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Abstract. We extend the learning from demonstration paradigm by
providing a method for learning unknown constraints shared across tasks,
using demonstrations of the tasks, their cost functions, and knowledge of
the system dynamics and control constraints. Given safe demonstrations,
our method uses hit-and-run sampling to obtain lower cost, and thus
unsafe, trajectories. Both safe and unsafe trajectories are used to obtain a
consistent representation of the unsafe set via solving an integer program.
Our method generalizes across system dynamics and learns a guaranteed
subset of the constraint. We also provide theoretical analysis on what
subset of the constraint can be learnable from safe demonstrations. We
demonstrate our method on linear and nonlinear system dynamics, show
that it can be modified to work with suboptimal demonstrations, and
that it can also be used to learn constraints in a feature space.

Keywords: learning from demonstration, machine learning, motion and
path planning

1 Introduction

Inverse optimal control and inverse reinforcement learning (IOC/IRL) [2,6,22,26]
have proven to be powerful tools in enabling robots to perform complex goal-
directed tasks. These methods learn a cost function that replicates the behavior
of an expert demonstrator when optimized. However, planning for many robotics
and automation tasks also requires knowing constraints, which define what states
or trajectories are safe. For example, the task of safely and efficiently navigating
an autonomous vehicle can naturally be described by a cost function trading off
user comfort and efficiency and by the constraints of collision avoidance and ex-
ecuting only legal driving behaviors. In some situations, constraints can provide
a more interpretable representation of a behavior than cost functions. For exam-
ple, in safety critical environments, recovering a hard constraint or an explicit
representation of an unsafe set in the environment is more useful than learning
a “softened” cost function representation of the constraint as a penalty term in
the Lagrangian. Consider the autonomous vehicle, which absolutely must avoid
collision, not simply give collisions a cost penalty. Furthermore, learning global
constraints shared across many tasks can be useful for generalization. Again con-
sider the autonomous vehicle, which must avoid the scene of a car accident: a
shared constraint that holds regardless of the task it is trying to complete.
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While constraints are important, it can be impractical for a user to exhaus-
tively program into a robot all the possible constraints it should obey when
performing its repertoire of tasks. To avoid this, we consider in this paper the
problem of recovering the latent constraints within expert demonstrations that
are shared across tasks in the environment. Our method is based on the key
insight that each safe, optimal demonstration induces a set of lower-cost tra-
jectories that must be unsafe due to violation of an unknown constraint. Our
method samples these unsafe trajectories, ensuring they are also consistent with
the known constraints (system dynamics, control constraints, and start/goal con-
straints), and uses these unsafe trajectories together with the safe demonstrations
as constraints in an “inverse” integer program which recovers a consistent unsafe
set. Our contributions are fourfold:

– We pose the novel problem of learning a shared constraint across tasks.
– We propose an algorithm that, given known constraints and boundedly sub-

optimal demonstrations of state-control sequences, extracts unknown con-
straints defined in a wide range of constraint spaces (not limited to the
trajectory or state spaces) shared across demonstrations of different tasks.

– We provide theoretical analysis on the limits of what subsets of a constraint
can be learned, depending on the demonstrations, the system dynamics, and
the trajectory discretization. We also show that our method can recover a
guaranteed underapproximation of the constraint.

– We provide experiments that justify our theory and show that our algorithm
can recover an unsafe set with few demonstrations, across different types of
linear and nonlinear dynamics, and can be adapted to work with boundedly
suboptimal demonstrations. We also demonstrate that our method can learn
constraints in the state space and a feature space.

2 Related Work
Inverse optimal control [14, 16] (IOC) and inverse reinforcement learn-
ing (IRL) [22] aim to recover an objective function consistent with the received
expert demonstrations, in the sense that the demonstrations (approximately) op-
timize the cost function. Our method is complementary to these approaches; if
the demonstration is solving a constrained optimization problem, we are finding
its constraints, given the objective function; IOC/IRL finds the objective func-
tion, given its constraints. For example, [12] attempts to learn the cost function of
a constrained optimization problem from optimal demonstrations by minimizing
the residuals of the KKT conditions, but the constraints themselves are assumed
known. Another approach [5] can represent a state-space constraint shared across
tasks as a penalty term in the reward function of an MDP. However, when view-
ing a constraint as a penalty, it becomes unclear if a demonstrated motion was
performed to avoid a penalty or to improve the cost of the trajectory in terms of
the true cost function (or both). Thus, learning a constraint which generalizes
between tasks with different cost functions becomes difficult. To avoid this issue,
we assume a known cost function to explicitly reason about the constraint.

One branch of safe reinforcement learning aims to perform exploration
while minimizing visitation of unsafe states. Several methods for safe exploration
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in the state space [3,28,29] use a Gaussian process (GP) to explore safe regions
in the state space. These approaches differ from ours in that they use exploration
instead of demonstrations. Some drawbacks to these methods include that unsafe
states can still be visited, Lipschitz continuity of the safety function is assumed,
or the dynamics are unknown but the safe set is known. Furthermore, states
themselves are required to be explicitly labeled as safe or unsafe, while we only
require the labeling of whole trajectories. Our method is capable of learning a
binary constraint defined in other spaces, using only state-control trajectories.

There exists prior work in learning geometric constraints in the workspace.
In [7], a method is proposed for learning Pfaffian constraints, recovering a lin-
ear constraint parametrization. In [25], a method is proposed to learn geometric
constraints which can be described by the classes of considered constraint tem-
plates. Our method generalizes these methods by being able to learn a nonlinear
constraint defined in any constraint space (not limited to the state space).

Learning local trajectory-based constraints has also been explored in the
literature. The method in [19] samples feasible poses around waypoints of a single
demonstration; areas where few feasible poses can be sampled are assumed to
be constrained. Similarly, [20] performs online constraint inference in the feature
space from a single trajectory, and then learns a mapping to the task space. The
methods in [9,10,23,30] also learn constraints in a single task. These methods are
inherently local since only one trajectory or task is provided, unlike our method,
which aims to learn a global constraint shared across tasks.

3 Preliminaries and Problem Statement
The goal of this work is to recover unknown constraints shared across a collection
of optimization problems, given boundedly suboptimal solutions, the cost func-
tions, and knowledge of the dynamics, control constraints, and start/goal con-
straints. We discuss the forward problem, which generates the demonstrations,
and the inverse problem: the core of this work, which recovers the constraints.
3.1 Forward optimal control problem

Consider an agent described by a state in some state space x ∈ X . It can
take control actions u ∈ U to change its state. The agent performs tasks Π
drawn from a set of tasks P, where each task Π can be written as a constrained
optimization problem over state trajectories in state trajectory space ξx ∈ T x

and control trajectories ξu ∈ T u in control trajectory space:

Problem 1 (Forward problem / “task” Π).
minimize

ξx,ξu
cΠ(ξx, ξu)

subject to ϕ(ξx, ξu) ∈ S ⊆ C
ϕ̄(ξx, ξu) ∈ S̄ ⊆ C̄
ϕΠ(ξx, ξu) ∈ SΠ ⊆ CΠ

(1)

where cΠ(·) : T x×T u → R is a cost function for task Π, ϕ(·, ·) : T x×T u → C is
a known feature function mapping state-control trajectories to some constraint
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space C. ϕ̄(·, ·) : T x × T u → C̄ and ϕΠ(·, ·) : T x × T u → CΠ are known and
map to potentially different constraint spaces C̄ and CΠ , containing a known
shared safe set S̄ and a known task-dependent safe set SΠ , respectively. S is
an unknown safe set, and the inverse problem aims to recover its complement,
A .

