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Abstract: We present a scalable algorithm for learning parametric constraints in
high dimensions from safe expert demonstrations. To reduce the ill-posedness of
the constraint recovery problem, our method uses hit-and-run sampling to gener-
ate lower cost, and thus unsafe, trajectories. Both safe and unsafe trajectories are
used to obtain a representation of the unsafe set that is compatible with the data by
solving an integer program in that representation’s parameter space. Our method
can either leverage a known parameterization or incrementally grow a parame-
terization while remaining consistent with the data, and we provide theoretical
guarantees on the conservativeness of the recovered unsafe set. We evaluate our
method on high-dimensional constraints for high-dimensional systems by learn-
ing constraints for 7-DOF arm, quadrotor, and planar pushing examples, and show
that our method outperforms baseline approaches.
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1 Introduction
Learning from demonstration is a powerful paradigm for enabling robots to perform complex tasks.
Inverse optimal control and inverse reinforcement learning (IOC/IRL) ([1, 2, 3, 4]) methods have
been used to learn a cost function to replicate the behavior of an expert demonstrator. However,
planning problems generally also require knowledge of constraints, which define the states or trajec-
tories that are safe. For example, to get a robot arm to efficiently transport a cup of coffee without
spilling it, one can optimize a cost function describing the length of the path, subject to constraints
on the pose of the end effector. Constraints can represent safety requirements more strictly than cost
functions, especially in safety-critical situations: enforcing a hard constraint can enable the robot to
guarantee safe behavior, as opposed to using a “softened” cost penalty term. Furthermore, learning
a global constraint shared across many tasks can help the robot generalize. Consider the arm, which
must avoid spilling the coffee regardless of where the cup started off or needs to go.

While constraints are important, it can be impractical to exhaustively program all the possible con-
straints a robot should obey across all tasks. Thus, we consider the problem of extracting the latent
constraints within expert demonstrations that are shared across tasks. We adopt the insight of [5] that
each safe, optimal demonstration induces a set of lower-cost trajectories that must be unsafe due to
violation of an unknown constraint. As in [5], we sample these unsafe trajectories, ensuring that they
are also consistent with the system dynamics, control constraints, and start/goal constraints. The un-
safe trajectories are used together with the safe demonstrations in an “inverse” integer program that
recovers an unsafe set consistent with the safe and unsafe trajectories. We make the following ad-
ditional contributions in this paper. First, by using a (potentially known) parameterization of the
constraints, our method enables the inference of safe and unsafe sets in high-dimensional constraint
spaces. Second, we relax the known parametrization assumption and propose a means to incremen-
tally grow a parameterization with the data. Third, we introduce a method for extracting volumes of
states which are guaranteed safe or guaranteed unsafe according to the data and parameterization.
Fourth, we provide theoretical analysis showing that our method is guaranteed to output conservative
estimates of the unsafe and safe sets under mild assumptions. Finally, we evaluate our method on
high-dimensional constraints for high-dimensional systems by learning constraints for 7-DOF arm,
quadrotor, and planar pushing examples, showing that our method outperforms baseline approaches.

2 Related Work
Inverse optimal control [6, 7] (IOC) and inverse reinforcement learning (IRL) [4] aim to recover an
objective function that replicates provided expert demonstrations when optimized. Our method is
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complementary to these approaches; if the demonstrator solves a constrained optimization problem,
we are finding its constraints, given the cost; IOC/IRL finds the cost, given the constraints [8].
Risk-sensitive IRL [9] is complementary to our work, which learns hard constraints. Similarly, [10]
learns a state-space constraint shared across tasks as a penalty term in the reward function of an MDP.
However, when representing a constraint as a penalty, it is unclear if a demonstrated action was made
to avoid a penalty or to improve the trajectory cost in terms of the true cost function (or both). Thus,
learning a penalty generalizing across cost functions becomes difficult. To avoid this, we assume a
known cost function to explicitly reason about the constraint. Also relevant is safe reinforcement
learning, which aims to perform exploration while minimizing visitation of unsafe states. Several
methods [11, 12, 13] use Gaussian process models to incrementally explore safe regions in the state
space. We take a complementary approach to safe learning by using demonstrations in place of
exploration to guide the learning of safe behaviors. Methods exist for learning geometric state space
constraints [14, 15], task space equality constraints [16, 17], and convex constraints [18], which our
algorithm generalizes by being able to learn arbitrary nonconvex parametric inequality constraints
defined in some constraint space (not limited to the state space). Other methods aim to learn local
trajectory-based constraints [19, 20, 21, 22, 23, 24] by reasoning over the constraints within a single
trajectory or task. In contrast, our method aims to learn a global constraint shared across tasks.

The method closest to our work is [5], which learns a global shared constraint on a gridded constraint
space; hence, the resulting constraint recovery method scales exponentially with the constraint space
dimension and cannot exploit any side information on the structure of the constraint. This often leads
to very conservative estimates of the unsafe set, and only grid cells visited by demonstrations can
be learned guaranteed safe. We overcome these shortcomings with a novel algorithm that exploits
constraint parameterizations for scalability and integration of prior knowledge, and also enables
learning volumes of guaranteed safe/unsafe states in the original non-discretized constraint space,
yielding less conservative estimates of the safe/unsafe sets under weaker assumptions than [5].

3 Problem Setup
Consider a system with discrete-time dynamics xt+1 = f(xt, ut, t) or continuous-time dynamics
ẋ = f(x, u, t), where x ∈ X and u ∈ U . The system performs tasks Π represented as constrained
optimization problems over state/control trajectories ξx/ξu in state/control trajectory space T x/T u:
Problem 1 (Forward problem / “task” Π).

min
ξx,ξu

cΠ(ξx, ξu)

s.t. φ(ξx, ξu) ∈ S(θ) ⊆ C
φ̄(ξx, ξu) ∈ S̄ ⊆ C̄
φΠ(ξx, ξu) ∈ SΠ ⊆ CΠ

(1)

where cΠ(·) : T x × T u → R is a cost function for task Π, and φ(·, ·) : T x × T u → C is a known
mapping from state-control trajectories to a constraint space C, elements of which are referred to as
“constraint states”. Mappings φ̄(·, ·) : T x × T u → C̄ and φΠ(·, ·) : T x × T u → CΠ are known
and map to constraint spaces C̄ and CΠ, containing a known shared safe set S̄ and a known task-
dependent safe set SΠ, respectively. In this paper, we take TSΠ to be the set of trajectories satisfying
start/goal state constraints and TS̄ to be the set of dynamically-feasible trajectories obeying control
constraints, though the dynamics may not be known in closed form. S(θ) = {k ∈ C | g(k, θ) > 0}
is an unknown safe set defined by an unknown parameter θ ∈ Θ and a possibly unknown param-
eterization g(·, ·). A demonstration, ξxu

.
= (ξx, ξu) ∈ T xu, is a state-control trajectory which

approximately solves Problem 1, i.e. it satisfies all constraints and its cost is at most a factor of δ
above the cost of a globally optimal solution ξ∗xu, i.e. c(ξx, ξu) ≤ (1+δ)c(ξ∗x, ξ

∗
u). For convenience,

we summarize our frequently used notation in Appendix F. In this paper, our goal is to recover the
safe set S(θ) and its complement, the unsafe setA(θ)

.
= S(θ)c, given Ns demonstrations {ξ∗sj}

Ns
j=1,

N¬s inferred unsafe trajectories {ξ¬sk}N¬sk=1 , the cost function cΠ(·), task-dependent constraints SΠ,
and a simulator generating dynamically-feasible trajectories satisfying control constraints.

4 Method
In this section, we describe our method (a full algorithm block is presented in Appendix A). In Sec-
tion 4.1, we describe how to sample unsafe trajectories. In Sections 4.2 and 4.3, we present mixed
integer programs which recover a consistent constraint for a fixed parameterization and extract vol-
umes of guaranteed safe/unsafe states. In Section 4.4, we present how our method can be extended
to the case of unknown parameterizations.
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4.1 Sampling lower-cost trajectories
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Figure 1: Hit-and-run. Left: Blue lines: sampled
random directions; black dots: samples. Right:
Each point in T ξ

∗
xu
A corresponds to an unsafe tra-

jectory in the constraint space C (here, C = X ).

In this section, we describe the general sampling
framework presented in [5] while also relaxing the
assumption of known closed-form dynamics made
in [5]. We define the set of unsafe state-control
trajectories induced by an optimal, safe demonstra-
tion ξ∗xu, T ξ

∗
xu

A , as the set of state-control trajecto-
ries of lower cost that obey the known constraints,
T ξ
∗
xu

A
.
= {ξxu ∈ TS̄ ∩ TSΠ | c(ξx, ξu) < c(ξ∗x, ξ

∗
u)}.

