
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020 1

Learning When to Trust a Dynamics Model
for Planning in Reduced State Spaces

Dale McConachie1, Thomas Power1, Peter Mitrano1 and Dmitry Berenson1

Abstract—When the dynamics of a system are difficult to model
and/or time-consuming to evaluate, such as in deformable object
manipulation tasks, motion planning algorithms struggle to find
feasible plans efficiently. Such problems are often reduced to state
spaces where the dynamics are straightforward to model and
evaluate. However, such reductions usually discard information
about the system for the benefit of computational efficiency,
leading to cases where the true and reduced dynamics disagree
on the result of an action. This paper presents a formulation
for planning in reduced state spaces that uses a classifier to bias
the planner away from state-action pairs that are not reliably
feasible under the true dynamics. We present a method to
generate and label data to train such a classifier, as well as
an application of our framework to rope manipulation, where
we use a Virtual Elastic Band (VEB) approximation to the true
dynamics. Our experiments with rope manipulation demonstrate
that the classifier significantly improves the success rate of
our RRT-based planner in several difficult scenarios which are
designed to cause the VEB to produce incorrect predictions in
key parts of the environment.

Index Terms—Motion and Path Planning; Learning and Adap-
tive Systems

I. INTRODUCTION

ROBOT motion planning algorithms have been extremely
successful for systems where the dynamics can be easily

specified and efficiently evaluated. However, for tasks such
as manipulation of deformable objects, the dynamics are very
difficult to model [1] and usually require numerical simulation
to evaluate. This simulation can be time-consuming and/or
inaccurate. Including such simulations inside a planner can
result in plans that take hours to compute [2].

Motivated by tasks where dynamics are difficult to specify
and evaluate, we present a framework to plan in a reduced
state space with simplified dynamics while biasing the planner
to find plans that are likely to be feasible under the true
dynamics. To do this, we define a function that maps from
the true state space to a reduced state space as well as a
dynamics model in the reduced space. We can then generate
plans in the reduced space and roll them out on the true
system offline to gather data on how the reduced and true
dynamics correspond. Specifically, we find which transitions

Manuscript received: September 11, 2019; Revised December 7, 2019;
Accepted January 20, 2020.

This paper was recommended for publication by Editor Nancy Amato upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported in part by NSF grant IIS-1750489, ONR grant N000141712050, and
by Toyota Research Institute (TRI). This article solely reflects the opinions
of its authors and not TRI or any other Toyota entity.

1 All authors are with the University of Michigan Robotics Insti-
tute, Ann Arbor, MI, USA. {dmcconac, tpower, pmitrano,
dmitryb}@umich.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Top: a plan generated without using a classifier moves the rope under
a hook and gets caught. Bottom: a plan generated with a classifier avoids this
mistake, and reaches the goal.

(i.e. state-action pairs) in the reduced state space produce
reliable predictions as compared to rolling out the given action
with the true dynamics.

After gathering a dataset where transitions are labeled as
reliable or unreliable, we train a classifier to predict the
reliability of a given transition. We then incorporate this
classifier into an RRT-based planner by biasing the planner to
reject transitions that are classified as unreliable. The resulting
planner tends to find sequences of transitions that are likely
to produce the desired outcome when the true dynamics of
the system are applied, even though the planner plans with no
explicit knowledge of the true dynamics.

This paper presents both an abstract formulation of the
problem of planning in a reduced state space with a classifier
and how to apply this formulation to two systems. First, to
illustrate our framework on a straightforward example, we
consider a planar three-link arm with limited joint torque.
Using a learned classifier for this system allows us to plan in
configuration space (not considering dynamics) while avoid-
ing transitions that cannot be accomplished with the limited
torque. The second system focuses on rope manipulation tasks;
we use a Virtual Elastic Band (VEB) [3] as the reduced
dynamics model of the rope, as this has been shown to
allow fast planning in difficult scenarios. However, this model
assumes that there is no minimum length of the rope, which
entails that the planner cannot detect cases where the slack
material is caught on corners or hooks, preventing the motion
plan from being completed because the caught object can

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

overstretch (see Figure 1). Thus, we learn a classifier to bias
the planner away from states where the object can be caught
on an obstacle. The contributions of this paper are:

1) A novel formulation of planning in reduced state spaces
2) A method to generate and label data for classification of

transition reliability
3) Experiments demonstrating the efficacy of our frame-

work for both the planar arm reaching and rope manip-
ulation tasks

Our experiments suggest that we can learn a classification
function for the reliability of transitions which improves the
success rate of planning with the reduced model for both the
planar arm and rope manipulation. Our simulation experiments
considering rope manipulation in several challenging envi-
ronments containing hooks demonstrate the classifier’s ability
to bias the planner away from unreliable transitions and to
generalize over environments and rope lengths. Finally, to
show a practical application of our work, we demonstrate our
method running on a 16 DoF robot manipulating a rope near
an engine assembly.

II. RELATED WORK

Robotic manipulation of deformable objects has been stud-
ied in many contexts ranging from surgery to industrial ma-
nipulation (see [4] and [5] for extensive surveys).