= Sc, the “unsafe” set. In this paper, we focus on constraints separable in time:
ϕ(ξx, ξu) ∈ A ⇔ ∃t ∈ {1, . . . , T} ϕ(ξx(t), ξu(t)) ∈ A, where we overload ϕ so it
applies to the instantaneous values of the state and the input. An analogous
definition holds for the continuous time case. Our method easily learns non-
separable trajectory constraints as well1.

A demonstration, ξxu
.
= (ξx, ξu), is a state-control trajectory which is a

boundedly suboptimal solution to Problem 1, i.e. the demonstration satisfies
all constraints and its cost is at most a factor of δ above the cost of the optimal
solution ξ∗xu, i.e. c(ξ∗x, ξ∗u) ≤ c(ξx, ξu) ≤ (1 + δ)c(ξ∗x, ξ

∗
u). Furthermore, let T be a

finite time horizon which is allowed to vary. If ξxu is a discrete-time trajectory
(ξx = {x1, . . . , xT }, ξu = {u1, . . . , uT }), Problem 1 is a finite-dimensional opti-
mization problem, while Problem 1 becomes a functional optimization problem
if ξxu is a continuous-time trajectory (ξx : [0, T ]→ X , ξu : [0, T ]→ U). We em-
phasize this setup does not restrict the unknown constraint to be defined on the
trajectory space; it allows for constraints to be defined on any space described
by the range of some known feature function ϕ.

We assume the trajectories are generated by a dynamical system ẋ = f(x, u, t)
or xt+1 = f(xt, ut, t) with control constraints ut ∈ U , for all t, and that the dy-
namics, control constraints, and start/goal constraints are known. We further
denote the set of state-control trajectories satisfying the unknown shared con-
straint, the known shared constraint, and the known task-dependent constraint
as TS , TS̄ , and TSΠ

, respectively. Lastly, we also denote the set of trajectories
satisfying all known constraints but violating the unknown constraint as TA.

3.2 Inverse constraint learning problem
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Fig. 1: Discretized constraint
space with cells z1, . . . , z10. The
trajectory’s constraint values are
assigned to the red cells.

The goal of the inverse constraint learning
problem is to recover an unsafe set, A ⊆ C,
using Ns provided safe demonstrations ξ∗sj , j =
1, . . . , Ns, known constraints, and N¬s inferred
unsafe trajectories, ξ¬sk , k = 1, . . . , N¬s, gen-
erated by our method, which can come from
multiple tasks. These trajectories can together
be thought of as a set of constraints on the pos-
sible assigments of unsafe elements in C. To re-
cover a gridded approximation of the unsafe set
A that is consistent with these trajectories, we
first discretize C into a finite set of G discrete
cells Z .

= {z1, . . . , zG} and define an occupancy
function, O(·), which maps each cell to its safeness: O(·) : Z → {0, 1}, where
1 Write Problem 2 constraints as sums over partially separable/inseparable feature

components instead of completely separable components.
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O(zi) = 1 if zi ∈ A, and 0 otherwise. Continuous space trajectories are gridded
by concatenating the set of grid cells zi that ϕ(x1), . . . , ϕ(xT ) lie in, which is
graphically shown in Figure 1 with a non-uniform grid. Then, the problem can
be written down as an integer feasibility problem

Problem 2 (Inverse feasibility problem).
find O(z1), . . . ,O(zG) ∈ {0, 1}G

subject to
∑

zi∈{ϕ(ξ∗sj (1)),...,
ϕ(ξ∗sj

(Tj))}

O(zi) = 0, ∀j = 1, . . . , Ns

∑
zi∈{ϕ(ξ¬sk

(1)),...,

ϕ(ξ¬sk
(Tk))}

O(zi) ≥ 1, ∀k = 1, . . . , N¬s

(2)

Inferring unsafe trajectories, i.e. obtaining ξ¬sk , k = 1, . . . , N¬s, is the most
difficult part of this problem, since finding lower-cost trajectories consistent with
known constraints that complete a task is essentially a planning problem. Much
of the next section shows how to efficiently obtain ξ¬sk . Further details on Prob-
lem 2, including conservativeness guarantees, incorporating a prior on the con-
straint, and a continuous relaxation can be found in Section 4.4.

4 Method

The key to our method lies in finding lower-cost trajectories that do not violate
the known constraints, given a demonstration with boundedly-suboptimal cost
satisfying all constraints. Such trajectories must then violate the unknown con-
straint. Our goal is to determine an unsafe set in the constraint space from these
trajectories using Problem 2. In the following, Section 4.1 describes lower-cost
trajectories consistent with the known constraints; Section 4.2 describes how to
sample such trajectories; Section 4.3 describes how to get more information from
unsafe trajectories; Section 4.4 describes details and extensions to Problem 2;
Section 4.5 discusses how to extend our method to suboptimal demonstrations.
The complete flow of our method is described in Algorithm 2.

4.1 Trajectories satisfying known constraints

Consider the forward problem (Problem 1). We define the set of unsafe state-
control trajectories induced by an optimal, safe demonstration ξ∗xu, T

ξ∗xu

A , as the
set of state-control trajectories of lower cost that obey the known constraints:

T ξ∗xu

A
.
= {ξxu | c(ξx, ξu) < c(ξ∗x, ξ

∗
u), ξxu ∈ TS̄ , ξxu ∈ TSΠ

}. (3)

In this paper, we deal with the known constraints from the system dynamics,
the control limits, and task-dependent start and goal state constraints. Hence,
TS̄ = Dξxu∩Uξxu , where Dξxu denotes the set of dynamically feasible trajectories
and Uξxu denotes the set of trajectories using controls in U at each time-step. TSΠ
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denotes trajectories satisfying start and goal constraints. We develop the method
for discrete time trajectories, but analogous definitions hold in continuous time.
For discrete time, length T trajectories, Uξxu , Dξxu , and TSΠ

are explicitly:

Uξxu
.
= {ξxu | ut ∈ U , ∀t ∈ {1, . . . , T − 1} },

Dξxu
.
= {ξxu | xt+1 = f(xt, ut), ∀t ∈ {1, . . . , T − 1} },

TSΠ

.
= {ξxu | x1 = xs, xT = xg}.

(4)

4.2 Sampling trajectories satisfying known constraints
Dynamics Cost function Control constraints Sampling method

Linear Quadratic Convex Ellipsoid hit-and-run (Section 4.2.1)
Linear Convex Convex Convex hit-and-run (Section 4.2.2)

Else Non-convex hit-and-run (Section 4.2.3)

Table 1: Sampling methods for different dynamics/costs/feasible controls.

