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Asymptotically Near-Optimal Methods for
Kinodynamic Planning with Initial State Uncertainty

Kaiwen Liu, Yang Zhang, Andrew Dobson, and Dmitry Berenson

Abstract—This paper focuses on the problem of planning
robust trajectories for system with initial state uncertainty. While
asymptotically-optimal methods have been proposed for many
motion planning applications, there is no prior method which is
able to guarantee asymptotic (near-)optimality for planning with
initial state uncertainty with non-trivial dynamics and no steering
function. In this paper we define a cost function to evaluate state
divergence for kinodynamic planning. We prove properties of this
function, our system dynamics, and our planners, which allow
asymptotically near-optimal planning without a steering function.
We then evaluate our two proposed planners, one that uses
random restarts, and another that encourages sparsity, in several
experiments. Our results suggest that we are able to improve both
the trajectory and end state divergence by about half as compared
to a previous method, which is not asymptotically near-optimal.

Index Terms—Motion and Path Planning, Nonholonomic Mo-
tion Planning

I. INTRODUCTION

CONSIDER a robot which is capable of precise control,
but is not localized well with respect to the environment.

This is a common situation for mobile manipulators because
robot arm control is precise, but the localization errors of
the base with respect to obstacles can be significant. The
localization error at the initial state can lead to a large
divergence in the possible final states of the system after
executing a trajectory (see Fig. 1), which can easily lead to
task failure. However, in some scenarios, such as hill climbing
[1] or robot arm pushing operations [2], many actions are
inherently uncertainty-decreasing. To plan trajectories that are
robust to initial state uncertainty we wish to bias a planner to
choose such uncertainty-reducing actions when possible.

These kinds of uncertainty-reducing actions have been con-
sidered in contraction analysis [3], which proves global expo-
nential convergence over a contraction region. The contraction
region is a subset of the state space where all states converge
to a single trajectory with a series of controls. Based on
contraction analysis, three divergence metrics were proposed
along with motion planners based on RRT [4]. The metrics and
planners were able to decrease the uncertainty and find low-
divergence plans. However, [4] does not show that planning
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Fig. 1: Illustration of the effect of initial state uncertainty for a point
robot that can slide on obstacles. Left: Moving directly to the goal
leads to a large divergence at the final state. Right: There may be some
actions that decrease uncertainty and by executing these actions we
can reduce uncertainty at the final state.

with these divergence metrics is efficient, probabilistically
complete, or asymptotically optimal.

RRT can be used for kinodynamic systems because it does
not rely on a steering function. However, standard RRT does
not guarantee asymptotic optimality and it reaches a sub-
optimal solution almost surely. One method to empirically
improve RRT’s performance is to restart the planner multi-
ple times [5] within the given time limit. RRT* guarantees
asymptotic optimality but requires a steering function when
applied to kinodynamic problems [6]. Steering functions can
be obtained for some system dynamics but for many systems,
such functions are not available and linearizations are only
valid locally. Stable Sparse RRT (SST) is a sampling-based
motion planner with a sparse data structure [7]. By pruning
the tree and maintaining a small number of nodes, the nearest
neighbor queries can be performed much more efficiently,
which leads to an improvement in both space efficiency
and time efficiency. SST has been shown to be probabilistic
complete and asymptotically near-optimal [7].

Thus, inspired by [4], we define a cost metric based on
contraction analysis [3] to evaluate system divergence. We
show properties of this function and our two types of system
dynamics which allow us to guarantee asymptotically near-
optimal planning. We then use the cost function in multi-
restart RRT and SST and show that these methods are far more
efficient at reducing trajectory divergence than using RRT (as
is used in [4]) in experiments on a mobile robot climbing a
hill, a 2D point and 3D gripper that can slide in contact. The
central contribution of this paper is thus planning methods
for systems with initial state uncertainty that are proven to
be asymptotically near-optimal and outperform previous work
in terms of computation time and plan quality. The key
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contribution of our proof is an extension of the proof for SST
[7] to systems where initial state uncertainty is represented as
a set of particles. Despite only planning for the mean particle,
we can nevertheless show that the cost (which considers all
particles) of the trajectory produced by our planner is less than
a constant multiple of optimal.

II. RELATED WORK

This paper contributes to the field of planning with un-
certainty. In the general case, planning under uncertainty
can be framed as a Markov Decision Process (MDP) or
Partially Observable Markov Decision Process (POMDP) [8]
and belief-space planning methods can be applied [9], [10],
[11]. Although efficient POMDP solvers with optimality guar-
antees have been investigated [12], [13], POMDP solvers have
difficulty when the state and action spaces are continuous and
high-dimensional.

Another type of approach solves this problem by maxi-
mizing the probability of success given expected uncertainties
[14], [15]. The trajectories produced by these approaches ex-
hibit robustness to uncertainty, however explicit noise models
and failure checking mechanism are required, which we do
not assume are available.

The most similar method to ours is Convergent Planning
[4], which uses cost functions based on contraction analysis
[3] to avoid actions which cause divergence in the distribution
of states. It biases action selection for Kinodynamic RRT [16]
to improve generated trajectories’ robustness to initial state
uncertainty. However, the method provides no completeness
or optimality guarantees. We compare to this kind of approach
in our experiments.

