 4.1.3) and pass the sampled pose to
an IK solver to generate a valid configuration. In order to ensure that we do not
exclude any part of the constraint manifold, the IK solver used should not exclude
any configurations from consideration. This can be achieved using an analytical IK
solver for manipulators with six or fewer DOF. For manipulators with more than six
DOF, we can use a pseudo-analytical IK solver, which discretizes or samples all but
six joints.

Alternatively, we can use the projection strategy to sample the manifold.
This would take the form of an iterative IK solver, which starts at some initial
configuration. This configuration should be randomized to ensure exploration of
the constraint manifold. Note that this strategy is prone to local minima and can be
relatively slow to compute, so we use it only when an analytical or pseudo-analytical
IK solver is not available (for instance, with a humanoid).

Of course the same definition and strategies apply to sampling starting configu-
rations as well as goal configurations.

4.1.5 Planning with TSRs as Pose Constraints
TSRs can also be used for planning with constraints on end-effector pose for the
entire path. The constraint definition for such a use of TSRs differs from Eq. 14 in
the domain of the constraint:

fC.q/ D DistanceToTSR.q/; s D Œ0; 1�g: (15)

Since the domain of this constraint spans the entire path, the planning algorithm
must ensure that each configuration it deems valid lies within the constraint
manifold. While the rejection strategy can be used to generate valid configurations
for TSRs whose bounds encompass a six-dimensional volume, the projection
strategy can be used for all TSRs.

One method of projection for TSRs is shown in Algorithm 1. This method uses
the Jacobian pseudo-inverse (JC) [31] to iteratively move a given configuration to
the constraint manifold defined by a TSR.

The DisplacementFromTSR function returns the displacement from q to a TSR,
i.e., the result of Eq. 11. The GetJacobian function computes the Jacobian of
the manipulator at q. Though Algorithm 1 describes the projection conceptually,
in practice we must also take into account the issues of step-size, singularity



14 D. Berenson

Algorithm 1: JCProjection(q)

1 while true do
2 �x DisplacementFromTSR(q);
3 if k�xk < 	 then
4 return q;
5 end
6 J GetJacobian(q);
7 �qerror  JT .JJT /�1�x;
8 q .q ��qerror /;
9 end

avoidance, and joint limits when projecting configurations. We showed, in [1], that
the distribution of samples generated on the constraint manifold by this projection
operator covers the manifold, which is a necessary property for probabilistic
completeness of sampling-based planners.

It is important to note that we can also use the method of Sect. 4.1.3 to generate
samples directly from TSRs and then compute IK to obtain configurations that
place the end-effector at those samples. Such a strategy would be especially useful
when planning in task space, i.e., the parameter space of pose constraints, instead
of C-space because it would allow the task space to be explored while providing
configurations for each task space point (similar to [32]). However, planning in
C-space with projection methods allows us to compute configurations that satisfy
multiple constraints at once, while at the same time guaranteeing probabilistic
completeness.

4.2 Task Space Region Chains

While TSRs are intuitive to specify and can be quickly sampled, and the distance
to TSRs can be evaluated efficiently, a single TSR, or even a finite set of TSRs, is
sometimes insufficient to capture the pose constraints of a given task. To describe
more complex constraints such as manipulating articulated objects, this chapter
introduces the concept of TSR Chains, which are defined by linking a series of
TSRs. Though direct sampling of TSR Chains follows clearly from that of TSRs,
the distance metric for TSR Chains is extremely different.

To motivate the need for a more complex representation, consider the task of
opening a door while allowing the end-effector to rotate about the door handle (see
Fig. 5). It is straightforward to specify the rotation of the door about its hinge as a
single TSR and to specify the rotation of the end-effector about the door’s handle
as a single TSR if the door’s position is fixed. However, the product of these two
constraints (allowing the end-effector to rotate about the handle for any angle of the
hinge) cannot be completely specified with a finite set of TSRs. In order to allow
more complex constraint representations in the TSR framework, we present TSR
Chains, which are constructed by linking a series of TSRs.



Obeying Constraints During Motion Planning 15

Fig. 5 The virtual
manipulator for the door
example. The green dotted
lines represent the links of the
virtual manipulator, and the
red dot and arrow represent
the virtual end-effector,
which is at transform T0vee

4.2.1 TSR Chain Definition
A TSR chain C D fC1;C2; : : : ;Cng consists of a set of n TSRs with the following
additional property:

Ci :T0w D .Ci�1:T0w/.Ci�1:Tw
sample/.Ci�1:Tw

e / (16)

for i D f2: : :ng where Ci corresponds to the i th TSR in the chain and Ci :f�g refers
to an element of the i th TSR. Of course a TSR Chain can consist of only one TSR, in
which case it is identical to a normal TSR. Ci :Tw

sample can be any transform obtained

by sampling from inside the bounds of Ci :Bw. Thus we do not know Ci :T0w until we
have determined Tw

sample values for all previous TSRs in the chain. By coupling TSRs
in this way, the TSR Chain structure can represent constraints that would otherwise
require an infinite number of TSRs to specify.

A TSR chain can also be thought of as a virtual serial-chain manipulator. Again
consider the door example. To define the TSR chain for this example, we can
imagine a virtual manipulator that is rooted at the door’s hinge. The first link of the
virtual manipulator rotates about the hinge and extends from the hinge to the handle.
At the handle, we define another link that rotates about the handle and extends to
where a robot’s end-effector would be if the robot were grasping the handle (see
Fig. 5). C1:Tw

sample would be a rotation about the door’s hinge corresponding to how
much the door had been opened. In this way, we could see the Tw

sample values for
each TSR as transforms induced by the “joint angles” of the virtual manipulator.
The joint limits of these virtual joints are defined by the values in Bw.