We sample from T ξ∗xu

A to obtain lower-cost trajectories obeying the known
constraints. For the most part, we use hit-and-run sampling [18] over the set
T ξ∗xu

A , a method guaranteeing convergence to a uniform distribution of samples
over T ξ∗xu

A in the limit; the method is detailed in Algorithm 1 and an illustration is
shown in Figure 2. Hit-and-run starts from an initial point within the set, chooses
a direction uniformly at random, moves a random amount in that direction such
that the new point remains within the set, and repeats.

Depending on the convexity of the cost function and the control constraints
and the form of the dynamics, different sampling techniques can be used, orga-
nized in Table 1. The following sections describe each sampling method.

Algorithm 1: Hit-and-run
Output: out .

= {ξ1, . . . , ξN¬s}
Input : T ξ∗xu

A , ξ∗xu, N¬s

1 ξxu ← ξ∗xu; out← {};
2 for i = 1:N¬s do
3 r ← sampleRandDirection;
4 L ← T ξ∗xu

A ∩{ξ′xu ∈ T | ξ′xu = ξxu+βr};
5 L−, L+ ← endpoints(L);
6 ξxu ∼ Uniform(L−, L+);
7 out← out ∪ ξxu;
8 end

ξ0

ξ1

ξ2

ξ3 ξ4

ξ5 ξ6
ξ7

Fig. 2: Illustration of hit-and-run.
Blue lines denote sampled random
directions, black dots denote sam-
ples.

4.2.1 Ellipsoid hit-and-run When we have a linear system with quadratic
cost and convex control constraints - a very common setup in the optimal control
literature - T ξ∗xu

A
.
= {ξxu | c(ξxu) < c(ξ∗xu)}∩Dξxu ≡ {ξxu | ξ⊤xuV ξxu < ξ∗

⊤

xuV ξ∗xu}∩
Dξxu is an ellipsoid in the trajectory space, which can be efficiently sampled
via a specially-tailored hit-and-run method. Here, the quadratic cost is written
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as c(ξxu)
.
= ξ⊤xuV ξxu, where V is a matrix of cost parameters, and we omit

the control and task constraints for now. Without dynamics, the endpoints of
the line L, L−, L+, (c.f. Alg. 1), can be found by solving a quadratic equation
(ξxu + βr)⊤V (ξxu + βr) = ξ∗

⊤

xuV ξ∗xu. We show that this can still be done with
linear dynamics by writing T ξ∗xu

A in a special way. Dξxu can be written as an
eigenspace of a singular “dynamics consistency” matrix, D1, which converts any
arbitrary state-control trajectory to one that satisfies the dynamics, one time-
step at a time. Precisely, if the dynamics can be written as xt+1 = Axt + But,
we can write a matrix D1:

x1

u1

x2

u2

x̃3

...
uT−1

x̃T


︸ ︷︷ ︸

ξ̂xu

=



I 0 0 0 0 · · · · · · 0
0 I 0 0 0 · · · · · · 0
A B 0 0 0 · · · · · · 0
0 0 0 I 0 · · · · · · 0
0 0 A B 0 · · · · · · 0
...

...
...

...
...

. . . . . .
...

0 0 0 · · · · · · 0 I 0
0 0 0 · · · · · · A B 0


︸ ︷︷ ︸

D1



x1

u1

x̃2

u2

x̃3

...
uT−1

x̃T


︸ ︷︷ ︸

ξxu

(5)

that fixes the controls and the initial state and performs a one-step rollout,
replacing the second state with the dynamically correct state. In Eq. 5, we de-
note by x̃t+1 a state that cannot be reached by applying control ut to state
xt. Multiplying the one-step corrected trajectory ξ̂xu by D1 again changes x̃3

to the dynamically reachable state x3. Applying D1 to the original T -time-step
infeasible trajectory T − 1 times results in a dynamically feasible trajectory,
ξfeas
xu = DT−1

1 ξxu. Further, note that the set of dynamically feasible trajectories
is Dξxu

.
= {ξxu | D1ξxu = ξxu}, which is the span of the eigenvectors of D1

associated with eigenvalue 1. Thus, obtaining a feasible trajectory via repeated
multiplication is akin to finding the eigenspace via power iteration [13]. One can
also interpret this as propagating through the dynamics with a fixed control
sequence. Now, we can write T ξ∗xu

A as another ellipsoid which can be efficiently
sampled by finding L−, L+ by solving a quadratic equation:

T ξ∗xu

A
.
= {ξxu | ξ⊤xuDT−1⊤

1 V DT−1
1 ξxu ≤ ξ∗

⊤

xuV ξ∗xu}. (6)

We deal with control constraints separately, as the intersection of Uξxu

and Eq. 6 is in general not an ellipsoid. To ensure control constraint satis-
faction, we reject samples with controls outside of Uξxu ; this works if Uξxu is
not measure zero. For task constraints, we ensure all sampled rollouts obey the
goal constraints by adding a large penalty term to the cost function: c̃(·) .

=
c(·) + αc∥xg − xT ∥22, where αc is a large scalar, which can be incorporated into
Eq. 6 by modifying V and including xg in ξxu; all trajectories sampled in this
modified set satisfy the goal constraints to an arbitrarily small tolerance ε, de-
pending on the value of αc. The start constraint is satisfied trivially: all rollouts
start at xs. Note the demonstration cost remains the same, since the demonstra-
tion satisfies the start and goal constraints; this modification is made purely to
ensure these constraints hold for sampled trajectories.
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4.2.2 Convex hit-and-run For general convex cost functions, the same sam-
pling method holds, but L+, L− cannot be found by solving a quadratic function.
Instead, we solve c(ξxu+βr) = c(ξ∗xu) via a root finding algorithm or line search.
4.2.3 Non-convex hit-and-run If T ξ∗xu

A is non-convex, L can now in general
be a union of disjoint line segments. In this scenario, we perform a “backtracking”
line search by setting β to lie in some initial range: β ∈ [β, β]; sampling βs within
this range and then evaluating the cost function to see whether or not ξxu +βsr
lies within the intersection. If it does, the sample is kept and hit-and-run proceeds
normally; if not, then the range of possible β values is restricted to [βs, β] if βs

is negative, and [β, βs] otherwise. Then, new βs are re-sampled until either the
interval length shrinks below a threshold or a feasible sample is found. This
altered hit-and-run technique still converges to a uniform distribution on the set
in the limit, but has a slower mixing time than for the convex case, where mixing
time describes the number of samples needed until the total variation distance
to the steady state distribution is less than a small threshold [1]. Further, we
accelerate sampling spread by relaxing the goal constraint to a larger tolerance
ε̂ > ε but keeping only the trajectories reaching within ε of the goal.
4.3 Improving learnability using cost function structure

Algorithm 2: Overall method
Output: O .

