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Abstract— Humanoid robots dynamically navigate an envi-
ronment by interacting with it via contact wrenches exerted at
intermittent contact poses. Therefore, it is important to con-
sider dynamics when planning a contact sequence. Traditional
contact planning approaches assume a quasi-static balance
criterion to reduce the computational challenges of selecting
a contact sequence over a rough terrain. This however limits
the applicability of the approach when dynamic motions are
required, such as when walking down a steep slope or crossing a
wide gap. Recent methods overcome this limitation with the help
of efficient mixed integer convex programming solvers capable
of synthesizing dynamic contact sequences. Nevertheless, its
exponential-time complexity limits its applicability to short
time horizon contact sequences within small environments. In
this paper, we go beyond current approaches by learning a
prediction of the dynamic evolution of the robot centroidal
momenta, which can then be used for quickly generating
dynamically robust contact sequences for robots with arms and
legs using a search-based contact planner. We demonstrate the
efficiency and quality of the results of the proposed approach
in a set of dynamically challenging scenarios.

I. INTRODUCTION

Humanoid robots keep balance and navigate uncertain
environments by controlling the contact interaction wrenches
applied at selected end-effector contact poses. In this work,
we are interested in the efficient planning of such sequences
of contact poses that can be used by a robot with arms
and legs to optimally traverse highly dynamic, large and
unstructured environments, as shown in Figure 1. Being able
to use multiple end-effectors to interact with the environment
is beneficial for robot balance and control, but it poses
important computational challenges. First of all, the use of
multiple non-coplanar contacts prevents the use of simplified
dynamic models, such as the linear inverted pendulum model.
Second, more computationally demanding balance checks are
required because of the non-planar nature of the terrains.
Finally, in multi-contact motion scenarios, the robot can
use any combination of its available end-effectors, which
increases the planning complexity, and further emphasizes
the need for fast evaluation of contact pose feasibility.

To cope with the computationally costly planning of
dynamically feasible contact sequences, previous approaches
trade-off different factors. For instance, on the one hand,
some approaches [1–5] use a quasi-static balance criteria [6],
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Fig. 1. Left: The robot goes down a steep slope where quasi-static motions
are not available. Right: The robot goes through a rubble corridor using both
palm and foot contacts.

which lowers computational complexity but does not con-
sider dynamic planning of contacts [7–9]. On the other hand,
for more dynamic motions, such as when crossing a wide
gap or walking down a steep slope, contact planners based
on mixed-integer programming [10–12] that can account for
dynamics are better suited, but still suffer from the high
branching factor of the search, which in large environments
still remains computationally demanding for online contacts
planning.

In this work, we incorporate motion dynamics within
a search-based contact planner. We formulate the contact
planning problem as a graph search problem where each
edge corresponds to a contact transition, and the motion
dynamics are evaluated for each edge. Considering motion
dynamics enables the contact planner to not only plan contact
sequences for dynamic motions, but also select new contacts
based on a measure of “dynamical robustness” to achieve
robust locomotion. To deal with the computationally heavy
optimization of motion dynamics within the contact planning
loop, we train neural networks to predict the dynamic evolu-
tion of optimal robot momentum over contact transitions, and
query the networks in the planning loop to inform the contact
planner how to produce contact sequences which are likely
to be dynamically-robust. Using a learned approximation of
optimal momentum evolution allows us to consider dynamic
feasibility of transitions without paying the high computa-
tional cost of solving a dynamics optimization problem for
each considered edge in the graph. The generated contact
sequence is then used by a centroidal momentum dynamics
optimizer [13] to produce a time-optimal dynamically feasi-
ble motion plan. To the best of our knowledge, this work is
the first attempt where a learned dynamics model is used for
online planning of contact sequences for a humanoid robot
involving both foot and palm contacts.

In our experiments, we compare our method to a quasi-



static search-based and a mixed-integer contact planner. Our
results suggest that our approach produces more dynamically
robust motions compared to the quasi-static planner which
allows us to traverse dynamically challenging environments,
and can be orders of magnitude more efficient than mixed-
integer based planners in large unstructured environments.

