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Abstract— Deformable objects like cloth and rope are chal-
lenging to manipulate because it is difficult to predict the state
of the object given a motion of the gripper(s) holding it. In
much previous work, physical models (such as Mass-Spring or
Finite-Element) have been used to model such affects. However,
these models often require significant parameter tuning for
each scenario and can be expensive to simulate inside a control
loop. Furthermore, it is difficult to create a practical controller
for deformable object manipulation that preserves constraints,
especially avoiding overstretching the object. In this paper, we
developed a more effective controller than previous work by
1) constructing a more accurate geometric model of how the
direction of gripper motion and obstacles affect deformable
objects; and 2) specifying a novel stretching avoidance con-
straint to prevent the object from being overstretched by the
robot. Experiments comparing our new method to the previous
method in simulation and on a physical robot suggest that our
new model captures the behavior of the object more accurately.
We also find that our controller is able to prevent tearing that
would occur when using the previous method.

I. INTRODUCTION

Manipulation of deformable objects is essential for many
applications, such as surgery, doing laundry, and industrial
assembly. However, robotic manipulation of deformable ob-
jects remains a challenging problem. One of the central
difficulties is modeling and predicting the state of the object.
The compliant nature of objects like cloth and rope (we
do not consider volume-preserving or elastic objects in this
work) entails that their motion depend on a large set of
physical properties. To model and predict the state of the
deformable object, most previous work focuses on construct-
ing a precise physical model, e.g., using Mass-Spring [1] or
Finite-Element [2] models. We seek to create a controller
for practical deformable object manipulation tasks that does
not rely on detailed knowledge of physical properties, i.e.
that does not have a highly-accurate physical model. Such
models require parameters (both physical and numerical) that
are difficult to obtain and are usually more time-consuming
to compute, preventing their use in a fast control loop.

Controlling objects such as cloth or rope is made more
difficult by the fact that they have an infinite number of
degrees of freedom. The system, which consists of a set of
grippers which hold the deformable object, is also extremely
underactuated. On top of this, it is also challenging to
design a practical controller for manipulation that preserves
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Fig. 1: An illustrative example of directional rigidity. Left:
The rope moves almost rigidly when dragging it by one end
to the left. Right: The rope deforms when pulling it on the
right in the opposite direction.

constraints, such as the avoidance of overstretching of the
object, due to a lack of direct control of deformation.

The model in this paper will not involve precise physical
simulation. Instead, we aim to construct an approximate
model that predicts the object motion based on geometric
information, such as the current poses of the grippers and
the current configuration of the deformable object. Previous
work on this kind of modeling [3] approached the problem
by exploiting a property called diminishing rigidity, which
assumes that the effect of gripper motion along the de-
formable object diminishes as the distance from the gripper
increases. This method has shown that it is possible to
do practical manipulation tasks with a deformable object
without a precise physical model. However, we observe that
this rigidity does not only diminish as the distance from the
gripper increases. Instead, it is a function of a larger set of
variables derived from the configuration of the object. The
rigidity also depends on the direction of gripper motion. Fig.1
shows an example of an object’s directional rigidity.

Thus the key contributions of this paper are: 1) A ge-
ometric model for deformable object manipulation that is
computationally efficient to use in a control loop while
capturing the directional rigidity effects more accurately
than that in [3]; and 2) A controller that addresses the ex-
cessive stretching constraint by better approximating which
directions of motion lead to more/less stretching. This new
constraint is especially important when the object is caught
on an obstacle, which the method in [3] does not address.

Since we build on the idea described in [3], we use this
method as a benchmark in our experiments. We compared [3]
with our proposed method in several simulation and physical
robot experiments. We found that the proposed model is able
to predict the object motion better than the previous model
and that the new controller is more effective at preventing
overstretch than the method in [3].

In the remainder of the paper, we discuss related work
and present the problem statement. We then describe our
new model formulation and how to formulate the constraints



for the controller. Finally, we describe the results of running
this method in several test scenarios.