= O(z1), . . . ,O(zG)
Input : ξs = {ξ∗1 , . . . , ξ∗Ns

}, cΠ(·),
known constraints}

1 ξu ← {};
2 for i = 1:Ns do

/* Sample unsafe ξ */
3 if lin., quad., conv. then
4 ξu ← ξu ∩ ellipsoidHNR(ξ∗i );
5 else if lin., conv., conv. then
6 ξu ← ξu ∩ convexHNR(ξ∗i );
7 else
8 ξu ← ξu∩nonconvexHNR(ξ∗i );
9 end
/* Constraint recovery */

10 if prior, continuous then
11 O ← Problem 4(ξs, ξu)
12 else if prior, binary then
13 O ← Problem 3(ξs, ξu)
14 else
15 O ← Problem 2(ξs, ξu)
16 end

Naïvely, the sampled unsafe trajecto-
ries may provide little information.
Consider an unsafe, length-T discrete-
time trajectory ξ, with start and end
states in the safe set. This only says
there exists at least one intermediate
unsafe state in the trajectory, but says
nothing directly about which state
was unsafe. The weakness of this in-
formation can be made concrete using
the notion of a version space. In ma-
chine learning, the version space is the
set of consistent hypotheses given a set
of examples [27]. In our setting, hy-
potheses are possible unsafe sets, and
examples are the safe and unsafe tra-
jectories. Knowing ξ is unsafe only dis-
allows unsafe sets that mark every el-
ement of the constraint space that ξ
traverses as safe: (O(z2) = 0) ∧ . . . ∧
(O(zT−1) = 0). If C is gridded into
G cells, this information invalidates at
most 2G−T+2 out of 2G possible unsafe

sets. We could do exponentially better if we reduced the number of cells that ξ
implies could be unsafe.

We can achieve this by sampling sub-segments (or sub-trajectories) of the
larger demonstrations, holding other portions of the demonstration fixed. For ex-
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ample, say we fix all but one of the points on ξ when sampling unsafe lower-cost
trajectories. Since only one state can be different from the known safe demonstra-
tion, the unsafeness of the trajectory can be uniquely localized to whatever new
point was sampled: then, this trajectory will reduce the version space by at most
a factor of 2, invalidating at most 2G − 2G−1 = 2G−1 unsafe sets. One can sam-
ple these sub-trajectories in the full-length trajectory space by fixing appropriate
waypoints during sampling: this ensures the full trajectory has lower cost and
only perturbs desired waypoints. However, to speed up sampling, sub-trajectories
can be sampled directly in the lower dimensional sub-trajectory space if the cost
function c(·) that is being optimized is strictly monotone [21]: for any costs
c1, c2 ∈ R, control u ∈ U , and state x ∈ X , c1 < c2 ⇒ h(c1, x, u) < h(c2, x, u),
for all x, u, where h(c, x, u) represents the cost of starting with initial cost c at
state x and taking control u. Strictly monotone cost functions include separable
cost functions with additive or multiplicative stage costs, which are common
in motion planning and optimal control. If the cost function is strictly mono-
tone, we can sample lower-cost trajectories from sub-segments of the optimal
path; otherwise it is possible that even if a new sub-segment with lower cost
than the original sub-segment were sampled, the full trajectory containing the
sub-segment could have a higher cost than the demonstration.

4.4 Integer program formulation
After sampling, we can solve Problem 2 to find an unsafe set consistent with
the safe and unsafe trajectories. We now discuss the details of this process.
Conservative estimate: One can obtain a conservative estimate of the unsafe
set A from Problem 2 by intersecting all possible solutions: if the unsafeness of a
cell is shared across all feasible solutions, that cell must be occupied. In practice,
it may be difficult to directly find all solutions to the feasibility problem, as in
the worst case, finding the set of all feasible solutions is equivalent to exhaustive
search in the full gridded space [24]. A more efficient method is to loop over all
G grid cells and set each one to be safe, and see if the optimizer can still find
a feasible solution. Cells where there exists no feasible solution are guaranteed
unsafe. This amounts to solving G binary integer feasibility problems, which
can be trivially parallelized. Furthermore, any cells that are known safe (from
demonstrations) do not need to be checked. We use this method to compute the
“learned guaranteed unsafe set”, Arec

l , in Section 6.
A prior on the constraint: As will be further discussed in Section 5.1, it may
be fundamentally impossible to recover a unique unsafe set. If we have some
prior on the nature of the unsafe set, such as it being simply connected, or that
certain regions of the constraint space are unlikely to be unsafe, we can make the
constraint learning problem more well-posed. Assume that this prior knowledge
can be encoded in some “energy” function E(·, . . . , ·) : {0, 1}G → R mapping the
set of binary occupancies to a scalar value, which indicates the desirability of a
particular unsafe set configuration. Using E as the objective function in Problem
2 results in a binary integer program, which finds an unsafe set consistent with
the safe and unsafe trajectories, and minimizes the energy:
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Problem 3 (Inverse binary minimization constraint recovery).
minimize

O(z1),...,O(zG)∈{0,1}G
E(O(z1), . . . ,O(zG))

subject to
∑

zi∈{ϕ(ξ∗sj (1)),...,
ϕ(ξ∗sj

(Tj))}

O(zi) = 0, ∀j = 1, . . . , Ns

∑
zi∈{ϕ(ξ¬sk

(1)),...,

ϕ(ξ¬sk
(Tk))}

O(zi) ≥ 1, ∀k = 1, . . . , N¬s

(7)

Probabilistic setting and continuous relaxation: A similar problem can
be posed for a probabilistic setting, where grid cell occupancies represent beliefs
over unsafeness: instead of the occupancy of a cell being an indicator variable, it
is instead a random variable Zi, where Zi takes value 1 with probability Õ(Zi)
and value 0 with probability 1−Õ(Zi). Here, the occupancy probability function
maps cells to occupancy probabilities Õ(·) : Z → [0, 1].

Trajectories can now be unsafe with some probability. We obtain analogous
constraints from the integer program in Section 4.4 in the probabilistic set-
ting. Known safe trajectories traverse cells that are unsafe with probability 0;
we enforce this with the constraint

∑
Zi∈ϕ(ξ∗sj

) Õ(Zi) = 0: if the unsafeness
probabilities are all zero along a trajectory, then the trajectory must be safe.
Trajectories that are unsafe with probability pk satisfy

∑
Zi∈ϕ(ξ¬sk

) Õ(Zi) =

E[
∑

Zi∈ϕ(ξ¬sk
) Zi] = (1 − pk) · 0 + pk · Sk ≥ pk where we denote the number of

unsafe grid cells ϕ(ξ¬sk) traverses when the trajectory is unsafe as Sk, where
Sk ≥ 1. The following problem directly optimizes over occupancy probabilities:
Problem 4 (Inverse continuous minimization constraint recovery).

minimize
O(Z1),...,O(ZG)∈[0,1]G

E(O(Z1), . . . ,O(ZG))

subject to
∑

Zi∈{ϕ(ξ∗sj (1)),...,
ϕ(ξ∗sj

(Tj))}

Õ(Zi) = 0, ∀j = 1, . . . , Ns

∑
Zi∈{ϕ(ξ¬sk

(1)),...,

ϕ(ξ¬sk
(Tk))}

Õ(Zi) ≥ pk, ∀k = 1, . . . , N¬s

(8)

When pk = 1, for all k (i.e. all unsafe trajectories are unsafe for sure), this
probabilistic formulation coincides with the continuous relaxation of Problem 3.
This justifies interpreting the solution of the continuous relaxation as occupancy
probabilities for each cell. Note that Problem 3 and 4 have no conservativeness
guarantees and use prior assumptions to make the problem more well-posed.
However, we observe that they improve constraint recovery in our experiments.
4.5 Bounded suboptimality of demonstrations

