
Occlusion-robust Deformable Object Tracking without Physics
Simulation

Cheng Chi1 and Dmitry Berenson1

Abstract— Estimating the state of a deformable object is
crucial for robotic manipulation, yet accurate tracking is
challenging when the object is partially-occluded. To address
this problem, we propose an occlusion-robust RGBD sequence
tracking framework based on Coherent Point Drift (CPD). To
mitigate the effects of occlusion, our method 1) Uses a combina-
tion of locally linear embedding and constrained optimization
to regularize the output of CPD, thus enforcing topological
consistency when occlusions create disconnected pieces of the
object; 2) Reasons about the free-space visible by an RGBD
sensor to better estimate the prior on point location and to
detect tracking failures during occlusion; and 3) Uses shape
descriptors to find the most relevant previous state of the object
to use for tracking after a severe occlusion. Our method does
not rely on physics simulation or a physical model of the object,
which can be difficult to obtain in unstructured environments.
Despite having no physical model, our experiments demonstrate
that our method achieves improved accuracy in the presence of
occlusion as compared to a physics-based CPD method while
maintaining adequate run-time.

I. INTRODUCTION

Tracking the geometry of deformable objects such as rope
and cloth is difficult due to the continuous nature of the
object (i.e. an infinite number of degrees of freedom), the
lack of knowledge of the physical parameters of the object,
and often a lack of visual features to track. In addition to
these challenges, to be useful for robotic manipulation of
deformable objects, a tracking algorithm must operate within
a small computational budget and must be able to handle
object self-occlusion (e.g. folding) and occlusion by objects
in the environment (including the robot itself) (see Fig. 1).
This paper thus focuses on producing an accurate estimate of
the deformable object geometry during and after occlusion.

Tracking of deformable objects has been studied in the
graphics [1] [2] [3], computer vision [4] [5] [6] [7], surgical
[8] [9], and robotics [10] [11] fields. Most relevant to our
domain is the work of [11], which uses Coherent Point Drift
(CPD) [6] to track the movement of points on the object
and post-processes the output with a physics simulator to
ensure that the predictions are physically-plausible. When an
accurate physical model of the deformable object (including
friction parameters) and all geometry in the environment is
known, this method can be very effective. However, we seek
a tracking method that does not require knowing this infor-
mation in order to make deformable object tracking practical
for robotic manipulation in unstructured environments such

1 Cheng Chi and Dmitry Berenson are with the University of Michi-
gan, Ann Arbor, MI, USA. {chicheng, dmitryb}@umich.edu.
This work was supported in part by NSF grants IIS-1656101 and IIS-
1750489 and ONR grant N000141712050.

Fig. 1. Illustration of tracking results for deformable objects. Yellow dots
and white lines represent vertices and edges of the tracked model. Top:
Tracking a rope under occlusion with our method. Time proceeds left to
right. Bottom: Our method recovering from a tracking failure caused by
self-occlusion.

as homes, where physical and geometric models of obstacles
may not be available.

Our method extends the literature on using CPD for de-
formable object tracking, making the following contributions
to better handle occlusion: 1) We use a combination of
locally linear embedding and constrained optimization to
regularize the output of CPD, thus enforcing topological
consistency when occlusions create disconnected pieces of
the object; 2) We reason about the free-space visible by an
RGBD sensor to better estimate the prior on point location
and to detect tracking failures during occlusion; and 3) We
use shape descriptors to find the most relevant previous state
of the object to use for tracking after a severe occlusion.

In our experiments we compare our method with CPD [6]
and CPD+Physics [11] for tracking rope and cloth manipu-
lated by a human or robot. Our results on both simulated and
real data suggest that our method provides better accuracy
than [6] and [11] when tracking deformable objects in the
presence of occlusion while maintaining a fast run-time.

II. RELATED WORKS

Driven by the need to track human bodies and facial
expressions, the graphics community has developed several
related methods. White et al. [1] demonstrated tracking fine
motion of a cloth. However, this requires a color-coded cloth
and inverse kinematics of the mesh. Li et al. [2] and Zollhofer
et al. [3] developed purely geometric methods of tracking
arbitrary deformable objects. However, these methods are not
robust against occlusion.

Computer vision researchers have shown promising results
for deformable object reconstruction [4], [5]. By performing



reconstruction in real-time, these methods avoid the occlu-
sion problem by dynamically changing the tracked model.
However, these methods do not satisfy the model consistency
assumption required by the visual-servoing algorithms used
for deformable object manipulation [12] [13] [14].

Researchers in surgical robots are also interested in de-
formable object tracking. [8] and [9] have shown impressive
results for tracking soft tissues in surgical scenarios, but these
methods are specialized to the surgical domain and may not
generalize to more flexible objects such as rope or cloth.

Prior work in robotics uses physics simulation to track
deformable objects in the presence of occlusions [15] [10]. A
more recent approach [11] [16] also uses Gaussian Mixture
Model (GMM) and CPD algorithms to produce the input
for its physics simulation engine. However, these algorithms
must be given the physical model of the deformable object
and the environment geometry, which we do not assume is
available. However, as a baseline, we compare our method
to [11] in our experiments.

