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Abstract— Humanoids’ abilities to navigate stairs and uneven
terrain make them well-suited for disaster response efforts.
However, humanoid navigation in such environments is cur-
rently limited by the capabilities of navigation planners. Such
planners typically consider only footstep locations, but planning
with palm contacts may be necessary to cross a gap, avoid
an obstacle, or maintain balance. However, considering palm
contacts greatly increases the branching factor of the search,
leading to impractical planning times for large environments.
In previous work we explored using library-based methods to
address difficult navigation planning problems requiring palm
contacts, but such methods are not efficient when navigating an
easy-to-traverse part of the environment. To maximize planning
efficiency, we would like to use discrete planners when an area
is easy to traverse and switch to the library-based method only
when traversal becomes difficult. Thus, in this paper we present
a method that 1) Plans a guiding torso path which accounts
for the difficulty of traversing the environment as predicted by
learned regressors; and 2) Decomposes the guiding path into a
set of segments, each of which is assigned a motion mode (i.e.
a set of feet and hands to use) and a planning method. Easily-
traversable segments are assigned a discrete-search planner,
while other segments are assigned a library-based method that
fits existing motion plans to the environment near the given
segment. Our results suggest that this segmentation approach
greatly outperforms standard discrete planning and that using
the library-based method for more difficult segments gives a
benefit over using discrete planning.

I. INTRODUCTION

Disaster response is an important potential application for
humanoid robots because of their abilities to navigate stairs
and uneven terrain, such as rubble. This paper focuses on
constructing navigation plans for a humanoid in such large
unstructured environments (see Figure 1). Even though the
robot’s sensor range may be limited to only a few meters,
it is still important to construct a long-term navigation plan
to ensure the robot can reach its goal. Such a plan can be
constructed from a pre-generated map of the environment;
e.g., using a drone to map the environment before the
humanoid enters.

In such environments, humanoid navigation can benefit
greatly from the use of palm contacts. Palm contacts provide
additional support to allow the robot to make larger steps
to avoid obstacles, cross gaps, or help with balance. How-
ever, considering palm contact in discrete-search navigation
planning algorithms [1]–[3] greatly increases the branching
factor of the search, resulting in impractical planning times
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Fig. 1. Using different motion modes to traverse unstructured environments.

for large environments. The planning is also difficult because
palm contacts may not be available in all locations and
sometimes they may be unnecessary, so the robot needs to
decide when and where to use its palms. In previous work
we explored using library-based methods to address difficult
navigation planning problems requiring palm contacts [4],
but such methods are not efficient when navigating an easy-
to-traverse part of the environment. To maximize efficiency,
we would like to use discrete-search, which we call Planning
from Scratch (PFS), to traverse easy areas and switch to
the library-based method, which we call Retrieve and Adapt
(RA), when traversal becomes difficult.

Thus, to plan a contact sequence in a large unstructured
environment we present the framework shown in Figure 2.
This framework relies heavily on the concept of humanoid
traversability, which we introduced in previous work [5].
Traversability is defined as the time PFS will require to
traverse a given area of the environment. Computing it is
computationally expensive, so we have developed a way to
learn a traversability estimator from data. In this paper, we
extend this process to consider multiple predefined motion
modes (i.e. different combinations of palms and feet).

The key novel contribution of our framework is the method
to segment the guiding torso path to minimize planning time.
We first segment the guiding path into motion modes based
on traversability predictions for each mode. We then further



Fig. 2. The data flow of the proposed framework. Yellow denotes that the blocks operate on segments of the torso pose guiding path.

segment each segment based on the average traversability
within the segment. This process results in segments that
have either high or low average traversability. Based on
the motion mode and the traversability of each segment we
then assign a planning method to use: either PFS, when
the segment is easy to traverse, or RA, when it is difficult.
In addition to this contribution, we also improve on the
computational overhead of our RA method and generalize
it to consider motion plans of widely-varying length.

Our results on randomly-generated environments with
rubble suggest that our segmentation approach greatly out-
performs standard discrete planning in terms of success rate.
We also confirm that using the RA method for more difficult
segments gives a benefit over using PFS.

II. RELATED WORK

Humanoid footstep planning has been studied extensively:
[1]–[3], [6], [7] are discrete-search-based approaches which
formulate the footstep planning problem as a graph search
problem. There are also optimization-based footstep plan-
ners which deform a footstep sequence to obey constraints
[8], [9]. These approaches consider locomotion on flat or
piecewise-flat ground using only foot contacts. In our work,
we deal with uneven terrains, and use not only the foot
contacts, but also palm contacts to help balance the robot.