If we are given a δ-suboptimal demonstration ξ̂, where c(ξ∗) ≤ c(ξ̂) ≤ (1+δ)c(ξ∗),
where ξ∗ is an optimal demonstration, we can still apply the sampling techniques
discussed in earlier sections, but we must ensure that sampled unsafe trajectories
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are truly unsafe: a sampled trajectory ξ′ of cost c(ξ′) ≥ c(ξ∗) can be potentially
safe. Two options follow: one is to only keep trajectories with cost less than
c(ξ̂)
1+δ , but this can cause little to be learned if δ is large. Instead, if we assume a
distribution on suboptimality, i.e. given a trajectory of cost c(ξ̂), we know that
a trajectory of cost c(ξ′) ∈ [ c(ξ̂)1+δ , c(ξ̂)] is unsafe with probability pk. We can then
use these values of pk to solve Problem 4. We implement this in the experiments.

5 Analysis
Due to space, the proofs/additional remarks can be found in the appendix.
5.1 Learnability
We provide analysis on the learnability of unsafe sets, given the known con-
straints and cost function. Most analysis assumes unsafe sets defined over the
state space: A ⊆ X , but we extend it to the feature space in Corollary A.4. We
provide some definitions and state a result bounding Al, the set of all states that
can be learned guaranteed unsafe. We first define the signed distance:

Definition 1 (Signed distance). Signed distance from point p ∈ Rm to set
S ⊆ Rm, sd(p,S) = − infy∈∂S ∥p− y∥ if p ∈ S; infy∈∂S ∥p− y∥ if p ∈ Sc.

Theorem 1 (Learnability (discrete time)). For trajectories generated by a
discrete time dynamical system satisfying ∥xt+1 − xt∥ ≤ ∆x for all t, the set
of learnable guaranteed unsafe states is a subset of the outermost ∆x shell of
the unsafe set: Al ⊆ {x ∈ A | − ∆x ≤ sd(x,A) ≤ 0} (see Section A.1 for
illustration).
Corollary 1 (Learnability (continuous time)). For continuous trajectories
ξ(·) : [0, T ] → X , the set of learnable guaranteed unsafe states shrinks to the
boundary of the unsafe set: Al ⊆ {x ∈ A | sd(x,A) = 0}.

Depending on the cost function, Al can become arbitrarily small: some cost
functions are not very informative for recovering a constraint. For example, the
path length cost function used in many of the experiments (which was chosen due
to its common use in the motion planning community), prevents any lower-cost
sub-trajectories from being sampled from straight sub-trajectories. The system’s
controllability also impacts learnability: the more controllable the system, the
more of the ∆x shell is reachable. We present a theorem quantifying when the
dynamics allow unsafe trajectories to be sampled in Theorem A.2.
5.2 Conservativeness
We discuss conditions on A and discretization which ensure our method provides
a conservative estimate ofA. For analysis, we assumeA has a Lipschitz boundary
[11]. We begin with notation (explanatory illustrations are in Section A.2):

Definition 2 (Set thickness). Denote the outward-pointing normal vector at
a point p ∈ ∂A as n̂(p). Furthermore, at non-differentiable points on ∂A, n̂(p) is
replaced by the set of normal vectors for the sub-gradient of the Lipschitz function
describing ∂A at that point [4]. The set A has a thickness larger than dthick if
∀x ∈ ∂A,∀d ∈ [0, dthick], sd(x− dn̂(x),A) ≤ 0.
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Definition 3 (γ-offset padding). Define the γ-offset padding ∂Aγ as: ∂Aγ =
{x ∈ X | ∀y ∈ ∂A : x = y + dn̂(y), d ∈ [0, γ]}.

Definition 4 (γ-padded set). We define the γ-padded set of the unsafe set A,
A(γ), as the union of the γ-offset padding and A: A(γ) .

= ∂Aγ ∩ A.

Corollary 2 (Conservative recovery of unsafe set). A sufficient condition
ensuring that the set of learned guaranteed unsafe states Arec

l is contained in A
is that A has a set thickness greater than or equal to ∆x (c.f. Definition 1).

If we use continuous trajectories directly, the guaranteed learnable set Al

shrinks to a subset of the boundary of the unsafe set, ∂A (c.f. Corollary 1).
However, if we discretize these trajectories, we can learn unsafe states lying in
the interior, at the cost of conservativeness holding only for a padded unsafe set.

Theorem 2 (Continuous-to-discrete time conservativeness). Let ξ be a
continuous trajectory: ξ : [0, T ] → X . The system dynamics are described by
ẋ = f(x, u, t). The trajectory is discretized in time, potentially non-uniformly,
resulting in a discretized trajectory {ξ(t1), . . . , ξ(tN )}, ti ∈ [0, T ] for all i. Assume
the maximum discretization time is ∆tmax. Denote

fmax
∆x

.
= sup

x∈X ,u∈U,t′∈[t,t+∆tmax)

∥f(x, u, t′)∥∆tmax (9)

Then, our method recovers a subset of the 3fmax
∆x -padded unsafe set, A(3fmax

∆x ).

Corollary 3 (Continuous-to-discrete time and space conservativeness).
Let the largest grid cell in the constraint space be contained by a ball of radius rz.
Then, if trajectories are discretized both in space and time, our method recovers
a subset of the 2rz + 3fmax

∆x -padded unsafe set, A(2rz + 3fmax
∆x ).

Corollary 4 (Continuous-to-discrete feature space conservativeness).
Let the feature mapping ϕ(x) from the state space to the constraint space be
Lipschitz continuous with Lipschitz constant L. Then, our method recovers a
subset of the 3Lfmax

∆x -padded unsafe set in the feature space, A(3Lfmax
∆x ).

6 Evaluations

We provide an example showing the importance of using unsafe trajectories, and
experiments showing that our method generalizes across system dynamics, that
it works with discretization and suboptimal demonstrations, and that it learns
a constraint in a feature space from a single demonstration. See Appendix B for
parameters, cost functions, the dynamics, control constraints, and timings.
Version space example: Consider a simple 5 × 5 8-connected grid world in
which the tasks are to go from a start to a goal, minimizing Euclidean path length
while staying out of the unsafe “U-shape”, the outline of which is drawn in black
(Fig. 3). Four demonstrations are provided, shown in Fig. 3 on the far left.
Initially, the version space contains 225 possible unsafe sets. Each safe trajectory
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Fig. 3: Leftmost: Demonstrations and unsafe set. Rest: Set of possible constraints.
Postulated unsafe cells are plotted in red, safe states in blue.

of length T reduces the version space at most by a factor of 2T , invalidating
at most 225 − 225−T possible unsafe sets. Unsafe trajectories are computed by
enumerating the set of trajectories going from the start to the goal at lower cost
than the demonstration. The numbers of unsafe sets consistent with the safe and
unsafe trajectories for varying numbers of safe trajectories are given in Table 2.

