
Motion Planning for Manipulators in Unknown
Environments with Contact Sensing Uncertainty

Brad Saund and Dmitry Berenson

University of Michigan

Abstract. Localization error, sensor noise, and occlusions can lead to
an imperfect model of the environment, which can result in collisions
between a robot arm and unobserved obstacles when manipulating. The
robot must navigate around these obstructions despite not knowing their
shape or location. Without tactile sensors, the robot only observes that
a contact occurred somewhere on its surface, a measurement containing
very little information. We present the Collision Hypothesis Sets repre-
sentation for computing a belief of occupancy from these observations,
and we introduce a planning and control architecture that uses this repre-
sentation to navigate through unknown environments. Despite the dearth
of information, we demonstrate through experiments that our algorithms
can navigate around unseen obstacles and into narrow passages. We test
in multiple environments in simulation and on a physical robot arm both
with and without the aid of a 2.5D depth sensor. Compared to a base-
line representation Collision Hypothesis Sets produce an approximately
1.5-3x speed-up and improve the success rate from 40-60% to 100% in
tested scenarios with narrow passages.

1 Introduction

Robots rely on sensors to construct models of the world for use in motion
planning, but in many practical scenarios sensing limitations result in an incom-
plete or inaccurate model, resulting in plans that can collide with unobserved
obstacles. Sensing limitations occur in manipulation tasks due to limited range
and field of view, invalid measurements caused by glare, and insufficient accu-
racy for motion in tight areas. Furthermore, robots may reach into occluded
areas during maintenance and assembly tasks (e.g. reaching into a car engine)
and household tasks (e.g. reaching deep into a cabinet or behind a box). In the
scenarios examined in this paper collisions between the arm and environment
can be sensed without damage to the robot and used to inform future plans, but
a lack of tactile sensing generates large non-Gaussian uncertainty over the belief
of the occupancy of the environment.

The task we consider is to move from a given start configuration through
free space to a goal configuration as quickly as possible, however the free space
is not known a priori and the occupancy must be sensed through contact. We
do not require tactile sensing to detect contact since most robots do not possess
touch-sensitive skin. Even robots with such skin may pick up objects, effectively
extending their kinematic chain with unsensorized geometry. We assume a robot
is able to detect contact using joint torque feedback as is available on many

This research was funded in part by Toyota Research Institute (TRI). This article
solely reflects the opinions of its authors and not TRI or any other Toyota entity.

2 Brad Saund and Dmitry Berenson

robot arms. We further use that joint torque to determine which links may be
in contact.

The task of moving to a goal in an unknown environment can be framed as a
Partially Observable Markov Decision Process (POMDP), where the belief over
occupancy is obtained through noisy collision measurements. In our implemen-
tation the workspace, observed collisions, and known obstacles are all stored in
voxel grids of size N , thus the size of a belief state is 2N . A measurement either
indicates a configuration along a path did not collide and thus the voxels occu-
pied by the robot do not contain obstacles, or that a collision occurred and thus
at least one voxel blocked movement to the new configuration. Measurement
uncertainty does not primarily come from sensor noise, but because a measure-
ment only provides a set of voxels where at least one is occupied. The size of the
belief space and the measurement uncertainty make this problem intractable for
a standard POMDP solver, thus we propose an approach which is specialized to
our domain.

Our key contribution is a representation for contact uncertainty we call Col-
lision Hypothesis Sets (CHS), which enables planners to more accurately reason
about potential collisions. This paper first reviews prior work on planning in
uncertain environments (Sec. 2). The task is then defined (Sec. 3), the CHS
representation is motivated and presented (Sec. 4), and the planning and con-
trol architecture is then described (Sec. 5). Results are reported for experiments
performed in simulation and on a physical robot, comparing the CHS represen-
tation to a baseline unified cost grid (Sec. 6). With enough open free space the
two methods perform similarly. However, when the robot must enter narrow pas-
sages to reach a goal the CHS representation reduced the total execution time
by approximately a factor of 1.5 to 3. Furthermore, in narrow passage scenarios
where the baseline method only reached the goal in approximately 40-60% of
trials, using CHSs produced a success rate of 100%.