We sample from T ξ
∗
xu

A to obtain lower-cost trajecto-
ries obeying the known constraints using hit-and-run
sampling [25], a method guaranteeing convergence to a uniform distribution of samples over T ξ

∗
xu

A
in the limit; an illustration is shown in Fig. 1. Hit-and-run starts from an initial point within the set,
chooses a direction uniformly at random, moves a random amount in that direction such that the new
point remains within the set, and repeats [5]. We sample from T ξ

∗
xu

A indirectly by sampling control
sequences and rolling them out through the dynamics to generate dynamically-feasible trajectories.
We emphasize that f(x, u, t) does not need to be known in closed form. Given a control sequence
sampled by hit-and-run, a simulator can instead be used to output the resulting dynamically-feasible
trajectory, which can then be checked for membership in T ξ

∗
xu

A exactly as if the dynamics were
known in closed form. Also, δ-suboptimality of the demonstration ξdem

xu can be handled in this
framework by sampling instead from {ξxu ∈ TS̄ ∩ TSΠ

| c(ξx, ξu) < c(ξdem
x , ξdem

u )/(1 + δ)}. Opti-
mal substructure in the cost function can be exploited to sample unsafe sub-trajectories over shorter
time windows on the demonstrations; shorter unsafe trajectories provide less ambiguous information
regarding A and can better reduce the ill-posedness of the constraint recovery problem [5].
4.2 Recovering the constraint
Recall that the unsafe set can be described by some parameterizationA(θ)

.
= {k ∈ C | g(k, θ) ≤ 0},

where we assume for now that g(·, ·) is known, and θ are parameters to be learned. Intuitively,
g(k, θ) tells us if constraint state k (which is any element of constraint space C) is safe according to
parameter θ. Then, a feasibility problem can be written to find a θ consistent with the data:
Problem 2 (Parametric constraint recovery problem).

find θ

s.t. g(ki, θ) > 0, ∀ki ∈ φ(ξ∗sj ), ∀j = 1, . . . , Ns (2a)

∃ki ∈ φ(ξ¬sk), g(ki, θ) ≤ 0, ∀k = 1, . . . , N¬s (2b)

Constraint (2a) enforces that each safe constraint state lies outside A(θ) and constraint (2b)
enforces that at least one constraint state on each unsafe trajectory lies inside A(θ). De-
note F as the feasible set of Problem 2. Further denote G¬s and Gs as the set of con-
straint states which are learned guaranteed unsafe and safe, respectively; that is, a con-
straint state k ∈ G¬s or k ∈ Gs if k is classified unsafe or safe for all θ ∈ F :

G¬s .
=
⋂
θ∈F
{k | g(k, θ) ≤ 0} (3) Gs .

=
⋂
θ∈F
{k | g(k, θ) > 0} (4)

In Problem 2, it is possible to learn that a constraint state is guaranteed safe/unsafe even if it does not
lie directly on a demonstration/unsafe trajectory. This is due to the parameterization: for the given
set of safe and unsafe trajectories, there may be no feasible θ ∈ F where k is classified unsafe/safe.
It is precisely this extrapolation which will enable us to learn constraints in high-dimensional spaces.
We now identify classes of parameterizations for which Problem 2 can be efficiently solved:

Problem 3 (Polytopic constraint recovery problem).

find θ, {bis}Ns
i=1, {b

i
¬s}N¬si=1

s.t. H(θ)ki > h(θ)−M(1− bis), bisj ∈ {0, 1}
Nh ,

Nh∑
i=1

bisj ≥ 1,∀ki ∈ φ(ξ∗sj ), i = 1, ..., Tj , j = 1, ..., Ns (5a)

H(θ)ki ≤ h(θ) +M(1− bi¬sk )1Nh , bi¬sk ∈ {0, 1},
Tk∑
i=1

bi¬sk ≥ 1, ∀ki ∈ φ(ξ¬sk ), ∀k = 1, ..., N¬s (5b)

Linear case: g(k, θ) is defined by
a Boolean conjunction of linear in-
equalities, i.e. A(θ) can be defined
as the union and intersection of
half-spaces. For this case, mixed-
integer programming can be em-
ployed. If g(k, θ) ≤ 0 is a sin-
gle polytope, i.e. g(k, θ) ≤ 0 ⇔
H(θ)k ≤ h(θ), where H(θ) and
h(θ) are affine in θ, we can solve
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Problem 3, a mixed integer feasibility problem, to find a feasible θ. In Problem 3, M is a large
positive number and 1Nh

is a vector of ones of length Nh, where Nh is the number of rows in H(θ).
Constraints (5a) and (5b) use the big-M formulation [26] to enforce that each safe constraint state
lies outside A(θ) and that at least one constraint state on each unsafe trajectory lies inside A(θ).
Similar problems can be solved when the safe/unsafe set can be described by unions of polytopes.
As an alternative to integer programming, satisfiability modulo theories (SMT) solvers [27] can also
be used to solve Problem 2 if g(k, θ) is defined by a Boolean conjunction of linear inequalities.
Convex case: g(k, θ) is defined by a Boolean conjunction of convex inequalities, i.e. A(θ) can be
described as the union and intersection of convex sets. For this case, satisfiability modulo convex
optimization (SMC) [28] can be employed to find a feasible θ.
We close this subsection with some remarks on implementation and extensions to Problems 2 and 3.
• For suboptimal demonstrations / imperfect lower-cost trajectory sampling, Problem 3 can become

infeasible. To address this, slack variables can be introduced: replace constraint
∑Tk

i=1 b
i
¬sk ≥

1 with
∑Tk

i=1 b
i
¬sk ≥ vk, vk ∈ {0, 1} and change the feasibility problem to minimization of∑N¬s

k=1(1− vk); this finds a θ that is consistent with as many unsafe trajectories as possible.
• In addition to recovering sets of guaranteed learned unsafe and safe constraint states, a probability

distribution over possibly unsafe constraint states can be estimated by sampling unsafe sets A(θ)
from the feasible set of Problem 2 using hit-and-run sampling, starting from a feasible θ.

4.3 Extracting guaranteed safe and unsafe states
One can check if a constraint state k ∈ Gs or k ∈ G¬s by adding a constraint g(k, θ) ≤ 0 or g(k, θ) >
0 to Problem 2 and checking feasibility of the resulting program; if the program is infeasible, k ∈ Gs
or k ∈ G¬s. In other words, solving this modified integer program can be seen as querying an oracle
about the safety of a constraint state k. The oracle can then return that k is guaranteed safe (program
infeasible after forcing k to be unsafe), guaranteed unsafe (program infeasible after forcing k to be
safe), or unsure (program remains feasible despite forcing k to be safe or unsafe).

Unlike the gridded formulation in [5], Problem 2 works in the continuous constraint space. Thus, it
is not possible to exhaustively check if each k ∈ G¬s or k ∈ Gs. To address this, the neighborhood of
some constraint state kquery can be checked for membership in G¬s by solving the following problem:
Problem 4 (Volume extraction).

min
θ,ε

ε

s.t. g(ki, θ) > 0, ∀ki ∈ φ(ξ∗sj ), ∀j = 1, . . . , Ns
∃ki ∈ φ(ξ¬sk), g(ki, θ) ≤ 0, ∀k = 1, . . . , N¬s
∃knear ∈ {knear | ‖knear − kquery‖∞ ≤ ε}, g(knear, θ) > 0

In words, Problem 4 finds the smallest ε-hypercube centered at kquery containing a k /∈ G¬s; thus,
any hypercube of size ε̂ < ε is contained within G¬s: {k | ‖k−kquery‖∞ ≤ ε̂} ⊆ G¬s. We can write
a similar problem to check the neighborhood of kquery for membership in Gs. For some common pa-
rameterizations (axis-aligned hyper-rectangles, convex sets), there are even more efficient methods
for recovering subsets of Gs and G¬s, which are described in Appendix B. Volumes of safe/unsafe
space can thus be produced by repeatedly solving Problem 4 for different kquery, and these volumes
can be passed to a planner to generate new trajectories that are guaranteed safe.

4.4 Unknown parameterizations

For many realistic applications, we do not have access to a known parameterization which can rep-
resent the unsafe set. Despite this, complex unsafe/safe sets can often be approximated as the union
of many simple unsafe/safe sets. Along this line of thought, we present a method for incrementally
growing a parameterization based on the complexity of the demonstrations and unsafe trajectories.

Suppose that the true parameterization g(k, θ) of the unsafe set A(θ) = {k | g(k, θ) ≤ 0} is
unknown but can be exactly or approximately expressed as the union of N∗ simple sets A(θ) u⋃N∗
i=1{k | gs(k, θi) ≤ 0} .= ⋃N∗i=1A(θi), where each simple setA(θi) has a known parameterization

gs(·, ·) and N∗, the minimum number of simple sets needed to reconstruct A, is unknown.