1 2 3 4
Safe 262144 4096 1024 256
Safe &
unsafe

11648 48 12 3

Table 2: Number of consistent
unsafe sets, varying the no. of
demonstrations, using/not using
unsafe trajectories.

Ultimately, it is impossible to distinguish be-
tween the three unsafe sets on the right in Fig. 3.
This is because there exists no task where a tra-
jectory with cost lower than the demonstration
can be sampled which only goes through one of
the two uncertain states. Further, though the un-
certain states are in the∆x shell of the constraint,
due to the limitations of the cost function, we can
only learn a subset of that shell (c.f. Theorem 1).

There are two main takeaways from this experiment. First, by generating un-
safe trajectories, we can reduce the uncertainty arising from the ill-posedness of
constraint learning: after 4 demonstrations, using unsafe demonstrations enables
us to reduce the number of possible constraints by nearly a factor of 100, from
256 to 3. Second, due to limitations in the cost function, it may be impossible to
recover a unique unsafe set, but the version space can be reduced substantially
by sampling unsafe trajectories.
Dynamics and discretization: In the experiments in Fig. 4, we show that
our method can be applied to several types of system dynamics, can learn non-
convex/multiple unsafe sets, and can use continuous trajectories. The dynamics,
control constraints, and cost functions for each experiment are given in Table
5 in Appendix B. All unsafe sets A are open sets. We solve Problems 3 and
4, with an energy function promoting smoothness by penalizing squared devi-
ations of the occupancy of a grid cell zi from its 4-connected neighbors N(zi):∑G

i=1

∑
zj∈N(zi)

∥O(zi) − O(zj)∥22. In all experiments, the mean squared error

(MSE) is computed as 1
G

√∑G
i=1 ∥O(zi)∗ −O(zi)∥22, where O(zi)∗ is the ground

truth occupancy. The demonstrations are color-matched with their correspond-
ing number on the x-axis of the MSE plots. For experiments with more demon-
strations, only those causing a notable change in the MSE were color-coded. The
learned guaranteed unsafe states Arec

l are colored red on the left column.
We recover a non-convex “U-shaped” unsafe set in the state space using trivial

2D single-integrator dynamics (row 1 of Fig. 4). The solutions to both Problems 4
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Fig. 4: Results across dynamics, discretization. Rows (top-to-bottom): Single inte-
grator; double integrator; Dubins’ car (CT). Columns, left-to-right: Demos., A, Arec

l ;
MSE; Problem 4 solution, all demos.; Problem 3 solution, all demos.

and 3 return reasonable results, and the solution of Problem 3 achieves zero error.
The second row shows learning two polyhedral unsafe sets in the state space with
4D double integrator linear dynamics, yielding similar results. We note the linear
interpolation of some demonstrations in row 1 and 2 enter A; this is because both
sets of dynamics are in discrete time and only the discrete waypoints must stay
out of A. The third row shows learning a polyhedral unsafe set in the state space,
with time-discretized continuous, nonlinear Dubins’ car dynamics, which has a
3D state x

.
=

[
χ y θ

]⊤. These dynamics are more constrained than the previous
cases, so sampling lower cost trajectories becomes more difficult, but despite this
we can still achieve near zero error solving Problem 3. Some over-approximation
results from some sampled unsafe trajectories entering regions not covered by
the safe trajectories. For example, the cluster of red blocks to the top left of A is
generated by lower-cost trajectories that trade off the increased cost of entering
the top left region by entering A. This phenomenon is consistent with Theorem
3 of the appendix; we recover a set that is contained within the appropriate
padded unsafe set (the max discretization time was 4.5 seconds). Learning curve
spikes occur when overapproximation occurs. Overall, we note Arec

l tends to be a
significant underapproximation of A due to the chosen cost function and limited
demonstrations. For example, in row 1 of Fig. 4, Arec

l cannot contain the portion
of A near long straight edges, since there exists no shorter path going from any
start to any goal with only one state within that region. For row 3 of Fig. 4, we
learn less of the bottom part of A due to most demonstrations’ start and goal
locations making it harder to sample feasible control trajectories going through
that region; with more demonstrations, this issue becomes less pronounced.
Suboptimal human demonstrations: We demonstrate our method on sub-
optimal demonstrations collected via a driving simulator, using a car model with
CT Dubins’ car dynamics. Human steering commands were recorded as demon-
strations, where the task was to navigate around the orange box and drive be-
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Fig. 5: Suboptimal demonstrations: left: setup, center: demonstrations, A, Arec
l ,

center-right: MSE, right: solution to Problem 4.

tween the trees (Fig. 5). For a demonstration of cost c, trajectories with cost less
than 0.9c were believed unsafe with probability 1. Trajectories with cost c′ in the
interval [0.9c, c] were believed unsafe with probability 1−((c′−0.9c)/0.1c). MSE
for Problem 4 is shown in Fig. 5 (Problem 3 is not solved since the probabilis-
tic interpretation is needed). The maximum discretization time is 6.9 seconds;
hence, despite suboptimality, the learned guaranteed unsafe set is a subset of
A(3fmax

∆x ). While the MSE is highest here of all experiments, this is expected,
as trajectories may be incorrectly labeled safe/unsafe with some probability.
Feature space constraint: We demonstrate that our framework is not limited
to the state space by learning a constraint in a feature space. Consider the
scenario of planning a safe path for a mobile robot with continuous Dubins’ car
dynamics through hilly terrain, where the magnitude of the terrain’s slope is
given as a feature map (i.e. ϕ(x) = ∥∂H(x̂)/∂x̂∥2, where x̂ = [χ y]⊤ and H(x̂) is
the elevation map). The robot will slip if the magnitude of the terrain slope is too
large, so we generate a demonstration which obeys the ground truth constraint
ϕ(x) < 0.05; hence, the ground truth unsafe set is A .

= {x | ϕ(x) ≥ 0.05}. From
one safe trajectory (Fig. 6) generated by RRT* [15] and gridding the feature
space as {0, 0.005, . . . , 0.145, 0.15}, we recover the constraint ϕ(x) < 0.05 exactly.
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Fig. 6: Demonstration (red: start, green:
goal). Unsafe set A is plotted in orange.
Terrain isocontours H(x) = const are
overlaid.

7 Conclusion
In this paper we propose an algorithm
that learns constraints from demon-
strations, which acts as a comple-
mentary method to IOC/IRL algo-
rithms. We analyze the properties of
our algorithm as well as the theo-
retical limits of what subset of an
unsafe set can be learned from safe
demonstrations. The method works
well on a variety of system dynamics
and can be adapted to work with sub-
optimal demonstrations. We further
show that our method can also learn
constraints in a feature space. The
largest shortcoming of our method is
the constraint space gridding, which
yields a complex constraint represen-
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tation and causes the method to scale poorly to higher dimensional constraints.
We aim to remedy this issue in future work by developing a grid-free counterpart
of our method for convex unsafe sets, which can directly describe standard pose
constraints like task space regions [8].
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A Analysis

A brief overview of the most important results in this section:

– Theorem A.1 shows that all states that can be guaranteed unsafe must lie
within some distance to the boundary of the unsafe set. Corollary A.1 shows
that the set of guaranteed unsafe states shrinks to a subset of the boundary
of the unsafe set when using a continuous demonstration directly to learn
the constraint.

