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Abstract. Object search — the problem of finding a target object in
a cluttered scene — is essential to solve for many robotics applications
in warehouse and household environments. However, cluttered environ-
ments entail that objects often occlude one another, making it difficult
to segment objects and infer their shapes and properties. Instead of rely-
ing on the availability of CAD or other explicit models of scene objects,
we augment a manipulation planner for cluttered environments with a
state-of-the-art deep neural network for shape completion as well as a
volumetric memory system, allowing the robot to reason about what may
be contained in occluded areas. We test the system in a variety of table-
top manipulation scenes composed of household items, highlighting its
applicability to realistic domains. Our results suggest that incorporating
both components into a manipulation planning framework significantly
reduces the number of actions needed to find a hidden object in dense
clutter.
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1 Introduction

| The ability to find and retrieve an object from a cluttered environment, i.e. solv-
ing the object search problem, is an important requirement for many robotics
applications, from warehouse retrieval to household chores. Yet cluttered scenes
inherently impose a limitation on visibility: objects occlude one another in close
proximity, and often the range of feasible viewpoints is limited. Also, in un-
structured environments such as homes, new objects appear frequently and it is
very restrictive to require that all objects in the scene have corresponding CAD
models and/or labeled images available. In spite of these difficulties, estimating
object geometry is important for sequencing actions to find a target object.
Thus this paper focuses on a key topic that has been largely overlooked in
the object search domain: inferring occluded geometry. The current state-of-
the-art in object search (e.g. |1]-[3]), which shows impressive performance, does
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Fig. 1. Left: Our robot sliding an object in a cluttered scene to reveal the target (the
yellow ball). Right: The robot’s representation of the world, including shape-completed
objects and memory of previously seen shapes and free space. Yellow voxels represent
the table or unclassified points, gray represents occluded “shadows”, and other colors
represent shape-completed segments.

not reason about occlusion but instead relies on CAD models and/or labeled
images to construct a geometric description of the scene. However, when such
information is not available, we hypothesize that inferring occluded geometry
significantly improves object search performance in dense clutter in terms of the
number of actions required to retrieve the object. This paper does not focus on
the effect of shape-completion on grasping, which has been explored in previous
work . Rather we focus on the role of shape-completion in action selection, i.e.
in determining which object to move and where.

The main contribution of this paper is the integration of a novel extension to
a previous method for shape completion [5] into a manipulation planning frame-
work. Our proposed shape completion method allows us to infer occluded geom-
etry more accurately by using free-space information and we use this method to
infer occluded geometry in a cluttered scene. We are not aware of any previous
method that integrates shape completion into a framework for object search. We
also integrate a memory method to track free space seen earlier in the interaction,
as well as previously-observed geometry that has become occluded.

To gauge how much inferring occluded geometry improves manipulation per-
formance, we constructed a manipulation planning system for a bimanual robot
(see Figure. Our baseline system consists of a planner that operates on a vol-
umetric segmentation of RGBD images and uses a set of motion primitives to
locate and retrieve a target object. We conducted 182 manipulation experiments
in eight tabletop cluttered scenes (see Figure|5)) comparing the baseline system to
a system augmented with shape completion and/or memory. We first evaluated
whether our proposed shape completion method outperformed previous work on
a dataset specialized to our application. We then tested the hypothesis that both
shape completion and memory independently improved performance in certain
scenarios. Finally, we tested the performance of the baseline vs. the augmented
system in scenarios with varying amounts of clutter. In densely-cluttered scenes
we found that inferring occluded geometry significantly reduced the number of
actions necessary to retrieve the target object.
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2 Related Work

Object Retrieval from Clutter Manipulation of movable obstacles in clut-
tered scenes has been a longstanding goal of robotics research [6], [7]. While
these earlier examples assumed full knowledge of the scene in question, leverag-
ing manipulation to discover hidden objects has also been a significant focus. In
[8], Wong et al. use spatial visibility constraints and object semantic information
to plan manipulation sequences. [9] use revealed volume in utility function and
generate connected component networks from object occlusions, |10] frame the
problem as a POMDP, and employ a similar image processing pipeline to the
one presented here. The above methods make important contributions to the
literature, however they make simplifying assumptions (e.g. discrete planning
space, known object models, or sparse clutter) that are more restrictive than
ours.