Much work in deformable object manipulation relies on
simulating an accurate model of the object being manipu-
lated. The most common simulation methods use Mass-Spring
models [6], [1], which are generally not accurate for large
deformations [7], and Finite-Element (FEM) models [8], [9],
[10]. FEM-based methods are widely used and physically well-
founded, but they can be unstable when subject to contact
constraints, which are especially important in this work.

Motion planning for manipulation of deformable objects
is an active area of research [11] with many sampling-based
planners proposed [12], [13], [14], [15], [16]. However, all the
above methods either disallow contact with the environment
or rely on potentially time-consuming physical simulation
of the deformable object, which is often very sensitive to
physical and computational parameters that may be difficult
to determine. In contrast our method builds on [17], which
uses reduced models for motion planning with far lower
computational cost.

In terms of applying machine learning to control and plan-
ning, prior work has primarily used learned dynamics models
for control [18], [19], [20], [21], [22]. Recent work [23] has
also explored planning in learned reduced space, but they do
not consider the error in a reduced model’s prediction when
planning. Visual Planning and Acting (VPA) [24] learns a
latent transition model based on visual input for planning. This
work also uses on a classifier to prune infeasible transitions
during planning. However, despite this classifier, only 15%
of generated plans were visually plausible, with only 20% of
the visually plausible plans being executable. In this paper we
do not focus on learning a reduction but rather on creating a
framework that can be used to overcome limitations in a given
model reduction.

III. GENERAL PROBLEM FORMULATION

We begin by formulating our problem in a system-agnostic
way and then describe how to apply this formulation to
planning for rope manipulation. Let the true system operate in
a state space X with dynamics xt+1 = f(xt, u

x, E), where ux

is a command given to the system and E is the environment.
We assume that the true state space has Markovian dynamics.

The problem we address in this work is how to find a
sequence of Ne commands {ux1 , . . . , uxNe

} to move from a
start state x0 to a goal state. The goal set is specified by the
function Goalx : X → {0, 1}, which returns 1 if a state is a
goal and 0 otherwise. We thus to seek to solve the following:

find Ne, {ux1 , . . . , uxNe
}

s.t. Goalx(xNe
) = 1

xt = f(xt−1, u
x
t , E), i = 1, . . . , Ne

(1)

However, f may not be known in closed-form or it may be
expensive to evaluate within a planner. Thus we cannot solve
this problem by planning in X with the true dynamics.

To create a more tractable planning problem we define B
to be a reduced state space and define a reduction function:
b = r(x,E). We do not assume that r is invertible. Dynamics
in B are defined as bt+1 = g(bt, u

b, E) (note that ub and
ux may be in different spaces). We treat the dynamics in this
reduced state space as Markovian. B, r, and g are user-defined.
There is then an analogous goal function for reduced states
Goalb : B → {0, 1}. The planning problem then becomes:

find Ne, {ub1, . . . , ubNe
}

s.t. b0 = r(x0, E)

Goalb(bNe) = 1

bt = g(bt−1, u
b
t , E), i = 1, . . . , Ne

(2)

Rather than making explicit guarantees on the relationship
between f and g, we assume we have access to a rollout
function xt+1 = Γ(xt, u

b, E), which outputs the next state
when attempting to perform an action ub given some controller
for the system. We assume that Γ has built-in safety limits, so
it will stop before violating a constraint (e.g. stopping before
colliding with an obstacle). If Γ reaches a constraint boundary
it will output the state on the boundary and will not violate
the constraint. Γ is treated as a black box. The form of Γ may
be known but even if it is, we assume it is too expensive to
evaluate within the planner, otherwise there would likely be
no need for the reduction. We assume we are able to gather
data by executing Γ.

We will solve the problem in Equation 2 using a motion
planner that plans in B. However, the plan we generate may
not lead to the goal in execution because we may have lost
information in r and/or g. Our approach is thus to bias our
planner so that it avoids taking actions for which r and g are
not reliable approximations of the behavior of the system. See
Fig. 2 for an overview of our framework.

IV. LEARNING TRANSITION RELIABILITY

To bias the planner that plans in B we will learn a
classifier that attempts to predict if a given transition T b =

MCCONACHIE et al.: LEARNING FOR PLANNING IN REDUCED STATE SPACES 3

〈
bt, u

b, E
〉

will reliably succeed (e.g. not be stopped by
a constraint boundary) when executed in environment E.
We thus wish to learn a function Classify : {T b} →
{Reliable,Unreliable}, which outputs Reliable
when performing this transition reliably succeeds under vari-
ous starting x0s and previous command sequences ub0:t−1, and
Unreliable otherwise, in which case the planner should be
biased not to use T b.

Ideally, we would include x0 and ub0:t−1 as input to the clas-
sifier. However, X may be arbitrarily high-dimensional (e.g.
for a deformable object) and there may be an arbitrary number
of previous commands before T b, thus making the classifier
very difficult to learn with a realistically-sized dataset. Instead
we only consider T b as input.