– Corollary A.2 shows that for the discrete time case and the continuous,
non-discretized case, our estimate of the unsafe set is a guaranteed under-
approximation of the true unsafe set if the unsafe set is sufficiently “thick”.

– For continuous trajectories that are then discretized, Theorem A.3 shows us
that the guaranteed unsafe set can be made to contain states on the interior
of the unsafe set, but at the cost of potentially labeling states within some
distance outside of the unsafe set as unsafe as well.

For convenience, we repeat the definitions, along with some illustrations for
the sake of visualization.

A.1 Learnability

In this section, we will provide analysis on the learnability of unsafe sets, given
the known constraints and cost function. Most of the analysis will be based off
unsafe sets defined over the state space, i.e. A ⊆ X , but we will extend it to
the feature space in Corollary A.4. If a state x can be learned to be guaranteed
unsafe, then we denote that x ∈ Al, where Al is the set of all states that can be
learned guaranteed unsafe.

We begin our analysis with some notation.

Definition A.1 (Signed distance). Signed distance from point p ∈ Rm to set
S ⊆ Rm, sd(p,S) = − infy∈∂S ∥p− y∥ if p ∈ S; infy∈∂S ∥p− y∥ if p ∈ Sc.

The following theorem describes the nature of Al:

Theorem A.1 (Learnability (discrete time)). For trajectories generated by
a discrete time dynamical system satisfying ∥xt+1 − xt∥ ≤ ∆x for all t, the set
of learnable guaranteed unsafe states is a subset of the outermost ∆x shell of the
unsafe set: Al ⊆ {x ∈ A | −∆x ≤ sd(x,A) ≤ 0}.

Proof. Consider the case of a length T unsafe trajectory ξ = {x1, . . . , xN}, x1 ∈
A ∨ . . . ∨ xT ∈ A. For a state to be learned guaranteed unsafe, T − 1 states
in ξ must be learned safe. This implies that regardless of where that unsafe
state is located in the trajectory, it must be reachable from some safe state
within one time-step. This is because if multiple states in ξ differ from the
original safe trajectory ξ∗, to learn that one state is unsafe with certainty means
that the others should be learned safe from some other demonstration. Say that
x1, . . . , xi−1, xi+1, . . . , xT ∈ S, i.e. they are learned safe. Since (∥xi+1 − xi∥ ≤
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∆x) ∧ (∥xi − xi−1∥ ≤ ∆x) and xi−1, xi+1 ∈ S, xi must be within ∆x of the
boundary of the unsafe set: −miny∈∂A ∥xi−y∥ ≥ ∆x, implying −∆x ≤ sd(xi) ≤
0.

∆x

∆x

∆x

∂A

Fig. 7: Illustration of the outermost ∆x shell (shown in red) of the unsafe set A. The
hatched area cannot be learned guaranteed safe.

Remark. For linear dynamics, ∆x can be found exactly via

maximize
x∈X ,u∈U

∥Ax+Bu− x∥ (10)

where convexity depends on the convexity of X and U .
In the case of general dynamics, an upper bound on ∆x can be found via

∆x ≤ sup
x∈X ,u∈U,t∈[t0,T ]

∥f(x, u, t)∥ (11)

Corollary A.1 (Learnability (continuous time)). For continuous trajecto-
ries ξ(·) : [0, T ]→ X , the set of learnable guaranteed unsafe states shrinks to the
boundary of the unsafe set: Al ⊆ {x ∈ A | sd(x,A) = 0}.

Proof. The output trajectory of a continuous time system can be seen as the
output of a discrete time system in the limit as the time-step is taken to 0.
In this case, as long as the dynamics are locally Lipschitz continuous, ∆x

.
=

lim∆t→0 ∥x(t+∆t)−x(t)∥ → 0 [17], and via Theorem 1, the corollary is proved.

It is worth noting that depending on the cost function chosen, Al can become
arbitrarily small; in other words, some cost functions are more informative than
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others in recovering a constraint. An interesting avenue of future work is to
investigate the properties of cost functions that enable more to be learned about
the constraints and how this knowledge can help inform reward (or cost) shaping.

A.1.1 Learnability (dynamics) Depending on the dynamics of the system,
it may be impossible to obtain sub-trajectories with few perturbed waypoints
from sampling, due to there only being one feasible control sequence that takes
the system from a start to a goal state. We formalize this intuition in the following
theorem:
Definition A.2 (Forward reachable set). The forward reachable set
FRS(xs,U , T1, T2) is the set of all states that a dynamical system can reach
at time t = T2 starting from xs at time t = T1, using controls drawn from an
admissible set of controls U :

FRS(xs,U , T1, T2)
.
= {z ∈ X | ∃u(t) : [T1, T2]→ U , xT1 = xs, xT2 = z} (12)

Theorem A.2 (Learnability (dynamics)). Let x∗
1, . . . , x

∗
M be consecutive

waypoints on a safe trajectory ξ∗ at times t1, . . . , tM , with time discretization
∆ti between states x∗

i and x∗
i+1, where all but x∗

1, x
∗
M are free to move. Then,

a necessary condition for being able to sample unsafe trajectories is that ∃x2 ∈
FRS(x∗

1,U , t1, t1+∆t1), . . . , ∃xM−1 ∈ FRS(xM−2,U , tM−2, tM−2+∆tM−2), x
∗
M ∈

FRS(xM−1,U , tM−1, tM−1 + ∆tM−1) such that ∃i ∈ {2, . . . ,M − 1} : x∗
i ̸= xi:

i.e. there exists at least one state that the dynamics allow to be moved from the
demonstrated trajectory.
Proof. Proof by contradiction. Assume that there does not exist an i ∈ {2, . . . ,M−
1} such that xi ̸= x∗

i . Then, there exists no alternate sequence of controls taking
the system from x∗

1 to x∗
M ; hence no trajectories satisfying the start and goal

constraints can be satisfied.
Additionally, the same analysis can be used for continuous trajectories in the

limit as the time-step between consecutive waypoints, ∆t, goes to 0.

Remark. This implies that when the dynamics are highly restrictive, less of the
unsafe set can be learned to be guaranteed unsafe, and the learnable subset of
the ∆x-shell of the unsafe set (as described in Theorem 1) can become small.

A.2 Conservativeness
For the analysis in this section, we will assume that the unsafe set has a Lipschitz
boundary; informally, this means that ∂A can be locally described by the graph
of a Lipschitz continuous function. A formal definition can be found in [11]. We
define some notation:
Definition A.3 (Set thickness). Denote the outward-pointing normal vector
at a point p ∈ ∂A as n̂(p). Furthermore, at non-differentiable points on ∂A,
n̂(p) is replaced by the set of normal vectors for the sub-gradient of the Lipschitz
function describing ∂A at that point [4]. The set A has a thickness larger than
dthick if ∀x ∈ ∂A,∀d ∈ [0, dthick], sd(x− dn̂(x),A) ≤ 0.
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Definition A.4 (γ-offset padding). Define the γ-offset padding ∂Aγ as: ∂Aγ =
{x ∈ X | ∀y ∈ ∂A : x = y + dn̂(y), d ∈ [0, γ]}.