2 Related Work
A core component of motion planning is the ability to check the validity of a
path. Many motion planning algorithms assume deterministic collision checking
but with uncertainty in the robot or environment it is only possible to calculate
the probability of collision. With an arbitrary belief Monte Carlo simulations
(MCS) can be used to estimate collision probabilities [14], although this approach
is computationally expensive and generally not practical for large state spaces,
so many approaches apply only to specific belief distributions.

Assuming Gaussian uncertainty over the robot and specific objects enables
computation of collision probability for a single configuration [4, 20, 21]. To es-
timate the collision probability along a full path, rather than at an individual
configuration, [17] propagates only the portion of a Gaussian robot belief that are
not in collision. Other forms of uncertainty, such as point cloud measurements
from range sensors, may be better modeled with specifically-tailored distribu-
tions dependent on distance and incidence angle [1]. However, none of these
distributions accurately model the information obtained when a robot contacts
the environment.

Motion Planning for Manipulators with Contact Sensing Uncertainty 3

Localization methods exist that are specifically tailored to model the unusual
contact sensing uncertainty. Using a particle filter, a belief consistent with a
contact measurement can be updated using rejection sampling [18], or sampling
from the contact manifold [11]. Both of these methods require models of objects
in the world, which we do not assume are known. Other methods use joint
position and torques to estimate the contact location on the robot surface [3,12],
but require accurate torque measurements to produce accurate estimates. Since
we wish to sense contact just above the noise threshold the torque measurements
will contain significant noise, thus we use a comparatively simple method that
more reliably estimates which links may be in contact.

By treating the probability of collision as a cost, the problem of planning
under uncertainty can be framed as an optimal path planning problem. While
there exist numerous optimal planners through continuous space, such as RRT*
[9] and its many variants, these methods rely on a quick computation of path cost
to run efficiently and since computing collision probability is far more expensive
than a typical path length cost these methods ultimately explore too few nodes
for our problem in a reasonable time.

Rather than attempting to minimize the probability of collision, many algo-
rithms search for a path with some acceptably-low probability of collision. This
can be done conservatively by inflating the robot [15], iteratively considering
simplified dynamics [5], or in a Probabilistic Roadmap where each edge collision
cost is bounded [6]. These methods approximate the full path probability of col-
lision from the probability of collision of the individual states, thereby assuming
that probabilities of collision are independent. In our work the occupancy uncer-
tainty is heavily coupled across space, thus this independence assumption does
not hold (see Sec. 5 for further discussion).

While executing a plan a robot may learn new information that causes the
plan to become invalid or suboptimal, and the robot can replan a new path given
this new information. Most prior work on replanning assumes collisions can be
sensed at a distance and a primary goal is to avoid collisions [8]. Some methods
do allow for collisions and store contact locations sensed using tactile skin on
a robotic arm [2, 10]. Using a simulated skin a fast planning architecture was
demonstrated with a fast local controller that falls back to a slower sampling-
based planner when stuck in a local minimum [16]. We use a similar approach
for mixing planning and control, but our method does not require tactile skin to
sense precise contact points.

3 Problem Statement
Given a robot with configuration space C, define a workspace voxel grid of size
N × N × N as W with static workspace occupied voxels WO ⊆ W and free
spaceWF =W\WO. For any configuration q ∈ C the robot occupies a subspace
of workspace, defined by the mapping R(q) : C → P(W) where P denotes the
powerset. A collision occurs when R(q) ∩ WO 6= ∅, and is detected by joint
torque feedback (discussed in Sec. 4). While the planner does not have access to
WO directly, the swept volume of the previously visited configurations qivisited is
known to be free and is stored in WSV = ∪iR(qivisited) ⊆ WF .

4 Brad Saund and Dmitry Berenson

A discretized path ξ consists of configurations qi such that ||qi+1 − qi|| < δ
where δ is set based on the desired resolution. A robot at qi attempting to follow
the ith path ξplani takes execution time Texec(ξ

plan
i) > 0 to arrive at

M(qi, ξ
plan
i) = qreached (1)

If ξplani collides then qreached ∈ ξplani is the configuration directly before the first

q ∈ ξplani in collision. After a collision a new ξplani+1 may be executed.