In recent years, much work about vision and manipulation in clutter has been
driven by the scenarios presented by the Amazon Picking Challenge (APC), pro-
ducing numerous publications on both full frameworks and isolated components.
In APC 2015, 1] developed a segmentation algorithm based on explicit image
features (color, edge, missing 3D, distance to shelf, height etc), though the more
recent trend has been toward deep-learned perceptual models (e.g. [2] from APC
2016, combined object detection using a fine-tuned network on Visual Genome
and semantic segmentation using a pretrained pixel-level CNN model on Ima-
geNet). Starting in APC 2017, the challenge required competitors to attempt to
manipulate novel items in the scene, producing complex sensing and grasping
frameworks such as [3], [11]. While powerful, these methods do not reason about
occluded space.

Volumetric Shape Reconstruction Reconstructing a 3D model of a scene
is both a major challenge and powerful tool for robotic manipulation. Until
recently, most systems seeking to infer volumetric information about the hidden
parts of the scene have relied on CAD model matching [12], [13] or semantic
matching [14], [15]. However, progress in reconstructing objects and scenes from
single 2.5D views [5], |16]—[20] has enabled manipulation planning on unseen
parts of the space [4]. We extend this work in order to reason about occlusion in
a cluttered scene, choosing to build on [5] because it obtained good performance
on challenging objects and it was clear how to incorporate free-space information
into the network.

3 Problem Statement

We seek to retrieve a specific object from a cluttered scene using robotic manipu-
lator(s). Our domain represents household applications, where previously-unseen
objects can be present and CAD models or labeled images are not available.
Sensing To sense the environment we assume that the robot is endowed
with a single RGB-D sensor. We assume that the objects in the environment
are arranged on a flat surface and may be in arbitrary stable pose and contact
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configurations. A key difference between our domain and that of much previous
work is that we do mot assume that we possess explicit object representations
for the objects on the table: the robot may have observed some of the objects
during training of its perception algorithms, but other objects are completely
new. Furthermore, the robot has no way to identify objects with which it has
been trained. The robot receives an observation of the state of the environment
o € O before it acts, where O is an w x [ grid of RGBD values.

The robot also has no explicit representation for the target object, but is
endowed with a classifier L : o, — {0, 1} which determines if a given pixel in the
RGBD image is likely to be a part of the target object. This is meant to handle
queries that may come from a user, such as “Bring me the yellow ball”, where no
explicit model of the object is given.

Acting The robot may manipulate the objects in any way it chooses, how-
ever, unlike much previous work, we assume we are not able to command the
robot to remove objects from the scene. We make this restriction to consider re-
alistic scenarios where the robot has a limited work-surface like cabinet interiors
or counter tops.

Further, we assume that the robot has only a limited knowledge of contact
mechanics and physics. Contacts between the robot model and the environment
or between a grasped object and a tabletop object can be computed based on
their observed or inferred shapes, but their behavior after contact is difficult
to predict because physical properties such as mass, pressure distribution, and
friction, are not known.

Problem The robot is endowed with a set of possible actions it can apply A
and must choose which actions ay.. , € A to take to locate and retrieve the target
object, with each action a; having a negative reward and retrieval having a pos-
itive reward. This problem can be formulated as a Partially-Observable Markov
Decision Process (POMDP) by defining a belief state over the environment and
computing a policy of the form 7(ay.4,01.4) = at+1 which maximizes the prob-
ability of success given any starting state. While a POMDP policy would be
desirable, this is clearly intractable as the belief over environments is too high-
dimensional for a POMDP solver to handle and we do not have models of the
transition and observation uncertainty. Instead, we focus on a greedy approach:
we seek to design a 7 that takes the next best action given ay.; and o01.4. A key
challenge is how to use a;.; and 01+ to infer object geometry in occluded regions,
so that this information can be used to inform action selection.

4 System Framework

This section describes the components of our system, shown in Figure 2] We first
describe our methods for perception, then action selection.