There is also work which focuses on humanoid navigation
in unstructured environments using multiple contacts. [10]
used optimization to find contacts in the neighborhood of
a “rough” trajectory. However, the planning time was pro-
hibitively long. [11] combined discrete-search-based contact
space planning with a local trajectory optimizer to quickly
compute a whole-body trajectory using multiple contacts.
[12] utilized the robot reachability volume to generate a
guiding path to be close to possible contact locations, and
then planned for contact placement along this path, which
significantly sped up the planning process. We share the idea
of using a guiding path to reduce the search space. However,
the above work defines which motion mode will be used
before planning. In our work, we focus on the decision of

using different motion modes to deal with environments with
varying contact options and difficulty.

There has also been recent work addressing humanoid
locomotion planning using different planners or action types.
[13] proposed a probabilistic planner to plan humanoid
locomotion on flat ground with doorways and small obstacles
on the ground. The planner saves computation by generating
periodic footstep motions on open flat ground, and plans for
whole-body motion only when an obstacle is close by. [14]
proposed an approach to plan with adaptive dimensionality.
The planner plans for multiple tasks, such as walking or
climbing a ladder, in a low-dimensional representation with
multi-heuristic A*, and computes high dimensional plans
for each task. While this work is promising for planning
a sequence of tasks, it is not clear how well it can perform
if the task involves acyclic motions that require fine planning
for the contact placements, such as traversing rubble.

III. PROBLEM STATEMENT

We address the humanoid contact-space navigation plan-
ning problem. Given an environment represented as a set of
contactable surfaces, we wish to output a feasible sequence
of contact placements from the start stance to a goal region
in the workspace as quickly as possible. The sequence is as a
series of foot and palm placements. When executing this se-
quence, the robot must obey balance and collision constraints
at all times. We call planning for contact pose placement
“contact space planning.” We assume that the robot can use
any sequence of motion modes (from a predefined set) to
traverse the environment. The motion modes are defined in
terms of which end-effectors to use. The robot should always
use the foot contacts, but can choose to use either or both
palms to help it navigate. We assume that the robot can
generate sufficient torque to balance itself. We also assume
the friction coefficients are given.

IV. METHOD OVERVIEW

Our framework is depicted in Figure 2. The process starts
by computing a guiding path for the torso of the robot



by planning a path in an SE(2) × M grid using the A*
algorithm, where M is the set of motion modes (feet only,
feet and left palm, feet and right palm, and all end-effectors).
This planner uses estimates of traversability from our learned
regressors to find a path that is as easy as to traverse as
possible while also being biased to reduce the number of
motion mode changes.

Given the torso pose guiding path found by A*, we then
segment the path in two phases: first by motion mode, and
then further by the traversability. This process produces seg-
ments which have either high or low average traversability.
High traversability segments tend to be contact-rich, i.e.
there are many viable options for contact placement. In
these cases it is appropriate to use PFS to plan a contact
sequence because the planner is likely to quickly find feasible
contact placements. For low-traversability segments PFS is
unlikely to find a solutions quickly, so we use RA, which
searches a library of previously-computed motion plans for
one that is appropriate for a current segment and locally-
deforms the plan to the given environment. If the library is
exhausted before finding a fitting plan, we default to PFS for
this segment. Because PFS and RA have different start/goal
specifications (RA: regions only, PFS: stance or region),
before initiating planning for each segment, we order them
so that connecting the segments becomes easier. Finally,
when we have planned a valid contact pose sequence for all
segments, we connect them with a PFS planner to produce
the final result.

In the following sections, we first describe how we com-
pute the torso pose guiding path, and how traversability
for different motion modes is estimated. We then introduce
the segmentation algorithm and describe how segments are
ordered. Finally, we describe the PFS and RA approaches
used in this work to generate the contact sequences and how
sequences are connected.

V. TORSO POSE GUIDING PATH

The purpose of computing a torso pose guiding path with
a simplified model is to guide the higher-dimensional contact
space planning search. In this work, we discretize the robot
torso pose in x and y, and the rotation about the z axis,
θ, and call the resulting grid the torso pose grid. In this
paper, we assume that the robot is traveling on a surface,
so z is uniquely defined by the x and y coordinates. Thus
we do not include z in the grid. The grid cells in which
there is no contactable surface or the torso collides with the
environment will be marked as invalid by the torso planner.
The possible transitions of the robot torso for one step are
shown in Figure 3. The ellipse shape captures the fact that
the robot can travel farther with a forward or backward step
than a lateral step.