III. PROBLEM STATEMENT

We define the problem of deformable object tracking
as follows: Given a sequence of RGBD images It (Fig.
2TL,TR) for each time step t, also called a frame, and
a connectivity model of the object with respect to the
first RGBD image (Fig. 2BR) < Y 0, E >, where Y 0 =
[y01 , y

0
2 , . . . , y

0
M ]T ∈ RM×D is a set of vertices and E =

[e0, e1, . . . , eK ]T ∈ IK×2 is a set of edges; each ek ∈ E
holds two integer indices i, j of Y 0, representing an edge
between vertices y0i and y0j . Our goal is to produce a state
Y t for each time step that is consistent with the geometry of
the deformable object. While segmenting pixels in an RGBD
image that belong to our object of interest is an important
step to solve this problem, it is beyond the scope of this
paper, so we also assume that each RGBD image has an
associated object mask Mt with the same size as It (Fig.
2BL). Mask images have value 1 for all pixels belonging to
the object of interest, and 0 otherwise. Using It and Mt,
along with the camera parameters, we can convert the input
to a point cloud Xt = [xt1, x

t
2, . . . , x

t
N ]T ∈ RN×D. In our

case, D = 3. We assume the topology of the object remains
constant so we can represent the state of the object at time t
simply as Y t, where yti and yt

′

i correspond to the same point
on the object for frames t and t′.

If we denote the true state of the object at time t as
Y ∗t, then our output should minimize ‖Y ∗t − Y t‖2. The
high-dimensional state space combined with the difficulty of
establishing correspondences between frames makes dealing
with occlusions especially difficult. Later in this paper, we
will discuss when the assumption that the provided Y 0

corresponds to the true initial state is violated. We will also
discuss how to leverage additional knowledge when prior
correspondence, such as robot gripping points, are available.

IV. TRACKING DEFORMABLE OBJECTS

Our proposed algorithm for deformable object tracking
first pre-processes the given model < Y 0, E >. Then, for
each It and Mt we generate Xt and perform registration

Fig. 2. The input for each time step. TL: RGB image. TR: depth image.
BL: Mask image. BR: The input model for first time step, where yellow
dots are vertices and white lines are edges.

between Xt and Y t−1 using a Gaussian Mixture Model
(GMM) Expectation-Maximization (EM) (§IV-A). We en-
hance GMM EM to better handle occlusions by using a novel
visibility prior (§IV-B). The GMM EM is then regularized
using existing methods [6] [7] (§IV-C, §IV-D). The output of
the GMM EM loop is adjusted by our proposed constrained
optimization approach, in which we enforce stretching con-
straints and can incorporate known correspondences, such
as robot gripping points (§IV-E). Finally, a novel tracking
failure detection and recovery algorithm is executed to re-
cover tracking after a large occlusion (if necessary) (§V).
The overall algorithm is shown in Algorithm 2.

A. GMM-Based point Set Registration

Between two consecutive time steps t and t + 1, the
change in appearance of the deformable object is relatively
small. Thus, it is reasonable to formulate this frame-to-
frame tracking problem as a point-set registration problem,
i.e. to estimate Y t+1 by aligning Y t to Xt+1. Following
the formulation in [6] [7], we will formulate this point-
set registration problem using a GMM. For readability, the
rest of this section will use Y instead of Y t, Y ′ instead of
Y t+1 and X instead of Xt+1. We consider each xn ∈ X
as a sample generated from a mixture of independently
distributed Gaussian distributions, where each ym ∈ Y
is the mean of a Gaussian distribution. We assume these
Gaussian distributions share the same isotropic variance σ2

and membership probability of 1
M . Thus, the probability

distribution of point xn can be written as:

p(xn) =

M∑
m=1

1

M

1

(2πσ2)
D
2

exp

(
−‖xn − ym‖

2

2σ2

)
(1)

To account for noise and outliers in X , a uniformly
distributed component with index M + 1 is added to the
mixture model with weight ω, 0 ≤ ω ≤ 1. Thus, the joint
probability density function of our GMM can be written as:

p(X) =

N∏
n=1

p(xn) =

N∏
n=1

M+1∑
m=1

p(m)p(xn|m) (2)



where

p(x|m) =

{
1

(2πσ2)D
2

exp
(
−‖x−ym‖2σ2

)
, m = 1, . . . ,M

1
N , m =M + 1

(3)

p(m) =

{
1−ω
M , m = 1, . . . ,M

ω, m =M + 1
(4)

Then, our goal is to find the Y ′ and σ2 that maximizes the
log-likelihood of Eq. 2, with values of Y ′ initialized from
Y . We can solve this problem following the Expectation
Maximization algorithm described in [6] [7] [11]. In the E-
step, we find the posterior probabilities using the current
GMM parameters based on Bayes rule:

pcur(m|xn) =
exp

(
− 1

2

∥∥xn−ym
σ

∥∥2)∑M
i=1 exp

(
− 1

2

∥∥xn−ym
σ

∥∥2)+ (2πσ2)D
2 ωM

(1−ω)N
(5)