Define an algorithm P that takes time tplani to produce ξplani , a path that
must begin at qi. P is aware of past planned paths and visited configurations
Qvisitedi = {q0, q1, ..., qi}. We refer to P as a “planner” if it plans ξplan reaching
the goal, and a “controller” if it computes a short ξplan towards the goal. A single
P may choose to act as either a planner or controller depending on context.

P(Qvisitedi , ξplan1 , . . . , ξplani−1) = (ξplani , tplani) (2)

Given a robot in configuration qinit and a set of goal configurations Qgoal
our objective is to choose a P to reach a goal configuration in the least time.

minimize
P,n

n−1∑
i=0

tplani + Texec(ξ
plan
i) (3)

subject to: q0 = qinit, qn ∈ Qgoal (4)

(ξplani , tplani) = P(Qvisitedi , ξplan1 , . . . , ξplani−1) (5)

qi+1 = M(qi, ξ
plan
i) (6)

Since planning time is part of the objective, P must choose a tradeoff between
analyzing all information to choose the best ξplani , and minimizing planning

time tplani . A controller typically achieves a small tplani , while a planner spends

more time to produce better ξplani . As ξplan are executed, P has access to more
knowledge about W, and effectively using this information is key to minimizing
total time. We will not solve Eq. 3 computationally, but instead design a P with
desirable qualities and justify our choices with experimental trials.

4 Representing Uncertain Contact Information
When a collision is detected during execution the swept volume of a set of config-
urations qicollision along the robot path within some small distance dK after colli-
sion is assumed to contain the point of contact. While in theory the set of points
on the robot surface contains the contact point, in practice joint measurement
uncertainties, robot geometry uncertainties and approximations, and material
compliance require a larger set to guarantee encapsulation of the contact point.
A set containing the contact point is constructed Ki = ∪iR(qicollision) \ WSV ,
the total volume of the robot in the possible collision configurations with the
known free space removed (Fig. 1).

In our problem collisions are detected using measured joint torque τmeas ∈
RJ , where J is the number of robot joints. Using a mass model of the robot the

Motion Planning for Manipulators with Contact Sensing Uncertainty 5

Fig. 1: A plan for the green robot (left) results in a collision with the grey unknown
obstacle. A red collision hypothesis set is added using links possibly in collision based
on measured joint torques (center). The known free space is removed (right).

expected joint torque due to gravity and dynamics τexp is calculated and used
to estimate the external joint torque τext = τmeas − τexp. A noise threshold τ th

is set for each joint and τext triggers a collision detection whenever any joint
exceeds its threshold. Joint i exceeding τ thi implies an external (contact) force
on a link after joint i on the kinematic chain. A set of links that must contain
a contact Lcontact is constructed by first finding the highest i where τexti > τ thi ,
then adding all links downstream from joint i to Lcontact. Only the links in
Lcontact are used to create Ki.

4.1 Baseline: Unified Cost Grid

When provided with noisy measurements a common approach to modelling un-
certainty extends a binary occupancy map to a Unified Cost Grid (UCG), a
voxel grid where each voxel stores its likelihood of occupancy. We compute this
likelihood as the count of how many observed collisions could be explained if
that voxel were occupied. The UCG representation computes a path cost by
summing the likelihood of the voxels in the swept volume of the path.

Unfortunately, by combining all measurements into a single grid the UCG
representation loses the information that each collision was caused by at least
one occupied voxel. As we show in Section 6, this approach fails when entering
narrow passages as collisions near the entrance create a high cost for feasible
paths. Therefore, we construct a representation that maintains this information.

4.2 Collision Hypothesis Sets

Define a Collision Hypothesis Set (CHS) as a set of points in the robot workspace
containing at least one point in collision. The Ki constructed after a collision
are CHSs, since Ki ∩WO 6= ∅. However, unlike in UCG, the CHS representation
never combines Kis into a unified grid, and instead maintains a set K of all
generated Ki.