A. Data Generation and Labeling
To train our classifier, we need to gather a dataset of

transitions and label them by whether the model reduction
produces a reliable prediction. We would like to generate
a training dataset of transitions in a similar way to how
a planner would generate transitions, since this avoids dis-
tribution mismatch problems when planning. We therefore
collect and label data from executed plans which we generate
without a classifier. To do this, we run the planner without
using Classify starting from some x0. Planning generates
a transition sequence Tb = {T bt |t = 1, 2, ...}. We then
execute the plan, which gives a ground-truth sequence of
states τx = {x0, xt = Γ(xt−1,Tbt .ub, E)|t = 1, 2, 3...|Tb|}.
We then reduce τx to the reduced state space producing
τ b = {b̃t = r(τxt , E)|t = 1, 2, ...|τx|}. For time t, let the
reduced dynamics prediction be b̂t = Tbt .b and the rollout
result be b̃t = τ bt . Figure 3 summarizes the computation
required to produce these variables.

To label the data we require a function that evaluates if the
two predictions are meaningfully similar for the given system.
Let the function Close : B ×B → {0, 1} return 1 when two
reduced states are meaningfully similar and 0 otherwise. The
environment E is also an input to Close but we omit it for
brevity. We label the tth transition in Tb using the function l:

l(t,Tb, τ b) =

Reliable
if Close(b̂t, b̃t) and
Close(b̂t+1, b̃t+1)

Unreliable otherwise
(3)

Intuitively, this function first checks if b̂t b̃t are close. If they
are, and b̂t+1 and b̃t+1 are not close, then the transition is la-
beled Unreliable because the reduced dynamics prediction
was inaccurate. If the starting states b̂t and b̃t are not similar,
then the rollout and reduced dynamics predictions have already
diverged and we do not have a meaningful ground-truth label
for this transition. To be conservative in our prediction, we
label this transition Unreliable. If both b̂t, b̃t are close
and b̂t+1, b̃t+1 are close then r and g have performed well
and we label the transition Reliable.

B. An Illustrative Navigation Example
To clarify the above framework and learning problem for-

mulation, we describe an example system where the various

Fig. 2. An outline of our framework. First, we plan and execute many control
sequences to gather a dataset of transitions. These transitions are labeled
according to a function l and used to train a classifier which predicts whether
a transition is reliable given the model reduction. This classifier is used to
bias the planner away from unreliable transitions.

Fig. 3. Circles represent variables and boxes represent functions. Orange:
variables defining the tth transition. Red path: reduced dynamics prediction;
Blue path: rollout result.

functions and spaces can be easily visualized. Consider a car
with state x = [q, q̇], where q = [qx, qy, qθ] and control
inputs ux = [uxa, u

x
φ], which correspond to the acceleration

and steering angle. f(xt, u
x, E) is the standard second-order

car dynamics.
We define a reduced state using the function b = r(x,E) =

xq (i.e. we only consider position variables in the reduced
space) and the controls to be ub = [∆x,∆y,∆θ]. The reduced
dynamics are bt+1 = g(bt, u

b, E) = bt + ub.
Let the rollout function xt+1 = Γ(xt, u

b, E) be a method
that uses a controller to drive the car toward r(xt, E) + ub.
Γ also checks if the car reaches the boundary of an obstacle
in E and will return the state on the boundary if it does.
Close(b̂1, b̃1) outputs 1 if the two reduced states are within
a small Euclidean distance and 0 otherwise.

The task for the car is to drive to a given location while
maintaining low speed and not colliding with obstacles. If
we gather training data from this task domain we will find
that when ub drives the car toward an obstacle that is nearby,
depending on the velocity at x0, the car can hit the obstacle
even though the lines between the planned bt and bt+1 are
collision-free for all t. Using only the planner, we would ac-
cept all transitions where the line from bt to bt+1 is collision-
free. However, the classifier will learn that it is better to avoid
transitions that entail driving past nearby obstacles. Using the
classifier’s output to further prune transitions will restrict the

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

planner to transitions that are more likely to succeed when
executing Γ (see Fig. 4).

C. What can be learned
While we may produce a useful classifier for planning, it

is important to know that there is a fundamental limitation on
what can be learned by this approach because of the loss of
information that may happen in r and/or g. Consider the fol-
lowing scenario: Let b0 = r(xa0 , E) = r(xb0, E) = r(xc0, E),
e.g. there are multiple states where the car is at a certain
position but with a different velocity. If we apply reduced
dynamics prediction for some ub, we obtain b̂1 = g(b0, u

b, E).
However, we if do rollouts we obtain three resulting states:
xa1 = Γ(xa0 , u

b, E), xb1 = Γ(xb0, u
b, E), xc1 = Γ(xc0, u

b, E), and
then three reduced states: b̃a1 = r(xa1 , E), b̃b1 = r(xb1, E), b̃c1 =
r(xc1, E). It may be the case that Close(b̂1, b̃

k
1) does not

produce the same result for k = a, b, c (an example for the car
system is shown in Figure 5). In terms of classification, this is
a case of noisy labeling, and many methods have been devised
to address this problem (e.g. SVM with slack variables).