16 D. Berenson

4.2.2 Direct Sampling from TSR Chains
To directly sample a TSR Chain, we first sample from within C1:Bw to obtain
C1:Tw

sample. This is done by sampling uniformly between the bounds in Bw,
compiling the sampled values into a displacement dw

sample D [x y z  � �], and
converting that displacement to the transform C1:Tw

sample. We then use this sample to

determine C2:T0w via Eq. 16. We repeat this process for each TSR in the chain until
we reach the nth TSR. We then obtain a sample in the world frame:

T0sample0 D .Cn:T0w/.Cn:Tw
sample/.Cn:Tw

e /: (17)

Note that the sampling of TSR Chains in this way is biased, but the sampling
will cover the entire set. To see this, imagine a virtual manipulator with many links.
It can be readily seen that many sets of different joint values (essentially Tw

sample
values) of the virtual manipulator will map to the same end-effector transform.
However, if the virtual manipulator’s end-effector is at the boundary of the virtual
manipulator’s reachability, only one set of joint values maps to the end-effector pose
(when the manipulator is fully outstretched). Thus some T0sample0 values can have a
higher chance of being sampled than others, depending on the definition of the TSR
Chain. Clearly a uniform sampling would be ideal, but we have found that this
biased sampling is sufficient for the practical tasks we consider.

If there is more than one TSR Chain defined for a single manipulator, this means
that we have the option of drawing a sample from any of these TSR Chains. We
choose a TSR Chain for sampling with probability proportional to the sum of the
differences between the bounds of all TSRs in that chain.

4.2.3 Distance to TSR Chains
Though the sampling method for TSR Chains follows directly from the sampling
method for TSRs, evaluating distance to a TSR Chain is fundamentally different
from evaluating distance to a TSR. This is because we do not know which Tw

sample
values for each TSR in the chain yield the minimum distance to a query transform
T0s (derived from a query configuration qs using forward kinematics).

To approach this problem, it is again useful to think of the TSR chain as a
virtual manipulator (see Fig. 6a). Finding the correct Tw

sample values for each TSR is
equivalent to finding the joint angles of the virtual manipulator that bring its virtual
end-effector as close to T0s as possible. Thus we can see this distance-checking
problem as a form of the standard IK problem, which is to find the set of joint
angles that places an end-effector at a given transform. Depending on the TSR
Chain definition and T0s , the virtual manipulator may not be able to reach the desired
transform, in which case we want the virtual end-effector to get as close as possible.
Thus we can apply standard iterative IK techniques based on the Jacobian pseudo-
inverse to move the virtual end-effector to a transform that is as close as possible
to T0s (see Fig. 6b). Once we obtain the joint angles of the virtual manipulator, we
convert them to Tw

sample values and forward-chain to obtain the virtual end-effector

position T0vee. We then convert T0s to the virtual end-effector’s frame:



Obeying Constraints During Motion Planning 17

Fig. 6 Depiction of the IK handshaking procedure. (a) The virtual manipulator starts in some
configuration. (b) Finding the closest configuration of the virtual manipulator. (c) The robot’s
manipulator moves to meet the constraint

Tvee
s D .T

0
vee/
�1T0s (18)

and then convert to the displacement form

dvees D

2
664

tvee
s

arctan 2.Rvee
s32
;Rvee

s33
/

� arcsin.Rvee
s31
/

arctan 2.Rvee
s21
;Rvee

s11
/

3
775 : (19)

kd vee
s k is the distance between T0s and T0vee.
Once the distance is evaluated, we can employ the projection strategy by calling

the IK algorithm for the robot’s manipulator to move the robot’s end-effector to T0vee
to meet the constraint specified by this TSR Chain (Fig. 6c). We term this process
of calling IK for the virtual manipulator and the robot in sequence IK Handshaking.

Just as with TSR Chains used for sampling, we may define more than one TSR
Chain as a constraint for a single manipulator. This means that we have the option of
satisfying any of these TSR Chains to produce a valid configuration. To find which
chain to satisfy, we perform the distance check from our current configuration to
each chain and choose the one that has the smallest distance.

4.2.4 Physical Joints and TSR Chains
In the door example, the first TSR corresponds to a physical joint of a body in the
environment, but the second one is purely virtual, i.e., defining a relation between
two frames that is not enforced by a joint in the environment (in this case the relation
is between the robot’s end-effector and the handle of the door). It is important
to note that TSR Chains inherently accommodate such mixing of real and virtual



18 D. Berenson

constraints. In fact a TSR Chain can consist of purely virtual or purely physical
constraints. However, when planning with TSR Chains, special care must be taken
to ensure that any physical joints (such as the door’s hinge) be synchronized with
their TSR Chain counterparts. This is done by including the configuration of any
physical joints corresponding to elements of TSR Chains in the configuration space
searched by the planner.

In the case that the physical constraints included in the TSR Chain form a
redundant manipulator, the inverse-kinematics algorithm for the TSR Chain should
be modified to account for the physical properties of the chain. For instance, if the
chain is completely passive, a term that minimizes the potential energy of the chain
should be applied in the null space of the Jacobian pseudo-inverse to find a local
minimum-energy configuration of the chain. In general, chains can have various
physical properties that may not be easy to account for using an IK solver. In that
case, we recommend a physical simulation of the movement of the end-effector
from its initial pose to T0vee as it is being pulled by the robot to find the resting
configuration of the chain.