Planning will require evaluating the probability of collision for a path using
K. Let the swept volume of a path ξ on the robot be Wξ ⊆ W. We define the
probability of collision of ξ with a single Ki as

pcollision(Wξ,Ki) =
|Wξ ∩ Ki|
|Ki|

(7)

6 Brad Saund and Dmitry Berenson

Assuming there exists a single occupied voxel uniform randomly selected from
Ki, this is precisely the probability the path collides. While this will likely be
an underestimate of the true probability, it encourages exploration and further
collision measurements will help localize the contact. The probability of collision
for a full path is computed assuming independence between Kis, thus

pcollision(Wξ,K) = 1−
∏
i

(1− pcollision(Wξ,Ki)) (8)

This definition for collision probability captures several key features that the
UCG representation lacks. A Ki with fewer voxels represents a more precise
knowledge of where the contact occurred and thus a more precise estimate of
workspace occupancy. In addition, a path that moves the robot through an entire

CHS is guaranteed to collide, since
|Wξ∩Ki|
|Ki| = 1, representing the information

that a CHS contains at least one point in collision. A path ξ that is attempted
but blocked due to a detected collision creates a Ki that lies entirely within Wξ,
so the updated collision probability for ξ will now be 1.

5 Interleaving Planning and Control
To achieve our objective of reaching a goal configuration in minimal time (Eq. 3),

we must choose an algorithm P that compute good motions ξplani in low planning

times tplani . Local controllers quickly compute locally good ξplani but may get
stuck in local minima. Global planning can escape these minima by planning a
full path, but requires significant computation time. Our environments include
many undetected obstacles and a local controller may produce many collisions
before getting stuck, thereby providing more information to the global planner
without adding much total time. Thus we use a planner initially and when stuck
in cul-de-sacs, and local control otherwise. Our full architecture is presented in
Algorithm 1.

(a)

(b)

Fig. 2: Plans for the green
arm sweep through the
blue region. Red: a CHS

Planning: The objective of the planner is to find
a path to the goal with the minimal probability of col-
lision. Unfortunately, as discussed in Section 2, previ-
ous methods that plan over obstacle uncertainty are
not applicable when using CHSs, as these planners
typically rely on a path cost definition that is purely
the sum [9] or maximum [20] of costs of states/edges.
Figure 2 illustrates two problems with inferring path
collision probability using the costs of only individ-
ual states along the path. In Fig. 2a the swept vol-
ume of adjacent states overlap significantly, thus sum-
ming costs of states could significantly overestimate
the probability of collision. In Fig. 2b multiple states
collectively intersect the entirety of a CHS thus guar-
anteeing a collision, but each state individually only
intersects a fraction of that CHS, thus taking the max-
imum over all state costs would significantly underes-
timate the probability of collision.

Motion Planning for Manipulators with Contact Sensing Uncertainty 7

Algorithm 1
MainLoop(qcur, qgoal)

1: K ← ∅; WSV ← ∅
2: while qcur 6= qgoal do
3: ξ ← Planner(qcur, qgoal,K)
4: qcur ←AttemptPath(ξ,K,WSV)
5: while qcur 6= qgoal and

(ξ ← Controller(qcur, qgoal,K)) 6= ∅
do

6: qcur ← AttemptPath(ξ,K,WSV)

Algorithm 2
AttemptPath(ξ,K,WSV)

1: for qi in ξ do
2: if qi causes collision then
3: K.addNew(qi, ξ, dK)
4: break
5: qcur ← qi
6: WSV ←WSV ∪R(qcur)

7: K.subtract(WSV)
8: return qcur

To plan a path we create PathBiRRT (Alg. 3), a planner based on bi-
directional RRT [13] that ensures the cost of the path generated is below a
specified threshold pthr. For the CHS representation the Cost function is given
by Eq. 8. For the baseline UCG representation, which we compare to in the
results, the Cost sums the cost of all voxels in Wξ, i.e.

∑
i |Wξ ∩ Ki|.