II. RELATED WORK

Footstep planning for humanoid robots has been studied
extensively [14–20]. In these works, the planner plans a foot-
step sequence to avoid obstacles on the ground and remain
inside the specified contact regions on a flat or piecewise-
flat ground. To increase the likelihood of success, they
incorporate an approximation of robot balance and kinematic
reachability into the contact transition model, and do not
explicitly perform balance check online. There are also works
addressing contact planning in unstructured environment
using both palm and foot contacts [1–5]. However, these
approaches assume quasi-static motions, and drop solutions
involving dynamic motions.

Approaches to synthesize dynamically feasible multi-
contact motions have also been extensively studied [21–25].
However, it is not trivial to include planning of contact poses
in these approaches because contacts planning in general
involves discrete or non-convex constraints for the contact
poses. [20] addresses the non-convexity by decomposing the
environment into a set of convex regions and approximating
the rotation using piecewise affine functions. The problem
is then formulated as a mixed integer convex program and
solved to global optimality. Although [20] only uses foot
contact, and does not consider dynamics, it points a direction
to include contact planning in an optimization problem.

Extensions of [20] for dynamic planning of a contact
sequences are proposed in [10], [26], which extend [20] with
the selection of contact timings or hand contacts respectively.
More recent works [12], [27] use the same concept to plan
gait sequences for quadruped robots and produce dynam-
ically robust motions. However, mixed-integer approaches
scale poorly against the number of integer decision variables.
For instance, their applicability is limited to online contact
generation in environments with few convex terrain regions,
and short planning horizons.

[28] proposes a kinodynamic sampling-based contact plan-
ner to plan kinodynamically feasible contact sequences. They
use a simplified robot model to dynamically plan smooth
center of mass (CoM) trajectories based on convex opti-
mization and then search for kinematically feasible contact
poses around it. It shows a unified planning framework to
consider dynamics and kinematics constraints, but it suffers
from long planning time. [29] proposes an efficient dynamic
feasibility check by conservatively reformulating the prob-
lem as a linear program. While the check guarantees to
reject dynamically infeasible motions, they do not address
dynamical robustness in the stability check. [30] learns
quadratic dynamics objective of humanoid walking motion,
and apply this learned model to select steps in a search-based
footstep planner. However, their dynamics model assumes
flat contact, and does not consider palm contacts, which
limits the applicability of the approach.

III. PROBLEM STATEMENT

In this paper, we focus our efforts on the dynamic plan-
ning of contact sequences for humanoid robots. Given an
environment specified as a set of polygonal surfaces, a start
stance, and a goal region, we seek to produce a dynamically-
feasible contact sequence along with a dynamics sequence,
which includes centroidal momentum trajectories and contact
wrenches at each time step of the trajectory, to move the
robot from the start stance to the goal region within a
specified planning time. The robot always uses feet contacts,
but can also optionally use palm contacts when they are avail-
able. As considering variable transition times significantly
increases the branching factor of the search, we assume
fixed timing for each contact transition. We also assume the
friction coefficient of the environment is given and fixed.

IV. CENTROIDAL MOMENTUM DYNAMICS
OPTIMIZATION

The momentum dynamics have been widely adopted to
plan dynamically feasible motions for floating base robots
[31], [32]. In this work, we use the fixed-time formulation
of the centroidal dynamics optimizer proposed in [13]. In the
following, we briefly summarize them and explain how we
use them to generate robust motion plans. The dynamics of
a floating-base robot with n degrees of freedom is

H(q)q̈ + C(q, q̇) = ST τ + JT
e λ (1)

where q =
[
qT , xT

]T
denotes the generalized robot states

including joint positions q ∈ Rn, and floating base frame
x ∈ SE(3). H ∈ R(n+6)×(n+6) is the inertia matrix,
and C ∈ Rn+6 stands for the Coriolis, centrifugal, and
gravity forces. S = [In×n 0] is a selection matrix, τ ∈ Rn

is the torques vector, Je is the end-effector jacobian, and
λ =

[
· · · fTe τTe · · ·

]T
comprises the force fe and torque τe

of each end-effector contact. We can then decompose Eq. (1)
to actuated parts (Eq. (2a)), and unactuated parts (Eq. (2b))

Ha(q)q̈ + Ca(q, q̇) = τ + JT
e,aλ

Hu(q)q̈ + Cu(q, q̇) = JT
e,uλ

(2a)