A lower bound on N∗, N , can be estimated by incrementally adding simple sets until Problem 2
becomes feasible. However, for N < N∗, the extracted Gs and G¬s are not guaranteed to be conser-
vative estimates of S and A (Theorem 3), and Gs and G¬s are only guaranteed to be conservative if
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N̂ ≥ N∗, where N̂ is the chosen number of simple sets (see Theorem 2). Unfortunately, inferring
a guaranteed overestimation of N∗ only from data is not possible, as there can always be subsets of
the constraint which are not activated by the given demonstrations. Two facts mitigate this:
• If an upper bound on the number of simple sets needed to describe A(θ), N̄loose ≥ N∗, is known

(where this bound can be trivially loose), Gs ⊆ S and G¬s ⊆ A by using N̄loose simple sets in
solving Problem 2. Hence, by using N̄loose, Gs and G¬s can be made guaranteed conservative (see
Theorem 2), at the cost of the resulting Gs and G¬s being potentially small.

• As the demonstrations begin to cover the space, N → N∗. Hence, by using N simple sets, Gs
and G¬s are asymptotically conservative.

In our experiments, we choose our simple sets as axis-aligned hyper-rectangles in C, which is moti-
vated by: 1) any open set in C can be approximated as a countable/finite union of open axis-aligned
hyper-rectangles [29]; 2) unions of hyper-rectangles are easily representable in Problem 3.

5 Theoretical Analysis

In this section, we present theoretical analysis on our parametric constraint learning algorithm. In
particular, we analyze the conditions under which our algorithm is guaranteed to learn a conservative
estimate of the safe and unsafe sets. For space, the proofs and additional results on conservativeness
(Section C.2) and the learnability of a constraint (Section C.1) are presented in the appendix. We
develop the theory for C = X for legibility, but the results can be easily extended to general C.
Theorem 1 (Conservativeness: Known parameterization). Suppose the parameterization g(x, θ) is
known exactly. Then, for a discrete-time system, extracting G¬s and Gs (as defined in (3) and (4),
respectively) from the feasible set of Problem 2 returns G¬s ⊆ A and Gs ⊆ S. Further, if the known
parameterization is H(θ)xi ≤ h(θ) and M in Problem 3 is chosen to be greater than

max
(

max
xi∈ξs

max
θ

max
j

(H(θ)xi − h(θ))j , max
xi∈ξ¬s

max
θ

max
j

(H(θ)xi − h(θ))j

)
,

then extracting G¬s and Gs from the feasible set of Problem 3 recovers G¬s ⊆ A and Gs ⊆ S.

We also present conservativeness results for continuous-time dynamics in Corollary C.2.

Now, let’s consider the case where the true parameterization is not known and we use the incremental
method described in Section 4.4, where gs(x, θ) is the simple parameterization. We consider the
over-parameterized case (Theorem 2) and the under-parameterized case (Theorem 3). We analyze
the case where the true, under-, and over-parameterization are defined respectively as:

g(x, θ) ≤ 0⇔
N∗∨
i=1

(
gs(x, θi) ≤ 0

)
(6) g(x, θ) ≤ 0⇔

N∨
i=1

(
gs(x, θi) ≤ 0

)
, N < N∗ (7)

g(x, θ) ≤ 0⇔
N̄∨
i=1

(
gs(x, θi) ≤ 0

)
, N̄ > N∗. (8)

Theorem 2 (Conservativeness: Over-parameterization). Suppose the true parameterization and
over-parameterization are defined as in (6) and (8). Then, G¬s ⊆ A and Gs ⊆ S.
Theorem 3 (Conservativeness: Under-parameterization). Suppose the true parameterization and
under-parameterization are defined as in (6) and (7). Furthermore, assume that we incrementally
grow the parameterization as described in Section 4.4. Then, the following are true:
1. G¬s and Gs are not guaranteed to be contained in A (unsafe set) and S (safe set), respectively.
2. Each recovered simple unsafe setA(θi), i = 1, . . . , N , for any θ1, . . . , θN ∈ F , touches the true

unsafe set (there are no spurious simple unsafe sets): for i = 1, . . . , N , for θ1, . . . , θN ∈ F ,
A(θi) ∩ A 6= ∅ (N is as defined in Section 4.4).

6 Results

We evaluate our method, showing that our method can be applied to constraints with unknown
parameterizations (Section 6.1), high-dimensional constraints defined for high-dimensional systems
(Section 6.2), and settings where the dynamics are not known in closed form (Section 6.3). We also
compare our performance with a neural network (NN) baseline1. We further compare with the grid-
based method [5] on the 2D examples. For space, experimental details are provided in Appendix E.
1In all experiments, 1) the NN is trained with the safe/unsafe trajectories and predicts at test time if a queried
constraint state is safe/unsafe; 2) error bars are generated by initializing the NN with 10 different random seeds
and evaluating accuracy after training. The architectures/training details are presented in Appendix E.
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Figure 2: Unknown parameterization. Col. 1: Red: G¬s; Green: Gs. Demonstrations are overlaid. Col. 2:
Coverage ofA and S with [5]. In this (and all later examples), the demonstrations are color-coded with x-axis.
Col. 3: Coverage of A and S with our method. Col. 4: Classification accuracy (dotted: average NN accuracy,
shaded: range of NN accuracies over 10 random seeds). Col. 5: Recovered constraint with multi-polytope
variant of Problem 3.

6.1 Unknown parameterization
U-shape: We first present a kinematic 2D example where a U-shape A is to be learned, but the
number of simple unsafe sets needed to representA (three) is unknown. In Row 1, Column 1 of Fig.
2, we outline A in black and overlay G¬s, Gs, and the six provided demonstrations, synthetically
generated via trajectory optimization. We note that due to the chosen control constraints and U-
shape, there are parts of A (a subset of the white region in Fig. 2, Row 1, Column 1) which cannot
be implied unsafe by sampled unsafe trajectories and the parameterization (see Theorem C.1). As
a result, G¬s may not fully cover A, even with more demonstrations (Fig. 2, Row 1, Column 3).
Note that the decrease in coverage2 at the third demonstration is due to a increase from a two-box
parameterization to a three-box parameterization. Likewise, the accuracy3 decreases at the second
demonstration due to over-approximation of A with two boxes (Fig. 2, Row 1, Column 4), but
this over-approximation vanishes when switching to the three-box parameterization (which is exact;
hence Gs and G¬s are guaranteed conservative, c.f. Theorem 1). The grid-based method in [5] always
has perfect accuracy, since it does not extrapolate beyond the observed trajectories. However, as a
result of that, it also yields low coverage (Fig. 2, Row 1, Column 2). The NN baseline achieves lower
accuracy for the unsafe set as it misclassifies some corners of the U. Recovering a feasible θ using a
multi-box variant of Problem 3 recovers A exactly (Fig. 2, Row 1, Column 5). Finally, we note that
in this (and future) examples, demonstrations were specifically chosen to be informative about the
constraint. We present a version of this example in Appendix D with random demonstrations and
show that the constraint is still learned (albeit needing more demonstrations).
Infinite boxes: To show that our method can still learn a constraint that cannot be easily expressed
using a chosen parameterization, we limit our parameterization to an unknown number of axis-
aligned boxes and attempt to learn a diagonal “I” unsafe set (see Fig. 2, Row 2). This is a particularly
difficult example, since an infinite number of axis-aligned boxes will be needed to recoverA exactly.
However, for finite data, only a finite number of boxes will be needed; in particular, for 1, 2, 3, and
4 demonstrations (which are synthetically generated assuming kinematic system constraints), 3, 5,
6, and 6 boxes are required to generate a parameterization consistent with the data (see Fig. 2, Row
2, Column 1). Also overlaid in Fig. 2, Row 2, Column 1 are G¬s and Gs, which are approximated
by solving Problem 4 for randomly sampled kcenter. Compared to the gridded formulation in [5]
(see Fig. 2, Row 2, Column 3), Gs and G¬s cover S and A far better due to the parameterization
enabling the IP to extrapolate more from the demonstrations. Furthermore, we note that while
the gridded case has perfect accuracy for the safe set, it does not for the unsafe set, due to grid
alignment [5]. Overall, the multi-box variant of Problem 3 recovers A well (Fig. 2, Row 2, Column
5), and the remaining gap can be improved with more data. Last, we note that the NN baseline

2Coverage is measured as the intersection over union (IoU) of the relevant sets (see legends for exact formula).
3In all experiments, computed accuracies are: IP (safe) = Vol(Gs ∩ S)/Vol(Gs), IP (unsafe) =
Vol(G¬s ∩ A)/Vol(G¬s), NN (safe) = (