5 Closed-Chain Kinematics Constraints

Another important constraint to address in whole-body or two-arm manipulation
is closed-chain kinematics constraints. For instance, a closed-kinematic chain is
formed whenever a humanoid is in the double-support phase or whenever both
the humanoid’s arms are holding an object. The closed-chain constraint is difficult
to plan with because it induces a lower-dimensional constraint manifold in the
configuration space that cannot be sampled using rejection sampling. What is
worse, the closed-chain configuration manifold consists of parts that are of varying
dimensionality; the manifold is “pinched” at kinematic singularities [33] (see
Fig. 7).

Approaches for sampling these kinds of constraint manifolds fall into two
categories: direct sampling and projection methods. In direct sampling, the end-
effector poses can be generated first (e.g., relative to sampled positions of the
object, both hands are holding), and IK is solved to generate the robot configuration.
However, the IK solver may generate very different configurations for nearby poses

Fig. 7 Illustration of a
singularity in a closed-chain
constraint manifold. M1 and
M1 are pieces of the
closed-chain constraint
manifold. M1 and M2

intersect at a singular part of
the manifold S, which is of a
lower dimension than M1

and M2



Obeying Constraints During Motion Planning 19

(e.g., elbow up vs. elbow down), making it difficult to connect samples into a
graph/tree. Nevertheless, effective direct sampling methods have been produced,
such as the random loop generator [34] and [33]. However, it is may be difficult
to integrate these specialized methods with other simultaneous constraints the
humanoid must obey.

The second approach is projection sampling. In fact, one of the earliest projection
sampling approaches in motion planning was applied to the problem of generating
configurations that obeyed closed-chain kinematics constraints [35]. It is also
possible to apply projection sampling to closed-chain constraints by representing
them using the TSR framework described above. This can be done in two ways: For
end-effector poses that do not move (e.g., the feet during a reaching motion), we
can specify TSRs that keep the end-effectors at a certain pose by setting Bw D 06�2.
For end-effector poses that do move, we specify a TSR for one end-effectors with
respect to the other end-effector involved in the closed chain. For example, consider
that the robot is lifting a large box with two hands. To encode the closed-chain
constraint, we specify that the T0w of the second arm be defined with respect to
the end-effector pose of the first arm instead of the world frame. When we sample
a new configuration of the robot in the ambient C-space, the arms will naturally
not obey the closed-chain constraint, and when we apply the projection for TSRs,
the second arm will move to obey the closed-chain constraint, while the first arm
stays fixed. In this way closed-chain constraints can be encoded in the same way
as pose constraints (and can be specified alongside pose constraints) in the TSR
framework. This construction will allow us to sample the generic parts of the
constraint manifold, but specialized sampling methods will be needed to explicitly
explore the singular parts of the manifold (such as those described above). Though
we have not observed the need to incorporate these specialized methods in practice,
they may be useful when the only way to reach a goal is to move through a singular
configuration.

6 Balance Constraints

Unlike fixed-base robots or many mobile manipulators, motion planning for
humanoid robots requires taking into account the balance constraints of the robot.
This chapter focuses on quasi-static motion planning, so here we consider quasi-
static balance constraints. Many methods in humanoid walking consider dynamic
balance criteria such as zero moment point (ZMP) [36]; however in the quasi-static
case, the constraint on the robot reduces to keeping its center of mass (CoM) above
its support polygon. When the contacts between the robot and the environment are
restricted to a single plane (e.g., two feet on flat ground), the support polygon is the
convex hull of the contacts. Support polygons can also be computed for nonplanar
contacts, as shown in work on climbing robots [37,38]. Recent work [39] has shown
how to generalize stability computation to nonplanar contacts without computing a
support polygon. Instead they use methods similar to those developed for checking
the force-closure criterion in grasping [40], which operate on the contacts directly.



20 D. Berenson

In the case of planar contacts, unless the support polygon is degenerate (i.e.,
reduces to a line), the manifold of configurations that are in balance is of the
same dimension as the C-space. Thus, we can use rejection sampling to find
configurations that are in balance by sampling a configuration, performing forward
kinematics to determine the pose of all links, computing the center of mass, and
checking if the projection of the center of mass onto the ground plane (in the case
of planar contact) is within the support polygon or not.

Projection can also be used to find configurations that are in balance. Projecting a
configuration to the balance constraint manifold requires computing a Jacobian for
the CoM [41]. Let Ji be the Jacobian for the CoM of link i of the robot and mi be
the mass of this link. Then the Jacobian for the CoM of the robot is

Jcom D

P
i miJiP
i mi

: (20)

Using the pseudo-inverse of Jcom, we can servo the center of mass toward a
given target, such as the center of the support polygon or the closest boundary
of the polygon, which effectively projects the configuration of the robot to the
constraint manifold. It is also possible to combine this projection operation with
projections to other constraints, e.g., to satisfy pose constraints for the end-effectors
using recursive null-space projection [17].

7 Example Problems

To demonstrate how the above constraints can be used for practical tasks involv-
ing robot arms and humanoids, this section describes several example problems
described in terms of the constraints used. We also present results from running
the CBiRRT2 motion planning algorithm [1] on these problems. CBiRRT2 is a
sampling-based planner that uses projection sampling to satisfy pose and closed-
chain kinematics constraints and rejection sampling to satisfy constraints on balance
and collision.