Then, in the M-step, we obtain the optimal Y ′ and σ2 by
minimizing the following cost function:

Q(ym, σ
2) =

−
N∑

n=1

M∑
m=1

pcur(m|xn)

(
log

(
1− ω

M(2πσ2)
D
2

)
− ‖xn − ym‖

2

2σ2

)

−
N∑

n=1

p(M + 1|xn) log
( ω
N

)
(6)

We iterate the E- and M-steps until convergence.
However, we found that the above algorithm is not suffi-

cient for solving the deformable object tracking problem.
When parts of the object are occluded, the GMM EM
algorithm will overfit to visible points, breaking smoothness
and local topology properties of the original model (Fig. 3L).
This problem suggests that proper regularization is needed.

B. Addressing Occlusion by Exploiting Visibility Information
Previously, we assumed that the membership probabilities

of all Gaussian distributions are p(m) = 1
M , i.e. it is

equally possible for each Gaussian distribution to generate
an xn. In practice, especially under occlusion, we found
the above assumption does not hold. For example, if we
knew with certainty that ytm had been occluded at time t,
we should not expect to observe any sample generated from
ytm, i.e. p(mt) = 0. While it is impossible to directly derive
p(mt) without knowing ytm, we can still approximate p(mt)
using yt−1m and visibility information. Since the movement of
the deformable object is usually small between consecutive
frames, if yt−1m is occluded in It, it should be less likely to
generate observation samples than other Gaussian distribu-
tions. Let Itd(u, v) denote the depth value at the u, v location
of It. Let Dt denote the image generated by a distance
transform of Mt (Fig. 4), where the value of each pixel in
Dt denotes the Euclidean distance from (u, v) to the nearest
pixel in Mt that has value 1. For any yt−1m , we can obtain
its coordinates in the image coordinate frame (ut−1m , vt−1m )

and depth value zt−1m using camera parameters. We can then
approximate p(mt) as:

pvis(m
t) = µvise

−kvisDt(ut−1
m ,vt−1

m )·max(zt−1
m −Itd(u

t−1
m ,vt−1

m ),0)

(7)

where µvis is a normalization factor such that∑M
m=1 pvis(m

t) = 1 and kvis is a parameter that controls
the influence of visibility information. We formulate Eq. 7
so that vertices below the visible point cloud are more likely
to be penalized (the max(·) term), and points farther away
from the object are more likely to be penalized (the Dt(·)
term). We intentionaly do not consider self-occlusion in
this estimate because inaccurate estimation of Y t−1 created
false positives in practice. Combining this formula with our
uniform distribution component, we get:

p(mt) =

{
(1− ω)pvis(mt), m = 1, . . . ,M

ω, m =M + 1
(8)

We can then derive our new expression for posterior proba-
bilities in the E-step:

pcur(m|xn) =

pvis(m) exp
(
− 1

2

∥∥xn−ym
σ

∥∥2)∑M
i=1 pvis(m) exp

(
− 1

2

∥∥xn−ym
σ

∥∥2)+ (2πσ2)
D
2 ω

(1−ω)N

(9)

C. Coherent Point Drift
In the aforementioned GMM registration method, we

assume that all Gaussian distributions are independent. How-
ever, this assumption is not accurate in our setting. For a
deformable object, we can often observe that points residing
near each other tend to move similarly [6]. We thus use
the Coherent Point Drift (CPD) [6] regularization which
preserves local motion coherence to better represent the true
motion. Instead of modeling each point ytm as an indepen-
dently moving Gaussian centroid, CPD embeds the frame-to-
frame change in a spatial transformation ytm = T (yt−1m ,W t)
that maps every point in the space around our object of
interest at time t−1 to another point at time t using parameter
matrix W t ∈ RM×D.

More specifically, CPD represents this spatial transforma-
tion as a Gaussian Radial Basis Function Network (GRBFN):

T (yt−1m ,W t) = yt−1m + v(yt−1m ) (10)

v(z) =

M∑
m′=1

wtm′g(z − yt−1m′ ) (11)

g(z − yt−1m′ ) = exp

(
−
∥∥z − yt−1m′

∥∥2
2β2

)
(12)

Where wtm′ ∈ RD is the m′th row of W t. In this deformation
field v, for every z ∈ R3, v(z) output a vector that represent
the displacement for position z. GRBFN has several desirable
properties: it is smooth and differentiable everywhere, and is
linear except for the radial basis function itself. Here, β is a
hyper-parameter that controls the widths of Gaussian kernels,



Fig. 3. Left: occluded scene tracked with GMM. Right: tracking result of
GMM with CPD and LLE regularization.