∑q
i=1 I(xi∈S)∧(NN classified xi as safe))/

∑q
i=1 Ixi∈S , NN (unsafe) =

(
∑q
i=1 I(xi∈A)∧(NN classified xi as unsafe)/

∑q
i=1 Ixi∈A, where x1, . . . , xq are query states sampled from G¬s∪Gs

and I(·) is the indicator function. Note that NN accuracy is computed only on (Gs ∪ G¬s) ⊆ C.
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Figure 3: Rows 1:2: 7-DOF arm, optimal demonstrations Col. 1: Experimental setup. Gray boxes are
projections of A. Projections of demonstrations in position/angle space are overlaid. Col. 2: Top: Comparing
safe/unsafe set coverage as a function of demonstrations. Bottom: Prediction accuracy. Cols. 3-4: projections
of Ĝ¬s using all demonstrations. For the optimal case, the red boxes over-approximate the blue boxes, as the
complement of Ĝ¬s (not Ĝ¬s itself) is plotted. Col. 5: projections of Gs using all demonstrations. Rows 3:4:
Same for 7-DOF arm, suboptimal demonstrations.

reaches comparable accuracies here (Fig. 2, Row 2, Column 4), since our method suffers from a
few disadvantages for this particular example. First, attempting to represent the “I” with a finite
number of boxes introduces a modeling bias that the NN does not have. Second, since the system is
kinematic and the constraint is low-dimensional, many unsafe trajectories can be sampled, providing
good coverage of the unsafe set. We show later that for higher dimensional constraints/systems with
highly constrained dynamics, it becomes difficult to gather enough data for the NN to perform well.

6.2 High-dimensional examples

6D pose constraint for a 7-DOF robot arm: In this example, we learn a 6D hyper-rectangular
pose constraint for the end effector of a 7-DOF Kuka iiwa arm. One such setting is when the robot
is to bring a cup to a human while ensuring its contents do not spill (angle constraint) and proxemics
constraints (i.e. the end effector never gets too close to the human) are satisfied (position constraint).
We examine this problem for the cases of optimal and suboptimal demonstrations.
Demonstration setup: The end effector orientation (parametrized in Euler angles) and position are
constrained to satisfy (α, β, γ) ∈ [α, ᾱ] × [β, β̄] × [γ, γ̄] and (x, y, z) ∈ [x, x̄] × [y, ȳ] × [z, z̄]
(see Fig. 3, Column 1). For the optimal case, we synthetically generate seven demonstrations
minimizing joint-space trajectory length. For the suboptimal case, five suboptimal continuous-time
demonstrations approximately optimizing joint-space trajectory length are recorded in a virtual real-
ity environment, where a human demonstrator moves the arm from desired start to goal end effector
configurations using an HTC Vive (see Fig. E.1). The demonstrations are time-discretized for
lower-cost trajectory sampling [5]. In both cases, the constraint is recovered with Problem 3, where
H(θ) = [I,−I]> and h(θ) = θ = [x̄, ȳ, z̄, ᾱ, β̄, γ̄, x, y, z, α, β, γ]>. For the suboptimal case, slack
variables are added to ensure feasibility of Problem 3, and for a suboptimal demonstration of cost ĉ,
we only use trajectories of cost less than 0.9ĉ as unsafe trajectories.
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Figure 5: Constraint recovery for a 12D quadrotor. Col. 1: Coverage of A and S. Col. 2: Classification error
between Gs/S and G¬s/A. Cols. 3-4: Ĝ¬s using all demonstrations. Col. 5: Gs using all demonstrations.

Results: The coverage plots (Fig. 3, Rows 1 and 3, Col. 2) show that as the number of demon-
strations increases, Gs/G¬s approach the true safe/unsafe sets S/A 4. For the suboptimal case, the
low IoU values for lower numbers of demonstrations is due to overapproximation of the unsafe set
in the α component (arising from continuous-time discretization and imperfect knowledge of the
suboptimality bound); the fifth demonstration, where α takes values near −π, π greatly reduces this
overapproximation. The accuracy plots (Fig. 3, Rows 2 and 4, Col. 2) present results consistent
with the theory: for the optimal case, all constraint states in Gs and G¬s are truly safe and un-
safe (Theorem 1), and the small over-approximation for the suboptimal case is consistent with the
continuous-time conservativeness (Theorem C.2). Note that the NN accuracy is lower and can os-
cillate with demonstrations, since it finds just a single constraint which is approximately consistent
with the data, while our method classifies safety by consulting all possible constraints which are
exactly consistent with the data, thus performing more consistently. The NN performs better on the
suboptimal case than it does on the optimal case, as more unsafe trajectories are sampled due to the
suboptimality, improving coverage of the unsafe set. The projections of Ĝc¬s (Fig. 3, Cols. 3-4, in
red), where Ĝ¬s ⊆ G¬s is obtained using the method in Appendix B, are compared to the safe set
(blue outline), showing that the two match nearly exactly (though the gap for the suboptimal case is
larger), and the gap can be likely reduced with more demonstrations. The projections of Gs (Fig. 3,
Col. 5) match exactly withA for the optimal case (true safe set is outlined in blue) and match closely
for the suboptimal case. Note that Gs ⊆ S, as is the case for all axis-aligned box parameterizations.

5-0.01

-0.005

0

0.005

0.01

5
10-3

0
10-3

0 -5 -5

Figure 4: Left: Known unsafe set in (x, y, z)
(red); (x, y, z) components of demonstrations are over-
laid. Right: Unknown unsafe set in (α̇, β̇, γ̇) (gray);
(α̇, β̇, γ̇) components of demonstrations are overlaid.

3D constraint for 12D quadrotor model: We
learn a 3D box angular velocity constraint for
a quadrotor with discrete-time 12D dynamics
(see Appendix E for details). In this scenario,
the quadrotor must avoid an a priori known un-
safe set in position space while also ensuring
that angular velocities are below a threshold:
(α̇, β̇, γ̇) ∈ [α̇, ¯̇α]×[β̇,

¯̇
β]×[γ̇, ¯̇γ]. The (α̇, β̇, γ̇)

safe set is to be inferred from two demonstra-
tions (see Fig. 4). The constraint is recovered
with Problem 3, where H(θ) = [I,−I]> and
h(θ) = θ = [¯̇α,

¯̇
β, ¯̇γ, α̇, β̇, γ̇]>. Fig. 5 shows that with more demonstrations, Gs approaches the

true safe set S and G¬s approaches the true unsafe set A, respectively. Consistent with Theorem 1,
our method has perfect accuracy in G¬s and Gs. Here, the NN struggles more compared to the arm
examples since due to the more constrained dynamics, fewer unsafe trajectories can be sampled, and
a parameterization needs to be leveraged in order to say more about the unsafe set. The remaining
columns of Fig. 5 show that we recover G¬s and Gs exactly (the true safe set is outlined in blue).

6.3 Planar pushing example

In this section, using the FetchPush-v1 environment in OpenAI Gym [30], we aim to learn a
2D box unsafe set on the center-of-mass (CoM) of a block pushed by the Fetch arm (see Fig. 6)
using two demonstrations. Here, the dynamics of the block CoM are not known in closed form,
but rollouts can still be sampled using the simulator. Since the block CoM is highly underactuated,
it is not possible to sample short sub-trajectories. Thus, without leveraging a parameterization, the
constraint recovery problem is very ill-posed. Furthermore, while our method can explicitly consider

4For the unsafe sets, the IoUs are computed between Gc¬s andAc, as in high dimensions, the IoU changes more
smoothly for the complements than the IoU between G¬s and A, so we plot the the former for visual clarity.
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Figure 6: Constraint recovery without closed-form dynamics. Cols. 1-2: Setup (unsafe set in red) and demon-
strations (unsafe set in gray). Cols. 3-4: Coverage of A and S; classification accuracy. Col. 5: G¬s / Gs using
all demonstrations.

the unsafeness in longer unsafe trajectories (at least one state is unsafe), the NN struggles with this
example as it fails to accurately model that fact. Overall, Fig. 6 presents that G¬s/Gs match up well
with A/S, and our classification accuracy for safeness/unsafeness is perfect across demonstrations.

7 Discussion and Conclusion

In this paper, we present a method capable of learning parametric constraints in high-dimensional
spaces with and without known parameterizations. We also present a method for extracting volumes
of guaranteed safe and guaranteed unsafe states, information which can be directly used in a planner
to enforce safety constraints. We analyze our algorithm, showing that these recovered guaranteed
safe/unsafe states are truly safe/unsafe under mild assumptions. We evaluate the method by learning
a variety of constraints defined in high-dimensional spaces for systems with high-dimensional dy-
namics. One shortcoming of our work is scalability with the amount of data, due to the number of
integer variables growing linearly with the number of safe/unsafe trajectories. As a result, learning
constraints without extensive sampling of unsafe trajectories is a direction of future work.
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[32] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Math. Program., 106(1):25–57, 2006. doi:
10.1007/s10107-004-0559-y.