The first four examples are implemented on a 7DOF Barrett arm and the last
three on the 28DOF of the HRP3 robot. The first three examples describe how to
use TSRs for goal pose specification. The next example shows how to use TSRs
as pose constraints throughout the path. The last three examples show how to mix
goal and pose TSRs and TSR Chains. At the end of this chapter, we analyze the
computational cost of the operations of CBiRRT2 on a door-opening task for both
robots.

Since the TSR Chain representation subsumes the TSR representation, each
example problem can be implemented using TSR Chains. However we do not
describe a chained implementation when only chains of length 1 are used so that the
explanation is clearer. All experiments were performed on a 2.4 GHz Intel CPU with
4 GB of RAM using the OpenRAVE simulation and planning environment [42]. The



Obeying Constraints During Motion Planning 21

planner takes two parameters, �qstep 2 R, which is the step size between nodes in
the RRT extension operation, and Psample 2 Œ0; 1�, which is the probability of the
algorithm attempting to sample a new goal configuration (vs. extending the tree)
in a given iteration. The Psample parameter is only relevant when a constraint with
s D 1 has been defined. The numerical error allowed in meeting a pose constraint
was 	 D 0:001.

7.1 Reaching to Grasp an Object

Our goal in this problem is to grasp an object for which we can define a continuum
of acceptable grasp poses. These grasp poses can be encoded into TSRs and passed
to our planner. We define four TSRs for the pitcher we wish to grasp (see Fig. 8a):
two for the top of the pitcher and two for the handle. The T0w and Tw

e transforms of
these TSRs are shown in Fig. 3. The two bounds for the top TSRs are identical, as
are the two bounds for the handle TSRs:

Bw
top D

�
05�2

�0:3 0:3

�
Bw

handle D

2
4 02�2
�0:03 0:02

03�2

3
5 (21)

The top TSRs allow the robot to grasp the pitcher from the top with limited
hand rotation about the z-axis. The handle TSRs allow the robot to grasp the pitcher
anywhere along the handle but do not allow any offset in hand rotation. A trajectory
produced by CBiRRT2 is shown in Fig. 8a. The RRT step-size�qstep was set to 0:05
and Psample D 0:1. The average planner runtime for 15 trials was 0.04 s.

7.2 Reaching to Grasp Multiple Objects

In this problem the robot’s task is to reach and grasp one of the seven randomly
placed soda cans on a table (see Fig. 8b). Each soda can is treated as a cylinder and

Fig. 8 Paths of the end-effector produced by CBiRRT2 for the three goal TSR examples.
(a) Reaching to grasp a pitcher. (b) Reaching to grasp one of many soda cans. (c) Placing a bottle
into the refrigerator left: fixed base, right: mobile base. The paths shown have been smoothed with
500 iterations of the shortcut smoothing algorithm



22 D. Berenson

two TSRs are defined for each can. The T0w and Tw
e transforms are shown in Fig. 3.

Both TSRs for each can have identical bounds:

Bw D

�
05�2

�� �

�
: (22)

These bounds allow the grasp to rotate about the z-axis of the can, thus allowing
it to grasp the can from any direction in the plane defined by the x- and y-coordinates
of the can’s center. Note that we do not specify which soda can to grasp; this choice
is made within the planner when sampling from the TSRs. A trajectory produced
by CBiRRT2 is shown in Fig. 8b. �qstep D 0:05 and Psample D 0:1. The average
planner runtime for 15 trials was 0.21 s.

7.3 Placing an Object into a Cluttered Space

The task in this problem is for the robot to place the bottle it is holding into a
very cluttered location (see Fig. 8c). The bottles in the refrigerator and the upper
refrigerator shelf make it difficult for the robot to find a path that places the large
bottle it is holding onto the middle refrigerator shelf. T0w is defined at the center of
the middle shelf, and Tw

e is defined as an end-effector position pointing along the
y-axis (away from the robot) that is holding the bottle at T0w:

Bw D

2
4�0:24 0:24�0:34 0:34

04�2

3
5 (23)

This Bw defines a plane on the shelf where the bottle can be placed.�qstep D 0:05

and Psample D 0:1. The average planner runtime for 15 trials was 93 s.

7.4 The Maze Puzzle

In this problem, the robot arm must solve a maze puzzle by drawing a path through
the maze with a pen (see Fig. 9). The constraint is that the pen must always be
touching the table; however the pen is allowed to pivot about the contact point up
to an angle of ˛ in both roll and pitch. We define the end-effector to be at the tip of
the pen with no rotation relative to the world frame. To specify the constraint in this
problem, we define one pose constraint TSR with T0w to be at the center of the maze
with no rotation relative to the world frame (z being up). Tw

e is identity and



Obeying Constraints During Motion Planning 23

Fig. 9 A path found for the
maze puzzle using
˛ D 0:4 rad. The black points
represent positions of the tip
of the pen along the path

Table 1 Simulation results for Maze Puzzle

˛(rad.) 0.0 0.1 0.2 0.3 0.4 0.5

Avg. runtime >83.5 s >58.8 s >49.0 s 19.5 s 14.3 s 15.2 s

Success rate 40% 60% 90% 100% 100% 100%

Bw D

2
66666664

�1 1

�1 1

0 0

�˛ ˛

�˛ ˛

�� �

3
77777775
: (24)

IK solutions were generated for both the start and goal position of the pen using
the given grasp and input asQs andQg . The values in Table 1 represent the average
of ten runs for different ˛ values. Runtimes with a “>” denote that there was at
least one run that did not terminate before 120 s. For such runs, 120 was used in
computing the average. The RRT step-size�qstep was set to 0:05. No goal sampling
is performed in this example.