II. RELATED WORK

Deformable object manipulation has been studied in many
contexts ranging across domestic, surgical, and industrial
domains [4]. Much of this work relies on accurate modeling
and simulation of deformable objects. Some of the most
common simulation methods use Mass-Spring Models [1],
[5] and Finite-Element Models (FEM) [2], However, such
approaches usually require significant tuning and are very
sensitive to discretization parameters. Also, we seek a model
that can be evaluated very quickly inside an optimal control
framework, and Finite-element models, while accurate, can
be computationally-expensive to simulate. While methods
have been developed to track objects using FEM in real-time
[6], a controller may need to evaluate the model many times
to find an appropriate command, requiring speeds faster than
real-time. Specialized models have also been developed, e.g.,
[7] and [8] focus on elastic rods that are not in contact.
We seek a model that works well with rope- and cloth-like
materials that can deform as a result of contact. Finally,
researchers have also investigated automatic modeling of
deformable objects [9], [10]. However, these methods rely
on a time-consuming training phase for each object to be
modeled, which we would like to avoid.

Given a model such as those above, researchers have in-
vestigated various control methods to manipulate deformable
objects. Hirai and Wada proposes an iterative visual-servoing
controller in [11], which aligns interest points on the de-
formable object to targets. Its control law is based on
modeling the deformable object as a lattice of interconnected
springs. [12] uses a similar spring model to formulate a
PID controller that aligns interest points to targets. While
effective, these methods rely on models like those above and
thus suffer from the above issues.

Our work is complementary to methods that adapt the
model of the object during manipulation [13]–[15]. Our
model can serve as an initial guess and a reference for
such methods so that the online adaptation process does
not diverge too far from a reasonable model as a result of
perception or modeling error. Our paper builds on the idea of
diminishing rigidity Jacobians [3] by improving the model
and formulating appropriate constraints for deformable ob-
ject manipulation. [16] extended [3] to use multiple Jacobian-
based models when it is uncertain which model is appropriate
for the object. The new model proposed here could be
incorporated into the framework of [16].

The model and controller in this paper are built on the
method for deformable object manipulation in [3] and task
space control of robot manipulators [17]. However, unlike
[3], we explore the directional diminishing rigidity of the
deformable object. This maintains a low computational cost
of prediction while improving accuracy.

Much previous work in this area focuses on completing a
task but does not consider constraints on obstacle avoidance
or compensation for excessive stretching [11], [12]. [3]

does consider these constraints but its stretching-avoidance
method does not handle cases where the object is caught on
an obstacle because it does not reason about the way strain
propagates through the object as a result of gripper motion.
We consider this issue in our paper.

III. PROBLEM STATEMENT

Let a set of P points P ⊂ R3P be the configuration of
the deformable object, where these points are either in the
curve of a 1D object (e.g., rope) or on the surface of the
2D object (e.g., cloth). This paper focuses on 1D and 2D
objects like cloth and rope. We do not consider volume-
preserving or elastic objects. Denote the object velocity
as Ṗ = [ṗT1 , ..., ṗ

T
P ]T ∈ R3P . Let q ∈ SE(3)G be the

configuration of a set of G grippers. Denote the velocity of
the robot to be q̇ = [q̇T1 , ...q̇

T
G]T and the velocity of the gth

gripper q̇g = [vTg ωTg ]T ∈ se(3)G, where se(3) is the tangent
space of SE(3) [18], vg is the translation components, and
ωg is the rotation components.

Let φ be the mapping such that Ṗ = φ(q, q̇,P,O), where
O denotes the configurations of obstacles in the environment
and P is the object configuration at the current state. Let
Cc denote the set of gripper motions q̇ which preserve the
gripper collision constraint and Cs denote the set of q̇ which
preserve the object stretching constraint.

In this paper we assume that the grippers are free-floating
and we have a method of sensing P . Inverse-kinematics can
be used to track these gripper motions with robot arms. We
do not consider stretching as a result of friction, as friction
forces are negligible when compared with the stretching
induced by the robot pulling on the object for the tasks we
consider.

Overall, our goal is to move the G grippers such that the
motion of points in P best matches commanded motions Ṗd,
without violating constraints. To achieve this, we must ad-
dress two fundamental problems: 1) Design an approximate
model φ̃ which is practical to be used by the robot controller
with improved accuracy compared to the benchmark [3]. 2)
Prevent robot collision and excessive stretching of the object
by specifying a set of constraints C = Cc∩Cs. We formalize
this control problem as a constrained optimization problem:

minimize
q̇

||Ṗd − φ̃(q, q̇,P,O)||

subject to q̇ ∈ C,
||q̇||∆t < ∆q,max.