Ideally we desire a Connect function that ensures the cost of the entire
path to any new node is below pthr. In practice, computing this cost for every
explored node is prohibitively expensive, thus we approximate this cost as an
accumulation of branch costs computed in the Connect function (Alg. 4). When
extending towards qtarget the full path cost of the branch from qnear is calculated
(Line 6). The cost from the root to the qnew is approximated by accumulating
the approximate cost to qnear (computed previously) and the cost of the new
branch (Line 8). When using CHS the Accumulate function is the combination
of independent probabilities: 1− (1− p1)(1− p2). UCG accumulates by adding
the costs: c1 + c2. By computing the cost over full branches this approximation
is significantly better than accumulating cost purely based on states, however,
this approximation may still over or underestimate the true cost, as separate
branches along a path may overlap in W.

PathBiRRT (Alg. 3) repeatedly calls Connect to build a tree from the start
and a tree from the goal, generating a potential path ξ when the two trees meet.
ξ may exceed pthr due to the approximation error within Connect and because
ξ is the combination of paths from two trees. The cost of ξ is checked (Line 9)
and if it exceeds pthr then the highest cost edge from ξ is pruned along with all
child edges, and planning continues.

For planning within fixed time tplan, we provide two methods for setting
pthr. The anytime APathBiRRT (Alg. 5) begins with pthr = ∞ and continues
searching for lower-cost paths until time runs out. In contrast, IPathBiRRT (Alg.
6) begins with an optimistic pthr = cinit. In each iteration IPathBiRRT allocates
a fraction ψf of the remaining time tψ for planning with the current pthr. If a
plan is not found within tψ, pthr is increased for the next iteration, approaching
pmax for CHS, or vmax for UCG. Once a path is found, IPathBiRRT then invokes
APathBiRRT for the remainder of the planning time.

As a benchmark, we also implemented ABiRRT, which iteratively decreases
a cost threshold (as in Alg. 5), but when checking to add a new node (as in Alg.

8 Brad Saund and Dmitry Berenson

4, Line 5-9) only the configuration cost is considered (Cost(R(qnew),K) < pthr)
and there is no full path check (Alg. 3, Line 9). To support the claim that asymp-
totically optimal planners are not practical for this problem we also compare
against RRT* [9], which always computes the full path cost when considering
new connections.

Local Control: The local controller samples a specified number nc of straight-
line motions of length dc uniformly from the half-sphere in C-space that reduce
the robot’s distance to the goal. From these samples, the controller greedily se-
lects the motion with lowest probability of collision, using Eq. 8. If no motion
is found with probability of collision < pc for CHS, or cost < nvoxc for UCG,
the controller assumes it is stuck (Alg. 1 Line. 5) in a cul-de-sac and invokes the
planner.

Algorithm 3
PathBiRRT(qinit, qgoal,K, pthr, t)
1: TA.init(qinit); TA[qinit].approxCost ← 0
2: TB .init(qgoal); TB [qgoal].approxCost ← 0
3: while timeElapsed() < t do
4: qr ← sampleConfig()
5: status, qnew = Connect(TA, qr, pthr)
6: if status 6= Trapped then
7: if Connect(TB , qnew, pthr) =

Reached then
8: ξ ← path(TA, TB)
9: if Cost(Wξ,K) < pthr then

10: return ξ
11: else
12: e ← highestCostEdge(ξ)
13: if e in TA then
14: TA.prune(e)
15: else
16: TB .prune(e)

17: swap(TA, TB)

18: return ∅

Algorithm 4
Connect(T , qtarget,K, pthr)
1: qnear ← nearest(T , qtarget)
2: Wseg ← {}
3: ξ ←interpolate(qnear, qtarget, δ)
4: for qnew in ξ do
5: Wseg ←Wseg ∪R(qnew)
6: cseg ← Cost(Wseg,K)
7: cnear ← T [qnear].approxCost
8: capprox ← Accum(cseg, cnear)
9: if collides(qnew) or

capprox ≥ pthr then
10: if qnew = qnear then
11: return {Trapped, qnew}
12: return {Advanced, qnew}
13: T .add(qnew)
14: T [qnew].approxCost ← capprox

15: return {Reached, qnew}

Algorithm 5 APathBiRRT
(qinit, qgoal,K, pthr =∞)