A torso pose guiding path Ptp is a sequence of torso poses:

Ptp = {pt,1, pt,2, . . . , pt,Np
∣∣pt,1, . . . , pt,Np ∈ SE(2)} (1)

where Np is the number of torso poses in Ptp. Note that
Ptp is defined on a grid, so the values of each torso pose is

discretized based on the density of the grid. To introduce the
motion mode into the torso pose grid, we append the motion
mode indicator m to each cell in the grid. m represents the
motion mode of the action used to reach the cell. Based on
this definition of a torso pose grid, we can rewrite Ptp as:

Ptp = {(m1, pt,1) , (m2, pt,2) , . . . ,
(
mNp , pt,Np

)
} (2)

where mi is the motion mode used to reach torso pose i,
(note that m1 can be any motion mode). This change in the
torso pose grid will quadruple the number of cells. Although
it is possible to only include motion mode information in
the edges of the graph and allow the nodes to remain in
SE(2), we use the information of the motion mode at each
node to avoid frequent changes in motion modes along
the path. We do this by assigning a penalty for changing
motion modes (see below). It is important to minimize the
number of motion mode changes because each segment of
the path is assigned a single motion mode. Frequent changes
in motion mode will create many segments, and thus create
many subgoals along the torso pose guiding path. This adds
additional (possibly unnecessary) constraints to the original
problem as well as increasing the number of calls to PFS
and RA, so we would like to reduce the number of segments
by reducing the number of motion changes. The algorithm
to find an optimal Ptp is discussed below.

A. Torso Pose Guiding Path Planning
To find an optimal Ptp, we formulate the search problem

as a graph search problem, and solve it with the A* algo-
rithm. The edge cost ∆gtp between two cells (mi, pt,i) and
(mj , pt,j) is defined as

∆gtp ((mi, pt,i) , (mj , pt,j)) =

l
pt,i
pt,j

+ ws + wtr∆gtr (pt,i, pt,j ,mj) +M (mi,mj)

M (mi,mj) =

{
0, mi = mj

wm, mi 6= mj

(3)

where ws is a fixed cost of taking a step, wm is a fixed
motion mode changing cost, ∆gtr(0 ≤ ∆gtr ≤ 1) is the
traversability cost associated with the transition from pt,i to
pt,j using motion mode mj (described in Section V-B), and
wtr is a weighting factor for ∆gtr. Possible actions are the
combination of torso pose transitions shown in Figure 3 and
the motion modes used. The heuristic function for planning
the torso pose guiding path is

htp ((mi, pt,i)) = dtgoal(pt,i) + ws
dtgoal(pt,i)

dt,max
(4)

where dtgoal(pt,i) is the Euclidean distance of the torso pose
pt,i to the goal, and dt,max is the maximum traveling distance
of the torso pose in one transition. The first and the second
term are the admissible estimates of the remaining distance
to the goal and the remaining transitions needed to go to the
goal, respectively. Since we do not know what regions of the
environment we need to traverse to reach the goal and which
modes will be used in the future, the heuristic function does
not contain any information related to motion mode change
and traversability.



B. Traversability Estimates

Traversability describes how quickly the contact space
planner can find a contact sequence to traverse through a
region. If the planner knows which region has a higher
traversability before planning, it can bias its search to avoid
difficult regions, and generate a contact sequence more
quickly. However, the true traversability will only be known
after the contact space planner has found a path. Therefore,
our previous work [5] quickly estimated traversability using
a learning approach. We summarize this approach and our
modifications below. For a full description of the method,
please see [5].

For a given torso pose pt in an environment E, a
traversability estimator is defined as |Γ+| : {v,m} → R+,
where v is a 2D torso pose translation in the XY plane, and
E is expressed as the set of planar contact surfaces. We use
a finite set of v, as shown in Figure 3, and train an estimator
for each {v,m} pair. Given a transition between two torso
pose pt,i and pt,j using motion mode m, we can compute v,
and then use the estimator with the matching m and closest
v. To produce a traversability estimate, the estimator extracts
contact clearance features in the neighborhood of torso pose
pt in the environment E, and queries a learned regressor with
these features. We describe this process below.