(1)

IV. METHODS

To fully specify the problem in Eq. 1, we need to construct
the approximate model φ̃ and define the set of constraints C.
A highly accurate model for object motion can require a high
computational cost when using FEM simulation. To make a
model practical to be used by a robot controller with lower
computational cost, we build on the idea of constructing a
geometry-based model [3].

To create a more accurate model, we need to improve
the accuracy of the φ̃ approximated in [3] by capturing



more accurate behavior of the object and addressing contact
with the environment. To that end, we design a model
accounting for directional rigidity and obstacle-penetration
constraints (Section IV-A). We then define the collision
avoidance constraint Cc and object over-stretching constraint
Cs in the robot’s task space (Section IV-B).

A. Geometric Model of Deformable Object Motion

1) Model Overview: The approximate model locally de-
scribes the object’s motion when given a motion of the
grippers. Below we describe our approach first by specifying
the model and then enforcing collision constraints on the
prediction this model makes.

The current state of the deformable object is a function of
the current gripper pose, the history of gripper motions that
have been applied, the object’s initial configuration, and the
obstacles in the environment:

P = F (q,Qhist,P0,O) (2)

To create a predictive model, we need to compute how P
changes as a result of changing the gripper pose. Taking the
time derivative of the above we obtain

∂P
∂t

=
∂F

∂q

∂q

∂t
+

∂F

∂Qhist

∂Qhist
∂t

+
∂F

∂P0

∂P0

∂t
+
∂F

∂O
∂O
∂t

(3)

Only the first term is non-zero, thus

Ṗ =
∂F (q,Qhist,P0,O)

∂q
q̇ (4)

∂F
∂q is a matrix we call J . In previous work [3], J is

assumed to be independent of q̇ and O, yielding1 ∂F
∂q =

J(q,Qhist,P0) = J(q,P), which is analogous to a rigid-
body Jacobian. While these assumptions allow a linear
relationship between q̇ and Ṗ , and thus computational conve-
nience, they are not accurate in many situations (see Figure
1 for an example). In this paper we change the definition of
J to the following:

Ṗ = J(q, q̇,P,O)q̇ = φ̃(q, q̇,P,O) (5)

We now describe how J is computed, focusing on how it
accounts for directional rigidity (using q̇) and how it enforces
obstacle penetration constraints (using O).

2) Directional Rigidity: We build on the idea proposed
in [3], which approximates J based on the observation that
the deformable object behaves rigidly near points grasped
by the robot grippers. [3] encoded this effect through a
simple function that only considered the distance of a point
from the the nearest gripper. However, we find that we can
exploit geometric information in the object’s configuration
to better predict the object’s motion when we use a more
complex model. We have observed that the key features of

1In this equation we replaced Qhist and P0 with P , the current
configuration of the object. Qhist and P0 are need in F to compute the
current state of the object, but if we can sense P directly (as we assume),
then Qhist and P0 are not needed to compute J .

the deformable object configuration for predicting its motion
are its deformability (which is determined by its material
properties) and where it is slack. The deformation influences
the transmission of the force from the grippers, i.e. the more
stretchable the object, the more it will stretch when force
is applied. However, when a region of the object is taut,
regardless of how stretchable it is, it will move as if it were
rigidly connected to a gripper (e.g. imagine a rope held taut
by two grippers). We also must take into account that points
are not influenced equally by different grippers, i.e. grippers
farther away contribute less to the motion of a point than
those closer to it.

To incorporate the above effects into our model, we define
the following variables, which can be derived from q, q̇, and
P:

• ρij : the geodesic distance (a scalar) between points pi
and pj on the surface of the object.

• dij : the vector starting at a point pi and ending at the
point pj , as shown in Fig. 2

• qg: the configuration of the gth gripper
• q̇g: the velocity of the gth gripper.