1: ξbest ← ∅
2: while timeRemaining()>0 do
3: ξ ← PathBiRRT(qinit, qgoal, pthr,

timeRemaining())
4: if ξ 6= ∅ then
5: if Cost(Wξ,K) = 0 then
6: return ξ

7: pthr ← Cost(Wξ,K) - ε
8: ξbest ← ξ

9: return ξbest

Algorithm 6 IPathBiRRT
(qinit, qgoal,K, cinit, cmax, ψf)

1: pthr ← cinit
2: while timeRemaining()>0 do
3: tψ ← timeRemaining() ·ψf
4: ξ ← PathBiRRT(qs, qgoal, pthr, tψ)
5: if ξ 6= ∅ then
6: return APathBiRRT(qs, qgoal,

pthr =Cost(Wξ,K))

7: α← timeElapsed()/totalTime()
8: pthr ← α · cmax + cinit

9: return ∅

Motion Planning for Manipulators with Contact Sensing Uncertainty 9

Fig. 3: Simulated Scenarios Fig. 4: Physical Robot environments

6 Experiments and Results
To demonstrate the advantages of our representation we compared Collision
Hypothesis Sets (CHS) to the baseline Unified Cost Grid (UCG) in multiple
environments in simulation and on a physical robot using multiple planning
approaches1. Parameters used in experiments are given in Table 5. Voxel grids
were implemented on the GPU using GpuVoxles [7]. Planners were implemented
using OMPL [19] with modification. Code was run on a computer with i7-7700
processor and a NVidia 1080 Ti GPU. For all planners each path was smoothed
using 100 iterations of shortcut smoothing.

Simulation Experiments simulated a 7DOF Kuka iiwa arm in the envi-
ronments in Fig. 3, shown with red Kis, grey unobserved obstacles, and black
observed obstacles. Rather than simulating joint torque, collisions were deter-
mined when the simulated robot moved into an obstacle in the workspace. All
links downstream of the true link in collision were used to generate a CHS. In
scenario S1, the simplest environment, the robot’s goal was to reach inside a box
located on a table with some occupancy known from a simulated depth sensor.
Scenario S2 was harder as the robot needed to move the entire arm through a
narrow slot occluded from the sensor. Scenario S3 was identical to S1 except
the robot used no depth sensor information. Each simulation trial allowed 15
minutes for the robot to reach the goal.

Physical Robot Experiments were conducted on a physical 7DOF Kuka
iiwa arm capable of sensing joint torque. A Kinect depth sensor created known
obstacle occupancy. Figure 4 shows the physical robot experimental setups. Each
physical trial allowed 5 minutes for the robot to reach the goal. In physical robot
scenario R1 the robot placed a pitcher inside a box with the lid occluding the
side and back walls from the Kinect. R2 involved placing a cylindrical can on a
short shelf. Glare and occlusions resulted in a sparse and noisy occupancy map
from the Kinect, both blocking a feasible path to the goal and missing portions
of the top and bottom of the shelf. To accommodate noise up 30 intersections
were allowed between the robot and the Kinect occupancy map.

1Videos of experiments available at https://www.youtube.com/watch?v=EjCq1Q4nNUc

10 Brad Saund and Dmitry Berenson

Description Value

pc controller max collision probability 0.9

nvoxc controller max collision voxels 50

dc controller motion length 0.3 radians

nc controller number of samples 20

δ path discretization size 0.14 radians

dK dist. for Ki creation 0.05 radians

τ th torque threshold
[20, 20, 15, 5,
4, 3, 1] Nm

tplan allowed planning time per iteration 30s

N voxel grid size 200x200x200

ψf IPathBiRRT phase fraction 1/4

cinit IPathBiRRT initial cost 0.3

pmax IPathBiRRT CHS cmax 1

vmax IPathBiRRT UCG cmax 400

ε APathBiRRT improvement factor 0.0001

Fig. 5: Experimental parameters

Fig. 6: Total time and
failure % for R4, aver-
aged over 10 trials for
each clearance with a 5
min. timeout

In scenario R3 the robot arm moved from below to above a table. The sensed
table was artificially shifted 5 cm away from the robot, simulating localization or
sensor error. R4 tested the behavior moving through a narrow passage between
two tables. This gap was adjusted between 15.5cm to 28cm, corresponding to a
clearance of 2.5cm to 15cm for the 13cm wide robot hand. In R4 Kinect data
was not used, thus the robot only sensed obstacles through contact.