4.1 RGB-D Segmentation

The pipeline begins by processing o; to produce a segmentation of the observed
scene into distinct objects. Many state-of-the-art semantic segmentation ap-
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Fig. 2. Diagram of data processing pipeline.

proaches require object class annotations , 22|, which violates our stipulation
that the scene may contain novel objects or classes. Therefore, we investigated
class-agnostic segmentation approaches, adapting SceneCut for our scenario.
The method begins with an ultrametric contour map (UCM) [24], a hierarchical
segmentation tree derived from the RGB-D image of the scene. The UCM is gen-
erated by a Convolutional Oriented Boundary (COB) network trained on
NYUD-v2 dataset . SceneCut then utilizes a tree cut to minimize an energy
function over objectness and geometric fitting.

Each segment of the RGB-D image, given the camera intrinsics, corresponds
to a point cloud representing a potential object. Points belonging to the table
surface, robot arms, or outside the table region of interest are rejected, and the
surviving point clouds are passed to shape completion. We also try to find the
target in oy, as well as extracting occupied and free volumes (detailed below).

Target Object Detection Given a collection of image/point cloud seg-
ments, we next determine whether any of them is the target in question. We
assume a classifier of the form L : o; — {0,1} is available, as object recognition
is not a focus of this work. Our implementation uses color matching to classify
whether a pixel belongs to the target object.

Occupied and Free-Space Volumes Using the segmentation and full point
cloud, we can compute a voxelized representation of the free, occupied, and un-
known state of the world. Occupied and free space computation is provided by
feeding the point cloud data to OctoMap to generate an octree representa-
tion of the scene. The shape completion results from the following section are
fed back into object-specific OctoMaps that are used for end-effector collision
computations.

4.2 Shape Completion

The main contribution of this paper is the integration of shape completion into
our object search system. We first frame the problem of shape completion and
then describe our solution. Consider an occupancy map V: R? — {0,1} car-
rying 3D points to a binary occupancy value, empty or filled. Letting N,, =
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{0,1,...,m — 1} represent the first n natural numbers, we can define a vozel
grid as a discrete version of V, with V,,: N3 — {0,1}.

Let -.- V,, represent the pointwise representation of V': the list of points p that
are at the center of each voxel and V(p) = 1. We now define a distance between
voxel grids based on the Chamfer distance as defined by [19]:

L1 : 2, 1 . 2
Do(X,Y) = rm ;{ryrgg}ﬂx—y”ﬁm%;gggllw—ylb (1)
x Yy

So, for two voxel grids U,, and V;,, we define D(U,,,V,,) = Dc(".- Uy, " V3,). Let
the true voxel occupancy of an object be V.° C V,, and the observed free space
be Vf7¢¢ C V,,. Then, given a partial scan of the object VPartial c V9% and
V/ree shape completion seeks to solve the following problem:

: completed obj
argmin ~ D(Vy: , Vo0
ycompleted

subject to Vé)artial C ‘/ncmﬂpleted7

Vncompleted N Vhfree — @

However, at runtime V,°%7 (the true shape of the object) is unknown. Instead,
we apply learning methods which train a deep neural network on multiple views
of objects in simulation, where the true shape is used as ground-truth. We then
use the learned network to predict a likely V,comPleted for a given partial scan.

To tackle the learning problem, we begin with a base model of the 3D-
RecGAN architecture [5], a combination of a generative autoencoder and a Gen-
erative Adversarial Network (GAN)|[28] capable of generating high-resolution
3D shapes that capture key features (such as handles). Compared to previous
approaches which generate a 3D shape from RGB or RGB-D information, this
architecture does not require object class labels and is able to generalize to
unseen objects. This approach performs well, but does not have the ability to
include V,/7¢, so it may generate voxels in known free space. We thus build
on this method by incorporating two main modifications: 1) restructuring the
network architecture to include known-free space along the lines of [16], [18] and
2) using a dataset that includes occlusions for training.

Architecture 3D-RecGAN consists of two main networks: the generator
and the discriminator. We improve on the original network [5| by augmenting
the input space with VJ ree. Figure (3| shows the detailed architecture of our
modified generator in 3D-RecGAN. Both the occupancy voxels and free voxels
are encoded using the five 3D convolutional layers used by 3D-RecGAN. In latent
space, the two latent vectors are concatenated together. The decoder comprises
six up-convolutional layers followed by ReLU activations except for the last
layer which uses a sigmoid function. All encoder layers are concatenated to the
decoder by skip-connections to preserve local structures. The discriminator and
loss functions are the same as those used in 3D-RecGAN.