Furthermore, let c(i, g) be the index of the point with the
minimal geodesic distance to pi among the ones grasped
by the gth gripper. We address the notion of rigidity in
object motion by considering the slackness of the object and
reformulating the rigidity as a function of ρic(i,g), dic(i,g),
and q̇g . For each point pi we compute

Jdr(qg, q̇g, pi) =

θi,g[wt,i,gJ
dr
t (qg, q̇g, pi), wr,i,gJ

dr
r (qg, q̇g, pi)]

wt,i,g = wt(ρic(i,g), dic(i,g), q̇g)

wr,i,g = wr(ρic(i,g))

Jdrt (qg, q̇g, pi) = I3×3
Jdrr (qg, q̇g, pi) = [Rg[1]× r,Rg[2]× r,Rg[3]× r]

(6)

where Rg[n] is the nth column of the rotation matrix of
the gth gripper at the current configuration, r = pc(i,g) −
vg , with vg being the translation of the gth gripper. wt,i,g
and wr,i,g are the corresponding translational and rotational
diminishing rigidity factors defined by the point pi and gth
gripper (discussed below).

Our goal is to encode the directional rigidity of the object
motion into wt,i,g and wr,i,g and use θi,g to describe the
influence of gripper g on pi. Intuitively, wr,i,g should de-
crease with the increasing geodesic ρic(i,g) distance between
pi and pc(i,g). This is because the deformation of the region
between pi and pc(i,g) will attenuate the transmitted force
of the gripper’s motion unless the object is taut. Since the
effects on wr,i,g from q̇g and di,c(i,g) are not as clear or
significant as ρic(i,g), we keep the wr,i,g as a function of
ρic(i,g), where

1) wr,i,g ranges between 0 and 1.
2) wr,i,g decreases as ρic(i,g) increases.

We give the definition of wr,i,g below.



From observation, we find two key reasons related to the
slackness of the object that induce the diminishing rigidity
effect for translation motion, and we aim to encode these
factors into wt,i,g . The first case is that the moving direction
of q̇g makes the region on the object between pi and pc(i,g)
less taut. The second case is that this region is already slack.
wt,i,g is thus a product of two terms:

wt,i,g = αi,g · βi,g (7)

where αi,g addresses the effect in the first case (motion
reducing tension), and βi,g addresses the effect in the second
case (object slackness). Both αi,g and βi,g are functions of
some of qg, q̇g, pi, or variables derived from these.

For pi on the object, we find αi,g is greatly impacted
by dic(i,g) and q̇ic(i,g). Decomposing q̇g into q̇g,r, the radial
component in the direction of dic(i,g), and q̇g,t, the transverse
component perpendicular to dic(i,g). We observed that if q̇g,r
is in the opposite direction to dic(i,g), then it is more likely
to make the intervening region slacker and thus reduce the
transmission of force from the gripper to pi. Moreover, if
q̇g,r and dic(i,g) are in the same direction when the object
is not already slack, pi can move almost rigidly with q̇g .
Fig.1 shows an example of the impact of this alignment.
Based on these observations, we design the function αi,g =
α(dic(i,g), q̇g) with the following properties:

1) α(dic(i,g), q̇g) ranges between 0 and 1.
2) α(dic(i,g), q̇g) > α(djc(j,g), q̇g) if
〈dic(i,g), q̇g〉 > 〈djc(j,g), q̇g〉 and
ρic(i,g) = ρic(i,k).

3) α(dic(i,g), q̇g) > α(djc(j,g), q̇g) if
〈dic(i,g), q̇g〉 = 〈djc(j,g), q̇g〉 and
ρic(i,g) > ρic(i,k).

We give the definition of α(dic(i,g), q̇g) below.
As mentioned above, βi,g depends on the current slackness

of the intervening region. Without other external forces
applied on the object, the pulling force applied by the robot
will tend to unwind or unfold the object eventually (we do
not consider cases where the object is tied into knots). For
this reason, the part of the intervening region on the object
that is not already spread out is less likely to move rigidly
with the gth gripper. One indicator that can address this
property is the ratio between the Euclidean distance between
pi and pc(i,g), and the geodesic distance ρic(i,g) between
them. We denote ri,g =

||dic(i,g)||
ρic(i,g)

to be this ratio. A larger
ri,g indicates a tauter intervening region. A tauter intervening
region is more likely to result in ṗi moving more rigidly.
Thus we can design the function βi,g = β(ri,g) with the
following properties:

1) β(ri,g) ranges between 0 and 1.
2) β(ri,g) = 1 if ri,g = 1.
3) β(ri,g) > β(ri,g) if ri,g > ri,g
Finally, θi,g , which captures the influence of gripper g on

point pi should have the following property (where k is the
index of a different gripper on the robot):

1) θi,g ranges between 0 and 1.
2) θi,g < θi,k if ρic(i,g) > ρic(i,k).