Results: Table 1 reports the results for each simulated scenario, comparing
CHS and UCG using the proposed APathBiRRT and IPathBiRRT planners
as well as RRT* and ABiRRT. RRT* did not reach the goal within the time
limit in any scenario. ABiRRT performed far worse than our proposed methods,
indicating that considering full path collision probability is superior to only per-
configuration collision probability. Table 2 reports the results for each physical
scenario, comparing CHS and UCG using IPathBiRRT only, as this planner
performed the best in simulation trials. In both simulation and physical trials
we observed our CHS formulation outperforms the UCG approach in terms of
computation time.

In simpler scenarios (S1, S2, R1) early collisions were navigated better by the
local controller, causing fewer lengthy planning iterations. For example in R1 our
method required invoking the global planner only once in all ten trials, leading
to an average success time of 18.6s compared to 76.6s when using a unified
cost grid. In harder scenarios (S3, R2) collisions occurred on multiple sides of
narrow passages. Using a unified cost grid, the planner and controller avoided the
center of the passage as this area has cost accumulated from multiple collisions,
thus only 40% of the trials successfully reached the goal for R2. Paths through
the center do not intersect with all voxels from any CHS, thus our approach
correctly identified possible paths and succeeded in 100% of trials in R2. Even

Motion Planning for Manipulators with Contact Sensing Uncertainty 11

Planner
S1 S2 S3

Succ. Time P.Calls Succ. Time P.Calls Succ. Time P.Calls

CHS

APathBiRRT 100% 110 4.1 100% 100 3.4 100% 220 6.5
IPathBiRRT 85% 69 3.0 100% 64 2.6 100% 180 5.3

RRT* 0% - - 0% - - 0% - -
ABiRRT 100% 78 3.5 30% 230 20 60% 200 15

UCG

APathBiRRT 100% 110 4.2 95% 120 3.9 40% 440 18
IPathBiRRT 55% 71 2.9 90% 130 3.9 60% 280 15

RRT* 0% - - 0% - - 0% - -
ABiRRT 100% 113 4.4 80% 250 11 65% 500 22

Table 1: Simulated Scenarios: Successes within 15 min, total time (s), and number of
planner calls averaged over 20 trials for each entry. Blue: Proposed methods.

Planner
R1 R2

Succ. Time P.Calls Plan Ctrl Succ. Time P.Calls Plan Ctrl

CHS IPathBiRRT 100% 19 1.1 3.4 15 100% 62 2.1 38 24

UCG IPathBiRRT 100% 77 2.3 57 19 40% 180 4.8 130 43

Planner
R3 R4: clearance=2.5cm

Succ. Time P.Calls Plan Ctrl Succ. Time P.Calls Plan Ctrl

CHS IPathBiRRT 100% 100 1.0 32 65 100% 57 1.2 1.5 50

UCG IPathBiRRT 100% 100 1.0 34 65 40% 140 2.5 50 82

Table 2: Physical Robot Experiments: Successes within 5 min., total time (s), number
of planner calls, planning time (s), and controller time (s) averaged over 10 trials.

considering only trials where UCG succeeded our approach still reached the goal
in approximately one third of the time on average.

In R3 the table obstacle created a cul-de-sac for the local controller, though
there was significant free space for the planner to conservatively avoid the table.
Since plans were able to avoid much of the CHSs, accurately modeling collision
probability was less important, thus the baseline method and proposed method
performed similarly.

In R4 with a large gap between tables both methods found a path quickly.
For both methods, successful trials primarily invoked the local controller and
rarely needed the global planner. As the gap narrowed both methods required
more time to find the opening, however UCG took longer on average and in 60%
of trials did not find the opening within the allowed time of 5 minutes (Fig. 6).