Synthesizing a Dataset with Occlusions Many large synthetic datasets
generated from 3D models exist for the purpose of 3D reconstruction from a
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Fig. 3. Proposed network architecture for shape completion.

single view. Most existing cluttered datasets are generated on large and complex
objects such as furniture in an indoor scene. Existing datasets for robotic manip-
ulation in cluttered scene are limited. generated a dataset for shape comple-
tion for the purpose of robot grasping using objects from the YCB dataset
and Grasping dataset . However, this dataset only includes a complete single-
view occupancy grid with self occlusion only. introduced a tabletop dataset
which consists of a complete RGB-D occluded scene with objects occluding each
other, but their TSDF encoding is different from our requirement in the network
architecture.

In order to train a network to reconstruct occluded parts from cluttered
scenes, we modify and augment the dataset synthesis steps used by [4] so that
the objects are not only self-occluded but also occluded by an obstacle. Our
dataset contains three kinds of 3D voxel grids for each example: VPertial 'y free.
and V,°% (the ground truth).

12 objects from the YCB dataset and ShapeNet are collected and oc-
cupancy grids are generated from the object meshes using binvox . After
that, rotations are uniformly sampled in roll-pitch-yaw space. Instead of directly
generating depth images from different angles of rotations, an obstacle mask is
placed in between the camera and the mesh, occluding part of V,°) and thus
generating VP7*a! The voxels between the camera and the Vpartial are Vfree,
Vpartial js then centered in the reconstruction grid in order to remove infor-
mation about the original object extents so that the input is similar to a real
scenario, where the true extent of the object is unclear. The recentered voxels are
then shifted towards the camera to a fixed offset to provide more space for recon-
struction. In the experiment section, we show that training using this occluded
data set boosts the performance when reconstructing objects in the presence of
occlusion.
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4.3 Volumetric Memory

Although the dynamics of manipulation are difficult to predict, there are cases,
such as when the robot has a stable grasp on a manipulated object, where we
wish to inform the next scene of past interactions. With positive memory, we
compute the pose transformation due to the manipulator motion, then add the
object octree at time t—1 into the scene octree at time ¢ using the new pose. With
negative memory, we assume that space that was previously free and is now oc-
cluded is likely to remain free, unless the shape completion indicates otherwise.
As both of these assumptions can be violated by unanticipated object inter-
action (e.g. objects slipping in the grasp or collisions knocking objects behind
others), unobserved space is set to decay to the OctoMap occupancy threshold
Toccupancy With rate 0 < o < 1, giving Vi(x) = aVi—1(x) + (1 — a)Toccupancy
Vx € Unobserved(V}).

4.4 Motion Planning

After segmentation and reconstruction, we are left with a collection of voxel
maps approximately representing individual objects which must be rearranged to
facilitate target retrieval. We employ a randomized kinodynamic motion planner
with heterogeneous action types to find an action to perform in the current
scene. Acting in clutter often restricts the feasibility of traditional pick-and-
place actions due to limited reachability around objects. For these reasons, this
work follows others, including [33], [34], [7], in employing action primitives to
act in constricted space.

Domain Definitions When planning for the motion of rigid bodies in 3D,
the natural planning space is the Cartesian product of nop,; copies of SE(3), where
Nobj is the number of rigid bodies. Combined with the robot’s joint configuration
space Q, we can form the full configuration space C = SE(3) x --- x SE(3) x Q
representing the state of the robot and all manipulable rigid bodies in the scene.

The action space A contains all the possible control actions the system can
take. Each action a € A has an associated parameter space P, and performs
the mapping a: C x P, — C. Each action may also be equipped with a steering
policy, q: C x C — A x P,, which takes an initial and goal configuration and
returns the parameterized action to locally advance toward the goal state. For
actions without steering, it is necessary to sample from the parameter space
directly.

In the absence of a known terminal state, we instead supply a reward function
that determines the most promising action given the current and predicted next
state, v: C x P, x C — R. The function v rewards actions that are likely to
exhibit high information gain and penalizes trajectories with high incidence of
collision. Collisions between the robot and scene objects during action execution
are not forbidden in the framework, as the objects are movable, but actions with
lower contact are rewarded.