However, if there are many noisy labels in the data, it means
that r and g are not useful for this task domain. As a result the
classifier will not make meaningful predictions and we would
expect that it would provide no benefit over simply planning
in B. However, in our experiments with a planar arm and with
rope manipulation we found that we do indeed see a benefit
when using the classifier.

D. Using the Classifier in Planning
While it is possible to query every transition considered

by the planner and reject all those that are classified as
Unreliable, such a strategy would likely be overly op-
timistic about what the classifier has learned. In difficult
scenarios the classifier may erroneously reject a set of transi-
tions which is necessary to reach the goal, thus causing the
planner to fail. Thus we accept transitions that are classified
as Unreliable with a small probability determined by
parameters k, a manually-specified constant, and pacc, the
validation accuracy of the classifier (see Algorithm 1). pacc
is included because we wish to be more permissive about
accepting transitions when the classifier performs more poorly
in terms of generalization.

While the above approach of incorporating classification can
be applied to a wide range of planners, in this paper we focus
on using RRT-based planners. An advantage of this approach
for RRT-based planners is that we maintain the probabilistic
completeness properties of the planner by guaranteeing that
any transition will be accepted with a non-zero probability
(although the probability is small for transitions classified as
Unreliable).

V. APPLICATION TO A TORQUE-LIMITED PLANAR
ARM

First, we demonstrate our framework on a 3-link arm that
moves in the X-Z plane with gravity in the −z direction. For
this system we focus on the effects of including a classifier in
the planner without using a reduction function. This allows us

Algorithm 1 CheckTransition(T b)

1: b′ ← g(T b.b, T b.ub, E)
2: if Classify(T b) == Reliable then
3: return b′

4: a ∼ U [0, 1]
5: if a < e−kpacc then
6: return b′

7: return ∅

Fig. 4. Illustration of desired prediction from a classifier. Dotted triangles in-
dicate b̂1s from different ub0 inputs. Green: Classifier predicts these transitions
are Reliable. Red: Classifier predicts these transitions are Unreliable.
Note that the line between b0 and b̂1 is collision-free for all examples shown.

Fig. 5. Illustration of the effect of information loss on the predictability of
a transition. In both scenarios states with different velocities reduce to the
same b0. Left: A case where rolling out the same ub from different initial
velocities (blue) produces the same b̃1 values, since the controller is robust
to initial velocity in this case. Right: A case where rolling out the same ub
with different initial velocities produces different b̃1 values. At high initial
velocity (c) the controller cannot turn before reaching the obstacle.

to disentangle the effects of model reduction and inaccurate
dynamics.

For this experiment we use the MuJoCo simulator [25] as
the ground truth dynamics. Each joint is controlled using the
default position servo actuator available in MuJoCo. We con-
vert the MuJoCo simulation to a quasistatic system by waiting
for the arm to settle after a configuration is commanded (this
is f). These experiments do not have any obstacles, so we
omit E for brevity.

A. Problem Statement
Let x ∈ R3 be the true state of the system. Let ux = xdes ∈

R3 be the commanded position of the arm at each timestep.
Let f(xt, ut) be the quasistatic dynamics defined by MuJoCo.
We set torque limits τ1, τ2, τ3 so that τ1 � τ2 = τ3. This
means the first joint cannot support the weight of the arm
when extended horizontally. As we are not doing a model
reduction, b = r(x) = x. Commands in both spaces are also
the same: ub = ux. The dynamics in B are purely kinematic:
bt+1 = g(bt, u

b
t) = ubt . These dynamics are fast to evaluate and

therefore efficient for planning, but can result in plans which
do not reach the goal configuration when executed (Fig. 6).
As there are no obstacles and ub = ux, the rollout function
Γ(xt, u

b
t , E) = f(xt, u

x
t).

MCCONACHIE et al.: LEARNING FOR PLANNING IN REDUCED STATE SPACES 5

The planning problem is for the arm to reach a goal end-
effector position. Using the true dynamics, this corresponds to
Problem (1). However, since we assume the true dynamics
are not available, we seek to solve Problem (2) given the
definitions of r and g above.

B. Data Collection, Labelling, and Training

To collect training data we initialized the system from
random start configurations, planning to random goal configu-
rations using RRT-Connect [26]. In practice these are straight
lines in configuration space after smoothing the path. This
generated a total of 231,815 transitions to use in training and
validation. A randomly selected 20% of the data is held out for
validation. We define Close(b̂t, b̃t) based on the Euclidean
distance between configurations:

Close(b̂t, b̃t) = ‖b̂t − b̃t‖ < α (4)

with α = 0.075.
For this planar arm, our classifier is a neural network

that takes b and b′ as input. The network has three hidden
layers with 256, 128, and 64 hidden units respectively and
a single output neuron. The hidden units use a Leaky ReLu
activation [27], and the output uses a sigmoid activation. With
this network we achieve 99% training accuracy and 99%
validation accuracy within 4 epochs.