The shorter runtimes and high success rates for larger ˛ values demonstrate that
the more freedom we allow for the task, the easier it is for the algorithm to solve it.
This shows a key advantage of formulating the constraints as bounds on allowable
pose as opposed to requiring the pose of the object to conform exactly to a specified
value, as in [19]. For problems where we do not need to maintain an exact pose for
an object, we can allow more freedom, which makes the problem easier. See Fig. 9
for an example path of the tip of the pen.



24 D. Berenson

7.5 Closed-Chain Kinematics

The task is for the HRP3 humanoid to pick up the box from the bottom of the
bookshelf and place it on top (see Fig. 10a). There are two closed chains which must
be enforced by the planner; the legs and arms form two separate loops (Fig. 10).

We define three TSRs. The first TSR is assigned to the left leg of the robot and
allows no deviation from the current left-foot location (i.e., Bw D 06�2). The second
and third TSRs are assigned to the left and right arms and are defined relative to the
location of the box (i.e., the 0 frame of T0w is the frame of the box). The bounds are
defined such that the hands will always be holding the sides of the box at the same
locations (Bw D 06�2). The geometry of the box is “attached” to the right hand.

Balance for a given configuration of the robot is checked after projection has been
performed to meet the pose and closed-chain constraints. Projected configurations
that are not in balance or are in collision are rejected.�qstep D 0:05. In this problem
we compute the goal configuration of the robot using inverse kinematics on the box
target; no goal sampling is performed in this example.

The result of this construction is the following: When a new configuration qs is
generated through sampling, the box moves with the right hand and the frame of the
box changes, thus breaking the closed-chain constraint. This qs is projected to meet
the constraint (i.e., moving the left arm). Meanwhile, the TSR for the right hand
ensures the box does not move during the projection. The same process happens
simultaneously for the left leg of the robot as well since the kinematic chain is
rooted at the right leg.

We implemented this example in simulation and on the physical HRP3 robot.
Runtimes for 30 runs of this problem in simulation can be seen in Table 2. On the
physical robot, the task was to stack two boxes in succession; snapshots from the
execution of the plan can be seen in Fig. 11.

Fig. 10 Snapshots from paths produced by our planner for the three examples using HRP3 in
simulation. (a) Closed chain kinematics example. (b) Simultaneous constraints and goal sampling
example. (c) Manipulating a passive chain example



Obeying Constraints During Motion Planning 25

Fig. 11 Snapshots from the execution of the box stacking task on the HRP3 robot

7.6 Simultaneous Constraints and Goal Sampling

The task in this problem is to place a bottle held by the robot into a refrigerator (see
Fig. 10b). Usually, such a task is separated into two parts: first open the refrigerator
and then place the bottle inside. However, with TSRs, there is no need for this
separation because we can implicitly sample how much to open the refrigerator
and where to put the bottle at the same time. The use of TSR Chains is important
here, because it allows the right arm of the robot to rotate about the handle of the
refrigerator, which gives the robot more freedom when opening the door. We assume
that the grasp cages the door handle so the end-effector can rotate about the handle
without the door escaping.

There are four TSR Chains defined for this problem. The first is the TSR Chain
(1 element) for the left leg, which is the same as in the previous example. This TSR
Chain is marked for both sampling goals and constraining pose throughout the path.
The second TSR Chain (2 element) is defined for the right arm and is described in
Sect. 4.2.1. This chain is also marked for both sampling goals and constraining pose
throughout the path. The third TSR Chain (1 element) is defined for the left arm and
constrains the robot to disallow tilting of the bottle during the robot’s motion. This
chain is used only as a pose constraint. Its bounds are

Bw D

2
66666664

�1 1

�1 1

�1 1

0 0

0 0

�� �

3
77777775
: (25)

The final TSR Chain (1 element) is also defined for the left arm and represents
the allowable placements of the bottle inside the refrigerator. Its Bw has freedom in x
and y corresponding to the refrigerator width and length and no freedom in any other
dimension. This chain is only used for sampling goal configurations. �qstep D 0:05

and Psample D 0:1 for this example.
The result of this construction is that the robot simultaneously samples a

target bottle location and wrist position for its right arm when sampling goal
configurations; thus it can perform the task in one motion instead of in sequence.
Another important point is that we can be rather sloppy when defining TSRs for
goal sampling. Observe that many samples from the right arm’s TSR chain will



26 D. Berenson

Table 2 Runtimes for example problems using HRP3

Mean Std. Dev

Closed chain kinematics 4.21 s 2.00 s

Simultaneous constraints and goal sampling 1.54 s 0.841 s

Manipulating a passive chain 1.03 s 0.696 s

leave the door closed or marginally open, thus placing the left arm into collision
if it is reaching inside the refrigerator. However, this is not an issue for the planner
because it can always sample more goal configurations and the collision constraint is
included in the problem. Theoretically, a TSR Chain defined for goal sampling need
only be a super set of the goal configurations that meet all constraints. However, as
the probability of sampling a goal from this TSR chain which meets all constraints
decreases, the planner will usually require more time to generate a feasible goal
configuration, thus slowing down the algorithm.