We seek to make a more efficient planner, as well as
showing completeness and optimality properties. Improving
the efficiency of kinodynamic planning has been studied
extensively, including minimizing calls to integration/physics
engines [17], [18], [19] and reducing the number of vertices
stored [20], [21]. We build on Stable Sparse RRT (SST) [7],
which provides a proof for probabilistic completeness and
asymptotic near-optimality as well as faster convergence to
high-quality paths. Asymptotically-optimal planners based on
RRT* [22] also exist. However, RRT* requires a steering
function to rewire the tree to improve solution quality, which
may not always be available for kinodynamic planning.

III. PROBLEM STATEMENT AND NOTATION

Consider a time-invariant system with derivative
ẋ(t) = f(x(t), u(t)), where x(t) ∈ X and u(t) ∈ U, (1)

where X is the state space and U is the control space. Both X
and U are assumed to be compact, bounded sets, with Xfree ⊂
X denoting the set of valid states of the system, and Xinv = X\
Xfree is the set of invalid states (often referred to as a collision
set). The system is simulated in discrete time, propagating for
some small fixed timestep ∆t > 0.

This work assumes that a configuration of the system q is
not represented as a single vector, but rather is a collection
of m particles q = {x1, x2, . . . , xm}. This work will assume
state vectors xi ∀i ∈ [1,m − 1] are generated from some

initial state distribution (i.e. a localization estimate), and
x̄ = xm = 1

m−1

∑m−1
i=1 xi is the mth particle, which is

initialized to the sample mean of all other particles and used as
the representative for this configuration. x̄ will be used during
planning for nearest neighbors checks, though it is understood
x̄ may deviate from the sample mean when the system moves.
We denote the x̄ of a q as q.x̄.

Each particle evolves according to the system dynamics.
Define a trajectory π(t) as a function π(t) : [0, td] → Xm
defined over a domain of duration td, and with a control
function Υ(t) : [0, td] → U such that π(t) is the result
of applying Υ(t) from the initial state π(0) = qinit =
{x1(0), x2(0), . . . , xm(0)}.

Furthermore, in this work, we consider two distance metrics:
one considers only the representative state x̄, d(q, q′) =
‖q.x̄ − q′.x̄‖ ; and the other, with subscript f , considers the
full state, df (q, q′) = ‖q.x̄ − q′.x̄‖ + |D(q) − D(q′)|, where
D() is a measure of dispersion of all the particles and will
be defined in Section IV. Then, given the system dynamics,
an initial configuration qinit, and a goal region Xgoal, we
seek to find a trajectory starting from qinit which brings the
representative state to within Xgoal while minimizing the cost
function defined in Section IV.

IV. METHOD
A. Cost Metric

A contraction region, defined in contraction analysis [3], is a
region in the state space such that any trajectory starting in that
region will remain in the region and converge exponentially to
a single trajectory. Being in a contraction region is ideal for
systems with initial state uncertainty because, if the uncertainty
is contained within the region, the system’s state will be
“funneled” to a single trajectory. However, these regions are
difficult to compute in general. In order to find a contraction
region and exploit its properties, [4] defines several metrics to
quantify the divergence of the state and uses those metrics in
a planner to reduce state uncertainty.

The expected divergence metric in [4], D[4], is defined as:

E[‖δx(t)‖] = E[‖δx(t0)‖]e
∫ tf
t0

D[4](x,u,t)dτ

D[4](x, u, t) :=
d

dt
lnE[‖δx(t)‖]

≈ 1

δt
ln

1
m−1

∑m−1
i=0 ‖xi(t+ δt)− x̄(t+ δt)‖

1
m−1

∑m−1
i=0 ‖xi(t)− x̄(t)‖

(2)

where δx represents a virtual displacement. If D[4] is negative,
then the expected value of the virtual displacement around a
given trajectory will decrease over time.

[4] uses D[4] as a cost function in an RRT. However,
extending their planner to be asymptotically near-optimal
requires changing the metric because D[4] is not Lipshitz
continuous, additive, or non-degenerative (these properties are
required for asymptotic near-optimality). [4] also proposes the
function below to estimate trajectory quality:

Ee := e
∫ t
0
D[4](x,u,t)dτ ≈

1
m−1

∑m−1
i=0 ‖xi(t)− x̄(t)‖

1
m−1

∑m−1
i=0 ‖xi(0)− x̄(0)‖

(3)

This function also cannot be used as a metric in our planner
because it only considers divergence at the endpoints of the
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trajectory. Instead, we will modify it to obey the required
properties while maintaining an estimate of convergence.

Since all trajectories start with the same initial particle
distribution, the denominator in Eq. 3 is constant. Therefore a
simplified metric can assess divergence at a configuration:

De(q) =
1

m− 1

m−1∑
i=0

‖q.xi − q.x̄‖ (4)

If a contraction region exists, by limiting De(q) the planner
could force all particles into a contraction region and subse-
quently converge to a single trajectory. We show examples of
such convergence in Section VI. Note that assuming q.x̄ is
always the mean of the distribution can produce inaccuracy
in estimating divergence. However, recomputing the mean at
each q violates the required metric properties.