[33] F. Sabatino. Quadrotor control: modeling, nonlinear control design, and simulation, 2015.

11

http://arxiv.org/abs/1812.11600
http://dx.doi.org/10.1109/CDC.2016.7799299
http://dx.doi.org/10.1109/CDC.2016.7799299
http://dx.doi.org/10.1007/978-3-319-29363-9_17
http://dx.doi.org/10.1109/IROS.2008.4650593
http://dx.doi.org/10.1145/1228716.1228751
http://dx.doi.org/10.1145/1228716.1228751
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1802.09464
https://hal.archives-ouvertes.fr/hal-00985000
https://hal.archives-ouvertes.fr/hal-00985000
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y


A Detailed algorithm block

Algorithm 1: Overall method
Output: θ (a feasible unsafe/safe set describing the safe/unsafe trajectories),

Gs (the set of guaranteed safe constraint states),
G¬s (the set of guaranteed unsafe constraint states)

Input : ξs = {ξ∗1 , . . . , ξ∗Ns
}, cΠ(·), known constraints, {kqquery}Qq=1

1 ξ¬s ← {};
/* Sample unsafe trajectories ξ¬s */

2 for i = 1:Ns do
3 ξ¬s ← ξ¬s ∪ HitAndRun(ξ∗i );
4 end
/* Constraint recovery */

5 θ ← Problem Y(ξs, ξ¬s);
/* Y = 2 if general parameterization */
/* Y = 3 if polytope parameterization */

6 Gs,G¬s ← {}, {};
/* Guaranteed safe/unsafe recovery */

7 if general parameterization then
8 for q = 1, . . . , Q do

/* Extract safe/unsafe volume around query point kqquery */

9 Gs(kqquery),G¬s(kqquery)← Problem 4(kqquery);
10 Gs ← Gs ∪ Gs(kqquery);
11 G¬s ← G¬s ∪ G¬s(kqquery);
12 end
13 else if axis-aligned hyper-rectangle parameterization then
14 Gs, Ĝ¬s ← Procedure in Appendix B.1;
15 else if convex parameterization then
16 Gs, Ĝ¬s ← Procedure in Appendix B.2;

B Extraction of Gs and G¬s
In this section, we discuss specific ways of extracting sets of guaranteed safe/unsafe states for axis-
aligned hyper-rectangles (this method is used for all numerical examples in Section 6.2 and Section
6.3) and for convex parameterizations.

B.1 Axis-aligned hyper-rectangle parameterization

In this parameterization, C ⊆ Rn, θ = [k1, k̄1, . . . , kn, k̄n], and g(k, θ) ≤ 0 ⇔ H(θ)k ≤ h(θ),
where H(θ)k = [In×n,−In×n]> and h(θ) = [k̄1, . . . , k̄n, k1, . . . , kn]>. Here, ki and k̄i are the
lower and upper bounds of the hyper-rectangle for coordinate i.

As the set of axis-aligned hyper-rectangles is closed under intersection, G¬s is also an axis-aligned
hyper-rectangle, the axis-aligned bounding box of any two constraint states k1, k2 ∈ G¬s is also
contained in G¬s. This also implies that G¬s can be fully described by finding the top and bottom
corners [k1, . . . , kn]> and [k̄1, . . . , k̄n]>. Suppose we start with a known k ∈ G¬s. Then, finding
[k1, . . . , kn]> amounts to performing a binary search for each of the n dimensions, and the same
holds for finding [k̄1, . . . , k̄n]>.

Recovering Gs is not as straightforward, as the complement of axis-aligned boxes is not closed
under intersection. While we can still solve Problem 4 to recover Gs, an inner approximation of
Gs can be more efficiently obtained: starting at a constraint state k ∈ G¬s, 2n line searches can be
performed to find the two points of transition to G¬s in each constraint coordinate. Denote as Ĝs
the complement of the axis-aligned bounding box of these 2n points; Ĝs is an inner approximation
of Gs, as Gs = (

⋂
θ∈F{x | g(x, θ) ≤ 0})c ⊇ AABB(

⋂
θ∈F{x | g(x, θ) ≤ 0})c, where AABB(·)
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Figure B.1: Comparison of the true Gs (left, in green) and the extracted inner approximation Ĝs
(right, in green).

denotes the axis-aligned bounding box of a set of points. For example, consider the scenario in
Fig. B.1 where there are only two feasible parameters, θ1 and θ2. Here, Gs is (A(θ1) ∪ A(θ2))c

and Ĝs under-approximates the safe set (Gs is in general not representable as the complement of an
axis-aligned box).

B.2 Convex parameterization

In this parameterization, for fixed θ, {k | g(k, θ) ≤ 0} is convex.

While apart from solving Problem 4 it is hard to recover G¬s exactly, an inner approximation of G¬s
can be extracted more efficiently by taking the convex hull of any k1, k2, . . . ∈ G¬s, as the convex
hull is the minimal convex set containing k1, k2, . . ..

The same approaches apply for recovering Gs when it is instead the safe set which is an axis-aligned
hyper-rectangle or a convex set.

C Theoretical Analysis (Expanded)

In this section, we present theoretical analysis on our parametric constraint learning algorithm. In
particular, we analyze the limits of what constraint states can be learned guaranteed unsafe/safe
(Section C.1) as well as the conditions under which our algorithm is guaranteed to learn a conserva-
tive estimate of the safe and unsafe sets (Section C.2). For ease of reading, we repeat the theorem
statements from the main body (the corresponding theorem numbers from the main body are listed
in the theorem statement). We develop the theory for C = X for legibility, but the results can be
easily extended to general C.

C.1 Learnability

In this section, we develop results for learnability of the unsafe set in the parametric case. We begin
with the following notation:

Definition C.1 (Signed distance). Signed distance from point p ∈ Rm to set S ⊆ Rm, sd(p,S) =
− infy∈∂S ‖p− y‖ if p ∈ S; infy∈∂S ‖p− y‖ if p ∈ Sc.
Definition C.2 (∆x-shell). For a discrete time system satisfying ‖xt+1−xt‖ ≤ ∆x for all t, denote
the ∆x shell of the unsafe set as: A∆x

.
= {x ∈ A | −∆x ≤ sd(x,A) ≤ 0}.

Definition C.3 (Implied unsafe set). For some set B ⊆ Θ, denote I(B)
.
=
⋂
θ∈B{x | g(x, θ) ≤ 0}

as the set of states that are implied unsafe by restricting the parameter set to B. In words, I(B) is
the set of states for which all θ ∈ B mark as unsafe.
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Definition C.4 (Feasible set F). Denote as F the feasible set of Problem 2 with Ns demonstrations
and N¬s unsafe trajectories sampled using the hit-and-run method presented in Section 4.1:

F = {θ | ∀i ∈ {1, . . . , Ns},∀x ∈ ξ∗i , g(x, θ) > 0,

∀j ∈ {1, . . . , N¬s},∃x ∈ ξj , g(x, θ) ≤ 0}.
Definition C.5 (Learnability and learnable set G∗¬s). A state x ∈ A is learnable if there exists any set
of Ns demonstrations and N¬s unsafe trajectories sampled using the hit-and-run method presented
in Section 4.1, where Ns and N¬s may be infinite, such that x ∈ I(F). Accordingly, we define the
learnable set of unsafe states G∗¬s as the union of all learnable states. Note that by this definition, a
state xs ∈ S is always learnable, since there always exists some safe demonstration passing through
xs.

Lemma C.1. Suppose B ⊆ B̂, for some other set B̂. Then, I(B̂) ⊆ I(B).

Proof. By definition,

I(B̂) =
⋂
θ∈B̂

{x | g(x, θ) ≤ 0}

=
⋂

θ∈
(
B∪(B̂\B)

){x | g(x, θ) ≤ 0}

⊆
⋂
θ∈B
{x | g(x, θ) ≤ 0}

= I(B).

Lemma C.2. Each unsafe trajectory ξj with start and goal states in the safe set contains at least
one state in the ∆x-shell A∆x: ∀j ∈ {1, . . . , N¬s},∃x ∈ ξj , x ∈ A∆x.