Fig. 2: The length of the the red segment on the rope is the
geodesic distance ρij . dij is the vector showing the relative
position of pj with respect to pi.

3)
∑G
m=0 θi,m = 1.

Through experimentation, we obtained good results with
the following functions:

α = ekgρic(i,g)(cos∠(di,c(i,g),q̇g )−1)

β(ri,g) =

( ||dic(i,g)||
ρic(i,g)

)kD
wr(ρic(i,g)) = e−krρic(i,g)

θi,g =
xg∑G

m=0 xm

xm =
min{ρic(i,1), ..., ρic(i,G)}

ρm

(8)

where kg , kD, and kr are non-negative parameters. Specif-
ically, a larger kg indicates a greater impact on the dimin-
ishing in the rigidity from the motion reducing tension. A
larger kD indicates a greater impact on the diminishing in
the rigidity from the slackness of the object in the current
state. A larger kr indicates a faster decrease in the rigidity
of Jdrr as the distance from pi to the gripper increases.

3) Obstacle Penetration Constraints: With the model de-
veloped above, we get a prediction of a point’s movement
from ˜̇pi = Jdr(qg, q̇g, pi)q̇. However, at this stage, we
haven’t take into account the effect from the obstacles O.
Thus the predicted ˜̇pi can move pi into an obstacle.

When the prediction of pi enters the obstacle, we project
any penetration by the predicted ˜̇pi into the tangent space
of the obstacle surface. Let di,m < ‖ ˜̇pi‖ be the distance to
collision in direction ˜̇pi from point pi; let λi =

di,m
‖ ˜̇pi‖

; let ni
be the unit surface normal of the obstacle in contact; and
let Ni = (I3×3 − nin

+
i ). Then to account for obstacles we

compute

J(qg, q̇g, pi,O) ={
(λi + (1− λi)Ni)Jdr(qg, q̇g, pi) if pi + ˜̇pi in collision
Jdr(qg, q̇g, pi) otherwise

(9)

To generate J for all the points and grippers we compute
J(qg, q̇g, pi,O) for each pi and then stack these matrices to
obtain J(qg, q̇g,P,O). We then compute J(qg, q̇g,P,O) for
every g and concatenate the results to obtain J(q, q̇,P,O).
Finally, we arrive at our approximate model: φ̃(q, q̇,P,O) =
J(q, q̇,P,O)q̇.

B. Collision and Stretching Constraints
Applying q̇ without constraints in the controller can dam-

age the robot due to collision or tear the deformable object



due to the excessive strain. We describe the constraints we
impose to avoid these issues below.

1) Collision: Collision avoidance for the robot is ad-
dressed by the constraint Cc, which is the set of motions
that keeps the grippers away from obstacles:

Cc =

{
q̇g ∈ se(3) | lc(g)− l(qg)−

n(qg) · q̇g
||q̇g||

q̇g∆t < 0

}
(10)

where l(qg) is the function returning the distance from the
gripper to its closest obstacle. lc(g) returns the minimal safe
distance allowed between the gth gripper and an obstacle.
n(qg) returns the unit surface normal of the obstacle closest
to the gth gripper. The idea is to make each gripper keep
at least the safe distance away from the closest obstacle.
While we consider free-flying grippers in this paper, similar
constraints can be imposed on the entire geometry of a robot
arm (one constraint per link) to avoid collisions all along the
arm.

2) Overstretch: The stretching avoidance of the de-
formable object is more difficult to formulate due to the
compliant nature and the lack of control of the deformable
object. In [3], a stretching correction term Ṗs ∈ R3P is
applied when the object becomes overstretched. However,
this method cannot handle cases where the object is caught
on an obstacle.