While De(q) is straightforward, it misses a key issue that
arises when obstacles are present. Obstacles can make Xfree
non-convex, so even if two particles are nearby, they can be
separated by a thin obstacle, which can prevent subsequent
convergence. To account for this, we introduce a penalty which
accounts for obstacles:

D(q) =
1

m− 1

m−1∑
i=1

(1 + λ2α(xi, x̄))||xi(t)− x̄(t)|| (5)

where α is the proportion of the line between x̄(t) and xi(t)
that is in collision and λ2 > 0 is a weighting factor used to set
the collision penalty. Thus this metric penalizes configurations
where the particles are “split” by an obstacle. The difference
between De and D is shown in Fig. 2.

Finally, we arrive at the cost function used in our planners:

cost(π) = λ1(tf − ts) +

∫ tf

ts

D(π(t))dt (6)

where λ1 > 0 weighs duration vs. divergence and ts and tf
are the start time and end time of π. Unlike Eq. 3 from [4],
this metric considers dispersion along the entire trajectory, not
only at the endpoints. The integral is implemented as a discrete
sum with a small time step.

B. Convergent Planning Methods

In order to respect the dynamics of the system, our proposed
methods are designed based on Kinodynamic RRT [16]. Con-
vergent RRT (C-RRT), similar to the RRT used in [4], biases
the action selection by our cost function, and we use it as a
baseline for comparison. Convergent Multiple-restart RRT (C-
MRRT) restarts C-RRT once a solution is found and records
the best solution found so far. Finally, we incorporate a sparse
data structure [7] into C-RRT to arrive at Convergent SST
(C-SST).

Note that RRT* is not considered and compared to the
proposed algorithms. We are assuming an explicit steering
function is not available for the systems which forbids ap-
plying the rewire step of RRT*. Even if a steering function or
a “shooting” function [23] can be found for the system, RRT*
is still not suitable for our context. The basic assumption of
RRT* is that if the cost of a new node is smaller than the cost
of a node in the neighbourhood, rewiring to the new node
will reduce the cost of the whole subtree starting from that

Fig. 2: Illustration of cost computation and differences between De

and D (λ2 = 10). The red particle represents x̄. q2 leads to a large
divergence at q3. Using D instead of De correctly labels q2 to be
high cost, and thus q2 is likely to be avoided by the planner.

node. However, this assumption is not always true for our
problem, because each node is represented by m particles and
rewiring may change the positions of the particles. As a result,
we need to re-evaluate the entire sub-tree when re-wiring in
RRT*, which is extremely inefficient.

1) Convergent RRT (C-RRT): A random state is sampled
at each iteration, and the nearest neighbor (using metric d) in
C-RRT is found. MonteCarlo-Prop [7], which forward-
simulates the system using a random piecewise-constant con-
trol for a random duration, is run H times from the nearest
node to generate candidate actions. 50% of the time, the
candidate whose endpoint is closest (using metric d) to the
sampled point is selected. The other 50% of the time, the
candidate with the lowest cost will be selected. The new node
is then added to the C-RRT. New nodes will continue being
added to C-RRT until the allowed iteration or time limit is
reached. With probability Pgoal, a x ∈ Xgoal is sampled
instead of a random state. By having the chance to select more
convergent actions, C-RRT is able to improve the trajectory’s
robustness to initial state uncertainty.

2) Convergent Multiple-restart RRT (C-MRRT): Instead of
continuing to grow the tree, C-MRRT restarts C-RRT once a
solution is found and records the best solution according to our
cost function. By restarting the tree after a solution is found,
C-MRRT has the chance to quickly find alternate routes which
the previous tree did not explore.

3) Convergent Stable Sparse RRT (C-SST): C-SST uses
SST’s [7] sparse data structure to speed up C-RRT and provide
asymptotic near-optimality. The overall data structure consists
of three sets of nodes: the witness set S, the active vertices
set Vactive and the inactive vertices set Vinactive. Including S
allows for regions in the state space to have a representative
node, regardless of which nodes are pruned. SST maintains
the invariant that within a neighborhood of radius δs around
any witness s ∈ S, there is always one state in Vactive. This
state in Vactive is called the representative of the witness s,
denoted s.rep, and is the node terminating the least-cost path
to s found so far. Representatives can change over time but
their costs from the root only decrease. Vactive is the set of
s.rep nodes for all s ∈ S. Vinactive consists of nodes that no
longer lie on the best path from the initial node to the nearest
s.rep node but may provide connectivity to their child nodes
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in Vactive. The union of Vactive and Vinactive is the set of tree
nodes.