Proof. For each unsafe trajectory ξj with start and goal states in the safe set, there exists x ∈
ξj , x ∈ A. Further, if there exists x ∈ ξj ∈ (A \ A∆x), then there also exists x ∈ ξj ∈ A∆x.
For contradiction, suppose there exists a time t̂ ∈ {1, . . . , Tj} for which ξj(t̂) ∈ (A \ A∆x) and
@t ∈ {1, . . . , Tj} for which ξj(t) ∈ A∆x. But this implies ∃t < t̂, ‖ξ(t) − ξ(t + 1)‖ > ∆x or
∃t > t̂, ‖ξ(t)− ξ(t−1)‖ > ∆x, i.e. to skip deeper than ∆x into the unsafe set without first entering
the ∆x shell, the state must have changed by more than ∆x in a single time-step. Contradiction. An
analogous argument holds for the continuous-time case.

The following result states that in discrete time, the learnable set of unsafe states G∗¬s is contained by
the set of states which must be implied unsafe by settingA∆x as unsafe. Furthermore, in continuous
time, the same holds, except the A∆x is replaced by the boundary of the unsafe set, ∂A.
Theorem C.1 (Discrete time learnability for parametric constraints). For trajectories generated by
discrete time systems, G¬s ⊆ G∗¬s ⊆ I(F∆x), where

F∆x = {θ | ∀i ∈ {1, . . . , Ns}, ∀x ∈ ξ∗i , g(x, θ) > 0, ∀x ∈ A∆x, g(x, θ) ≤ 0}.

Proof. Recall that G¬s .
=
⋂
θ∈F{x | g(x, θ) ≤ 0}, where as previously defined, F is the feasible set

of Problem 2. We can then show that F∆x ⊆ F , since enforcing that g(x, θ) ≤ 0 for all x ∈ A∆x

implies that there exists x ∈ ξj , for all j ∈ {1, . . . , N¬s} such that g(x, θ) ≤ 0, via Lemma C.2.
Then, via Lemma C.1, G¬s = I(F) ⊆ I(F∆x). As this holds for any arbitrary set of trajectories,
G∗¬s ⊆ I(F∆x) as well, and G¬s ⊆ G∗¬s.
Corollary C.1 (Continuous-time learnability for parametric constraints). For trajectories generated
by continuous time systems, G¬s ⊆ G∗¬s ⊆ I(F∂A), where

F∂A = {θ | ∀x ∈ ξ∗i , ∀i ∈ {1, . . . , Ns}, g(x, θ) > 0, ∀x ∈ ∂A, g(x, θ) ≤ 0}.

Proof. Since going from discrete time to continuous time implies ∆x→ 0, A∆x → ∂A. Then, the
logic from the proof of Theorem C.1 can be similarly applied to show the result.
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C.2 Conservativeness: Parametric

We write conditions for conservative recovery of the unsafe set and safe set when solving Problems
2 and 3 for discrete time and continuous time systems.
Theorem C.2 (Conservativeness: Known parameterization (Theorem 1 in the main body) ). Sup-
pose the parameterization g(x, θ) is known exactly. Then, for a discrete-time system, extracting G¬s
and Gs (as defined in (3) and (4), respectively) from the feasible set of Problem 2 returns G¬s ⊆ A
and Gs ⊆ S . Further, if the known parameterization is H(θ)xi ≤ h(θ) and M in Problem 3 is
chosen to be greater than

max
(

max
xi∈ξs

max
θ

max
j

(H(θ)xi − h(θ))j , max
xi∈ξ¬s

max
θ

max
j

(H(θ)xi − h(θ))j

)
,

then extracting G¬s and Gs from the feasible set of Problem 3 recovers G¬s ⊆ A and Gs ⊆ S.

Proof. We first prove that G¬s ⊆ A. Consider first the case of Problem 2, or equivalently the case
of Problem 3 where M =∞ (in this case, Problem 3 exactly enforces that at least one state in each
unsafe trajectory is unsafe and all states on demonstrations are safe).

Suppose for contradiction that there exists some x ∈ G¬s, x /∈ A. By definition of G¬s, g(x, θ) ≤ 0,
for all θ ∈ F , where F is the feasible set of parameters θ in Problem 2. However, as x /∈ A, but for
all θ ∈ F , g(x, θ) ≤ 0 we know that θA /∈ F , where θA is the parameter associated with the true
unsafe set A. However, F will always contain θA, since:

• θA satisfies g(x, θA) > 0 for all x in safe demonstrations, since all demonstrations are safe with
respect to the true θA.

• For each trajectory ξ¬s sampled using the hit-and-run procedure in Section 4.1, there exists x ∈
ξ¬s such that g(x, θA) ≤ 0.

We come to a contradiction, and hence for Problem 2 and for Problem 3 where M =∞, G¬s ⊆ A.

Now, we consider the conditions onM such that choosingM ≥ const orM =∞ causes no changes
in the solution of Problem 3. M must be chosen such that 1) H(θ)xi − h(θ) > −M1⇔ H(θ)xi −
h(θ) > −∞1, for all safe states xi ∈ ξs, and 2)H(θ)xi−h(θ) ≤M1⇔ H(θ)xi−h(θ) ≤ ∞1 for
all states xi on unsafe trajectories ξ¬s. Condition 1 is met if−M < minxi∈ξs minθ minj(H(θ)xi−
h(θ))j , where vj denotes the j-th element of vector v; denote as M1 an M which satisfies this
inequality. Condition 2 is met if M ≥ maxxi∈ξ¬s maxθ maxj(H(θ)xi − h(θ))j ; denote as M2 an
M which satisfies this inequality. Then, M should be chosen to satisfy M > max(M1,M2).

The proof that Gs ⊆ S is analogous. If there exists x ∈ Gs, x /∈ S , g(x, θ) > 0, for all θ ∈ F ,
then θA /∈ F . We follow the same reasoning from before to show that θA ∈ F for M = ∞. Now,
provided the condition on M holds, we reach a contradiction.

Remark. A simple corollary from Theorem C.2 is that by solving Problem 4 repeatedly for different
query centers xquery for a discrete-time system and unioning over the resulting volumes will also
provide conservative estimates of Gs and G¬s. Further, if the assumption on M holds, then the
volume extraction analogue of Problem 3 will also return conservative estimates of Gs and G¬s.
As discussed in [5], with continuous-time system dynamics, assigning unsafeness in lower-cost tra-
jectories difficult since there are an infinite number of states on the continuous trajectory. To ame-
liorate this, as in [5], we time-discretize the sampled lower-cost trajectories and feed the resulting
discrete-time trajectories into Problems 2 and 3. This can potentially cause a mild overapproxima-
tion of the unsafe set, which we quantify after introducing some notation.
Definition C.6 (Normal vectors). Denote the outward-pointing normal vector at a point p ∈ ∂A as
n̂(p). Furthermore, at non-differentiable points on ∂A, n̂(p) is replaced by the set of normal vectors
for the sub-gradient of the Lipschitz function describing ∂A at that point ([31]).

Definition C.7 (γ-offset padding). Define the γ-offset padding ∂Aγ as: ∂Aγ = {x ∈ X | x =
y + dn̂(y), d ∈ [0, γ], y ∈ ∂A}.
Definition C.8 (γ-padded set). We define the γ-padded set of the unsafe set A, A(γ), as the union
of the γ-offset padding and A: A(γ)

.
= ∂Aγ ∪ A.
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Definition C.9 (Maximum distance on trajectories). Denote Dξ([a, b])
.
=

supt1∈[a,b],t2∈[t1,b] ‖ξ(t1) − ξ(t2)‖2, for some trajectory ξ. Denote D∗
.
=

maxi∈{1,...,N¬s}D
∗
ξi

([ai, bi]). In words, Dξ([a, b]) is the maximum distance between any
two points on trajectory ξ from time a to time b, and D∗ takes the maximum distance over all N¬s
trajectories.

Lemma C.3 (Maximum distance). Consider a continuous time trajectory ξ : [0, T ]→ X . Suppose
it is known that in some time interval [a, b], a ≤ b, a, b ∈ [0, T ], ξ is unsafe; denote this sub-
segment as ξ([a, b]). Consider any t ∈ [a, b]. Then, the signed distance from ξ(t) to the unsafe set,
sd(ξ(t),A), is bounded by Dξ([a, b])

.
= supt1∈[a,b],t2∈[t1,b] ‖ξ(t1)− ξ(t2)‖2.

Proof. Since there exists t̃ ∈ [a, b] such that ξ(t̃) ∈ A, supt∈[a,b] sd(ξ(t),A) =

supt∈[a,b] sd(ξ(t), ξ(t̃)) ≤ supt1∈[a,b],t2∈[t1,b] ‖ξ(t1)− ξ(t2)‖2.

Corollary C.2. For a continuous-time system where demonstrations and sampled unsafe trajecto-
ries are time-discretized, if M is chosen as in Theorem C.2, Gs ⊆ S, where S is the safe set, and
G¬s ⊆ A(D∗), where D∗ is as defined in Definition C.9.