We detect the overstretching (i.e. excessive strain) of the
object by examining the value of the stretching ratio γ, which
denotes the maximum value among the ratio between the
Euclidean distance ||dij || and the geodesic distance ρij for
every pair of points pi and pj :

γ = max
pi,pj∈P,i6=j

||dij ||
ρij

(11)

we denote γs as the maximum allowed stretching ratio. Our
method initiates stretching-avoidance when γ > γs.

We assume that the object starts in an unstretched state, so
the overstretch that arises is due to the motion of the grippers.
Thus if we can constrain gripper motions to a set which does
not overstretch the object further than a threshold, we can
prevent or reduce the overstretch at the next time step. We
know that the force causing the overstretch comes from the
grippers, so if we reduce the length of geodesic paths through
the object between grippers, the strain on the object should
decrease. When overstretch is detected, we thus introduce a
conical constraint for each gripper that shrinks the allowable
q̇g to reduce the length of the geodesics between the grippers.

A conical constraint is constructed for each gripper and
points along the stretching avoidance vector, which is an
estimation of the direction to move to decrease the strain.
For a pair of grippers with index g and k, two stretching
avoidance vectors are defined, one for each gripper. Let
Ig(qg, qk) be the index of the point grasped by the gth
gripper, which has the minimum geodesic distance to the
set of points grasped by qk. We define Ik(qg, qk) similarly.
Let ∫gk be the geodesic on the object from pIg(qg,qk) to
pIk(qg,qk). We denote ukg and ugk as the pair of stretching

Fig. 3: The arrows in gray show the direction of each
stretching vector at the corresponding gripper with respect
to the gripper pair qg and qk. Left: stretching vectors on the
rope when the rope is at rest (above) or is deformed (below).
Right: stretching vectors on the cloth when the cloth is at
rest (above) or is deformed (below). The red lines denote
the geodesic connecting the corresponding pIg(qg,qk) and
pIk(qg,qk) on the object.

avoidance vectors on the gth and kth grippers. Then ukg is
the tangent vector of ∫gk at pIg(qg,qk) and ugk is the tangent
vector of ∫kg at the point pIk(qg,qk) (as shown in Fig. 3).

To specify the stretching constraint, we first define the
function s(q̇g, qg, qk,P), which specifies the constraint on
gripper g defined by the interaction of grippers g and k.
Correspondingly, ukg is the stretching avoidance vector for the
gth gripper, which is the tangent vector of ∫gk at pIg(qg,qk).
The larger the value of s, the more we expect geodesic path
length between grippers will be reduced. Thus, s should
increase as ∠(q̇g, u

k
g) increases. Assume we wish to have

a lower bound ss on s, then Cs is a set of constraints
Cs = {C1

s , ...C
G
s }, where each constraint is:

Cgs = {q̇g ∈ se(3) | ∀k 6= g, ss − s(q̇g, qg, qk,P) < 0}
(12)

Many functions can satisfy the requirements of s. In our
work, we specify the function as:

s(q̇g, qg, qk,P) = cos∠(q̇g, u
k
g) (13)

C. Optimization Method

Because our objective function is not necessarily convex,
we used a custom optimization method to solve the problem
specified in Eq. 1. Our method is a type of numerical
gradient descent with an additional projection step to enforce
constraints.

Our method’s outer loop computes the numerical gradient
of the objective function. An inner loop then performs back-
tracking line search to find the gradient step size. However,
the gradient step may cross a constraint boundary, thus after
we compute the step size, we check if any constraint has
been violated after taking the step. If it has, we project the
step back to the feasible space. A simple projection to the
boundary of a violated constraint may satisfy that constraint
but violate others. Instead, to perform the projection, we
solve a convex optimization problem (using the Gurobi opti-
mizer [19]) to find the nearest feasible point. This is possible
because all the constraints in our problem are convex. Once



such a point is found, the outer loop continues to iterate until
convergence.