We adopt the Approximate Contact Checking (ACC)
approach in [5] to extract features from the environment,
and extend the traversability learning framework to include
different motion modes. The ACC feature vector presented
in [5] consists of 5 dimensions: The first dimension Sf
represents the approximate clearance for the foot contacts
to move the robot from a given torso pose pt by a
2D torso pose transition v, and the last four dimensions
[Sp[1], Sp[2], Sp[3], Sp[4]] corresponds to the approximate
clearance for the palm contacts in the four quadrants of the
torso pose frame. The left side of the robot is the 1st and 2nd
quadrant of the torso pose frame, and the right side is the
3rd and 4th quadrant. Therefore, we define the ACC feature
vector S (pt, v,m,E) as:

S (pt, v,m,E) =
[Sf ] , m = feet only
[Sf , Sp[1], Sp[2]] , m = feet and left palm
[Sf , Sp[3], Sp[4]] , m = feet and right palm
[Sf , Sp[1], Sp[2], Sp[3], Sp[4]] , m = all end-effectors

(5)

To train the estimator for each motion mode, we gen-
erate multiple environment with randomly tilted surfaces,
and collect ground truth data for the difficulty in planning
using the PFS approach. We then learn each estimator using
Support Vector Regression (SVR) with an RBF kernel. We
then define the traversability cost ∆gtr (v,m) = e−|Γ+|(v,m),
where |Γ+| is the appropriate traversability estimator for that
transition. With this definition, higher traversability implies
a lower traversability cost, and vice versa.

Fig. 3. Left: Foot contact transition model (57 steps) Middle: Palm contact
transition model Right: Torso pose transition model in the torso pose grid.

VI. TORSO POSE GUIDING PATH SEGMENTATION

As mentioned in Section IV, we would like to segment
the torso pose guiding path based on the motion modes and
the traversability of each transition to use appropriate motion
modes and planning methods (PFS or RA) for each segment.
To segment the torso pose guiding path Ptp, we first define
the torso pose transition sequence. Given a torso pose guiding
path Ptp defined in Eq. 2, we can extract the torso pose
transition sequence Tδ (Ptp) defined as:

Tδ (Ptp) = {δ1, δ2, . . . , δNδ}
δi = (v (pt,i, pt,i+1) ,∆θ (pt,i, pt,i+1) ,mi+1)

(6)

where Nδ = Np − 1 is the number of transitions in Ptp.
To solve the segmentation problem, we are looking for a
partition of Tδ such that each subset in the partition contains
torso pose transitions with continuous indices. For example,
Tδ = {{δ1}, {δ2}, {δ3}}, {{δ1, δ2}, {δ3}} and {{δ1, δ2, δ3}}
are valid segmentations, but {{δ1, δ3}, {δ2}} is not. We
denote the set of all valid partitions of Tδ as Ψ(Tδ).

We segment the torso pose transition sequence using a
two-stage approach. First, we segment at every motion mode
change point in Tδ , and denote this segmentation as ψmm.
We then further segment each segment of ψmm based on
the traversability. However, we would like to avoid segments
that are too short. Therefore, if the number of transitions in
a segment is less than a threshold Nseg , we do not segment
it further; otherwise, we solve the following optimization
problem to further decompose each segment of ψmm:

argmax
ψ∈Ψ(ψmm[k])

|ψ|∑
i=1

∣∣∣∣∣∣
∑

δj∈ψ[i]

∆gtr (v (δj) ,m (δj))− |ψ[i]|Ttr

∣∣∣∣∣∣
subject to |ψ[i]| ≥ Nseg

(7)
where ψ is a segmentation of the kth torso pose transition
sequence, ψ[i] is the ith segment in that segmentation, and
Ttr is a traversability cost threshold which serves as a way
to decide which method (PFS or RA) to use to generate
the contact sequence. This optimization will try to generate
segments whose average ∆gtr is above or below Ttr as much
as possible. We also add a constraint to exclude segments that
are too short. Again, it is important to reduce the number of
segments for the reasons described in Section V. To solve the
optimization problem we could apply existing segmentation
methods, however we found that the space of segmentations
was relatively small and the objective function was very fast



to evaluate, thus instead we enumerate all segmentations,
compute the cost of each, and choose the one that is optimal.

After the segmentation, the contact sequence generation
method µ(ψ∗[k]) ∈ {PFS,RA} for each segment ψ∗[k] ∈
ψ∗ can be decided using the threshold Ttr. In this work,
we tested two ways to make the decision. The first is to
decide based on the average ∆gtr in the segment. If ∆gtr
is above Ttr, that means the region around this torso pose
path segment is more difficult, so we use RA to generate
the contact sequence. We use PFS for other segments.
The second approach is based on the observation that a
segment may have low average ∆gtr, but contain some
spikes in ∆gtr, and cause the PFS to be stuck in that part of
the segment. Therefore, the second approach compares the
maximum of ∆gtr with Ttr. We compare the performance
of these methods in the Results section.