Object Selection After segmentation and shape completion, occluded vox-
els (“shadows”) in the field of view are computed by raycasting from unknown
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cells back to the camera origin. The object to move is determined by uniformly
sampling from the set of shadow voxels, then casting back to select the object
that occluded that volume. This provides a heuristic for sampling objects that
are more likely to be hiding the target object. In the case where the target object
is partially visible, but unreachable due to gripper collisions with its neighbors,
the selector has a Tgreedy chance of choosing one of those colliding objects (with
probability proportional to the number of gripper poses it obstructs and the
number of target voxels occluded by the object), and a 1 — Tgreedy chance of pro-
ceeding normally. Function SelectObject in Algorithm [T highlights this process.

Action Specifications For the
tabletop manipulation domain, we
have chosen three heterogeneous ac-
tions representing a taxonomy based
on the controllable subspace of the full
state space: PUSH, SLIDE, and PICK.

Algorithm 1 Motion Generation

function CoMPUTEOCCLUSIONS(Octree
T, Camera c)
Octree Tocci
for all p € T do
Tocel [p] — (RAYCAST(T, C,p) 7§

p) Each action operates on a single se-
end for lected object, although in clutter this
return T,eu will likely influence the neighborhood

end function of objects around it. PUSH, param-

function SELECTOBJECT(Octree T', Oc- eterized by Ppysy, represents a 1D
tree Toce, Camera ¢, SegmentLookup S)  palm-push motion with a magnitude
p< RANDOMOCCUPIEDNODE(Tocc1)  and direction in the plane of the ta-

p « RaYCast(T,c,p)) ble surface. SLIDE is implemented by
return S[p] grasping the selected object and drag-
end function ging in the table plane, for 3 control-

function GeNMorioN(Parameters Pa)  |able dimensions. It is parameterized

frio'rity(i}ueue q 4 by Psuis, which contains the SE(2)
Orc:i[S;A.I\./IZEZKSiON(EP ) transform of the object motion. Fi-
“ nally, PICK and Pp,ck represent a full

obj + SELECTOBJECT . .
G« GETGRASP(0b)) grasp of the object, and can move it

r <+ v(a) in SE(3).

& + GENTRAJECTORY(a, G) Each task-space motion of an ob-
if £ then PusH(q, r, §) ject has a generating policy that pro-
end if

duces full joint-space motions of the
robot. This consists of planning a col-
lision free path to the start of the tra-
jectory, then solving coherent inverse
kinematics for a Cartesian path of the end-effector.

end for
return Por(q)
end function

Feasibility Function The feasibility function @, is composed of two com-
ponents. First, the entire generated trajectory must be kinematically feasible.
Second, the initial pose of the hand must be free from collisions. Collisions be-
tween the remainder of the robot trajectory and the scene objects are permitted,
and are handled by the reward function.

Reward Function Given limited knowledge of the scene’s dynamics and
state, the reward function v plays a dominant role in enabling progress toward
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(b) (c)

Fig. 4. Motion planning scene and motion rewards. Unclassified occupied space
is represented with gold voxels, shape-completed segments with random colors, and
shadow voxels with gray. A SLIDE motion primitive is displayed with the robot motion
trail. The right hand side shows dis-occluded voxels after an object motion. shows
a shape with its shadow given a camera pose. shows the scene after an object
motion, with the newly visible regions highlighted in green. The volume of these regions
determines the reward.

locating the target object. The reward used here is a linear combination of a
number of heuristic value functions v;: v = [1/1 Vo U3 V4] w.
For our constituent reward functions, we use the following elements:

Information vq: The number of previously occluded voxels that should be re-
vealed by this motion.

Dispersion vy: The standard deviation of the centroids of detected objects.

Direction  v3: The motion of the object toward or away from the center of
mass of the scene.

Collision vy: The number of collisions between the robot trajectory and
non-manipulated objects in the current motion.

Heuristic v; is the dominant value, representing how much of the scene is re-
vealed as shown in Figure[d] Heuristics vo_4 primarily act to encourage spreading
objects apart, which assists in object search and grasp generation. No penalty is
assessed for disturbing or toppling other objects, other than the collision metric.
The weight vector w will in general depend highly on the resolution of the voxel
map.

The Information heuristic requires some additional explanation. When mov-
ing a partially-visible object with shadow, the hidden voxels could “belong” either
to the object in motion or to the remainder of the scene. If the object motion is
represented by a rigid transform 73 and a shadowed voxel coordinate by p,..,
then we need to check whether either p,.. or P’'ocel = 15 Pocel are visible given
the new object position. Figures and show this process.