Algorithm 1 Track(Xt, Y t−1, H, Y 0, E)

1: Compute pvis(mt) for all yt−1m ∈ Y t−1 using Eq. 7
2: σ2 ← V ar(Xt)
3: W ← 0
4: while σ2 > ε do
5: Compute P using Eq. 2
6: Compute G using Eq. 13
7: Solve for W using Eq. 18
8: Compute new σ2 using Eq. 19
9: Y t ← Y t−1 +GW

10: Solve for Y ∗t using Eq. 21
11: return Y ∗t

Algorithm 2 Main Loop
1: Data: Y 0, Vertices of the initial model
2: Data: E, Edges of the initial model
3: F ← ∅, Set of VFH shape descriptors
4: for i ∈ {1, 2, . . . , } do
5: Input: It,Mt

6: Compute Xt from It,Mt

7: Y t ← Track(Xt, Y t−1, H, Y 0, E)
8: Compute Jfree(Y t) with Eq. 22
9: f(Xt)← VFH shape descriptor of Xt

10: if Jfree(Y t) < τ then
11: F ← F ∪ f(Xt)
12: Output: Y t
13: else
14: K ← Query kNN of f(Xt) in F
15: for k in K do
16: Y ′k ← Track(Xt, Y k, H, Y 0, E)
17: Compute Jfree(Y ′k) using Eq. 22
18: Y t ← Y ′k with minimum Jfree(Y

′k)
19: Output: Y t

which affects the rigidity of the deformation field. CPD puts
centroids of Gaussian kernels at every ytm. We can represent
the spatial transformation in matrix-vector form:

Y t = T (Y t−1,W t) = Y t−1 +Gt−1W t (13)

where Gt−1M×M is a Guassian kernel matrix with element

Gt−1ij = exp
(
− 1

2β2

∥∥yt−1i − yt−1j

∥∥2). We can then regular-
ize the weight matrix W to enforce the motion coherence:

ECPD(W ) = Tr (WTGW ) (14)

Fig. 4. Distance image (right) generated by L2 distance transform of mask
image (left).

ECPD will be used as a energy term in the M-step of our
GMM EM algorithm, where W will become the parameters
to be optimized (shown below).

D. Preserving Topology using Locally Linear Embedding
In practice, we found that simply adding CPD regular-

ization is not sufficient. Since CPD only enforces motion
coherence between consecutive frames, the error between the
shape of the current tracking state and the true state will
accumulate. This will cause the topology of the tracking
result to drift away from the original model, even though
the tracking result is statistically correct when viewed as a
point set registration problem. To solve this problem, we
will use a regularization term proposed in [7], which is
based on Locally Linear Embedding (LLE) [17], to enforce
topological consistency with respect to the original model.

LLE performs non-linear dimensional reduction while
preserving local neighborhood structure. We found that the
assumption of LL, that the data lies on a low dimensional
manifold, holds true for our deformable object tracking
setting. When tracking an object such as a rope, Xt and
Y t mostly reside on a 1D curve. When tracking a cloth, Xt

and Y t reside on a 2D surface. Thus, we will generate a
LLE of our model Y 0 before the tracking starts, and use
this embedding as part of our regularization.

More specifically, we first represent every point in our
model as a linear combination of its k-nearest neighbors.
We can obtain linear weights L by minimizing the following
cost function:

J(L) =
M∑
m=1

∥∥∥∥∥y0m − ∑
i∈Km

Lmiy
0
i

∥∥∥∥∥
2

(15)

where Km is a set of indices for the k nearest neighbors
of y0

m, and L is a M × M adjacency matrix where Lij
represent a edge between y0i and y0j with their corresponding
linear weight if j ∈ Ki and 0 otherwise. We then define
a regularization term that penalize the deviation from the
original local linear relationship (for readability, we will drop
the time index t for subsequent appearance of W ):

ELLE(W ) =

M∑
m=1

∥∥∥∥∥ytm −
K∑

i∈Km

Lmiy
t
m

∥∥∥∥∥
2

=

M∑
m=1

∥∥∥∥∥T (yt−1m ,W )−
K∑

i∈Km

LmiT (yt−1i ,W )

∥∥∥∥∥
2

(16)

Note that, unlike [7], we only compute L once on Y 0

and use this matrix for all subsequent regularized GMM EM



operations in the following frames. Replacing ytm in Eq. 6
with the expression of T (yt−1m ,W t) and adding CPD and
LLE regularization terms, we now have our new cost function
for the M-step:

Q(W,σ2) =

M,N∑
m,n=1

pcur(m|xtn)
‖xtn − (ytm +G(m, ·)W )‖2

2σ2

+
NpD

2
ln (σ2) +

α

2
ECPD(W ) +

γ

2
ELLE(W )

(17)

where Np =
∑N,M
n,m=1 p

cur(m|xn), α and γ are parameters
that trade off between GMM matching, frame-to-frame mo-
tion coherence, and local topological consistency. Note that
we removed terms in Eq. 6 that are independent of W and σ2,
as we will only optimize with respect to these two variables.