Proof. The reasoning for Gs ⊆ S follows from the proof of G¬s ⊆ A in the proof of Theorem C.2.

Now we prove G¬s ⊆ A(D∗). Suppose in this case, there exists a state x = ξj(ti) /∈ A which
is truly safe but lies on a sampled unsafe trajectory ξj([aj , bj ]), and suppose that {t1, . . . , tN} is
chosen such that for all k ∈ {1, . . . , N} \ {i}, ξj(tk) belongs to a known safe cell. Then, we
may incorrectly learn that ξj(ti) is unsafe, as we force at least one point in the sampled trajectory
to be unsafe. Via Lemma C.3, we know that ξj(ti) is at most Dξj ([aj , bj ]) signed distance away
from A. Hence, for this trajectory, any learned guaranteed unsafe state must be contained in the
Dξj ([aj , bj ])-padded unsafe set. For this to hold for all unsafe trajectories sampled with the hit-
and-run procedure presented in Section 4.1, we must pad the unsafe set by D∗. Hence, under this
assumption, the algorithm returns a conservative estimate of the D∗-padded unsafe set.

Let’s consider the case where the true parameterization is not known and we use the method de-
scribed in Section 4.4, where gs(x, θ) is the simple parameterization. We consider the under-
parameterized case (Theorem 3) and the over-parameterized case (Theorem 2). In particular,
we analyze the case where the true parameterization, the under-parameterization, and the over-
parameterization are defined respectively as:

g(x, θ) ≤ 0⇔
N∗∨
i=1

(
gs(x, θi) ≤ 0

)
(9) g(x, θ) ≤ 0⇔

N∨
i=1

(
gs(x, θi) ≤ 0

)
, N < N∗ (10)

g(x, θ) ≤ 0⇔
N̄∨
i=1

(
gs(x, θi) ≤ 0

)
, N̄ > N∗.

(11)
Theorem C.3 (Conservativeness: Over-parameterization (Theorem 2 in the main body) ). Suppose
the true parameterization and over-parameterization are defined as in (9) and (11). Then, G¬s ⊆ A
and Gs ⊆ S.

Proof. Note that (9) is equivalent to
(∨N̄

i=1

(
gs(x, θi) ≤ 0

))
, where θN∗+1, . . . , θN̄ are constrained

to satisfy {x | gs(x, θi) ≤ 0} = ∅, i = N∗ + 1, . . . , N̄ . Thus, the true θ is equivalent to adding
additional constraints on a loosened parameterization (the over-parameterization). Let F̂ be the
feasible set of Problem 2 with θ loosened as above, i.e. F = F̂ ∩ {θ | {x | gs(x, θi) ≤ 0} =

∅, i = N∗ + 1, . . . , N̄}. Via Lemma C.1, F ⊆ F̂ ; thus, I¬s(F̂) ⊆ I¬s(F) ⊆ A, where the last
set containment follows from Theorem 1. Vice versa, Is(F̂) ⊆ Is(F) ⊆ S , where again the last set
containment follows from Theorem 1.

Theorem C.4 (Conservativeness: Under-parameterization (Theorem 3 in the main body) ). Suppose
the true parameterization and under-parameterization are defined as in (9) and (10). Furthermore,
assume that we incrementally grow the parameterization as described in Section 4.4. Then, the
following are true:
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(al, bl)

(au, bu)

AA

Figure C.1: Counterexample used in the proof of the first statement in Theorem C.4.

1. G¬s and Gs are not guaranteed to be contained in A (unsafe set) and S (safe set), respectively.

2. Each recovered simple unsafe setA(θi), i = 1, . . . , N , for any θ1, . . . , θN ∈ F , touches the true
unsafe set (there are no spurious simple unsafe sets): for i = 1, . . . , N , for θ1, . . . , θN ∈ F ,
A(θi) ∩ A 6= ∅ (N is as defined in Section 4.4).

Proof. 1. We first formally prove the statement with a counterexample and then follow up with
logic related to the proof of Theorem C.3.

Consider the example in Fig. C.1, where the parameterization is chosen as a single axis-
aligned box [I2×2,−I2×2]>x ≤ θ but A is only representable with at least two boxes. Sup-
pose demonstrations are provided which imply that (al, bl) and (au, bu) are unsafe; then
AABB({(al, bl), (au, bu)}) 6⊆ A is implied unsafe.

Note that (10) is equivalent to
(∨N∗

i=1

(
gs(x, θi) ≤ 0

))
, where θN+1, . . . , θN∗ are constrained

to satisfy {x | gs(x, θi) ≤ 0} = ∅, i = N + 1, . . . , N∗. Thus, restricting the parameterization
is equivalent to adding additional constraints on the true θ. Let F̂ be the feasible set of Problem
2 with θ restricted as above, i.e. F̂ = F ∩ {θ | {x | gs(x, θi) ≤ 0} = ∅, i = N + 1, . . . , N∗}.
Via Lemma C.1, F̂ ⊆ F ; thus, I¬s(F) ⊆ I¬s(F̂). Since I¬s(F) can equal A, potentially
G¬s = I¬s(F̂) ∩ S 6= ∅. Vice versa, Is(F) ⊆ Is(F̂), and since Is(F) can equal S, potentially
Gs = Is(F̂) ∩ S 6= ∅.

2. Assume, by contradiction, that Problem 2 outputs a simple unsafe set A(θi), i ∈ {1, . . . , N},
which does not touch the true unsafe set: ∃i ∈ {1, . . . , N},A(θi) ∩ A(θ∗) = ∅. Then, θj , j ∈
{1, . . . , N} \ {i} would be a feasible point for Problem 2 with a parametrization that contains
only N − 1 simple sets. However, we know Problem 2 with N − 1 simple sets is infeasible.
Contradiction.

D Extra numerical examples

D.1 U-shape (random demonstrations)

In this example, we show what the performance of our method looks like with random demonstra-
tions on the U-shape example. On the left of Fig. D.1, we show that our coverage grows more slowly
than for the case where demonstrations are chosen for their informativeness; furthermore, coverage
for the safe set is higher and coverage for the unsafe set is lower in the random demonstration case.
This is because by using random demonstrations, we cover a good deal of S, so Gs becomes larger;
on the other hand, many of these safe demonstrations may not come in contact with the constraint,
so there are relatively few unsafe trajectories that can be sampled, so G¬s is not as large. In the cen-
ter of Fig. D.1, we show that the accuracy of our method doesn’t change much, though the relative
performance of the NN gets worse for classifying safe states; this is because the accuracy for the
NN is now being evaluated on a larger region since Gs is larger due to more demonstrations. As in
previous examples, the NN error bars are generated by training the NN ten times with initializations
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Figure D.1: U-shape performance with random demonstrations. Left: Coverage of A and S. Center: Classi-
fication accuracy. Right: A recovered feasible A(θ), overlaid with demonstrations, and the true unsafe set A
is outlined in blue.

using different random seeds. On the right of Fig. D.1, we display a feasible A(θ) recovered by
solving a multi-box variant of Problem 3. With more demonstrations, the gap betweenA(θ) and the
true unsafe set A will continue to shrink.

The main takeaways from this experiment are: 1) when demonstrations are not informative (in the
sense that they do not interact with the constraint), it can take many demonstrations to learn the
unsafe set (this holds for any constraint recovery method), and 2) our accuracy remains just as high
as for the case with specifically chosen demonstrations and is not much affected by the coverage.

E Experimental details

For all neural network baseline results in every experiment, the network is trained with weights
initialized using ten different random seeds, and the resulting performance range (displayed as a
shaded region) and average performance over the ten random seeds are plotted in the figures.

E.1 Unknown parameterizations

We emphasize that for all examples with unknown parameterization, by following the incremental
procedure detailed in Section 4.4, we are finding the minimum number of boxes required to represent
the data; in other words, we are always operating with the minimal feasible parameterization.

U-shape and infinite boxes:

• For both experiments, the system dynamics are xt+1
.
= [χt+1, yt+1]> = [χt, yt]

> + [uχt , u
y
t ]>.

The U-shape experiment uses control constraints ‖[uχt , uyt ]‖2 ≤ 0.5, while the infinite-box exper-
iment uses control constraints ‖[uχt , uyt ]‖2 ≤ 1.

• For both experiments, the cost function is c(ξx, ξu) =
∑T−1
i=1 ‖xt+1 − xt‖22.

• Since the cost function has optimal substructure, 100000 unsafe trajectories for each sub-
trajectory are sampled. The dataset is downsampled to 50 unsafe trajectories for each sub-
trajectory, which are to be fed into the multi-box variant of Problem 3.