Algorithm 1 Convergent SST (C-SST)

1: Initialize Vactive, Vinactive, S to empty
2: Add qinit to Vactive and create a representative in S
3: while TimeRemaining() do
4: Sample x ∈ X (sample x ∈ Xgoal with prob. Pgoal)

qnear ← BestNear(Vactive, x)
qnew ← MonteCarlo-Prop(qnear)

5: Find nearest (using metric d) witness s ∈ S to qnew
6: if d(s, qnew) ≤ δs and cost(qnew) < cost(s.rep)

then
7: Add qnew to Vactive; move s.rep to Vinactive
8: s.rep = qnew; Prune all leaf nodes in Vinactive
9: else if d(s, qnew) > δs then

10: Add qnew to Vactive; create snew at qnew.x̄
11: snew.rep = qnew
12: end if
13: end while

To conduct a fair comparison between the planners, the
propagation steps for all three use MonteCarlo-Prop [7].
Nearest neighbour search uses BestNear [7], which returns
the lowest-cost node within a radius δBN around the sampled
state if there exists a node within the radius, otherwise
returning the nearest node to the sampled state.

V. ANALYSIS OF SYSTEMS, COSTS, AND OPTIMALITY

A δ-robustly feasible trajectory is one with strong δ-
clearance from state space obstacles. Our proofs require this
clearance for q.x̄. We show that C-MRRT and C-SST provide
near-optimality guarantees for the following problem.

Definition 1 (δ-robust feasible motion planning problem):
Given the partition X = Xfree∪Xinv and query (qinit,Xgoal),
a δ-robustly feasible motion planning problem is one which
yields a δ-robust solution trajectory πδ : [0, tf ] → Xfree,m
with πδ(0) = qinit and πδ(tf ).x̄ ∈ Xgoal for some δ > 0.

This section first shows required properties of the proposed
systems and cost metrics as prescribed by [7]. Each system
is shown to be 1) Small-Time Locally Accessible (STLA)
[24] and 2) Lipschitz continuous in state and control. We
then show that our metric satisfies 1) Lipschitz continuity,
2) monotonicity

(
cost(π1) ≤ cost([π1, π2])

)
, 3) additiv-

ity
(
cost([π1, π2]) = cost(π1) + cost(π2)

)
, and 4) non-

degenerativity
(
t2 − t1 ≤ Mc · |cost(π1) + cost(π2)|

)
. Then,

the main contribution of the analysis is to show that C-
MRRT and C-SST are asymptotically δf -robustly near-optimal
by extending the proof in [7] to systems where initial state
uncertainty is represented by particles. The key is to show
that although the planner considers only distances between
q.x̄s, we can still bound the cost difference (which considers
all particles) between a trajectory produced by the planners
and the optimal.

A. Proving System Controllability and Continuity
This section proves the tested systems to be Small-Time

Locally Controllable (STLC) [24] and Lipschitz continuous,

which satisfies some of the required properties for showing
asymptotic near-optimality. The systems are assumed to use
Euler integration, and equations describe a single configura-
tion, where each particle x is updated independently.

1) Kinematic Sliding Robot System: Consider a 2D or 3D
kinematic rigid body model for this system, which translates
but does not rotate, and can slide along obstacle surfaces.
The 3D system has state x = [xx, xy, xz] and control
u = [ux, uy, uz], with derivative ẋ(x, u,∆t) = ∆t · u.
We assume the simulation enforces that each particle cannot
move into invalid states, enforced by a projection operator
ẋrect = P (x, ẋ), which is physically actualized as a ma-
nipulator system employing force-torque feedback control to
maintain contact with and slide along surfaces rather than
driving into them.

The analysis leverages two assumptions: first that the sur-
faces of obstacles are smooth (continuously differentiable),
and second that the projector operator P (x, ẋ) always projects
to states whose distance is within a bound of the contact point,
and does not prevent “sliding”, i.e. translation perpendicular
to the contact normal.

a) STLC of Kinematic Sliding Robot: Given bounds
a, b, c > 0 such that ux ∈ [−a, a], uy ∈ [−b, b], uz ∈
[−c, c], define control vectors ua = [a, 0, 0], ub = [0, b, 0],
uc = [0, 0, c], which induce state delta vectors ẋa = [∆t ·
a, 0, 0], ẋb = [0,∆t · b, 0], ẋc = [0, 0,∆t · c]. For any open
subset around each particle x, the system can instantaneously
follow any of ẋa, ẋb, and ẋc, which are linearly independent
vectors forming a basis in R3, implying STLC.

b) Lipschitz Continuity of Kinematic Sliding Robot: In
the absence of the projector P (x, ẋ), the system is linear,
and each particle updates according to x̄′ = x̄ + ∆tẋrect.
Substituting this update equation into the Lipschitz inequalities
for control, we get

‖(x0 + ∆t · u0)− (x0 + ∆t · u1)‖ ≤ Ku‖u0 − u1‖

∆t‖u0 − u1‖ ≤ Ku‖u0 − u1‖

which holds for Ku ≥ ∆t. Doing the same for state yields
‖(x0 + ∆t · u0)− (x1 + ∆t · u0)‖ ≤ Kx‖x0 − x1‖

‖x0 − x1‖ ≤ Kx‖x0 − x1‖

which holds for Kx ≥ 1. These relationships do not necessar-
ily hold when, due to projection, ẋrect 6= ẋ, which is addressed
by the assumptions above. For instance, the system violates
Lipschitz continuity in control when the projector prevents
“sliding” motion (this causes ‖u0−u1‖ to tend toward 0 while
‖f(x0, u0)−f(x0, u1)‖ remains constant). Continuity in state
and control are violated when the system propagates near sharp
corners (if obstacles are not smooth).