Using the process described in [7], we can perform the
E-step by first obtaining W by solving a system of linear
equations:

(d(P1)G+ σ2αI + σ2λHG)W

= PX − (d(P1) + σ2λH)Y (18)

where each entry of P ∈ RM×N contains pcur(m|xtn), where
1 is a column vector of ones, I denotes the identity matrix,
and d(v) represent the diagonal matrix formed by vector v,
and H ∈ RM×M = (I − L)T (I − L). We then obtain σ2:

σ2 =
1

NpD
(Tr (XT d(PT1)X))− 2Tr (Y TPX)

− 2Tr (WTGTPX) + Tr (Y T d(P1)Y )

+ 2Tr (WTGT d(P1)Y ) + Tr (WTGT d(P1)GW )
(19)

After the EM algorithm converges, we set Y t+1 = Y t +
GtW t. We can see the improvement as compared to the
original GMM algorithm in Fig. 3R.

E. Enforcing Stretching Limits via Constrained Optimization
Within the GMM Expectation-Maximization loop, the

added ELLE regularization term mitigated the topological
consistency problem. However in practice, we found that
ELLE is not sufficient to address anisotropic effects in
deformable object motion. Many deformable objects, such as
rope and cloth are less deformable when being stretched than
being compressed or being bent. However, ELLE , using the
locally linear assumption, will treat stretching, compression,
and bending almost the same. The artifact created by stretch-
ing can be seen in Fig. 5. Thus, we introduced a constrained
optimization method to post-process the output of the GMM
EM loop so that the output allows bending and compression
while keeping the distance between points below a threshold.
Specifically,

Y ∗t = argmin
Y ∗

M∑
m=1

∥∥Y ∗m − Y tm∥∥2
subject to

∥∥Y ∗ti − Y ∗tj ∥∥ ≤ λ ∥∥Y 0
i − Y 0

j

∥∥ ∀(i, j) ∈ E (20)

Fig. 5. Left: tracking result of GMM with CPD and LLE regularization.
Right: tracking result of GMM with CPD, LLE regularization, and con-
strained optimization post processing.

where Y ∗tm is the mth row of Y ∗t and λ ≥ 1 is a parameter
that controls the flexibility of our constraints. This step
restricts the length of any edge in the tracking result to
be at most λ times the length of the same edge in the
original model. We used the Gurobi Package [18] to solve
this optimization problem. Fig. 5 shows the tracking result
with constrained optimization added.

1) Incorporating Prior Correspondence: When de-
formable object tracking is being used as part of a robotic
manipulation system, we can often obtain partial but reliable
knowledge about correspondence. For example, when a rope
is being dragged by a robot gripper, we know exactly where
the gripping point on the rope should be in 3D space
given the robot’s configuration and forward kinematics. Such
information can be easily incorporated into our constrained
optimization framework.

We represent a set of known correspondences as <
Zt, Ct >, where Zt = [zt1, z

t
2, . . . , z

t
K ]T ∈ RK×D is a set

of known points, and Ct = [c0, c1, . . . , cK ]t ∈ IK×2, where
each c ∈ Ct contain a pair of indices m, k that represent a
correspondence between a known point and a model vertex.
Our constrained optimization formulation then becomes:

Y ∗t = argmin
Y ∗

M∑
m=1

∥∥Y ∗m − Y tm∥∥2
subject to

∥∥Y ∗ti − Y ∗tj ∥∥ ≤ λ ∥∥Y 0
i − Y 0

j

∥∥ ∀(i, j) ∈ E
and Y ∗tm = Ztk ∀(m, k) ∈ Ct

(21)

Incorporating this constraint guarantees Y ∗t satisfies our
known correspondences.

V. TRACKING FAILURE RECOVERY

The above methods allow us to track the object with
moderate occlusion. However, there are cases where track-
ing becomes impossible. Imagine the object is temporarily
completely blocked by something in front of the RGBD
camera, while the object itself moves. In this case, we
have no information with which to infer the state of the
object, and tracking will fail. However, a problem arises
when the occlusion disappears. Since we initialize tracking
and regularize deformation from the last time step, if the
object deformed too much while being completely occluded,
we might never be able to track correctly again. Thus, we
propose a novel tracking failure recovery system.
A. Tracking Failure Detection

Since there will be an additional computational cost as-
sociated with tracking failure recovery, we will first detect



whether a tracking failure has occured, and only apply
recovery when needed. We will infer tracking failure based
on free-space information: For each ray emanating from the
camera, we know that the space between 0 to the depth value
of the visible point along that ray will not contain another
visible object. Thus, if vertex of Y t lies in that space, we
know the position for that vertex is wrong. Similar to our
visibility prior (Eq. 7), we construct an energy function that
indicates the percentage of vertices that are in free space and
how far away they are from non-free space:

Jfree(Y
t) =

1

M

M∑
m=1

e−kD
t(ut

m,v
t
m)max(Itd(u

t
m,v

t
m)−ztm,0)

(22)

When Jfree(Y t) > τ , we will treat Y t as failing to track,
and invoke tracking failure recovery (described below). τ is
a threshold we set manually.