(2b)

Under the assumption that enough torque can always be
generated by the robot, if there exist robot states q, q̇, q̈,
and the external forces λ that satisfy Eq. (2b), Eq. (2a) is
also satisfied. With the assumption and decomposition, Eq.
(2b) verifies the dynamic feasibility, and Eq. (2a) is only
required to verify torque limits and kinematic constraints.
Eq. (2b) is equivalent to the Newton-Euler equations of the
robot [33], which means that the momentum rate equals the
applied external contact wrenches. The centroidal dynamics
expressed at the robot CoM isṙl̇

k̇

 =

 1
M l

Mg +
∑

fe∑
(Te(ze)− r)× fe + τe

 (3)

r is the CoM position. l and k are linear and angular
momenta, respectively. M is the robot mass. ze is the center
of pressure (CoP) of each contact in the contact frame. fe
and τe are the contact force and torque at the CoP of each



Fig. 2. Left: The foot contact transition model used in training data
collection. (38 steps) Middle: The foot contact transition model used in the
experiment. (60 steps) Right: The palm contact transition model, expressed
as the projections from the approximated shoulder to a wall.

end-effector and finally, Te is a coordinate transform in the
CoM frame. In addition to Eq. (3), contact forces need to be
inside friction cones, and CoPs inside the support regions of
each contact, to prevent the contact from sliding and tilting.
A contact transition is dynamically feasible if there exists
a sequence of centroidal momenta and contact wrenches
obeying the above constraints.

To compute a dynamically robust motion we follow [13]
to minimize the weighted sum of the square norm of l,
l̇, k, k̇, fe, and τe. Lower l and l̇ help improve dynamic
stability [34]. Reducing k and k̇ help the robot perform more
natural motion [35]. fe and τe terms encourage a more even
distribution of forces and torques over all the contacts, which
increase controllability of the robot. Additionally, we append
two terms, the lateral contact forces fl in the contact frame

fl = [fc[x], fc[y]]T , fc = T−1e (fe) (4)

and the weighted CoP position zw in each contact frame

zw = [
ze[x]

le,x
,
ze[y]

le,y
]T (5)

where le,x and le,y are the lengths of the support region in X
and Y direction of the contact frame. These two additional
terms capture the robustness of the contact. A lower lateral
contact forces favor forces away from the friction cone limits
and therefore decrease the chances of sliding while a CoP
position closer to the contact center decreases chance of
contact tilting during execution.

Here, the dynamics optimization does not have a CoM
position goal and we do not specify the final CoM position
as part of the objective. Instead, a final CoM position bound
is enforced as a constraint based on the mean position of
the last pair of feet contacts. In the final time step of the
whole contact sequence, we also constrain the CoM velocity
to zero to ensure the robot can finally come to a stop.

V. ANYTIME DISCRETE-SEARCH CONTACT PLANNER

We build on the anytime discrete-search contact planner
described in [36] with substantial modification on the edge
cost and heuristic computation. We formulate the contact
planning problem as a graph search. Each state consists of
a CoM position, a CoM velocity, and a stance represented
as a set of contacting end-effector poses. An action is either
moving one end-effector to a new contact pose, or breaking
one palm contact. The contact transitions are based on a

predefined discrete transition model, shown in Figure 2, and
we adopt the contact projection scheme in [36]. The edge
cost of each action from a state s to a state s′ is defined as

∆g(s, s′) = d(s, s′) + ws + wdynddyn(s, s′) (6)

where d(s, s′) is the XY distance the contact end-effectors’
mean position travels in the contact transition, ws ∈ R+ is
a fixed cost of a contact transition, ddyn is the dynamics
cost, which captures the dynamical robustness of the contact
transition. The dynamic cost is the optimal objective value
of the dynamics optimization, discussed in Sec. IV, for the
contact transition. Running the optimization in the planner
is too time consuming, and we will describe how to estimate
such a cost in Sec. VII. wdyn ∈ R+ captures how much em-
phasis a user wants to put on minimizing the total dynamics
cost of the path. In practice, robust contact sequences may
contain more steps, and the user can adjust wdyn to trade-off
between the number of steps and dynamic robustness.