2) Hill-Climbing Robot: This system represents a robot
travelling over height-varying terrain with height h(xx, xy),
which has bounded first and second derivative (∂h∂x < ∞ and
∂2h
∂x2 <∞). The system state vector x = [xx, xy] and control
vector u = [uv, uθ] yield an instantaneous height derivative

∆h(h, x, u) =
∂h(xx, xy)

∂xx
cos(uθ) +

∂h(xx, xy)

∂xy
sin(uθ)
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This yields the state derivative function
ẋ(x, u,∆t) = ∆t[uv · p · cos(uθ), uv · p · sin(uθ)]

where p = − 2
π arctan(∆h(h, x, u)) + 1.

a) STLC of Hill-Climber: Given bounds uv ∈
[0, a], uθ ∈ [−π, π], define control vectors ua = [1, 0]
and ub = [1, π2 ] which induce linearly independent state delta
vectors ẋa = [∆t · p, 0] and ẋb = [0,∆t · p], forming a basis
in R2, implying STLC of the system.

b) Lipschitz Continuity of Hill-Climber: We argue the
Lipschitz continuity of the hill-climber follows from the
boundedness of the partial derivatives of f(x, u). Full deriva-
tions are omitted here for brevity, but are given as

∂f

∂xx
=
[
1 + ∆t · uv cos(θ)

∂p

∂xx
, ∆t · uv sin(θ)

∂p

∂xx

]
∂f

∂xy
=
[
∆t · uv cos(θ)

∂p

∂xy
, 1 + ∆t · uv sin(θ)

∂p

∂xy

]
∂f

∂uv
=
[
−∆t · uv sin(θ)

∂p

∂uθ
, ∆t · uv cos(θ)

∂p

∂uθ

]
∂f

∂uθ
=
[
∆t · p · cos(θ), ∆t · p · sin(θ)

]
, where

∂p

∂xx
= γ · ∂∆h

∂xx
,
∂p

∂xy
= γ · ∂∆h

∂xy

∂p

∂uθ
= γ · ∂∆h

∂uθ
, γ = − 2

π

(
1

(∆h)2 + 1

)
The magnitude of these derivatives is bounded over the whole
domain (i.e. ‖ ∂f∂xx ‖, ‖

∂f
∂xy
‖, ‖ ∂f∂uv ‖, ‖

∂f
∂uθ
‖ <∞), meaning the

system exhibits Lipschitz continuity.

B. Proving Metric Properties

We now show the properties of the metric required for
asymptotic optimality. Assume three non-degenerate trajec-
tories π0 : [0, t1] → Xfree,m, π1 : [0, t1] → Xfree,m
and π2 : [t1, t2] → Xfree,m, where t1 > 0, t2 > t1,
π0(0) = π1(0), and π1(t1) = π2(t1).

1) Lipschitz Continuity of Metric: We will first extend the
definition of Lipschitz continuity to this problem domain, and
then show the proposed metric satisfies this constraint.

In prior work [7], the authors state that for Lipschitz
continuity of a cost metric, the following must hold for two
arbitrary trajectories π and π′:

|cost(π)− cost(π′)| ≤ Kc · sup
t∈[0,tf ]

‖π(t)− π′(t)‖

Intuitively, the cost difference between trajectories defined
over the same time domain must be bounded by their max-
imum separation at time t. The proposed metric does not
strictly satisfy this, since two trajectories can have zero sep-
aration (i.e. identical representative trajectories) but different
distributions, resulting in cost difference ∆c > 0.

Instead, we directly incorporate the effects of the particle
distribution on the cost function into the continuity constraint,
which is essentially using the df distance metric instead of
the d distance metric:
|cost(π)− cost(π′)| ≤ Kc ·

(
sup

t∈[0,tf ]

‖π(t)− π′(t)‖+

sup
t∈[0,tf ]

|D(π(t))−D(π′(t))|
) (7)

Lipschitz continuity follows directly from the definition of the
cost function.

2) Additivity of Metric: An additive cost function obeys
cost([π1, π2]) = cost(π1) + cost(π2). Thus, it must be
λ1t2+

∫ t2
0
D([π1, π2](t))dt = λ1t1+

∫ t1
0
D(π1(t))dt+λ1(t2−

t1) +
∫ t2
t1
D(π2(t))dt. All of the λ1 terms above cancel out,

leaving us with
∫ t2

0
D([π1, π2](t))dt =

∫ t1
0
D(π1(t))dt +∫ t2

t1
D(π2(t))dt, which is true by the definition of an integral,

and that [π1, π2] is the concatenation of π1 and π2.
3) Monotonicity of Metric: A monotonic metric obeys

cost(π1) ≤ cost([π1, π2]). Substituting the additivity property
proven above, we only need show cost(π1) ≤ cost(π1) +
cost(π2), which is clearly true since cost(π) ≥ 0.

4) Non-Degeneritivity of Metric: Non-degenerativity fol-
lows, when π1, π2 satisfy the given assumptions, and
cost(π2) > 0, which is trivially true since π2 is defined over
[t1, t2] where t2 > t1, and thus cost(π2) ≥ λ1(t2 − t1) > 0.