B. kNN Template retry
We assume that the new state of the deformable object

is similar to some state we have seen before and correctly
tracked. This assumption might not always hold, but we
found it often works in practice when tracking fails. If track-
ing fails at time t′, we re-initialize our tracking algorithm
with a Y t where t < t′. Since our time and computation
resources are limited, and the number of Y ts grows linearly
with time, we will only retry tracking on previous states
that we think are the most similar to our current state. We
will measure this similarity using a 3D shape descriptor:
Viewpoint Feature Histogram (VFH) [19]. VFH computes
a histogram of the angle between viewpoint ray and object
surface normals estimated from a point cloud. For each time
t where Jfree(Y t) ≤ τ we compute a VFH descriptor from
Xt, which is then stored in a library. When a tracking
failure is detected at time t′, we compute another VFH
descriptor from Xt′ , and query the k nearest neighbors from
our descriptor library, measured in Euclidean distance, using
Fast Library for Approximate Nearest Neighbors (FLANN)
[20]. We run all k neighbors through the tracking method
and select the result with the lowest Jfree.

The shape descriptor library will grow as tracking pro-
ceeds, which may creates two problems for long sequences.
First, as the set of descriptors becomes more and more
dense, the result of the kNN query results will become
increasingly similar, and the output of each tracking result
will also be similar. Second, the kNN query itself will
become increasingly time-consuming. The sequences used
in our experiments were not long, so we did not encounter
these issues. However, for longer sequences it would be
straightforward to cluster the shape descriptors using the k-
means algorithm and only preserve a single shape descriptor
from each cluster.

C. Tracking without true state in the first frame
For many robotic manipulation applications, we are not

given the true state of the object at the first frame. It is useful
to view this problem as a special case of tracking failure.

We can use a shape descriptor library generated offline and
perform the kNN retry routine described above. To obtain
such a shape descriptor library, we can set up a training
scenario where the object starts from a simple, known state.
We can then manipulate the deformable object to obtain
various other states and their shape descriptors, and perform
k-means down-sampling before using the library for a new
scene.

VI. RESULTS

We conducted several experiments tracking rope and cloth
to test the performance of our algorithm both quantitatively
and qualitatively. These experiments, using both simulation
and real-world data, focused on demonstrating the improved
robustness against occlusion, as compared to CPD+Physics
[11], and the original CPD algorithm [6].

Across all data sets and all three algorithms, we used
λ = 3.0, β = 1.0, γ = 1.0, τ = 0.7, kvis = 10.0,
kfree = 100.0, and ε = 0.0001. Point clouds of all rope
data sets were down-sampled to 300 points, and cloth data
set were down-sampled to 600 points. All masks were
generated by color filtering. Our algorithm and original CPD
were implemented in python, while CPD+Physics, which is
originally implemented in C++, was bridged to python code
using the ctypes package. All algorithms were tested on an
Intel i7-6700 @ 3.4GHz and 16 GB of RAM.

A. Experiments with Simulated Data
Since the ground truth state of deformable objects is

difficult to obtain, we decided to conduct quantitative ex-
periments with a synthetic dataset generated by simulation.
We created a virtual table-top with a red rope in 3D modeling
software Blender. To compare with CPD+Physics, we tested
using a 1-meter-long rope, allowing us to use the same
parameters used in [11]. In the Bullet simulator used by
CPD+Physics the virtual rope was modeled with 50 linked
capsules with density 1.5g/cm3, joint stiffness 0.5Nm/rad,
stiffness gain Kp = 10N/m, and damping gain KD =
0.5N s/m. In the CPD+Physics method, a CPD registration
was executed after a each RGBD image arrived, yet the
physics simulation steps were executed continuously until
the next RGBD image arrived. We executed the physics
simulation with a constant 100 steps per frame to fit with
our testing framework.

In the test the rope is dragged by one end with a virtual
manipulator (Fig. 7(TL)). The rope is approximated with
a 48 segment NURBS path and simulated using Blender’s
internal physics engine. A floating metallic object moves
along a predefined path, acting as an occlusion (Fig. 7(TR)).
The scene is rendered with EEVEE render engine as 960 ×
540 RGB images, with additional z-buffer output acting as
a virtual depth image. A point cloud is then reconstructed
using the virtual camera parameters. A Gaussian noise with a
standard deviation of 0.002m was added to the virtual depth
image to better approximate real-world sensors. The error
plot (Fig. 7(BR)) is generated by executing each algorithm
10 times on the data set, and recording the mean of error
for each time step across each run. Error is measured by the



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Before folding Folded Unfolded Before occlusion During occlusion After occlusion

Fig. 6. Results for folding cloth and occluding rope. For cloth, tracking failure recovery engaged for our algorithm after folding. For rope, our algorithm
(top row) is not sensitive to the occlusion while CPD+Physics (bottom row) is.

Fig. 7. Simulated rope experiment. Note that the rope continues moving
during occlusion. (TL),(TR) Before and during occlusion. (BL) Tracking
output of our method, CPD+Physics, and CPD. (BR) Plot of mean distance
error of all three methods.

mean distance of a vertex and corresponding ground truth
position.