V. RESULTS

Our two goals are improving the accuracy of the de-
formable object motion model (for use in the controller), and
formulating a set of constraints for the controller to mitigate
collision and excessive stretching issues. As mentioned in
previous sections, our benchmark model and controller is
[3]. To evaluate our method we perform experiments in
simulation and on a physical robot. The simulator used is
Bullet physics [20], however, we emphasize that our method
has no knowledge of the simulation parameters or simulation
methods used therein. The simulator is used as a “black-box,”
mainly to stand in for a perception system and to allow us
to do repeatable experiments. The physical robot consists of
two KUKA iiwa 7DoF arms with Robotiq 3-finger hands.

We ran experiments with scenarios involving both cloth
and rope. The parameters are set as kg = 4, kD = 10,
kr = 20 for the new model, lc = 0.023, and ss = 0.4 for the
new controller. The parameters we used for the benchmark
method are its default best value found in [16]. The stretching
detection ratio is set as γs = 1.667 for the cloth and γs = 1.1
for the rope. The maximum gripper motion is set as ∆q,max =
0.03, with time step ∆t = 0.01s. For the experiment with a
task goal defined, a precalculated Dijkstra field for the task
will generate the ∆Pd for each point at each state to move the
object toward the goal given each point’s current position in
the space. All experiments were run on a i7-8700K 3.7 GHz
CPU with 32 GB of RAM. A video showing the experiments
is included with this paper.

A. Model Accuracy Results

We evaluated model accuracy by pulling the rope in a
straight line along the direction of the rope, then turning the
gripper and pulling back towards the rope as shown in Fig. 1.
As shown in Fig. 4, our new model is a better approximation
of the true motion when the gripper is pulling the rope. When
the gripper is turning, both the baseline and the new model
produce comparable error, but when the gripper starts pulling
again (this time in the opposite direction), the new model is
a significantly better approximation.

We also evaluated model accuracy by pulling the cloth
in a similar fashion; pulling the cloth one way, turning the
grippers, and then pulling in the opposite direction. As shown
in Fig. 5, our new model is a better approximation of the true
motion when the grippers are pulling the cloth. As in the
rope test, when rotating the grippers both models produce
comparable error. While the cloth is folded on itself both
models produce noisy results, but when the cloth lies flat
again, the new model achieves lower error.

B. Constraint Enforcement

Since the benchmark controller can already handle the col-
lision constraint very well, and the new controller addresses
the collision constraint in the similar way as the benchmark,
there is not a significant difference in how the collision

Fig. 4: RMS model prediction error. The gripper pulls the
rope for the first 4.5 seconds, then turns for half a second,
then moves in the opposite direction at the 5 second mark.

Fig. 5: RMS model prediction error. The grippers pull the
cloth for the first 2.3 seconds, then turn for 0.63 seconds,
then move in the opposite direction at the 2.93 second mark.
At the 5 second mark the cloth is no longer folded.

constraint is enforced. However, the stretching constraint
shows a very clear improvement.

The metrics of stretching avoidance is the stretching ratio
γ defined in Section IV-B.2. A controller with good stretch-
ing avoidance should prevent γ from increasing beyong a
certain threshold.

The two experiments we used for the stretching avoidance
test are the rope-wrapping-cylinder and the cloth-passing-
single-pole, shown in Fig.6a and Fig.6d. We ran each con-
troller separately for a fixed amount of time for each task
and show γ vs. time for both controllers in Fig. 7 . In both
these two setups, the desired object motion Ṗd generated by
the Dijkstra field will tear the object unless overstretching is
prevented.

Fig. 7 shows the new controller is able to prevent further
stretching happening when the object is taut for both the rope
and the cloth. In the rope test, the new controller can prevent
overstretching with ss = 0.4, as defined in Eq.13. We can
see the γ of the benchmark methods keeps growing beyond
this threshold, while the γ of the new method stays close to
the threshold. In the cloth test, the benchmark method’s γ (in
purple) increases above the threshold γs = 1.667 for cloth,
and a sudden drop in γ happens after running the test for
2 seconds. This drop is the “tearing” point in the simulator.



(a) Rope wrapping cylinder (b) Rope matching zig-path

(c) Cloth covering two cylinders (d) Cloth passing single pole

Fig. 6: Initial state of the four experiments, where the red
points act as attractors for the deformable object.