Grasp Generation For both the cases with and without shape completion,
grasps were planned on a convex prismatic approximation of the voxel grid,
generated by extruding the 2D convex hull of the object’s downprojected (X-
Y) occupancy map between its minimum and maximum extents in the table
z-coordinate.
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Fig. 5. Experimental configurations. In each scene, the target object is the yellow/green
softball. Occluding objects are roughly 75% YCB, with the remainder previously unseen
by the shape completer. The robot is located at the top of the image where it cannot
see the softball.

5 Experimental Results

Experimental Equipment To evaluate the system described, we employed
a custom bimanual robot equipped with two KUKA LBR iiwa 7 R800 arms,
two Robotiq 3-Finger Adaptive Grippers, and a Microsoft Kinect 2 for vision.
External localization of the robot, camera, and table was provided by eight Vi-
con Bonita 10 motion capture cameras (no motion capture was used for the
manipulated objects). Primary scene processing and motion planning was per-
formed on a PC with an Intel 4.7GHz i7-8700K CPU and NVIDIA GTX 1080Ti
GPU. Shape completion was also performed on a 1080Ti, and segmentation was
performed on an NVIDIA Tesla V100-SXM2. The system, spanning six PCs in-
cluding hardware-facing machines, used ROS for interprocess communication,
sensor data acquisition, and trajectory transmission.

Experimental Parameters Throughout the preceding sections, several
threshold and weight parameters were employed. For this experiment config-
uration, we used values of Tiarget = 0.5, Tgreedy = 0.9, Toccupancy = 0.5, and from

Equation 4.4 w = [z 13 =5]".

5.1 Shape Completion

Experiment setup To benchmark the shape completion modifications, we gen-
erated voxel grids for 16 objects in a variety of previously unseen orientations,
and where four of the objects were previously unseen by the network. One quad-
rant of the view was then occluded to mimic the conditions found in realistic
scenes. 864 data points are generated for each object and randomly split into
training and testing sets with the ratio of 4:1. The testing dataset also include
3 new objects which were not in the training set. The resulting reconstructions
were then compared using the chamfer distance metric from Equation [T These
error statistics are collected for all 8,448 data points in Figure [6] We then eval-
uated two hypotheses about our shape completion method:
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Hypothesis 1 Training shape completion with a dataset of occluded objects sig-
nificantly improves performance.

As seen in Figure [6] augmenting the training data with occlusions provides a
dramatic improvement in performance (note the log scale on the y-axis). Com-
paring the 3D-RecGAN model with the 3D-RecGAN + occlusions model yields
a t-statistic of 36.752 and a p-value of ~ 0. Examples are shown in Figure [7]
This hypothesis is strongly supported by the results.

Hypothesis 2 Including known free voxel information in shape completion sig-
nificantly improves performance.

On top of the additions to the training dataset, Section [£.2] described a modifi-
cation to the original 3D-RecGAN architecture to account for known free space.
Figure [6] shows these results as well, showing a modest improvement from the
non-freespace network. Computing the t-statistics for the freespace and non-
freespace leads to a t-value of 1.87543, and a p-value of 0.06079.

5.2 Tests in manually-designed scenes

In order to show the capabilities of shape completion and memory, we test each
of these components in manually-designed scenarios where that component is
beneficial. We then compare the results to using the baseline (the framework
without either of these components). These test scenarios are shown in Fig-
ures and

In all scenes, the target object is the yellow ball, and the scene is considered
to be successfully solved when the robot picks the ball from the scene using either
hand. An attempt is marked as a failure if the target object is ejected from the
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Fig. 7. Visualization of results of shape completion on several objects. (a) Input voxels;
(b) 3D-RecGAN trained on unoccluded dataset; (c) 3D-RecGAN trained on occluded
dataset; (d) 3D-RecGAN trained on occluded dataset with free space as augmented
input. (e) Ground truth. The pitcher is in the training set. The sprayer and toy airplane
are not in the training set.

workspace during the course of the attempt, or if the number of actions taken is
more than three times the number of objects in the scene.

Hypothesis 3 Memory significantly reduces the number of actions necessary to
retrieve a target object when other objects are likely to be investigated first.