C. Planning and Results

To test the effect of using the learned classifier, we randomly
generate 100 planning queries and evaluate how well generated
plans perform when executed. Each planning query consists of
a random start configuration in R3 and goal IK solutions for
a random target point in R2. We only consider queries for
which there is at least one IK solution where the controller
can maintain the configuration of the arm within α = 0.075
of the IK solution. For planning we use the OMPL [28]
implementation of RRT-Connect, setting the probability scale
factor k to 1, and pacc to 0.99. The resulting path is post-
processed using the default simplifyMax options. A plan
is considered successful if the distance between the final
configuration and any IK solution is less than a threshold β
(Fig. 6). Tests are performed on an i5-3570K @ 4.3 GHz.
Planning and simplification takes approximately 2 ms without
a classifier, and approximately 7 seconds with our classifier.
For small β, using the classifier does not improve performance
due to the steady state error inherent in the system. As β
increases, we see that the planner that uses a classifier is able
to successfully find paths to all queries while the baseline is
unable to succeed at some queries (see attached video).

VI. APPLICATION TO ROPE MANIPULATION

We now present the application of our framework to rope
manipulation, where we use both a reduction of the state space
and an approximate dynamics model.

Fig. 6. Left: Plan generated using the learned classifier to go from [−pi
2
, 0, 0]

to [pi
2
, 0, 0]. The plan avoids transitions which move the arm toward a

horizontal position and successfully completes the task. Center: Plan generated
without the classifier. The plan takes the arm to the horizontal position where
it fails due to the torque limit. Right: Number of successes as success threshold
β varies

A. Problem Statement
Let the robot be represented by a pair of grippers with con-

figuration q ∈ SE(3)2. We assume that the robot configuration
can be measured exactly. In this work we assume the robot to
be a set of free floating grippers; in practice we can track the
motion of these with inverse kinematics.

We assume that our model of the robot is purely kinematic,
with no higher order dynamics. We assume that the robot has
two end-effectors that are rigidly attached to the rope. The
configuration of a rope is a set P ⊂ R3 of P = |P| points.
We assume that we have a method of sensing P . The rest of
the environment E is assumed to be both static, and known
exactly. We assume that the robot moves slowly enough that
we can treat the combined robot and rope as quasi-static. The
true state of the system is then x = [q,P] and ux = ∆q. Let
f be a joint-space controller for the robot that stops when any
of the following occur: 1) the grippers contact an object; or
2) the object stretches by more than a factor λ. Due to the
difficulty of simulating rope physics, we do not assume we
can execute f within a motion planner.

We wish to find a sequence of Ne commands {ux1 , . . . , uxNe
}

to move from a start state x0 to a goal gripper configuration qg
such that each motion is feasible (this corresponds to Problem
(1)). Note that this planning problem does not require bringing
the rope to a specific configuration, which can often be done
using local control after bringing the object to a desired area
(as in [17]). Because we do not have access to f , we cannot
solve this problem by planning in X directly.

To make planning tractable we will perform a reduction
and learn a classifier from data to predict when the reduction
can be trusted. That classifier will then be used in a motion
planner to bias it away from transitions that are not likely to
be feasible under Γ.

B. Reduction
[3] introduced the idea of a virtual elastic band (VEB)

between the robot’s end-effectors. This VEB represents the
shortest path through the rope between the end-effectors. The
band approximates the constraint imposed by the rope on the
motion of the robot; if the end-effectors move too far apart,
then the VEB will be too long, and thus the rope is stretched

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

beyond a task-specified maximum stretching factor. Similarly,
if the VEB gets caught on an obstacle and becomes too long,
then the rope is also overstretched. By considering only the
geodesic between the end-effectors, we are assuming that the
rest of the rope will comply to the environment, and does not
need to be considered when predicting overstretch. The VEB
representation allows us to use a fast prediction method when
planning, but does not account for the part of the material that
is slack. Denote the configuration of a VEB (i.e. a sequence
of points) as v. Then b = [q, v] and can be generated by
b = r(x,E) for the reduction function defined in Section
4.2.2 of [3]. The dynamics of a VEB, g(b, ub, E), are based
on Quinlan’s path deformation algorithm as presented in [29]
(see Section 4.2.3 of [3]). We also augment g to return ∅
when ub causes the object to become overstretched. b is then
propagated using g and ub = ux. Since the commands are the
same, our rollout function Γ, which uses ub, is equivalent to
f . To find a path in B we must solve Problem (2).

We use the planner described in [17] to solve this problem;
this is an RRT-based planner designed for use with virtual
elastic bands as part of the planning configuration space. This
planner searches for a feasible path for the robot between a
given start and goal configuration, while ensuring the VEB is
never overstretched.

The virtual band approximation choice favors speed over
model accuracy; as a consequence, there are several issues that
it does not address. Specifically, environments with “hooks”
can cause problems due to the approximation methods: The
virtual elastic band assumes that there is no minimum length
of the rope. This assumption means that the planner cannot
detect cases where the slack material can get caught on corners
or hooks, preventing the motion plan from being completed
because the caught object can overstretch. To reduce the
chances of this occurring we learn a classifier for T b to predict
if a given transition is either Reliable or Unreliable and
bias the planner away from Unreliable transitions. We bias
the planner using the CheckTransition function shown
in Algorithm 1, which is used as an edge validity check in
addition to the collision and overstretching checks described
in [17].