We solve the contact planning problem with Anytime Non-
parametric A*(ANA*) algorithm [37]. ANA* is an anytime
variation of the A* algorithm. It first performs depth-first-like
search, and improves the solution over time. In this way, the
robot can quickly have a feasible solution when the available
planning time is limited, and get an improved solution if
there is time to spare.

To guide the ANA* search, we define the heuristic func-
tion by computing the distance to reach the goal with a
simplified robot model, a floating box traveling on an SE(2)
grid. We use an 8-connected grid transition model, and prune
out cells where there is a collision between the box and
the environment. We then plan on this grid from the cell
containing the goal to every other cell in the environment
using Dijkstra’s algorithm. The result is a policy giving a
motion direction for every cell, which can also be used to
estimate the amount of motion needed to reach the goal,
which we terms dDijkstra(s). During contact planning, the
planner queries this policy with the contacting end-effectors’
weighted mean position on the XY plane, and the mean feet
rotation about Z axis to compute the heuristic

h(s) = dDijkstra(s) + ws
dDijkstra(s)

∆dmax
(7)

where ∆dmax is an overestimate of the maximum length
the weighted mean contact pose can travel in one transition.
The above heuristic is an example implementation for our
application. It can be swapped with other heuristics, such
as a Euclidean distance heuristic, or a simplified robot
model policy in a discretized SE(3) space, depending on the
application.

The heuristic function in Eq. 7 depends on the distance of
the current contact poses to the goal, and does not contain
any information about future dynamics cost. While ANA*
will improve the solution over time, the time needed to
improve the solution relies on the accuracy of the heuristic
estimating future cost. The planner may be stuck in a cul-de-
sac, and can only escape when the states in the cul-de-sac are
exhausted. Since ANA* behaves like a depth-first search in
the beginning, a cul-de-sac is especially hard for it to escape.



Index Initial
Contacts Contact Transition Dim.

0 Only foot
contacts

Move a foot contact 24
1 Add a palm contact 24
2

Foot contacts
and a palm
contact

Move the inner foot contact 30
3 Move the outer foot contact 30
4 Break the palm contact 24
5 Move the palm contact 30
6 Add the other palm contact 30
7 All foot and

palm contacts

Move a foot contact 36
8 Break a palm contact 30
9 Move a palm contact 36

Fig. 3. Left: All categories of the contact transitions. The inner or outer
foot means the foot in the same or opposite side of the palm contact. Each
dimension includes all the initial contact poses, the new contact pose (if
there is any), and initial CoM position and velocity. Right: An example
environment to collect the training data. The tilting angle of each surface,
the wall orientation, and wall distance to the robot are randomly sampled.

To ease the problem, we adopt the ε-greedy strategy [38]:
With probability 1 − ε (0 ≤ ε < 1), the planner expands
a node using the same rule as ANA*, and with probability
ε, it randomly explores a node in the priority queue. Since
the random exploration does not prune out any nodes in the
priority queue, and can only find new nodes or lower-cost
paths to reach existing nodes, this variation does not affect
the guarantees of ANA*. This strategy helps the planner
escape cul-de-sacs faster by enabling the planner to explore
nodes outside the cul-de-sac before exhausting it.

VI. EVALUATION OF THE DYNAMICS OF CONTACT
TRANSITIONS

To precisely evaluate the dynamics cost ddyn of a contact
transition to a new state, a dynamics optimization from the
initial state to the new state is required. However, it is
not only time consuming to compute, but also difficult to
learn because the input dimension can be arbitrarily high
depending on the depth of the new state in the search tree.
Therefore, we approximate the dynamics evaluation as only
the dynamics optimization of the contact transition. Only
after the contact sequence is returned by the planner, we then
apply dynamics optimization on the whole contact sequence
to finally output the dynamics sequence. However, even with
this simplification, running dynamics optimization for every
contact transition in a search tree is still too time consuming
(in the order of 100 ms) for practical use. Therefore, we
propose to learn the prediction of the results of the dynamics
optimization of each contact transition using neural networks.
In our test, each query to the network takes about 0.1 ms,
which is 3 orders of magnitude faster than the original
dynamics optimization.