Definition A.5 (γ-padded set). We define the γ-padded set of the unsafe set
A, A(γ), as the union of the γ-offset padding and A: A(γ) .

= ∂Aγ ∩ A.

b x1

n̂(x1)

dthick A

b
x2

n̂(x2)

Fig. 8: Illustration of thickness, c.f. Definition 2.

γ

∂A

γ

γ

A(γ)

A

∂Aγ

Fig. 9: Illustration of the γ-padded set A(γ), marked in red. The γ-offset padding is
displayed in red. The original set A is shown in white.

Corollary A.2 (Conservative recovery of unsafe set). A sufficient condi-
tion ensuring that the set of recovered guaranteed unsafe states Arec

l is contained
in A is that A has a set thickness greater than or equal to ∆x (c.f. Definition
A.1).

Proof. Via Theorem 1, our method will not determine that any state further
inside than the outer ∆x-shell is unsafe for sure. If A has thickness at least ∆x,
then our method will only determine states that are within the unsafe set to be
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guaranteed unsafe. This holds for discrete time dynamics and continuous time
dynamics as well as ∆x→ 0.

Note that if we deal with continuous trajectories directly, the guaranteed
learnable set shrinks to a subset of the boundary of the unsafe set, ∂A. However,
if we discretize these trajectories, we can learn unsafe states lying in the interior,
at the cost of conservativeness holding only for a padded unsafe set.

Theorem A.3 (Continuous-to-discrete time conservativeness). Let ξ be
a continuous trajectory: ξ : [0, T ] → X . The system dynamics are described by
ẋ = f(x, u, t). The trajectory is discretized in time, potentially non-uniformly,
resulting in a discretized trajectory {ξ(t1), . . . , ξ(tN )}, ti ∈ [0, T ] for all i. Assume
the maximum discretization time is ∆tmax. Denote

fmax
∆x

.
= sup

x∈X ,u∈U,t′∈[t,t+∆tmax)

∥f(x, u, t′)∥∆tmax (13)

Then, our method recovers a subset of the 3fmax
∆x -padded unsafe set, A(3fmax

∆x ).

Proof. Consider a sequence of discretized states on an unsafe, continuous tra-
jectory ξ : [0, T ] → X : ξ(t1), . . . , ξ(tM ). Any state ξ(ti), ti ∈ [0, T ] could have
caused the trajectory to be unsafe.

Forgetting about the continuous nature of the trajectory, say we consider
just the discretized states and learn that one discretized state ξ(ti) is guaranteed
unsafe. Since the trajectory is continuous, any ξ(tj), tj ∈ (ξ(ti−1), ξ(ti+1)) could
have been unsafe. From the dynamics, the distance d from that true unsafe
state ξ(tu) to the unsafe state ξ(ti) is bounded by max(f∆xi−1 , f∆xi), where
f∆xi

.
= supx∈X ,u∈U,t∈[ti,ti+1) ∥f(x, u, t)∥(ti+1−ti). Furthermore, the set of unsafe

states that may be obtained by moving state ξ(ti) is contained by the open ball
Br=f∆xi−1

+f∆xi
(ξ(ti)). Then, for this trajectory, our estimate is conservative if

we pad the unsafe set by f∆xi−1
+ f∆xi

+max(f∆xi−1
, f∆xi

).
Lastly, for this to guarantee to hold for all possible trajectories with maximum

discretization time ∆tmax, the previous expression can be upper bounded by
3fmax

∆x .

Corollary A.3 (Continuous-to-discrete time and space conservative-
ness). Let the largest grid cell in the constraint space be contained by a ball of
radius rz. Then, if trajectories are discretized both in space and time, our method
recovers a subset of the 2rz + 3fmax

∆x -padded unsafe set, A(2rz + 3fmax
∆x ).

Proof. From Theorem A.3, the unsafe set estimate is a subset of the 3fmax
∆x -

expanded estimate in the continuous space case. Since gridding enforces all con-
tinuous states lying within the cell have the same occupancy and the largest
grid is contained within a ball of radius rz, further padding the unsafe set by
2rz ensures the unsafe set is conservative for states learned unsafe due to grid
consistency.
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Corollary A.4 (Continuous-to-discrete feature space conservativeness).
Let the feature mapping ϕ(x) from the state space to the constraint space be Lip-
schitz continuous with Lipschitz constant L. Then, our method recovers a subset
of the 3Lfmax

∆x -padded unsafe set in the feature space, A(3Lfmax
∆x ).

Proof. From the definition of Lipschitz continuity, ∥ϕ(x) − ϕ(y)∥ ≤ L∥x − y∥.
From Theorem A.3, the unsafe set estimate is a subset of the 3fmax

∆x -expanded
estimate in the continuous space case. Using Lipschitz continuity, the value in the
feature can at most change by 3Lfmax

∆x from the boundary of the true constraint
set to the boundary of the padded set; hence, the statement holds.

B Experimental details

Figure Dynamics Ctrl. constraints Cost function
Fig. 4, Row 1 xt+1 = xt + ut ∥ut∥ ≤ 0.5

∑T−1
t=1 ∥ut∥2

2

Fig. 4, Row 2 xt+1 = Axt + But, A
.
=

exp

(
diag

([
0 1
0 0

]
,

[
0 1
0 0

]))
,

B
.
=∫ 1

0

exp(Aτ)dτ
[
0 1 0 1

]⊤

|ut| ≤
[
20 10

]⊤ ∑T−1
i=1 ∥xi − xi+1∥2

2

Fig. 4, Row 3 ẋ =
[
cos(θ) sin(θ) u

]⊤ |u| ≤ 1
∑

i τui

Fig. 5 ẋ =
[
cos(θ) sin(θ) u

]⊤ |u| ≤ 1
∑

i τui

Fig. 6 ẋ =
[
cos(θ) sin(θ) u

]⊤ |u| ≤ 1
∑

i τui

Table 3: Dynamics, control constraints, and cost functions used in experiments.

Figure Timing (sampling trajectories) Timing (constraint recovery)
Fig. 4, Row 1 11.5 min 3 min
Fig. 4, Row 2 4.5 min 4.5 min
Fig. 4, Row 3 2 hrs 4 min

Fig. 5 1 hr 2 min
Fig. 6 30 min 4 min

Table 4: Approximate runtime.

Here,
∑

i τui
is the total time duration of applied control input (i.e. the time

it took to go from start to goal). All experiments were conducted on a 4-core 2017
Macbook Pro with a 3.1 GHz Core i7. All code was implemented in MATLAB.

Fig. 4, Row 1 Fig. 4, Row 2 Fig. 4, Row 3 Fig. 5 Fig. 6
Space discretization 0.1 0.25 0.5 1 1

Number of trajectories 300000 150000 10000 10000 10000
ε n/a n/a 10−3 10−3 10−3

ε̂ n/a n/a 10−2 10−2 10−2

αc 1010 104 1 1 1
Minimum L length n/a n/a 10−10 10−10 10−10

fmax
∆x n/a n/a 4.53 6 6.96

Table 5: Parameters for each experiment.