7 Conclusions and Future Work
Most robots do not have touch-sensitive skin, and those that do may manipulate
unsensorized objects. The proposed Collision Hypothesis Sets allow reasoning
about the knowledge gained when these robots and objects come into contact
with the environment. We showed how collision hypothesis sets can be used
in controllers and planners to search for paths with minimum probability of
collision. We performed simulated and physical robot experiments and found for
simpler environments our approach takes less time to reach the goal while for
more complex environments our methods succeeds where other approaches fail.

We explained why many existing methods for planning under uncertainty
cannot be applied to contact observations and presented two planners that first

12 Brad Saund and Dmitry Berenson

approximate, then compute the full path cost. However, the planners imple-
mented could be made more efficient and the resulting paths are often signifi-
cantly suboptimal. Our future work seeks to improve these results.

References
1. K. Bae, D. Belton, and D. D. Lichti. A closed-form expression of the positional

uncertainty for 3D point clouds. TPAMI, 2009.
2. T. Bhattacharjee, P. Grice, A. Kapusta, M. Killpack, D. Park, and C. Kemp.

A robotic system for reaching in dense clutter that integrates model predictive
control, learning, haptic mapping, and planning. IROS, 2014.

3. A. Bicchi, J. K. Salisbury, and D. Brock. Contact sensing from force measurements.
IJRR, 12(3):249–262, 1993.

4. L. Blackmore. A probabilistic particle control approach to optimal , robust pre-
dictive control. In AIAA, 2006.

5. A. Bry and N. Roy. Rapidly-exploring random belief trees for motion planning
under uncertainty. In ICRA, 2011.

6. L. Guibas, D. Hsu, H. Kurniawati, and E. Rehman. Bounded uncertainty roadmaps
for path planning. In WAFR, 2008.

7. A. Hermann, F. Drews, J. Bauer, S. Klemm, A. Roennau, and R. Dillmann. Unified
GPU voxel collision detection for mobile manipulation planning. IROS, 2014.

8. Lucas Janson, Tommy Hu, and Marco Pavone. Safe motion planning in unknown
environments: Optimality benchmarks and tractable policies. CoRR, 2018.

9. S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. The International Journal of Robotics Research, 30(7):846–894, 2011.

10. M. Killpack, A. Kapusta, and C. Kemp. Model predictive control for fast reaching
in clutter. Autonomous Robots, 40(3):537–560, Mar 2016.

11. M. Klingensmith, M. Koval, S. Srinivasa, N. Pollard, and M. Kaess. The manifold
particle filter for state estimation on high-dimensional manifolds. CoRR, 2016.

12. G. Koonjul, G. Zeglin, and N. Pollard. Measuring contact points from displace-
ments with a compliant, articulated robot hand. In ICRA, 2011.

13. J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-
query path planning. ICRA, 2000.

14. A. Lambert, D. Gruyer, and G. Saint Pierre. A fast monte carlo algorithm for
collision probability estimation. In ICARCV, Dec 2008.

15. A. Lee, Y. Duan, S. Patil, J. Schulman, Z. McCarthy, J. van den Berg, K. Gold-
berg, and P. Abbeel. Sigma hulls for gaussian belief space planning for imprecise
articulated robots amid obstacles. IROS, 2013.

16. D. Park, A. Kapusta, J. Hawke, and C. Kemp. Interleaving planning and control for
efficient haptically-guided reaching in unknown environments. Humanoids, 2014.

17. S. Patil, J. van den Berg, and R. Alterovitz. Estimating probability of collision for
safe motion planning under gaussian motion and sensing uncertainty. In ICRA,
2012.

18. B. Saund, S. Chen, and R. Simmons. Touch based localization of parts for high
precision manufacturing. ICRA, 2017.

19. I. Şucan, M. Moll, and L. Kavraki. The Open Motion Planning Library. IEEE
Robotics & Automation Magazine, 19, 2012. http://ompl.kavrakilab.org.

20. N. E. Du Toit and J. W. Burdick. Probabilistic collision checking with chance
constraints. IEEE T-RO, 27(4):809–815, Aug 2011.

21. J. van den Berg, D. Wilkie, S. J. Guy, M. Niethammer, and D. Manocha. LQG-
Obstacles: Feedback control with collision avoidance for mobile robots with motion
and sensing uncertainty. ICRA, 2012.