C. Asymptotically δf -robustly Near-optimality

We now show the asymptotic δf -robust near-optimality of
C-MRRT and C-SST. Let Bδ(x) be a state space ball centered
at x with radius δ under metric d. Bδ(q) is a configuration
space ball centered at q with radius δ using metric df . We
then define a measure of similarity for trajectories:

Definition 2 (δ-similar trajectory): Trajectories π, π′ are δ-
similar if for a continuous, non-decreasing scaling function
σ : [0, Tπ]→ [0, Tπ′ ], it is true that π′(σ(t)) ∈ Bδ(π(t)).

1) C-MRRT: The near-optimality of C-MRRT requires that
the algorithm eventually generates a δf -similar trajectory to
any optimal trajectory π∗ with initial state q∗0 , where the
subscript f refers to the distance metric df . Following from
[7, Thm. 24], this can be shown if q0 ∈ BδBN (q∗0) (which is
true since all trajectories start at the same initial configuration)
and γc-mrrt is nonzero. γc-mrrt is the probability of selecting
q′ ∈ Bδf (q∗i ) by BestNear given ∃q ∈ BδBN (q∗i ). Here,
q∗i is a configuration in π∗, and δBN is the radius used by
BestNear.

[7, Lem. 23] shows that γc-mrrt > 0 when using a
configuration space distance metric (in our context, the df
metric). C-MRRT selects nodes with BestNear consider-
ing representative states x̄ under metric d; however, since
d(q, q′) = ‖q.x̄ − q′.x̄‖ ≤ df (q, q′), if q′ ∈ BδBN (q),
meaning d(q, q′) ≤ df (q, q′) ≤ δBN , then q′.x̄ ∈ BδBN (q.x̄).
Leveraging [7, Lem. 23], it follows that γc-mrrt > 0.

Thus, C-MRRT eventually generates a δf -similar trajectory
to any optimal trajectory, implying probabilistic δf -robust
completeness [7, Def. 10]. Similar to [7, Thm. 25], we now
prove C-MRRT is asymptotically δf -robustly near-optimal [7,
Def. 12].

We consider a covering ball sequence [7, Def. 14] of radius
δf around an optimal trajectory of cost C∗ such that each
segment between ball centers has cost C∆, and yields C∗

C∆

segments. Let π∗ : [0, tf ] → Xfree,m denote the optimal
trajectory and q∗i−1 → q∗i : [ti−1, ti] → Xfree,m denote the
ith segment of π∗. As shown in Fig. 3, define q′i−1 → qi to
be a segment of the δf -similar trajectory generated by the
algorithm, where q′i−1 ∈ Bδf (q∗i−1) and qi ∈ BδBN (q∗i ). By
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Fig. 3: Two hyper-balls of a covering ball sequence around the
optimal trajectory. q′i−1 → qi is a δf -similar trajectory segment to
the optimal trajectory segment. Nodes q′i−1 and q′i are returned by
BestNear with probability γc-mrrt, which could be the same as qi−1

and qi.

using MonteCarlo-Prop, the probability of generating this
segment is strictly non-zero [7, Thm. 17]. Then by definition of
δf -similar trajectories and Eq. 7, the segment cost is bounded:

cost(q′i−1 → qi) ≤cost(q∗i−1 → q∗i ) +Kcδf (8)

Then let qi ∈ BδBN (q∗i ) be a node in the tree and q′i ∈ Bδf (q∗i )
be a node returned by BestNear. [7, Lem. 23] shows that
there is a positive probability γc-mrrt > 0 to sample a state
xrand such that q′i = BestNear(xrand), and the following
holds: cost(q0 → q′i) ≤ cost(q0 → qi).

We will now prove that the cost of a δf -similar trajec-
tory is less than a constant multiple of the optimal cost by
induction. Consider the first segment, according to Eq. 8,
cost(q0 → q′1) ≤ cost(q0 → q∗1) +Kcδf . Assume the follow-
ing is true for k segments,

cost(q0 → q′k) ≤ cost(q0 → q∗k) + k ·Kcδf

Then the cost of k + 1 segments is,
cost(q0 → q′k+1) ≤ cost(q0 → qk+1)

≤ cost(q0 → q′k) + cost(q′k → qk+1)

≤ cost(q0 → q∗k+1) + (k + 1)Kcδf

By induction, this holds for all k. Since the optimal path π∗

has cost C∗ and each segment has cost C∆, k will be at most
C∗

C∆
. The cost bound for the entire trajectory is then

cost(q0 → q′k) ≤ (1 +
Kcδf
C∆

) · C∗

If our algorithm has returned a solution of a cost less than
this bound, it must be the case that we have generated all
of the k δf -similar segments over the optimal path up until
this point and thus have also generated the final segment. We
have previously argued that C-MRRT is able to generate a δf -
similar trajectory to the optimal trajectory eventually. Hence, a
δf -similar trajectory to the kth segment of π∗ is almost surely
generated as n → ∞. Let Y C-MRRT

n represent the minimum
cost among all trajectories generated by C-MRRT at iteration
n. Then, asymptotic δf -robustly near-optimality [7, Def. 12]
is guaranteed:

P
(
{ lim
n→∞

sup
n

Y C-MRRT
n ≤ (1 +

Kcδf
C∆

) · C∗}
)

= 1

TABLE I: Experiment parameters
Experiment λ1 λ2 δBN δs Pgoal H m

Hill-Climbing Robot 0.1 - 0.4 0.05 0.02 10 51
2D Point Robot 0.1 1000 0.02 0.06 0.02 5 51

3D Gripper 0.1 1000 0.04 0.12 0.02 5 51

2) C-SST: Proving that C-SST is probabilistically δf -
robustly complete is almost identical to the proof for C-MRRT,
needing only to show that γc-sst is nonzero. This follows by
the definition of df . Given a constant radius δ, if a node exists
in Bδ(q∗i ), then its representative must exist in Bδ(q∗i .x̄). Then
from [7, Lem. 27] and [7, Lem. 28], C-SST’s pruning process
does not affect completeness. The asymptotic δf -robustly near-
optimality of C-SST can then be shown with the same proof
as C-MRRT.

VI. EXPERIMENT AND RESULTS

We compare C-RRT, C-MRRT, and C-SST in three ex-
periments. The first experiment is a mobile robot driving in
hilly terrain. The second and third experiments are kinematic
systems. The second one is a point robot in 2D space that
can slide on obstacles, and the third one is a gripper in a
3D environment that can also slide. Parameters are shown in
Table I. All experiments were run in C++ on an Intel Xeon
CPU E5-2690 v4 @ 2.60GHz CPU and 251GB RAM.

A. Hill-Climbing Robot

For the hill-climbing robot, we model the hill as a height
function z = h(x, y) := 3y + sin(x+ xy) similar to [4] over
(x, y) ∈ [−1.5, 1, 5] × [−1.5, 1.5]. The robot’s dynamics are
described in Section V-A2. Intuitively, the robot’s dynamics
is correlated to the local gradient, and since different particles
are at different locations with different gradients, there exists
some actions in moving in certain directions that will actually
reduce the dispersion of the particles.

The resulting solution paths of C-SST over different iter-
ations are shown in Fig. 4(a) (where n refers to iterations).
30 trials are performed with this experiment, and the average
solution cost over time is shown in Fig. 4(b). From Fig. 4(b),
we can observe that C-SST is able to find a better solution
with less time. C-RRT is able to improve the solution cost
because we take the lowest cost trajectory that reaches the
goal region at the given time. C-MRRT is able to improve the
solution quality over time, but is slower than C-SST in finding
a lower-cost solution path. Example solutions from C-RRT and
C-SST are shown in Fig. 4(c)-(d). Note the difference in the
divergence at the end configuration.

The results including nodes, solution costs, and final diver-
gence of the solution are shown in Table II. Note that the nodes
for C-MRRT is the number of nodes in the tree at the end of
the run instead of all the nodes generated. Our cost requires
that we not only want to have low divergence at the goal
position, but also want to maintain low dispersion everywhere
during the path. Thus, a low cost solution may not directly
lead to a low divergence end configuration. In Table II, the
final state divergence of each algorithm’s solution are shown.
With lower-cost solutions, the end point divergence on average
goes down.
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Fig. 4: Top: (a) Hill-climbing robot C-SST solution paths (blue dots
are the initial particles) and (b) comparison results. Bottom: Two hill-
climbing examples. (c) A C-RRT solution: cost is 5.16, end D(q) =
0.58, and 5% of rollouts reaching the goal. (d) A C-SST solution:
cost is 1.79, end D(q) = 0.09, all rollouts reach the goal.

TABLE II: Hill climbing results. Avg. over 30 trials, 300s each
Test Time[s] Nodes[103] Solution Cost End D(q)

C-RRT
5 8.35± 0.12 3.40± 0.75 0.20± 0.08

150 151± 6 3.22± 0.75 0.17± 0.06
300 265± 7 3.11± 0.75 0.16± 0.06

C-MRRT
5 0.22± 0.13 2.40± 0.24 0.14± 0.06

150 0.30± 0.22 1.92± 0.11 0.10± 0.02
300 0.29± 0.16 1.84± 0.10 0.10± 0.02

C-SST
5 1.86± 0.16 2.40± 0.56 0.15± 0.09

150 3.57± 0.10 1.80± 0.19 0.09± 0.01
300 3.78± 0.10 1.80± 0.18 0.09± 0.01

We also see that solution paths can be jerky. This is an
artifact of using a small step-size and not including smoothness
in the cost function. Trajectories generated by our methods
could be improved by post-processing, but that is not within
the scope of this work.

B. 2D Point Robot with Sliding

Further, we consider a 2D point robot system that follows
the dynamics equations described in Section V-A1. The 2D
point robot setup is shown in Fig. 5(a). X is designed to
be [−4, 4] × [−2, 3]. The initial uncertainty radius is set as
0.5 m in this example. The thin obstacle on the lower end is
specially design to cause splitting, and zero-friction sliding on
the obstacle surfaces is allowed. This experiment is specially
designed to check if our planner is able to avoid splitting given
that we incorporate splitting penalties in our cost function.
Also, by using a 2D point robot, the collision checking can
be done very quickly.