VII. LEARNING THE RESULT OF THE DYNAMICS
OPTIMIZATION OF CONTACT TRANSITIONS

For each contact transition, the dynamics optimizer needs
to decide if it is dynamically feasible, compute the objective
value as part of the edge cost, and output the CoM position
and velocity of the child state. To capture the function of the
dynamics optimizer in contact planning, we train two kinds
of neural networks:
• A classifier to predict the dynamic feasibility
• A regressor to estimate the objective value, and the CoM

position and velocity after the contact transition

Fig. 4. Left: the classification network. Right: the regression network.

The classifier has 1D binary output, which represents the
feasibility of the transition, and the regressor has 7D contin-
uous value outputs, which includes 1D objective, 3D CoM
position, and 3D CoM velocity. The inputs of the neural
networks are all the contact poses in the contact transition,
and the initial CoM position and velocity, as same as the dy-
namics optimizer. To simplify the problem , we ignore CoM
angular velocities in the input/output vectors, and encode
the angular momentum in the objective function. We train
separate neural network for each kind of contact transition
using different end-effectors. Since most of the humanoid
robots have symmetric kinematic structure, we further exploit
this symmetry to define 10 categories of contact transition,
and show its corresponding input dimensions in Figure 3.

The training data are collected by running the planner
which calls the dynamics optimizer in each new branch in
randomly tilted surface environments, as shown in Figure
3. The environments allow us to collect contact transitions
with various contact locations and orientations. Each contact
pose is encoded as a R6 vector with position and orientation
in Tait-Bryan angles. Each angle is set to be in [−π, π) to
avoid the confusion of other coterminal angles. To capture
the spatial relationship of the orientation data which contain
angles near π and −π, we duplicate those samples with ±2π
in the training data, but always query the neural network with
angles within [−π, π).

The neural networks used in this work are shown in Figure
4. Although it is possible to find the best-performing network
structure for each category of contact transitions, we find
out that using the same structure for all categories performs
reasonably well, and is much simpler in implementation.
For the classifier network, the output layer uses softmax
activation function, which makes the network a logistic
regressor. For the regression network, the output layer is
a combination of linear functions for CoM position and
velocity, and ReLU for the objective value. ReLU ensures
the network to output positive objective values. The hidden
layers for both networks are the same, which are 3 layers of
256 fully-connected nodes using ReLU activation function.

VIII. EXPERIMENTS

We evaluate the performance of the proposed approach in
four environments in simulation: a wide gap, a steep slope,
a rubble field, and a rubble corridor, as shown in Figure 5.
For each test, we set ws = 3, wdyn = 0.1, ε = 0.1, and 30
seconds time limit for the proposed approach. The contact
planner will keep improving solutions within this time limit,
and outputs all solutions during the improvement process.



Fig. 5. Planning examples of the proposed approach for wide gap (top
left), steep slope (top right), rubble field (bottom left) and rubble corridor
(bottom right) environments. The red line and blue line mark the predicted
CoM trajectory, and the CoM trajectory returned by the dynamics optimizer,
respectively. Contact sequences include left foot(red), right foot(green), left
palm(cyan), and right palm(magenta) contacts.

Fig. 6. Planning examples of the quasi-static contact planner for rubble
field (left) and rubble corridor (right) environments.

With all the contact sequences returned by the ANA*, we run
a complete dynamics optimization to generate a full motion
sequence, from the latest to the first contact sequence until a
dynamically feasible one is confirmed. For all the dynamics
optimization, we fix the time step to be 0.2 second. We
also fix the timing for each contact transition: 1 second in
original contact (shifting CoM) and 1 second for moving
the end-effector. The friction coefficient is 0.5. The weights
of each term in the objective function are: l:0.2, l̇:0.01,
k:1, k̇:0.3, fe:0.01, τe:1, fl:10, and zw:1. All parameters are
chosen empirically to help generate kinodynamically feasible
motion. The dynamics optimization used in our approach is
solved using the Ipopt solver [39]. The neural networks are
trained offline with Keras 2.1.6 [40] with Tensorflow 1.10.1
backend [41] for 100 training epochs, and are queried online
using frugally-deep [42]. All experiments were run on an
Intel i7-6700 8-core 3.4GHz CPU. The proposed approach
only uses a single thread. The robot has 30 DOF; 7 DOF in
each manipulator and 2 torso DOF. We show the generated
trajectories in the visualizer provided by the SL simulator
[43] in the attached video.