• For both experiments, the initial parameter set is restricted to [−5,−5,−3,−3]> ≤ θi ≤
[8, 8, 3, 3]>, for each θi (the parameter for box i). For the infinite-box experiment, each box
is restricted to be at least 1.25× 1.25 in width/height.

• Sampling time is around 15 seconds per demonstration (for the U-shape experiment) and 10 sec-
onds per demonstration (for the infinite-box experiment). Computation time for solving Problem
3 is around 40 seconds (for the U-shape experiment) and 15-20 seconds (for the infinite-box ex-
periment).

• The same data is used for training the neural network (7800 trajectories total for the U-shape case,
2000 trajectories for the infinite-box case). The neural network architecture used for this example
is a fully connected (FC) layer, 2×10→ LSTM, 10×10→ FC 10×1 (the recurrent layer is used
since we have variable length trajectories as training input). The network is trained using Adam.
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U-shape with random demonstrations:

• The system dynamics are xt+1
.
= [χt+1, yt+1]> = [χt, yt]

> + [uχt , u
y
t ]> with control constraints

‖[uχt , uyt ]‖2 ≤ 0.5.

• The cost function is c(ξx, ξu) =
∑T−1
i=1 ‖xt+1 − xt‖22.

• Demonstrations are generated for 35 pairs of start/goal states sampled uniformly at random over
(χ, y) ∈ [−2, 2]× [−2, 2], rejecting any start/goal states that lie in A.

• Since the cost function has optimal substructure, 10000 unsafe trajectories for each sub-trajectory
are sampled. The dataset is downsampled to 25 unsafe trajectories for each sub-trajectory, which
are to be fed into the multi-box variant of Problem 3.

• The initial parameter set is restricted to [−5,−5,−3,−3]> ≤ θi ≤ [8, 8, 3, 3]>, for each θi (the
parameter for box i).

• Sampling time is around 2 minutes total. Computation time for solving the multi-box variant of
Problem 3 is around 90 seconds.

• The same data is used for training the neural network (10100 trajectories total). The neural
network architecture used for this example is a fully connected (FC) layer, 2 × 10 → LSTM,
10× 10→ FC 10× 1. The network is trained using Adam.

E.2 High-dimensional examples

7-DOF arm, optimal/suboptimal demonstrations

• The system dynamics are .
= θit+1 = θit + uit, i = 1, . . . , 7, with control constraints −2 ≤ uit ≤ 2,

i = 1, . . . , 7, where the state is x = [θ1, . . . , θ7].

• The cost function is c(ξx, ξu) =
∑T−1
i=1 ‖xt+1 − xt‖22. Note that the generate demonstrations

(displayed in Fig. 3) push up against the position constraint, since the trajectory minimizing
joint-space path length without the position constraint is an arc that exceeds the bounds of the
position constraint; the position constraint ends up increasing the cost by truncating that arc.

• The true safe set is (x, y, z, α, β, γ) ∈ [−0.51, 0.51] × [−0.3, 1.1] × [−0.51, 0.51] ×
[−π, π] × [−π/120, π/120] × [−π/120, π/120] for the optimal case and the true safe set is
(x, y, z, α, β, γ) ∈ [−0.57, 0.47] × [−0.10, 1.17] × [−0.56, 0.56] × [−π, π] × [−0.12, 0.12] ×
[−0.125, 0.125] for the suboptimal case.

• Since the cost function has optimal substructure, 250000 unsafe trajectories for each sub-
trajectory are sampled. For the suboptimal case, the continuous-time demonstrations are time-
discretized down to T = 10 time-steps. The dataset is downsampled to 500 unsafe trajectories for
each sub-trajectory, which are to be fed into Problem 3.

• For the optimal case, the demonstrations are obtained by solving trajectory optimization problems
solved with the IPOPT solver [32]. For the suboptimal case, the demonstrations are recorded in a
virtual reality (VR) environment displayed in Fig. E.1.

• The initial parameter set is restricted to [−1.5,−1.5,−1.5,−π,−π,−π]> ≤ [x, y, z, α, β, γ]> ≤
[1.5, 1.5, 1.5, π, π, π]>.

• Sampling time is 12.5 minutes total for the optimal case and 9 minutes total for the subop-
timal case. Computation time for solving Problem 2 is around 2 seconds for both the opti-
mal/suboptimal case.

• The same data is used for training the neural network (70000 trajectories total for the optimal
case, 49900 trajectories total for the suboptimal case). The neural network architecture used for
this example is a fully connected (FC) layer, 3×20→ LSTM, 20×20→ FC 20×1. The network
is trained using Adam.
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Figure E.1: VR setup. Left: VR environment as viewed from the Vive headset. The green box represents the
position constraints on the end effector. The end effector is commanded to move by dragging it with the HTC
Vive controllers (right).

12D quadrotor example

• The system dynamics [33] are



χ̇
ẏ
ż
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β̇
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ÿ
z̈
α̈

β̈
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=
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ż

β̇ sin(γ)
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cos(β)

β cos(γ)− γ̇ sin(γ)

α̇+ β̇ sin(γ) tan(β) + γ̇ cos(γ) tan(β)
− 1
m [sin(γ) sin(α) + cos(γ) cos(α) sin(β)]u1

− 1
m [cos(α) sin(γ)− cos(γ) sin(α) sin(β)]u1

g − 1
m [cos(γ) cos(β)]u1
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Ix
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

, (12)

with control constraints [0,−0.02,−0.02,−0.02]> ≤ ut ≤ [mg, 0.02, 0.02, 0.02]>. For our
purposes, we convert the dynamics to discrete time by performing forward Euler integration with
discretization time δt = 0.4 seconds. The state is x = [χ, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇]>, and the
constants are g = −9.81m/s2, m = 1kg, Ix = 0.5kg ·m2, Iy = 0.1kg ·m2, and Iz = 0.3kg ·m2.

• The known unsafe set in (χ, y, z) is (χ, y, z) /∈ [−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5].

• The true safe set in (α̇, β̇, γ̇) is (α̇, β̇, γ̇) ∈ [−0.006, 0.006]3.

• The cost function is c(ξx, ξu) =
∑T−1
i=1 ‖[χi+1, yi+1, zi+1, α̇i+1, β̇i+1, γ̇i+1]> −

[χi, yi, zi, α̇i, β̇i, γ̇i]
>‖2 (penalizing acceleration and path length).

• The demonstrations are obtained by solving trajectory optimization problems solved with the
IPOPT solver [32].

• Since the cost function has optimal substructure, 10000 unsafe trajectories for each sub-trajectory
are sampled. The dataset is downsampled to 500 unsafe trajectories for each sub-trajectory, which
are to be fed into Problem 3.

• The initial parameter set is restricted to [−π/2,−π/2,−π/2]> ≤ [α̇, β̇, γ̇]> ≤ [π/2, π/2, π/2]>.
• Sampling time is 8.5 minutes total for the optimal case and 9 minutes total for the suboptimal

case. Computation time for solving Problem 2 is 12 seconds.
• The same data is used for training the neural network (30000 trajectories total). The neural

network architecture used for this example is a fully connected (FC) layer, 6 × 36 → LSTM,
36× 42→ FC 42× 1. The network is trained using Adam.

E.3 Black-box system dynamics

Pushing example

• The cost function is c(ξx, ξu) =
∑T−1
i=1 ‖xt+1 − xt‖22. The two demonstrations are manually

generated and are not exactly optimal.
• 1000 unsafe trajectories for each demonstrations are sampled.
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• The initial parameter set is restricted to [−5,−5,−3,−3]> ≤ θi ≤ [8, 8, 3, 3]>.
• Sampling time is 2 hours for each demonstration (using the simulator is slower than using the

closed form dynamics). Computation time for solving Problem 2 is around 1 second.
• Demonstrations are time-discretized to 40 simulator timesteps when input to Problem 3.
• The same data is used for training the neural network (2700 trajectories total). The neural network

architecture used for this example is a fully connected (FC) layer, 8 × 10→ FC, 10 × 10 → FC
10 × 1. No recurrent layer is used this time since all trajectories are of the same length (no
sub-trajectories were sampled this time due to speed). The network is trained using Adam.

F Summary of frequently used notation

Meaning Notation
State, state space x, X

Control, control space u, U
State/control trajectory ξx, ξu

Constraint state, constraint space k, C
Safe set, unsafe set S, A

Parameterized safe set S(θ) = {k | g(k, θ) > 0}
Parameterized unsafe set A(θ) = {k | g(k, θ) ≤ 0}

Safe demonstration j ξ∗sj
Sampled unsafe trajectory k ξ¬sk

Guaranteed safe set Gs
Guaranteed unsafe set G¬s

Table 1: Notation.
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