C. Learning the Classifier
To learn the classifier we define the Close function for our

domain to be:

Close(b̂t, b̃t) =
(
D(b̂t.v, b̃t.v) < α

)
∧ FOH(b̂t.v, b̃t.v, E)

Where D computes the sum of the point-wise distances
between the two virtual elastic bands, α is a constant, and
FOH evaluates if the two bands are in the same first-order
homotopy class [30]. We then apply labeling function l shown
in Eq. 3 for each transition. We generate many plans using
our planner (without the classifier) to produce the dataset (see
Section VII-B).

For our classifier we use a neural network based on VoxNet
[31], a network for classifying objects from a voxel grid. The
network consists of two 3D convolutional layers (filter size 5,
3 and stride 2, 1 respectively) with max pooling followed by

Fig. 7. Input to the VoxNet classifier is a 3-channel voxel grid, where white
is the local environment, red is the pre-transition band, and blue is the post
transition band. Positions outside the bounds of the environment are marked
as occupied in the local environment channel.

two fully-connected layers. All layers have ReLU activations
except the output layer, which has a sigmoid activation.

The input for our classifier consists is a three-channel binary
voxel grid, with channels

〈
E, b, b′

〉
, where b′ = g(b, ub, E).

Each voxel grid is 32 × 32 × 32, and is constructed by
checking for occupancy at every cell center. An example of
the voxelized representation is shown in Fig. 7.

VII. ROPE MANIPULATION EXPERIMENTS
To characterize the planner performance with the classifier,

we designed seven simulation scenarios where the rope must
be moved from one side of the scene to the other, along
with one physical experiment for real-world validation. All
simulation experiments were conducted in the open-source
Bullet simulator [32], with additional wrapper code developed
at UC Berkeley [33]. The rope is modeled as a series of small
capsules linked together by springs. We emphasize that our
method does not have access to the model of the rope or the
simulation parameters. The simulator is used as a “black box”
for testing. All tests are performed using an i7-7700K 4.2 GHz
CPU with 32 GB of RAM. For all experiments we set λ to
1.15, and α to 0.5.

A. Scenarios
Each scenario involves moving the rope past one (or more)

hooks, while the grippers traverse a narrow slit (Fig. 8).
1) Simple Hook: In the Simple Hook environment, the end

of the hook is not near any obstacles, thus the planner does
not need to deal with the end of the hook and the narrow slit
at the same time. We test four variants of the simple hook
environment: Short, Regular, Long, Very Long corresponding
to the lengths of the rope which are 0.55m, 0.87m, 1.13m, and
1.59m respectively.

2) Multi Hook: In the Multi Hook environment, the rope
must pass through three series of hooks, and two narrow slots
before reaching the red region on the far side of a solid wall.
The rope has length 0.87m.

MCCONACHIE et al.: LEARNING FOR PLANNING IN REDUCED STATE SPACES 7

Fig. 8. The rope is shown in green, with the grippers shown in blue. The target area for the grippers is shown in red. Walls with narrow slits for the grippers
are shown in purple. Hooks and other obstacles are shown in dark cyan. Left: Simple Hook; Center Left: Multi Hook; Center Right: Complex Hook; Right:
Engine Assembly

3) Complex Hook: In the Complex Hook environment, the
grippers are forced to pass on opposite sides of a small hook,
while also passing through a narrow slit. The rope has length
0.87m.

4) Engine Assembly: In the Engine Assembly environment,
we seek to move the grippers from one side of an engine model
[34] to the others avoiding two hooks on the front and back of
the engine. The rope has length 0.87m. The engine assembly
environment is shown in Fig. 8.

5) Physical Robot: In the Physical Robot environment, we
attempt the engine assembly task on a physical 16 DoF robot
shown in Fig. 1 with a 3D printed model of the engine and a
rope of length 0.46m.

B. Data Collection
To collect training data, we ran the planner without any clas-

sifier on the Simple Hook Regular scene repeatedly, generating
a total of 4190 plans from many different starting locations.
This generated a total of 562,177 transitions to use in training
and validation. This training set is generated only from the
Simple Hook environment using the Regular length rope. We
emphasize that we use the classifier trained on this data for
planning in all test environments.

C. Training the Classifier
VoxNet is trained using the Adam optimizer [35] with initial

learning rate of 5 × 10−4. We use a learning rate decay of
0.8 every 4 epochs. Since the dataset set is imbalanced, with
32% of the examples labelled as unreliable, and 68% labelled
as reliable, we use a weighted random sampler to make all
minibatches balanced. A randomly selected 10% of the data
is held out for validation. Our minibatch size is 32, and we
train for 100 epochs. We use the binary cross-entropy loss
function during training. Training took approximately 16 hours
on a Tesla V100-SMX2 GPU. The VoxNet classifier achieved
99% accuracy on the training set and 91% accuracy on the
validation set.