(a) Rope wrapping cylinder (b) Cloth passing single pole

Fig. 7: (a) The red line shows the γ of the benchmark and
the blue line shows the γ of the new controller with ss = 0.4
throughout the simulation. (b) The purple line shows the γ
of the benchmark, and the blue, red, and yellow lines each
show the γ of the new controller with ss = 0.4, ss = 0.6,
and ss = 0.8, respectively.

Though we still see overstretching happened using the new
method for some settings of ss, in all cases the γ converged
before tearing happened (instead of growing without bound).

C. Controller Task Performance

Besides the quantitative analysis of the model accuracy
and stretching avoidance, we ran another two experiments,
rope-matching-zig-path and cloth-covering-two-cylinder, one
each with the rope or the cloth, as shown in Fig.6b and
Fig.6c to see how the new method performed for some
coverage tasks. Both the benchmark and the new controllers
are able to perform these tasks with comparable performance;
reaching approximately the same configurations when for-
ward progress stops due to a local minimum (Fig. 8), and
completing the task (Fig. 9). This result suggests that we
have not lost functionality with respect to the benchmark
despite changing the model and control method used.

D. Physical Robot Experiments

To evaluate our new model and controller on a physical
system, we set up two experiments with cloth-like objects
manipulated by two 7DoF KUKA iiwa arms (Fig. 10). To

Fig. 8: Cloth-covering-two-cylinder task start and end con-
figurations. Both controllers are unable to make progress due
to a local minima.

Fig. 9: Rope-matching-zig-path start and end configurations.
Both controllers are able to succeed at the task, bringing the
rope into alignment with the desired path.

sense the position of the cloth, we use the AprilTags [21]
and IAI Kinect2 [22] libraries. The parameters are set as
kg = 4, kD = 10, kr = 10 for the new model, lc = 0.08,
and ss = 0.6 for the new controller. The first test, which
evaluates model accuracy, uses a motion profile similar
to the simulation accuracy tests (Fig. 11). Similar to the
simulation results, the new model improves performance
when dragging the cloth (first and last sections of Fig. 11),
and is comparable during rotational motion and when the
cloth is resting on edge perpendicular to the table (see video).
To test the controller, we set up a task similar to the cloth-
passing-single-pole example using a paper towel. For this
task, the baseline controller tears the paper towel while the
new controller avoids excessive overstretch, instead wrapping
around the pole to reach a local minimum.

E. Computation Time

To verify the practicality of our method, we gathered
data comparing its computation time to the benchmark’s and
to using the Bullet simulator. Table I shows the average
computation time of a call to the controller for the new
method vs. the benchmark. As expected, the benchmark,
which uses a linear model, is faster than the new method.
However, the computation times for the new method are still
reasonable to use in a control loop.

Table II shows a comparison between the average time
needed to evaluate the new model and the time needed to
simulate a gripper motion with the Bullet simulator. Note
that the amount of time required for the simulator to converge
to a stable estimate depends on many conditions, including
what object is being simulated. Through experimentation



Fig. 10: Initial setup for the physical robot experiments. Left:
model accuracy test. Right: stretching avoidance test.

Fig. 11: RMS model prediction error. The grippers pull the
cloth toward the robot for the first 10 timesteps, upward for
5 timesteps, rotate for 15 timesteps, diagonally down and
away for 9 timesteps, then directly away from the robot.

we determined that 4 simulation steps were adequate for
rope and 10 for cloth. Comparing the time needed to do
this simulation to the time needed to evaluate our model,
we see that the new model is indeed faster by at least
an order of magnitude, in some cases by two orders of
magnitude, confirming that, despite being slower than the
benchmark, our method still outperforms the simulator in
terms of computation time.

VI. CONCLUSION

In this paper we extended a geometric model for de-
formable object manipulation to include directional rigidity
and obstacle penetration constraints. Considering these terms
in the model allowed us to improve the model’s prediction
while maintaining low computation cost. We also addressed
the excessive stretching issue by approximating the stretching
constraints with conical constraints around stretching avoid-
ance vectors. Our controller is able to complete the same
tasks as the previous benchmark method but also correctly
enforces stretching constraints when the object is caught
on obstacles. In future work, we would like to investigate
the sensitivity of the model with respect to its parameters
and develop methods to automatically tune these parameters
based on observed motion.
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