A. Decide Segment Exploration Order

After the segmentation is complete, each segment is
planned for using either PFS or RA separately. To better
connect motion plans in each segment, if a segment using
RA directly follows a segment using PFS, we can generate
the contact sequence of the latter segment first, and set the
first stance in the latter segment as the goal for PFS in the
previous segment. Similarly, if two neighboring segments
both use PFS, we will always explore the previous one
first, so that the latter segment can use the last stance of
the previous segment as the initial state. By doing this, we
automatically connect these two segments using PFS. The
only exception is the connection between two segments both
using RA. In this case, we will run another PFS starting
from the last stance in the previous segment, and set the first
stance in the latter segment as goal. Algorithm 1 shows the
procedure used to decide the segment exploration order.

VII. THE PLANNING FROM SCRATCH (PFS) APPROACH

We now summarize the PFS approach to plan contact
placements, which is taken from our our previous work [5].
To help clarify the framework used in this work, we outline
its formulation here. Please refer to [5] for more details.

In PFS, we formulate the contact space planning problem
as a graph search problem, and solve it with the ANA*
algorithm [15]. Each state is a stance represented as a set of
contacting end-effector poses, and an action is either shifting
one end-effector to a new contact pose, or breaking one palm
contact. The contacts are shifted to new poses based on a
predefined discrete transition model, as shown in Figure 3.

Since PFS is a search-based planner, a cost is required for
each action. For the foot action, we define the cost function
as ∆gf = dt+ws, where dt is the distance the approximated
torso travels in this action. For the palm action, the cost
is ∆gp = dp + ws, where dp is the distance the palm
travels in this action. Each state is feasible if there exists
a collision-free and statically-balanced inverse kinematics
solution for the specified end-effector poses. We use the
method described in [16] to verify quasi-static balance at
each configuration, which is treated as a constraint in the

Algorithm 1: Decide Segment Exploration Order

1 Input : ψ∗;
2 ψexplore ← { };
3 ψPFS ← { };
4 for ψ∗[k] in ψ∗ do
5 if µ(ψ∗[k]) = PFS then
6 ψPFS ← ψPFS ∪ ψ∗[k];
7 else
8 if µ(ψ∗[k]) = RA then
9 ψexplore ← ψexplore ∪ ψ∗[k] ∪ ψPFS;

10 ψPFS ← { };
11 ψexplore ← ψexplore ∪ ψPFS;
12 return ψexplore;

inverse kinematics solver. To speed up the process, we
approximate the balance check for the entire transition by
checking two critical configurations: the beginning of the
contact transition where the moving end-effector has just
broken contact and the end of the contact transition where
the moving end-effector is about to make contact. We call
this the end-point balance constraint.

We use a heuristic function to allow the planner to explore
transitions in a goal-biased way. To compute the heuristic
for each state, similar to the approach for planning the torso
pose guiding path, we first plan on the torso pose grid. Our
purpose here is to find the expected cost from each cell on
the torso pose grid to the goal cell. Therefore, we adopt the
edge cost definition in Eq. 3, but use Dijkstra’s algorithm
to find the cost of each cell to the goal cell. This algorithm
outputs a torso policy (i.e. a direction to move for each cell)
in the form of a tree. PFS queries the policy using the mean
feet poses to get the corresponding cost of each cell gtp for
use in the contact space planner’s heuristic function:

gtp (pt,m) =
∑

∆gtp (pi, pi,parent,m)

= ltgoal(pt) + wsNs + wtrgtr (m)
(8)

where pt,parent is the parent cell of the cell containing pt in
the torso policy tree, ltgoal is the length of the path from the
cell containing pt to the goal cell, and Ns is the number of
steps taken along that path. Note that we do not include the
M term because there is only a single mode per segment.