Scene A was designed to explore the benefits of volumetric memory in locating
a hidden object in the scene. Here the pitcher casts a much larger shadow than
the coffee can behind which the target is hiding, but after one or two moves the
system should realize that the target is not there, and should prioritize other
objects. Figure [§] and Table [T] show strong improvement, with a t-statistic of 5.8
and a p-value of 0.00002. This furnishes a compelling argument that memory
greatly improves the system performance.

Hypothesis 4 Shape completion significantly reduces the number of actions
necessary to retrieve a target object when visible objects cause large occlusions.

Scene B was constructed to demonstrate the capability of shape completion to
rule out some of the occluded area for exploration because it is a part of visible
objects. In the scenario, the target is hidden behind a small cylinder, while
there are two large boxes as distractions. The boxes have large shadows, so the
baseline would be biased to move those to find the hidden object. However, with
accurate shape completion, the system should realize that most of the volume
shadowed by the boxes is likely part of the boxes themselves, and thus should
move the cylinder. Figure [§] shows that about half of the time the augmented
system decides to move the cylinder first, retrieving the target in the optimal two
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Fig. 8. Number of actions executed to retrieve the target object from each scene.

moves. In the other cases, the augmented system selects one of the side boxes
first, or needs to clear an obstacle in contact with the target before grasping.
Table [I] shows improvement over the baseline, with a t-statistic of 2.1 and a
p-value of 0.056.

5.3 Tests in arbitrary cluttered scenes

To assess the performance of the framework as a whole (including both memory
and shape completion), we tested the full framework vs. the baseline (without
shape completion or memory) on arbitrary sparsely-cluttered scenes and densely-
cluttered scenes. We generated a collection of arbitrary sparse and dense clutter
scenes, shown in Figure[§|as C1-C3 and D1-D3. For our purposes, “dense” clutter
is defined to be where most or all objects in the scene are in contact with one
another.

Hypothesis 5 Our full framework significantly reduces the number of actions
necessary to retrieve a target object in sparsely-cluttered scenarios.

Scenes C1-3 were constructed to resemble typical household clutter. Figure
and Table [I] show strong improvement on C1 and C3, but C2 shows a minor
regression. Thus, the hypothesis is only weakly supported, with a t-statistic of
1.5 and a p-value of 0.14.

Hypothesis 6 Our full framework significantly reduces the number of actions
necessary to retrieve a target object in densely-cluttered scenarios.

Scenes D1-3 were constructed to resemble typical household clutter that is more
densely distributed than C. In all of these cases, the augmented system showed
strong improvement, with a t-statistic of 2.6 and a p-value of 0.012, showing
good support for the hypothesis.
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5.4 Computation Time

Our framework is a

proof-of-concept and Table 1. Performance Statistics of Augmented vs. Baseline

has not been opti- Moves Success Ratio
mized for fast compu- Augmented Baseline

tation or execution. Mean StdErr Mean StdErr Augmented Baseline
However, to gauge " 3300 02135400 0.945 1.000  1.000
the practicality of our g o 455 (157 4000 0.211 1.000  1.000
method, we collected 1 4 600 0.927 7.000 2.000 0.833  1.000
statistics on average oo 7000 0.577 6.900 1.650 1.000  0.769
computation time used 3 5 700 0.684 6.700 0.731 1.000  0.909
for each component: ;3 300 (260 5364 1.038 1.000 0.917
Preprocessing: 4.34s; 1o g 556 (884 8.125 1.060 0.900  0.800
Segmentation: 7.30s; 134000 0.471 6.300 1.065 1000 1.000

Shape Completion: 1.67s;
Memory == 0; Action Selection: 7.32s, and Execution: 34.98s. These results show
the the benefits of shape completion and memory come at a low computational
cost as compared to the rest of the framework.

6 Conclusions and Future Work

This paper has presented a method for the volumetric completion of partially
observed scenes and demonstrated that such a method, when integrated with a
manipulation planner, can significantly reduce the number of actions required to
retrieve a hidden object from dense clutter. In addition, we have shown that our
extension of previous work on shape completion to consider partially-occluded
views and known free-space volumes can boost the performance of shape comple-
tion in cluttered environments. Future work focuses on enhancing the segmen-
tation component by inferring better segmentations from video of interactions.
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