Runtimes for 30 runs of this problem in simulation can be seen in Table 2.

7.7 Manipulating a Passive Chain

The task in this problem is for the robot to assist in placing a disabled person into
bed (see Fig. 10c). The robot’s task is to move the person’s right hand to a specified
point near his body. The person’s arm is assumed to be completely passive, and the
kinematics of the arm (as well as joint limits) are assumed to be known. The robot’s
grasp of the person’s hand is assumed to be rigid.

There are two TSR Chains defined for this problem, both of which are used as
pose constraints. The first is the TSR Chain (1 element) for the left leg, which is the
same as the previous example. The second is a TSR Chain (6 element) defined for
the person’s arm. Every element of this chain corresponds to a physical DOF of the
person’s arm. Note that since the arm is not redundant, we do not need to perform
any special IK to ensure that the configuration of the person matches what it would
be in the real world.

In this problem we get the goal configuration of the robot from inverse kinematics
on the target pose of the person’s hand; no goal sampling is performed. �qstep D

0:05.
The result of this construction is that the person’s arm will follow the robot’s left

hand. Since the configuration of the person’s arm is included in q, there cannot be
any significant discontinuities in the person’s arm configuration (i.e., elbow up to
elbow down) because such configurations are distant in the C-space. Runtimes for
30 runs of this example in simulation can be seen in Table 2.



Obeying Constraints During Motion Planning 27

Fig. 12 Start and goal configurations for the door-opening task used for the timing experiments.
(a) WAM (7DOF) (b) HRP3 (9DOF) (c) HRP3 (28DOF)

7.8 Runtimes for Rejection and Projection

To evaluate the computational cost of the operations of CBiRRT2, we performed a
runtime comparison on a door-opening task for the WAM and HRP3 (see Fig. 12).
We performed three experiments to gauge how the computation times of the main
components of the algorithm (projection, collision checking, and nearest neighbor
queries) scaled with the DOF of the robot.

In the first experiment, we use a 7DOF WAM to open a refrigerator door 90ı. The
constraint in this problem is formulated as a TSR Chain, similar to the one described
in Sect. 7.6. The TSR Chain has two elements and allows the robot to rotate its hand
about the door handle as well as allowing the door to rotate about its hinge.

The second experiment is identical to the first, except that we use the HRP3 robot
instead of the WAM. We allow the robot to use its waist and right arm joints, for a
total of 9DOF.

Finally, the third experiment is the same as the one described in Sect. 7.6 except
that we have a pre-determined goal configuration where the door is opened to 90ı

and the bottle is placed in the refrigerator, so there is no goal sampling. In this
experiment we use the arms, legs, and waist of the HRP3, for a total of 28DOF.

We ran each experiment 50 times and the total computation times averaged over
all runs are shown in Table 3. We also show the average time needed to do a single
projection, collision check, and nearest neighbor query averaged over all runs.

The results in Table 3 show that collision checking is the most time-consuming
operation of the algorithm. However, as the number of DOF increases, the average



28 D. Berenson

Table 3 Total and average computation times for the main components of CBiRRT2

Projection Col. check NN query Projection Col. check NN query

(total) (total) (total) (avg) (avg) (avg)

WAM (7DOF) 0.1324 s 0.3650 s 7:2� 10�6 s 0.0008 s 0.0037 s 2:1� 10�6 s

HRP3 (9DOF) 0.1372 s 0.5276 s 1:2� 10�5 s 0.0009 s 0.0048 s 2:5� 10�6 s

HRP3 (28DOF) 0.8469 s 2.049 s 0.0017 s 0.0018 s 0.0052 s 2:3� 10�5 s

projection time increases significantly. This is because the size of the matrices
involved in the computation of the Jacobian pseudo-inverse, which is used to
perform the projection, increases with the number of DOF. The projection also
involves calling the forward kinematics function of the robot to obtain the robot’s
end-effector pose as well as computing the Jacobian of the end-effector, both of
which become slower with increasing DOF.

8 Discussion and Future Work

This chapter has presented a framework for representing and exploring feasible
configurations in the context of manipulation planning and shown how to use this
framework to solve several manipulation problems for humanoids. The techniques
presented in this chapter can be applied to manipulation planning tasks where the
constraints are evaluated as functions of a robot’s configuration. The work presented
here is not meant to address tasks that require complex forceful interaction with
the environment, such as the peg-in-hole problem, or tasks that require planning
with dynamics, such as throwing a ball. Though we only consider scleronomic
holonomic constraints and quasi-static motion, these restrictions still allow a robot
to perform many useful tasks (as shown in Sect. 7) and permit a rich variety of
constraints, including constraints on collision-avoidance, torque, balance, closed-
chain kinematics, and end-effector pose.

Some of the most common constraints in manipulation planning involve the pose
of a robot’s end-effector. These constraints arise in tasks such as reaching to grasp
an object, carrying a cup of coffee, or opening a door. The main advantage of the
approach presented here to planning with pose constraints is the generality in the
constraint representation. TSRs are able to tackle a wide range of problems without
resorting to highly specialized techniques and representations.