As seen in Fig. 7(BR), our algorithm is less affected by
the introduction of occlusion, as compared to the other two
algorithms. Between time steps 30 and 60, the time span of
occlusion, a clear spike in error is seen for the two compar-
ison algorithms, yet our algorithm is less affected. In Fig.
7(BL), we can see that the tracking result for CPD around
the occluded region is very sparse, and bunched points are
visible in the lower right corner for CPD+Physics, indicating
that, using these two algorithms,points are "repelled" by the
occluded object toward the visible region. The improved
performance of our algorithm comes from our visibility-
informed membership prior pvis(m). At around the 55th
time step, CPD’s tracking result on the previously-occluded
part of the rope is over-stretched. The distance constraint in
our algorithm pulls vertices closer together, yielding better
consistency but also slightly-higher mean squared error.
B. Experiments with Real Data

An experiment of a human manipulating a rope was
conducted to demonstrate our algorithm’s robustness to oc-
clusion. While continuously moving the rope, the human
also deliberately waved a green box in front of the rope,

Fig. 8. Results for the overlapping rope test. Vertices have been color-
coded to show correspondences. Red and yellow vertices correspond to the
left and right half of the rope, respectively, in the initial state (TL). (TR) Our
tracking result during overlap. (BL) Output of CPD+Physics after overlap.
(BR) Output of our method using gripper correspondences after overlap.

creating a changing occlusion. Fig. 6(d-f) shows three frames
of our tracking results while the box moved from right to left.
The tracking results in Fig. 6(e-f) maintained the shape of
the rope despite occlusion. However, Fig. 6(k-l) shows that
the tracking results of CPD+Physics is heavily significantly
disrupted by the occlusion.

We also tested tracking rope as manipulation was per-
formed by our dual-arm robot to gauge the effect of gripper
constraints. The robot folded the rope such that the left and
right half overlap with each other. In this case, differentiating
the left and right half of the rope is difficult (Fig. 8(TR)).
The location of gripped points was calculated using forward
kinematics and used in the constrained optimization. As
shown in Fig. 8(BL), CPD+Physics failed to track the rope
because it chose incorrect correspondences for the endpoints
when the rope was overlapping. Our algorithm correctly
tracked the rope (Fig. 8(BR)) due to the inclusion of known
correspondences for gripper points.

Our algorithm also generalizes to cloth. Here we compare
our method only to the original CPD algorithm because
Physics+CPD is limited to only use rope. We conducted an
experiment with a human manipulator folding and unfolding
a piece of cloth (Fig. 6). Cloth is inherently harder to track,



TABLE I
EXECUTION TIME FOR EACH COMPONENTS IN OUR METHOD

τ Pre-
Proc.

CPD Gurobi Recovery FPS

Rope
1.0 10ms 11ms 16ms 4ms 24
0.7 10ms 11ms 16ms 9ms 21
0.0 9ms 14ms 12ms 263ms 3

Cloth
1.0 14ms 27ms 39ms 12ms 12
0.7 14ms 27ms 40ms 19ms 10
0.0 14ms 34ms 41ms 465ms 2

due to more significant self-occlusion. From Fig. 6(i), it
is clear that the original CPD algorithm failed to recover
tracking after folding and unfolding. Our algorithm exhibits
a similar defect as the cloth starts to unfold. However, the
tracking failure in our algorithm was successfully detected
and tracking was recovered using the tracking result of a
previous frame (Fig .6(c)).

C. Computation time
We evaluated the speed of our algorithm on both rope and

cloth data sets. We tracked each data set with three tracking
failure thresholds τ = [0.0, 0.7, 1.0], where τ = 0.7 represent
a typical threshold of tracking failure. When τ = 1.0, our
algorithm will treat every frame as successful tracking (best
case), when τ = 0.0 every frame is considered a tracking
failure (worst case). We used k = 12 for the kNN query.
Execution time for all major components of our algorithm
has been shown in Table I. Our algorithm has shown real-
time performance in the rope data set when tracking failure
occurs infrequently. We also achieved adequate speed for
robotic manipulation in the cloth data set.

We also compared the speed of our algorithm with τ = 0.7
vs. CPD+Physics and CPD on the human-manipulated rope
data. Our method achieves a 43ms runtime on average, while
CPD takes 20ms and our implementation of CPD+Physics
takes 129ms. Our implementation of CPD+Physics is slower
than the reported speed in [11] of 20ms, which is due to the
overhead of the ctypes library and frequent memory copy
between python and C++ data structures. An implementation
of our method in C++ would likely achieve faster runtimes.

D. Delicate Motion
While our algorithm demonstrated improved tracking with

respect to occlusion, we found that it did not perform well
when tracking delicate motions such as tying a knot. In
contrast, CPD+Physics tends to perform better for these
kinds of motions because a physics simulation allows self-
collision checking to regularize the tracking result. In a
experiment with data provided by Tang et al., our algorithm
was only able to track up until frame 176, while CPD+Physic
was able to track all 362 frames. With our method, when a
knot is being tied, the rope could interpenetrate, allowing
the knot to deteriorate into a straight line. We are currently
considering ways to add self-collision information to our
method.