The Proposed
Approach

Mixed integer contact planner
with simplified dynamics model

12 Contacts 18 Contacts 24 Contacts
0.098 ± 0.037 85.93 ± 56.41 33.93 ± 18.54 46.40 ± 20.30

Fig. 7. Time required to find dynamically feasible contact sequence in
rubble field environments (Unit: second)

In the following experiments, we compare our approach
with a baseline quasi-static contact planner, which tries to
find the shortest quasi-static contact sequence to the goal.
The quasi-static contact planner follows the formulation
shown in Section V, but it does not consider any dynamics,
and only verifies the static balance of the robot stance at
each state using [8]. We also impose the 30-second time
limit, and use dynamics optimization on the contact sequence
generated by the quasi-static contact planner to find its
dynamics sequence. In addition to the quasi-static contact
planner, we also compare the proposed planner with a mixed-
integer contact planner [26] in the rubble field environment
to show the advantage of the proposed approach in a non-
trivial environment.

A. Wide Gap Environment Test
In this test, we show that the proposed approach can

plan dynamically feasible contact sequence to cross a 0.5
meter wide gap on the ground. Including the length of the
robot feet, the robot has to make a 0.72 meter stride to
cross the gap, which is impossible to achieve by quasi-
static walking. We use a dedicated foot contact transition
model for making large step in this test, but query the same
neural networks. Figure 5 shows the contact plan, and CoM
trajectory returned by the proposed approach. It took 0.143
seconds to find the contact sequence, and 1.23 seconds for
dynamics optimization over the contact sequence.

B. Steep Slope Environment Test
In this test, the robot is required to go down a 3 meter long

30◦ slope. The robot cannot maintain static balance on the
slope, so the quasi-static contact planner is not able to find
any solution. Our approach finds the first solution in 0.702s,
and generating the contact sequence shown in Figure 5 takes
10.617s. The dynamics optimization takes 6.32s to generate
the dynamics sequence which contains 31 contacts.

C. Rubble Field Environment Test
The rubble field environment (Fig. 5), simulates a common

disaster-relief scenario. The robot dynamically walks over a
rubble to reach a goal about 3.4 meter away. Contact surfaces
are randomly tilted in X and Y axes in [−20◦, 20◦]. The
environment contains 14 convex contact surfaces.

In this test, we compare the performance of the proposed
approach with the mixed integer contact planners. We first
compared to a custom implementation of a mixed integer
contact planner that internally solves the dynamics optimiza-
tion problem as in [13], which is also used for training our
neural networks. After 7 hours of planning time, it was not
able to find a feasible solution. We then used a simplified
dynamics model [26] and assumed that the contacts are
all point contacts, which fixes each CoP to one point, and
neglects the contact orientations. We solved it with state-of-
the-art mixed integer solver, Gurobi 8.0 [44], using 8 threads.



Test Approach (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Rubble Field
Environment

Quasi-static
Contact Planner 47/50 47/47 1.17 3498.5 12.0 12.7 0.472 0.706 0.767 0.012 0.062 0.0068

The Proposed
Approach 50/50 50/50 1.02 3334.2 6.00 9.68 0.581 0.559 0.763 0.010 0.079 0.0079

Rubble Corridor
Environment

Quasi-static
Contact Planner 44/50 44/44 1.05 3418.7 11.5 11.16 0.523 0.618 0.768 0.013 0.082 0.0069

The Proposed
Approach 50/50 49/50 1.59 2392.5 4.38 4.83 1.378 0.349 0.631 0.025 0.088 0.0173

Fig. 8. Results for the rubble field corridor environments: (1) Contact planning and (2) Dynamics optimization success rates (3) Average number of tested
contact sequence to find a dynamically feasible sequence (4) Mean dynamics objective of the whole contact sequence (5) Mean lin. momentum norm
(kg·m/s) (6) Mean lin. momentum rate norm (kg·m/s2) (7) Mean angular momentum norm (kg·m2/s) (8) Mean angular momentum rate norm (N·m) (9)
Mean RMS contact force norm (10) Mean contact torque (N·m) (11) Mean lateral contact force norm (12) Mean CoP distance to contact boundary (m).
Contact forces are normalized by the robot weight and are unitless. In (5)-(12), means are computed over all time steps of all dynamically feasible trials.