One criticism of TSRs is that the constraint representation may not be sufficiently
rich. For instance, some modifications to TSR Chains are necessary to accommodate
constraints where degrees of freedom are coupled (as with screw constraints).
Indeed, TSRs and TSR Chains cannot capture every conceivable constraint, nor
are they intended to. Instead, these representations attempt to straddle the trade-off
between practicality and expressiveness. TSRs have proven sufficient for solving
a wide range of real-world manipulation problems while still remaining relatively
simple and efficient to use in a sampling-based planner. While a more expressive



Obeying Constraints During Motion Planning 29

0

0.5

1

1.5

–0.5

–1

–1.5

–1
–0.5

0
0.5

1 –1
–1.5

–2

–2.5

a

b

Fig. 13 Depiction of a TSR and samples on the corresponding constraint manifold (generated
using CBiRRT2). (a) The end-effector must be on the line with an orientation within ˙ 0:7 rad of
downward. (b) The sampling is biased toward the boundaries of the manifold

representation is surely possible, we have yet to find one that is as straightforward
to specify and as convenient for sampling-based planning.

A practical issue with the projection sampling approach to sampling constraint
manifolds is that the distribution of samples may sometimes be undesirable, e.g. the
projection strategy biases samples toward the boundaries of the manifold (Fig. 13).
This bias leads to an over-exploration of the boundaries of the manifold to the
detriment of exploring the manifold’s interior. It can cause the planning algorithm to
perform slowly if an interior point of the manifold is needed to complete a path. On
the other hand, the planner is much faster at finding configurations on the boundary,
which may be useful in some applications.

In future work it would be interesting to explore methods that automatically
generate TSRs for a given task. For instance, could a robot determine all the
areas where a given object can be placed directly from the geometry of the scene?
Such a task would require understanding where the object can be placed (through
grounding the concept of placing geometrically) and also taking into account
user preferences for where objects should be placed. Another important issue to
explore would be extracting constraints from visual data and/or interaction with
the environment [43, 44]. This would be useful for inferring the locations of door
hinges or other articulated mechanisms, for example. Automatically creating TSRs
for these constraints would greatly reduce the need for domain and robotics
expertise in programming the robot to perform the useful tasks.



30 D. Berenson

References

1. D. Berenson, S. Srinivasa, J. Kuffner, Task space regions: a framework for pose-constrained
manipulation planning. Int. J. Robotics Res. 30(12), 1435–1460 (2011)

2. D. Berenson, S. Srinivasa, Probabilistically complete planning with end-effector pose con-
straints, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA),
May 2010

3. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, H. Inoue, Motion planning for humanoid robots
under obstacle and dynamic balance constraints, in IEEE International Conference on Robotics
and Automation (ICRA), 2001

4. J. Kuffner, S.M. LaValle, RRT-connect: an efficient approach to single-query path planning, in
Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2000

5. L.E. Kavraki, P. Svestka, J.C. Latombe, M.H. Overmars, Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–
580 (1996)

6. P. Jiménez, F. Thomas, C. Torras, 3D collision detection: a survey. Comput. Graph. 25(2),
269–285 (2001)

7. E. Larsen, S. Gottschalk, M. Lin, D. Manocha, Fast proximity queries with swept sphere
volumes, in Proceedings of IEEE International Conference on Robotics and Automation
(ICRA), 2000

8. I. Sucan, S. Chitta, J. Pan, FCL: a flexible collision library (Accessed 2015). [Online].
Available: http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html

9. F. Kanehiro, H. Hirukawa, Online self-collision checking for humanoids, in 19th Annual
Conference of Robotics Society of Japan, 2001

10. K. Okada, T. Ogura, A. Haneda, J. Fujimoto, F. Gravot, M. Inaba, Humanoid motion generation
system on hrp2-jsk for daily life environment, in IEEE International Conference Mechatronics
and Automation, 2005

11. J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, H. Inoue, Self-collision detection
and prevention for humanoid robots, in IEEE International Conference on Robotics and
Automation (ICRA), 2002

12. N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, D. Vallejo, OBPRM: an obstacle-based PRM
for 3D workspaces, in Proceedings of the Third Workshop on the Algorithmic Foundations of
Robotics (WAFR), Aug 1998, pp. 155–168

13. D. Hsu, J. Reif, The bridge test for sampling narrow passages with probabilistic roadmap
planners, in Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2003

14. D. Hsu, G. Sanchez-Ante, H.-L. Cheng, J.-C. Latombe, Multi-level free-space dilation for
sampling narrow passages in PRM planning, in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2006

15. S. Dalibard, J.-P. Laumond, Control of probabilistic diffusion in motion planning, in Proceed-
ings of the Workshop on the Algorithmic Foundations of Robotics (WAFR), 2008

16. D.M. Liangjun Zhang, Y.J. Kim, A fast and practical algorithm for generalized penetration
depth computation, in Robotics: Science and Systems (RSS), 2007

17. L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of
behavioral primitives. Int. J. Humanoid Rob. 2, 505–518 (2005)

18. J. Pan, L. Zhang, D. Manocha, Retraction-based RRT planner for articulated models, in
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May
2010

19. M. Stilman, Task constrained motion planning in robot joint space, in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2007

20. L. Jaillet, J. Cortés, T. Siméon, Sampling-based path planning on configuration-space
costmaps. IEEE Trans. Robot. 26(4), 635–646 (2010)

http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html


Obeying Constraints During Motion Planning 31

21. C. Suh, T.T. Um, B. Kim, H. Noh, M. Kim, F.C. Park, Tangent space RRT: a randomized
planning algorithm on constraint manifolds, in IEEE International Conference on Robotics
and Automation (ICRA) (IEEE, 2011)