A. Heuristic for Contact Space Planning

The torso policy above will be queried as part of the
heuristic for PFS. However, since the torso policy does not
include palm contact, we add a component to estimate the
cost of palm contact transitions along the path to the goal.
We define the left and right palm component of the contact
space planner’s heuristic as:

hp,lp (pt) = llp(Ppt) + ws
llp(Ppt)

dlp,max

hp,rp (pt) = lrp(Ppt) + ws
lrp(Ppt)

drp,max

(9)

where Ppt is the path from the cell containing pt to the goal
in the torso policy, llp is the length of the portion of Ppt



where it is possible to make left and palm contact with the
environment, and likewise lrp for right palm contact. dlp,max
and drp,max are the maximum distances each palm contact
can travel in one action. For a given mode, we define the
palm heuristic hp (pt,m) as the sum of the heuristics for all
palms in that mode (0 for feet only).:

To evaluate the heuristic for each state in PFS we find
the grid cell containing pt, which is estimated by taking the
mean pose of foot contacts. We then combine that cell’s cost
gtp from the torso policy with the palm component hp to
arrive at the heuristic: h (pt,m) = gtp (pt,m) + hp (pt,m).

VIII. THE RETRIEVE AND ADAPT (RA) APPROACH

In [4], we showed that deforming an existing contact
sequence to fit to the environment is an efficient approach
to solve difficult contact space planning problems. We con-
structed a motion plan library, sorted the motion plans based
on how well the contacts matched to the environment, and
finally deformed motion plans one-by-one until a matching
motion plan was found. In this work, we keep the motion
plan contact sequence matching process presented in [4], but
modify it to have less computational overhead in selecting a
motion plan from the library. We also generalize the original
approach to allow extraction of partial motion plans in order
to fit a longer plan to a closer goal. In addition we allow
connecting multiple plans to reach a distant goal by making
multiple queries to the library for a single segment.

We first sort the motion plan library offline based on its
length. When given a query environment, we evaluate if a
motion plan is promising for the given segment by measuring
the distance of its contact poses to the environment surfaces
after an alignment process. RA will deform the motion
plan if those checks are passed; otherwise, it will skip the
motion plan, continuing until either a suitable motion plan
is found or the library is exhausted. We describe the library
construction and query processes below.

A. Constructing the Motion Plan Library

We construct a motion plan library for each motion mode,
with each mode’s library containing Nmp motion plans. For
each motion mode, we collect a library of motion plans by
planning with the PFS method in randomly tilted surface
environments with and without stairs. Figure 4 shows some
examples. Each motion plan π consists of a joint trajectory,
the corresponding contact sequence C(π), and the motion
plan torso path Pt(π). C(π) is defined as

C(π) = {〈ck, ek〉 |ck ∈ SE(3); k = 1, 2, ..., Nc} (10)

where ck is the pose of contact k in the motion plan, ek is an
indicator of which end-effector the contact k belongs to, and
Nc is the number of contacts. Given the foot contact poses,
we can find all approximated torso poses along the path by
taking the mean of the foot contacts, and then project each
approximated torso pose on the torso pose grid to form a
torso path:

Pt(π) = {pk|pk ∈ SE(2); k = 1, 2, ..., Np} (11)

Fig. 4. Several example environments used to collect the motion plans to
construct the motion plan library.

When matching a motion plan to a torso pose guiding
path segment, Pt provides a mapping between the contact
sequence and its location on the torso pose grid. Therefore,
Pt(π) can help extract partial contact sequences from π to
move the robot to the goal. We then extract a set D(π) from
the torso path Pt(π) as the set of Euclidean distance in the
XY plane between the start torso pose p0 and all torso poses
pk ∈ Pt(π).

D(π) =
{
dk|dk = d (p1, pk) , d1 ≤, . . . ,≤ dNp , pk ∈ Pt

}
(12)

We force d(pk) to be monotonically increasing with k in
every motion plan. If a motion plan does not follow this
assumption, it can be further decomposed and stored in the
library separately. We call the longest distance in D the
motion plan length, lmp. When searching through the library
we check plans with larger lmp first because, if successful,
they will make the most progress toward the goal.

B. Querying the Motion Plan Library

Given a segment of the torso pose guiding path, denoted
as Ptp,i, we define the start and the goal at the first and the
last torso pose in Ptp,i. We denote the Euclidean distance
between the start and the goal as lsg . Since it is unlikely to
find a motion plan to move the torso pose exactly to the goal,
we define a goal radius rg to form a circular region around
the goal. When matching a motion plan to the environment,
if the motion plan length lmp is greater than lsg − rg , the
motion plan has the potential to move the robot from the start
to the goal region. We then check if there exist dj ∈ D(π),
such that lsg − rg ≤ dj ≤ lsg + rg . If such dj exists, the
partial motion plan corresponding to the torso path segment
between the 1st and the jth torso pose can move the robot
from the start to the goal region. We extract this part of the
motion plan as the effective segment of the motion plan πe.