As shown in Figure 7, the mixed integer contact planner
using the simplified model still takes much longer than the
proposed approach to find a feasible solution. Furthermore,
the mixed integer contact planner requires the user to specify
the number of contacts used in the plan. Since the planning
is in unstructured environments, it is not trivial to decide how
many contacts are needed, and different number of contacts
can have a great impact on the planning time (Figure 7).

Compared to the quasi-static contact planner, the proposed
approach produces contact sequences with similar dynamics
objective. However, as shown in Figure 8, the proposed
approach generates motion with lower linear momentum and
rates of linear and angular momenta. The angular momentum
of the proposed approach is higher because it does not always
produce straight walking motion as the quasi-static contact
planner normally does, instead it may take a detour to achieve
more robust locomotion using our approach.

D. Rubble Corridor Environment Test

In this test, we set up the rubble corridor environment,
where palm contacts are available, and test the planner’s
ability to find dynamically robust contact sequence in such
environment. The surfaces are randomly tilted as in Sec-
tion VIII-C. Without any user specification, the proposed
approach is able to discover palm contacts in the search, as
shown in Figure 5. The quasi-static contact planner, on the
other hand, does not consider the dynamics, and favors path
with shorter traveling distance and fewer number of contacts.
Therefore, it outputs solutions without palm contact, as
shown in Figure 6. Compared to the quasi-static contact
planner, the proposed approach generates motion with lower
linear momentum, rates of the linear and angular momenta,
and higher CoP clearance to the contact boundary, as shown
in Figure 8. Although the angular momentum of the motion
generated by the propose approach is much higher, the robot
momenta rates are much lower, which results in a much lower
dynamics objective of the whole contact sequence.

E. Prediction of Dynamics Optimizer Results

Here, we analyze the performance of the neural network
in predicting useful information to guide the planner to find
dynamically robust contact sequences. Figure 9 summarizes
the networks’ performance on predicting the results of the
dynamics optimization over each contact transition. For each
motion category, we use 105 training data, and tested with
another 1000 data. The proposed approach estimates the

Contact
Transition
Category

Index

Dynamic
Feasibility
Prediction
Accuracy

Mean
Actual

Dynamics
Objective

Mean Absolute
Error in Regression

Dynamics
Objective

Final
CoM
(mm)

Final CoM
Velocity
(mm/s)

1 90.3% 1436.10 62.45 7.5 6.6
2 97.0% 740.85 40.38 6.0 5.4
3 95.3% 164.96 20.70 9.0 5.4
4 93.5% 119.85 11.07 6.7 4.7
5 94.3% 516.53 45.06 7.1 4.1
6 95.2% 87.80 12.39 9.1 4.1
7 98.1% 53.47 8.10 7.3 4.1
8 96.6% 50.66 17.28 8.1 2.4
9 96.1% 88.00 15.18 9.0 3.0
10 98.3% 62.40 7.56 8.1 3.7

Fig. 9. Performance of the neural networks to predict dynamic feasibility,
dynamics objective, final CoM and CoM velocity of a contact transition.
Refer to Figure 3 for the meaning of each contact transition category index.

Fig. 10. Relationship between the sum of the predicted dynamics objective
of contact transitions and the actual dynamics objective of the whole contact
sequence. Data taken from the rubble field and rubble corridor environments.
The linear model showing the correlation is fit with robust regression [45].

dynamics objective of the whole contact sequence with the
sum of dynamics objective in each contact transition of the
contact sequence. As shown in Figure 10, this estimates is
not accurate as it neglects previous and later contact poses
in each optimization over a contact transition. However,
the estimates and the actual dynamics objective are highly
correlated, which makes the estimates a suitable edge cost
function to select branches which lead to lower dynamics
objective of the whole contact sequence.

IX. CONCLUSION

We proposed a contact planner which finds dynamically
robust contact sequence involving both foot and palm con-
tacts. Costly dynamics optimization is replaced by a learned
prediction of dynamic feasibility and edge cost. The planner
can leverage these learned functions to efficiently evaluate
contact options in the planning loop. In the future, we would
like to extend the contact planner to further consider timing
of each contact transition [13], so that the contact planner
can generate a wider variety of dynamic motions.
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