22. D. Berenson, J. Chestnutt, S.S. Srinivasa, J.J. Kuffner, S. Kagami, Pose-constrained whole-
body planning using task space region chains, in Proceedings of IEEE-RAS International
Conference on Humanoid Robots, 2009

23. A. Ambler, R. Popplestone, Inferring the positions of bodies from specified spatial relation-
ships. Artif. Intell. 6(2), 157–174 (1975)

24. R. Finkel, R. Taylor, R. Bolles, R. Paul, J. Feldman, AL, a programming system for automation,
Computer Science Department, Stanford University, Technical Report CS-456, 1974

25. R. Taylor, The synthesis of manipulator control programs from task-level specifications. Ph.D.
dissertation, Computer Science Department, Stanford University, 1976

26. L.I. Lieberman, M.A. Wesley, AUTOPASS: an automatic programming system for computer
controlled mechanical assembly. IBM J. Res. Dev. 21(4), 321–333 (1977)

27. E. Drumwright, V. Ng-Thow-Hing, Toward interactive reaching in static environments for
humanoid robots, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2006

28. M. Vande Weghe, D. Ferguson, S.S. Srinivasa, Randomized path planning for redundant
manipulators without inverse kinematics, in Proceedings of IEEE-RAS International Confer-
ence on Humanoid Robots, 2007

29. D. Bertram, J. Kuffner, R. Dillmann, T. Asfour, An integrated approach to inverse kinematics
and path planning for redundant manipulators, in Proceedings of IEEE International Confer-
ence on Robotics and Automation (ICRA), 2006

30. J. De Schutter, T. De Laet, J. Rutgeerts, W. Decre, R. Smits, E. Aertbelien, K. Claes,
H. Bruyninckx, Constraint-based task specification and estimation for sensor-based robot
systems in the presence of geometric uncertainty. Int. J. Robot. Res. (IJRR) 26(5), 433–455
(2007)

31. L. Sciavicco, B. Siciliano, Modeling and Control of Robot Manipulators, 2nd edn. (Springer,
London, 2000), pp. 96–100

32. Z. Yao, K. Gupta, Path planning with general end-effector constraints: using task space to
guide configuration space search, in Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2005

33. M. Gharbi, J. Cortes, T. Simeon, A sampling-based path planner for dual-arm manipulation, in
2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, July 2008,
pp. 383–388

34. J. Cortes, T. Simeon, Sampling-based motion planning under kinematic loop-closure con-
straints, in Proceedings of Workshop on the Algorithmic Foundations of Robotics (WAFR),
2004

35. J.H. Yakey, S.M. LaValle, L.E. Kavraki, Randomized path planning for linkages with closed
kinematic chains. IEEE Trans. Robot. Autom. 17(6), 951–958 (2001)

36. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped
walking pattern generation by using preview control of zero-moment point, in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2003

37. T. Bretl, S. Lall, Testing static equilibrium for legged robots. IEEE Trans. Robot. 24(4), 794–
807 (2008)

38. K. Hauser, Fast interpolation and time-optimization with contact. Int. J. Robot. Res. 33(9),
1231–1250 (2014)

39. S. Caron, Q.C. Pham, Y. Nakamura, Leveraging cone double description for multi-contact
stability of humanoids with applications to statics and dynamics, in Proceedings of Robotics:
Science and Systems, Rome, July 2015

40. D. Prattichizzo, J.C. Trinkle, in Springer Handbook of Robotics: Grasping, ed. by B. Siciliano,
O. Khatib (Springer Science & Business Media, Berlin, 2008)

41. T. Sugihara, Y. Nakamura, Whole-body cooperative balancing of humanoid robot using COG
jacobian, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2002



32 D. Berenson

42. R. Diankov, Automated construction of robotic manipulation programs. Ph.D. dissertation,
Carnegie Mellon University, Robotics Institute, Aug 2010

43. D. Katz, Y. Pyuro, O. Brock, Learning to manipulate articulated objects in unstructured
environments using a grounded relational representation, in Robotics Science and Systems
(RSS), 2008

44. J. Sturm, V. Pradeep, C. Stachniss, Learning kinematic models for articulated objects, in
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 2009


	Obeying Constraints During Motion Planning
	Contents
	1 Introduction
	2 Constraint Definition and Strategies
	2.1 Defining Constraints on Configuration
	2.2 Challenges of Constrained Path Planning for Humanoids
	2.3 Sampling on Constraint Manifolds

	3 Collision Constraints
	4 Pose Constraints
	4.1 Task Space Regions
	4.1.1 TSR Definition
	4.1.2 Distance to TSRs
	4.1.3 Direct Sampling of TSRs
	4.1.4 Planning with TSRs as Goal Sets
	4.1.5 Planning with TSRs as Pose Constraints

	4.2 Task Space Region Chains
	4.2.1 TSR Chain Definition
	4.2.2 Direct Sampling from TSR Chains
	4.2.3 Distance to TSR Chains
	4.2.4 Physical Joints and TSR Chains


	5 Closed-Chain Kinematics Constraints
	6 Balance Constraints
	7 Example Problems
	7.1 Reaching to Grasp an Object
	7.2 Reaching to Grasp Multiple Objects
	7.3 Placing an Object into a Cluttered Space
	7.4 The Maze Puzzle
	7.5 Closed-Chain Kinematics
	7.6 Simultaneous Constraints and Goal Sampling
	7.7 Manipulating a Passive Chain
	7.8 Runtimes for Rejection and Projection

	8 Discussion and Future Work
	References