When lmp < lsg − rg , the motion plan cannot move the
robot from the start to the goal region. In this case, the
motion plan can only cover part of Ptp,i, and stop in the
neighborhood around a torso pose ptp ∈ Ptp,i. The part of
Ptp,i after ptp will then be used to query the library again.
To find ptp, we search from the initial torso pose in Ptp,i
toward the end of Ptp,i, and stop at the first torso pose such
that d(ptp,1, ptp,k)− gr ≤ lmp ≤ d(ptp,1, ptp,k) + gr. In this
case, the effective segment of the motion plan would be the
whole motion plan, so we let πe = π.

In both cases, if we cannot find a πe to meet the distance
requirement, we reject this motion plan. If πe is found, we
would like to deform its joint trajectory to move the contact



poses in C(πe) to the surface patches in the environment so
that the robot can make contact with the environment. To
do this we apply the plan deformation process in [4], which
aligns the plan to the environment using an iterative Jacobian
to reduce the distance from the plan’s contacts to the environ-
ment and then deforms the plan. We summarize the process
below (see [4] for details). This process first treats the plan as
a rigid object and is initialized in the following way: Given a
query environment with the start (xs, ys, zs(xs, ys), θs) and
the goal (xg, yg, zg(xg, yg), θg), the algorithm initializes the
rigid plan pose Trp = (x0,rp, y0,rp, z0,rp, θ0,rp) as:

x0,rp = xs; y0,rp = ys; z0,rp = zs

θ0,rp = atan2(yg − ys, xg − xs)
(13)

After iteratively updating Trp until convergence, we check
if the plan’s contacts are too far from their nearest surfaces,
and if so we reject the plan. If not, the motion plan,
now expressed as a sequence of configurations, is modified
and optimized to fit the query environment with Contact-
Consistent Elastic Strips (CES)[11]. Each configuration of
the trajectory will moves contacts toward the nearest contact
region. To speed up the process, we do not check the balance
constraint in the loop of CES. Instead, we check if the
resulting contact sequence follows the end-point balance
constraints. If not, we reject the motion plan. Furthermore,
to ensure connection between the motion plans generated
in each segment of the torso pose guiding path, we force
the first and last torso pose in the motion plan to be close
in orientation to its corresponding pose in the torso pose
guiding path segment, which means the final motion plan
should obey these constraints after the deformation:

|θs − θπe,1| ≤ θ∆, |θg − θπe,Ne | ≤ θ∆ (14)

where θπe,1 and θπe,Ne are the orientation of the first and
last torso pose of the motion plan πe, respectively. θ∆ is the
orientation threshold. If all the checks have been passed, RA
will output this final motion plan as the result.

IX. CONNECTING THE CONTACT SEQUENCES

As discussed in Section VI-A, except for the case that the
previous segment uses PFS and the latter segment uses RA,
the planner for the previous segment will lead the robot to a
goal region around the goal of the previous segment. If the
motion modes of the two segments are different, it is possible
that the last stance of the previous segment is not close
enough to the next segment to make the contacts required
by the motion mode of the next segment, which causes
the search to fail. Furthermore, to connect two segments
both using RA, the connecting planner, which uses PFS,
has to find a contact sequence in the neighborhood of the
connecting torso pose to the first stance of the latter segment.
In a contact-scarce region, this could be difficult to plan.

We solve both of the above issues by broadening the search
space. We use PFS to plan the connection sequence and allow
it to use any motion mode near the connecting torso pose.
This approach has a high branching factor but the connection

region (which is the same size as a goal region) is very small,
so the computation-time impact is limited.

X. EXPERIMENTS AND RESULTS

We evaluate the performance of the proposed framework
in planning to navigate through two types of environments
and we compare the proposed framework with two baselines:
The first one is the standard contact space planning approach:
PFS with all motion modes possible (PFS only). Since this
planner is not required to use any palm contacts, it uses
the feet-only motion mode heuristic to estimate the cost-
to-go. The second baseline (Segmentation+PFS) uses our
segmentation approach but only uses PFS to plan motion
plan in each segment. Since it only uses PFS, we segment the
torso pose guiding path only when motion mode changes. For
the proposed framework, we also implemented two versions
using different decision criteria to decide whether to plan
with PFS or RA for a given segment: mean(∆gtr) (Our
Framework-Mean) and max(∆gtr) (Our Framework-Max).