VII. CONCLUSION

We proposed an algorithm that tracks a deformable ob-
ject without physics simulation. We addressed the occlu-
sion problem by adding a visibility-informed membership

prior to our GMM, using constrained optimization for post-
processing, and recovering from failed tracking by leveraging
free-space information. Our experiments suggest that we im-
proved robustness to occlusion as compared to CPD+Physics
and the original CPD algorithm on both simulated and real-
world data. In future work, we seek to integrate 3D recon-
struction methods to generate a model of the deformable
object online and to generalize to cases where the topology
of the deformable object changes (e.g. cutting).

REFERENCES

[1] R. White, K. Crane, and D. A. Forsyth, “Capturing and animating
occluded cloth,” ACM Trans. Graph., vol. 26, no. 3, July 2007.

[2] H. Li, B. Adams, L. J. Guibas, and M. Pauly, “Robust single-view
geometry and motion reconstruction,” ACM Trans. Graph., vol. 28,
no. 5, pp. 175:1–175:10, Dec. 2009.

[3] M. Zollhöfer, M. Niessner, S. Izadi, C. Rehmann, C. Zach, M. Fisher,
C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, and M. Stamminger,
“Real-time non-rigid reconstruction using an rgb-d camera,” ACM
Trans. Graph., vol. 33, no. 4, pp. 156:1–156:12, July 2014.

[4] R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time,” in CVPR, June
2015, pp. 343–352.

[5] M. Dou, P. Davidson, S. R. Fanello, S. Khamis, A. Kowdle, C. Rhe-
mann, V. Tankovich, and S. Izadi, “Motion2fusion: Real-time volu-
metric performance capture,” ACM Trans. Graph., vol. 36, no. 6, pp.
246:1–246:16, Nov. 2017.

[6] A. Myronenko and X. Song, “Point set registration: Coherent point
drift,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 12, pp.
2262–2275, Dec 2010.

[7] S. Ge, G. Fan, and M. Ding, “Non-rigid point set registration with
global-local topology preservation,” in CVPR Workshops, June 2014,
pp. 245–251.

[8] T. Collins, A. Bartoli, N. Bourdel, and M. Canis, “Robust, real-time,
dense and deformable 3d organ tracking in laparoscopic videos,”
in Medical Image Computing and Computer-Assisted Intervention,
S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells,
Eds. Cham: Springer International Publishing, 2016, pp. 404–412.

[9] N. Haouchine, J. Dequidt, I. Peterlik, E. Kerrien, M. Berger, and
S. Cotin, “Image-guided simulation of heterogeneous tissue deforma-
tion for augmented reality during hepatic surgery,” in International
Symposium on Mixed and Augmented Reality, Oct 2013, pp. 199–208.

[10] A. Petit, V. Lippiello, G. A. Fontanelli, and B. Siciliano, “Tracking
elastic deformable objects with an rgb-d sensor for a pizza chef robot,”
Robot. Auton. Syst., vol. 88, no. C, pp. 187–201, Feb. 2017.

[11] T. Tang, Y. Fan, H. Lin, and M. Tomizuka, “State estimation for
deformable objects by point registration and dynamic simulation,” in
IROS, Sep. 2017, pp. 2427–2433.

[12] D. Navarro-Alarcon, H. M. Yip, Z. Wang, Y. Liu, F. Zhong, T. Zhang,
and P. Li, “Automatic 3-d manipulation of soft objects by robotic arms
with an adaptive deformation model,” T-RO, vol. 32, no. 2, pp. 429–
441, April 2016.

[13] D. Navarro-Alarcon, , and J. G. R. and, “Visually servoed deformation
control by robot manipulators,” in ICRA, May 2013, pp. 5259–5264.

[14] D. Mcconachie and D. Berenson, “Estimating model utility for de-
formable object manipulation using multiarmed bandit methods,” T-
ASE, vol. 15, no. 3, pp. 967–979, July 2018.

[15] J. Schulman, A. Lee, J. Ho, and P. Abbeel, “Tracking deformable
objects with point clouds,” in ICRA, May 2013, pp. 1130–1137.

[16] T. Tang, C. Wang, and M. Tomizuka, “A framework for manipulating
deformable linear objects by coherent point drift,” RA-L, vol. 3, no. 4,
pp. 3426–3433, Oct 2018.

[17] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[18] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2018.
[Online]. Available: http://www.gurobi.com

[19] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition
and pose using the viewpoint feature histogram,” in IROS, Oct 2010,
pp. 2155–2162.

[20] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms
for high dimensional data,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, 2014.

http://www.gurobi.com

	Introduction
	Related Works
	Problem Statement
	Tracking Deformable Objects
	GMM-Based point Set Registration
	Addressing Occlusion by Exploiting Visibility Information
	Coherent Point Drift
	Preserving Topology using Locally Linear Embedding
	Enforcing Stretching Limits via Constrained Optimization
	Incorporating Prior Correspondence


	Tracking Failure Recovery
	Tracking Failure Detection
	kNN Template retry
	Tracking without true state in the first frame

	Results
	Experiments with Simulated Data
	Experiments with Real Data
	Computation time
	Delicate Motion

	Conclusion
	References