D. Planning Results
To evaluate the planning performance when using the clas-

sifier, we generated 30 plans using the classifier on each test
environment and compare the success rate and planning time
to planning without a classifier. A success is when executing
the plan results in a final gripper configuration which is within

Environment Metric Classifier
None VoxNet

Simple Hook - Short
Success rate 18/30 30/30
Planning time (s) 0.6 14.6
Smoothing time (s) 1.0 5.4

Simple Hook - Regular
Success rate 20/30 29/30
Planning time (s) 3.7 17.3
Smoothing time (s) 4.0 6.5

Simple Hook - Long
Success rate 23/30 29/30
Planning time (s) 6.8 51.9
Smoothing time (s) 6.4 8.0

Simple Hook - Very Long
Success rate 18/30 27/30
Planning time (s) 12.4 15.4
Smoothing time (s) 15.6 11.4

Multi Hook
Success rate 9/30 13/30
Planning time (s) 11.5 44.1
Smoothing time (s) 22.0 30.0

Complex Hook
Success rate 0/30 20/30
Planning time (s) 3.7 28.7
Smoothing time (s) 27.0 23.4

Engine
Success rate 1/30 10/30
Planning time (s) 4.8 2.0
Smoothing time (s) 0.3 4.1

TABLE I
PLANNING STATISTICS, AVERAGED OVER 30 TRIALS

a small tolerance of the goal gripper configuration. If, for
example, the rope gets caught on a hook and prevents the
grippers from reaching the goal, the trial is marked as a
failure. Results are shown in Table I. We set k to 10 and
pacc to 0.91. Our results show that using a classifier improves
the success rate of the planner over not using a classifier in
all tested scenarios, but the effect is less prominent on the
Multi Hook environment. The use of a classifier does lead
to longer planning time, partially due to extra computation
when checking each edge, as well as making the planning
problem harder to solve. Sec. VIII discusses this in more detail.
Example results can be found in the attached video.

VIII. DISCUSSION
We found that the use of a neural network classifier to

evaluate the reliability of a model approximation can be an
effective way to improve the success rate of a planner for
rope manipulation. When using the classifier in the planner
as a hard constraint (k = ∞), some starting configurations
would cause the classifier to reject all transitions from that
state, leading to planning failure. An interesting approach to
setting k would be to treat it similar to temperature as done in
T-RRT [36]. Despite training the rope manipulation classifier

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

on only a single rope and environment (the Simple Hook with
Regular length rope), we found that the classifier was able to
generalize and lead to improved planning performance with
both different lengths of rope and more complex environments.

It is important to note that while our method can find more
feasible plans than not using a classifier, we may be making the
planning problem more difficult. In the planar arm example,
a straight line in configuration space between start and goal
solves the planning problem under g but may not be a feasible
plan under Γ. To avoid this mismatch, the classifier restricts
the set of transitions that can be used, but doing so may induce
a narrow passage effect, which leads to longer planning times.

A major challenge in this work is determining how to label
the data in a way that will lead to good performance. In
particular, by including transitions where the reduced dynam-
ics predictions have already diverged in our dataset and la-
belling these transitions as Unreliable, the classifier learns
that interaction with objects is frequently poorly modelled
by the VEB. This leads the planner to avoid contact with
the environment when possible, but many interesting tasks
involving deformable objects will explicitly require interaction
with other objects.

One interesting point is that increased classification accu-
racy does not necessarily lead to better planning performance.
We experimented with different classifiers during develop-
ment, and although VoxNet had the best classification accuracy
on the validation set and usually the best performance, other
classifiers performed equivalently or better for planning in
some environments. It would therefore be desirable to find
a way to use planner success to train the classifier, and we
plan to investigate this in future work.

IX. CONCLUSION
This paper proposed a novel formulation of planning in

reduced state spaces that directly addresses the challenge of
generating plans that are feasible in the true state space while
planning in a reduced space with approximate dynamics. We
addressed this model mismatch problem by introducing the
use of a classifier into the planning process. This classifier is
trained to classify state transitions in the reduced state space
as reliable or unreliable. Our experiments on both a torque-
limited 3-link planar arm and rope manipulation tasks show
that 1) we can learn a classifier from training data with high
validation accuracy; and 2) using this classifier to bias the
planner away from unreliable transitions improves success rate
in all tested scenarios.

REFERENCES

[1] N. Essahbi, B. C. Bouzgarrou, and G. Gogu, “Soft Material Modeling
for Robotic Manipulation,” in Applied Mechanics and Materials, vol.
162, Apr. 2012, pp. 184–193.

[2] Y. Bai, W. Yu, and C. K. Liu, “Dexterous Manipulation of Cloth,”
Computer Graphics Forum, vol. 35, no. 2, pp. 523–532, 2016.

[3] D. McConachie, M. Ruan, and D. Berenson, “Interleaving planning and
control for deformable object manipulation,” in ISRR, 2017.