We implemented our algorithms in OpenRAVE[17], and
tested on the Escher [18] robot model. All experiments
were run on an Intel Core i7-4790K 4.40 GHz CPU with
16GB RAM. We use the following parameter values: Nmp =
50, Ttr = 0.3, Nseg = 5, ws = 3, wm = 2, wtr = 10, rg =
0.2m, θ∆ = 30◦. The torso path grid is discretized to 0.15m
resolution in x and y, and 30◦ in θ.

A. Two-Corridor Environment Test
In the two-corridor environment, we construct the envi-

ronment as two wide rooms connected with two parallel
corridors (see Figure 5). The environment is formed with
1.5m by 1.5m patches, each of which is randomly generated
as either flat ground or rubble with 50% probability. The
rubble patches are formed with quadrilateral surfaces whose
roll and pitch are sampled from a uniform distribution
in [−20◦, 20◦]. The walls are also generated in the same
manner. We set the start and the goal to be a random
location in the lower and the upper room, respectively. We
set a 500 second time limit. If the planner finds a contact
sequence within the time limit in a trial, the trial is counted a
success. We run on 50 testing environments, and compare the
performance of the different approaches in terms of success
rate and planning time for the successful trials (see Table I).

The results show that the segmentation based on motion
modes improves success rate by 20%. Using our full frame-
work (i.e. introducing RA to plan for difficult segments) out-
performs the other approaches in terms of success rate, while
keeping the planning time low. Setting the method decision
criterion based on the max traversability cost improves the
success rate at the cost of higher average planning time. This
is because it uses RA in some regions that can be solved
quickly using PFS. The time required to connect segments
also increases because there are more segments which use
RA, so we require additional time to connect those segments.

B. Two-Staircase Environment Test
A two-staircase environment is shown in Figure 5. Testing

in this environment confirms that the framework can be



Fig. 5. Executing a planned contact sequence in Left: a two-corridor environment. Right: a two-staircase environment.

TABLE I
THE RESULT FOR TWO-CORRIDOR TEST ENVIRONMENT AND TWO-STAIR TEST ENVIRONMENT

Environment Approach Success
Rate

Average
Number

of Segments
(PFS/RA/Total)

Planning Time (sec.)
Torso
Path

Planning

Torso Path
Segmentation

Contact
Space

Planning

Segment Contact
Sequence

Connection
Total Time

PFS Only 17/50 1/0/1 24.05 0 114.05 0 138.10
Two-Corridor
Environment

Segmentation+PFS 27/50 4.11/0/4.11 24.81 0.01 138.95 0 163.77
Our Framework-Mean 38/50 4.08/1.63/5.71 25.63 0.03 96.91 1.76 124.33
Our Framework-Max 42/50 2.78/2.93/5.71 26.16 0.03 109.03 17.73 152.95

PFS Only 23/50 1/0/1 24.74 0 146.05 0 170.79
Two-Staircase
Environment

Segmentation+PFS 35/50 5.72/0/5.72 23.91 0.01 115.62 0 139.54
Our Framework-Mean 39/50 4.31/3.18/7.49 24.74 0.70 117.66 1.34 144.44
Our Framework-Max 38/50 2.74/4.75/7.49 24.67 0.71 108.11 5.19 138.68

applied to environments with large height changes even
though the torso pose guiding path is defined in SE(2). In
this environment, we let the upper room to be elevated by
a random amount between 1m and 1.5m, and the height
difference is equally distributed over 9 stairs. As in the
two-corridor environment, each stair could be a flat surface
or rubble with 50% probability. We use the same timeout
and number of test environments as in the previous test.
In this test, we again see that using segmentation gives a
large performance improvement over the standard planning
approach (24% increased success rate). We also see that our
full framework (i.e. including RA) slightly outperforms the
approach using only PFS. The improvement from using RA
may be limited here because the stairs in the staircase are
relatively small, so even if some stairs are rubble, there tend
to be many flat steps, which are easy for PFS to traverse.

XI. CONCLUSION

In this work we proposed a framework to plan humanoid
navigation in unstructured environments using four prede-
fined motion modes. The framework jointly considers the
motion mode and the traversability of the environment to
segment a guiding path for the torso into easy- and difficult-
to-traverse segments and assigns the appropriate planning
method to each. The results suggest that the proposed frame-
work greatly outperforms standard planning without segmen-
tation and that including library-based planning methods can
also improve performance in some environments.
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