The resulting solution paths of C-SST over different itera-
tions are shown in Fig. 5(a). By moving along the boundary of
the obstacles, all the particles are able to condense to one line
to pass the narrow passage, which is expected. The solution
path generated at 4×104 iterations has high cost due to particle
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Fig. 5: Top: (a) 2D point robot C-SST solution paths (blue dots are the
initial particles) and (b) comparison results. Bottom: Two point robot
examples. (c) A C-RRT solution: cost is 320.32, end D(q) = 111.06,
10% of rollouts reach the goal. (d) A C-SST solution: cost is 6.45,
end D(q) = 0.13, all rollouts reach the goal.
TABLE III: 2D point robot results. Avg. over 30 trials, 300s each

Test Time[s] Nodes[103] Solution Cost End D(q)

C-RRT
10 21.7± 0.5 350± 359 38.8± 49.1
150 199± 5 328± 332 36.3± 44.6
300 333± 6 328± 337 36.3± 44.5

C-MRRT
10 0.57± 0.46 30.0± 11.5 0.21± 0.05
150 0.60± 0.47 18.8± 1.47 0.20± 0.05
300 0.56± 0.39 18.2± 0.91 0.19± 0.06

C-SST
10 5.20± 0.13 208± 188 36.3± 44.0
150 9.31± 0.22 7.80± 0.83 0.17± 0.06
300 9.54± 0.20 6.65± 0.48 0.13± 0.06

splitting in the middle of the path (particles and representative
state lie on different sides of the obstacle). Fig. 5(b) shows
the cost over time plot for C-RRT, C-MRRT, and C-SST. The
result shows that C-SST is not as good as C-MRRT at first.
However, given some time for C-SST, it is able to find a better
solution than C-MRRT. Example solutions from C-RRT and
C-SST are shown in Fig. 5(c)-(d). Note the difference in the
divergence at the end configuration.

Table III shows the number of nodes at the end of the
trial, solution costs and end configuration divergence. The
divergence of the initial state is around 0.25. However, the
divergence of the end state of C-RRT solutions are much larger
than this value, which conveys that C-RRT is not effective at
avoiding splits. For C-MRRT and C-SST, the divergence of
the end state is much smaller, meaning more convergent end
states. The results show that C-MRRT is able to get a low
cost solution quicker than C-SST, but C-SST can reach better
solutions given some time.

C. 3D Gripper with Sliding

Similar to the 2D point robot experiment, we now moved
to 3D with a 4-finger gripper. The environment is set up
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Fig. 6: 3D gripper C-SST solution trajectories and comparison results
(blue dots are the initial particles).

in OpenRAVE shown in Fig. 6(a). Due to the "sliding"
requirement of the system, the ODE collision checker is used
for checking collisions and determining the sliding conditions,
which requires significant computation time. The environment
setup is also similar to the 2D case, where we have a narrow
passage that the gripper needs to pass. This experiment is
designed to test with a more realistic scenario, and compare the
performance of the algorithms when the system propagation
dominates the computation.

The low cost solutions condense all the particles into a
single line before passing the narrow passage, and hence avoid
splittings of the particles. The average solution cost of 30 trials
over time is shown in Fig. 6(b). Since finding a solution in this
experiment takes much longer than the other two experiments,
we are able to take a closer look at the earlier behaviours of all
methods. C-RRT is not able to improve the cost much over
time. C-MRRT gets to a low cost solution in a very short
amount of time, but it get stuck in this solution and is not
able to find a better path. In contrast, C-SST is not able to
improve the initial guess as quickly as C-MRRT, which may
be because C-SST is replacing and pruning nodes in the space
instead of restarting with another tree. However, with sufficient
time, C-SST is able to find better solutions than C-MRRT, as
in the previous experiment.

Combining the results from the experiments, we can get
more insight to C-MRRT and C-SST. The main advantage
of the sparse data structure in C-SST is fewer number of
nodes which reduces the nearest neighbour querying time.
However, C-MRRT generally has even less nodes than C-
SST, and C-MRRT does not need to worry about pruning,
which leads to much faster execution of C-MRRT than C-
SST. This explains why C-MRRT can quickly improve the
solution at the beginning. On the other hand, thanks to the
pruning, improving and keeping the whole tree, C-SST shows
more potential in finding the optimal solution. Although both
C-MRRT and C-SST have been proved to be aymptotically δf -
robustly near-optimal, the convergence rate is not known. From
the experiments, C-MRRT improves quickly in the beginning,
but after finding a relatively good solution, it is hard for C-
MRRT to improve further, unlike C-SST.

VII. CONCLUSION

We propose near-optimal methods for efficient kinodynamic
planning with uncertain initial states. We introduce a di-
vergence cost metric to evaluate state uncertainty, which is

used by planners to avoid divergent trajectories. We prove
optimality and completeness for both the C-MRRT and C-SST
planners and evaluate these planners vs. a baseline on three
experiments. Our results suggest that these planners show a
large improvement in efficiency and solution quality over the
baseline. In future work we seek to find a method that locally
improves path quality without a steering function to be used
as a post-processing step.
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