[4] F. Khalil and P. Payeur, “Dexterous robotic manipulation of deformable
objects with multi-sensory feedback – a review,” in Robot Manipulators,
Trends and Development. InTech, 2010, ch. 28, pp. 587–621.

[5] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic
manipulation and sensing of deformable objects in domestic and indus-
trial applications: a survey,” IJRR, vol. 37, no. 7, pp. 688–716, 2018.

[6] S. F. F. Gibson and B. Mirtich, “A survey of deformable modeling in
computer graphics,” Mitsubishi Electric Research Laboratories, Tech.
Rep., 1997.

[7] B. Maris, D. Botturi, and P. Fiorini, “Trajectory planning with task
constraints in densely filled environments,” in IROS, 2010, pp. 2333–
2338.

[8] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler, “Stable
real-time deformations,” SIGGRAPH, pp. 49–54, 2002.

[9] G. Irving, J. Teran, and R. Fedkiw, “Invertible finite elements for robust
simulation of large deformation,” SIGGRAPH, pp. 131–140, 2004.

[10] P. Kaufmann, S. Martin, M. Botsch, and M. Gross, “Flexible simu-
lation of deformable models using discontinuous Galerkin FEM,” in
SIGGRAPH, 2008.

[11] P. Jiménez, “Survey on model-based manipulation planning of de-
formable objects,” Robotics and Computer-Integrated Manufacturing,
vol. 28, no. 2, pp. 154–163, Apr. 2012.

[12] O. Burchan Bayazit, Jyh-Ming Lien, and N. Amato, “Probabilistic
roadmap motion planning for deformable objects,” in ICRA, vol. 2, 2002,
pp. 2126–2133.

[13] R. Gayle, M. Lin, and D. Manocha, “Constraint-Based Motion Planning
of Deformable Robots,” in ICRA, 2005, pp. 1046–1053.

[14] M. Moll and L. E. Kavraki, “Path Planning for Deformable Linear
Objects,” TRO, vol. 22, no. 4, pp. 625–636, 2006.

[15] M. Saha, P. Isto, and J.-C. Latombe, “Motion planning for robotic
manipulation of deformable linear objects,” in ISER. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 23–32.

[16] O. Roussel, A. Borum, M. Taı̈x, and T. Bretl, “Manipulation planning
with contacts for an extensible elastic rod by sampling on the submani-
fold of static equilibrium configurations,” in ICRA, May 2015, pp. 3116–
3121.

[17] D. McConachie, A. Dobson, M. Ruan, and D. Berenson,
“Manipulating Deformable Objects by Interleaving Prediction,
Planning, and Control,” IJRR, Accepted. [Online]. Available:
https://sites.google.com/umich.edu/dmcconachie

[18] B. Jia, Z. Hu, J. Pan, and D. Manocha, “Manipulating highly deformable
materials using a visual feedback dictionary,” in ICRA, 2018.

[19] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in ICRA, 2017.

[20] E. Banijamali, R. Shu, M. Ghavamzadeh, H. Bui, and A. Ghodsi,
“Robust Locally-Linear Controllable Embedding,” AISTATS, oct 2017.

[21] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and S. Levine,
“SOLAR: Deep Structured Representations for Model-Based Reinforce-
ment Learning,” ICML, pp. 7444–7453, 2019.

[22] G. Sutanto, N. Ratliff, B. Sundaralingam, Y. Chebotar, Z. Su, A. Handa,
and D. Fox, “Learning Latent Space Dynamics for Tactile Servoing,”
ICRA, 2019.

[23] B. Ichter and M. Pavone, “Robot motion planning in learned latent
spaces,” RA-L, vol. 4, no. 3, pp. 2407–2414, 2019.

[24] A. Wang, T. Kurutach, K. Liu, P. Abbeel, and A. Tamar, “Learning
robotic manipulation through visual planning and acting,” in RSS, 2019.

[25] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in IROS. IEEE, 2012, pp. 5026–5033.

[26] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in ICRA, 2000, pp. 995–1001.

[27] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML, 2013.

[28] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

[29] S. Quinlan, “Real-time modification of collision-free paths,” Ph.D. dis-
sertation, Department of Computer Science, Stanford University, 1994.

[30] L. Jaillet and T. Siméon, “Path deformation roadmaps: Compact graphs
with useful cycles for motion planning,” IJRR, vol. 27, no. 11-12, pp.
1175–1188, 2008.

[31] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network
for real-time object recognition,” in IROS, 2015, pp. 922–928.

[32] E. Coumans, “Bullet physics library,” Open source: bulletphysics.org,
2010.

[33] Robot Learning Lab, “Simulation environment with Bullet physics,”
https://github.com/rll/bulletsim, University of California, Berkeley, 2012,
accessed July 2, 2012.

[34] J. Tumber, “Engine assembly,” https://grabcad.com/library/engine-
assembly-11, 2016, accessed August 28, 2019.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[36] L. Jaillet, J. Cortés, and T. Siméon, “Transition-based rrt for path
planning in continuous cost spaces,” in IROS, 2008, pp. 2145–2150.

