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Learning Constraints from Locally-Optimal
Demonstrations under Cost Function Uncertainty

Glen Chou, Necmiye Ozay, and Dmitry Berenson

Abstract—We present an algorithm for learning parametric
constraints from locally-optimal demonstrations, where the cost
function being optimized is uncertain to the learner. Our method
uses the Karush-Kuhn-Tucker (KKT) optimality conditions of the
demonstrations within a mixed integer linear program (MILP)
to learn constraints which are consistent with the local optimality
of the demonstrations, by either using a known constraint
parameterization or by incrementally growing a parameterization
that is consistent with the demonstrations. We provide theoretical
guarantees on the conservativeness of the recovered safe/unsafe
sets and analyze the limits of constraint learnability when using
locally-optimal demonstrations. We evaluate our method on high-
dimensional constraints and systems by learning constraints for
7-DOF arm and quadrotor examples, show that it outperforms
competing constraint-learning approaches, and can be effectively
used to plan new constraint-satisfying trajectories in the environ-
ment.

Index Terms—Learning from Demonstration, Robot Safety,
Optimization and Optimal Control, Learning and Adaptive
Systems

I. INTRODUCTION

LEARNING from demonstration has largely focused on
learning cost and reward functions, through the frame-

works of inverse optimal control and inverse reinforcement
learning (IOC/IRL) [1]–[4], which replicate the behavior of
an expert demonstrator when optimized. However, real-world
planning problems, such as navigating a quadrotor in an
urban environment, also require that the system obey hard
constraints, that is, system trajectories must remain in a set
of safe (constraint-satisfying) states. As constraints enforce
safety more strictly than cost function penalties, which may
“soften” a constraint and allow violations, they are better
suited for planning in safety-critical situations. Furthermore,
while different tasks may require different cost functions,
oftentimes safety constraints are shared across tasks, and
identifying them can help the robot generalize.

Initial work in [5], [6] has taken steps towards identify-
ing constraints from approximately globally-optimal expert
demonstrations, assuming that the demonstrator’s cost function
is known exactly. However, as humans are not always experts
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at performing a task, requiring them to provide demonstra-
tions which are nearly globally-optimal can be unreasonable.
Furthermore, it is rare for the cost function being optimized
to be known exactly by the learner. To address these short-
comings, we consider the problem of learning parametric
constraints shared across tasks from approximately locally-
optimal demonstrations under parametric cost function uncer-
tainty. Our method is based on the insight that locally-optimal,
constraint-satisfying demonstrations satisfy the Karush-Kuhn-
Tucker (KKT) optimality conditions, which are first-order
necessary conditions for local optimality of a solution to a
constrained discrete-time optimal control problem. We solve
a mixed integer linear program (MILP) to recover constraint
and cost function parameters which make the demonstrations
locally-optimal. We make the following specific contributions
in this paper:
• We develop a novel algorithm for learning parametric,

potentially non-convex constraints from approximately
locally-optimal demonstrations, where the parameteriza-
tion can either be provided or grown incrementally to be
consistent with the data. The method can extract volumes
of safe/unsafe states (states which satisfy/do not satisfy
the constraints) for future guaranteed safe planning and
enable planners to query states for safety.

• Our method can learn constraints despite uncertainty in
the cost function and can also recover a cost function
jointly with the constraint.

• Under mild assumptions, we prove that our method
recovers guaranteed conservativeness estimates (that is,
inner approximations) of the true safe/unsafe sets, and
analyze the learnability of a constraint from locally-
optimal compared to globally-optimal demonstrations.

• We evaluate our method on difficult constraint learning
problems in high-dimensional constraint spaces (23 di-
mensions) on systems with complex nonlinear dynamics
and demonstrate that our method outperforms previous
methods for parametric constraint inference [5], [6].

II. RELATED WORK

Previous work in IOC [7]–[9] has used the KKT conditions
to recover a cost function from demonstrations, assuming that
the constraints are known. In contrast, our method learns
both. The risk-sensitive IRL approach in [10] also uses the
KKT conditions, and is complementary to our work, which
learns hard constraints. Perhaps the closest to our work is
[11], which aims to recover a cost function and constraint
simultaneously using the KKT conditions. However, to avoid
non-convexity in the cost/constraint recovery problem, [11]
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restricts their method to recovering convex constraints and
do not directly search for constraint parameters, instead enu-
merating an a-priori fixed, finite set of candidate constraint
parameters using a method holding only for the convex case.
In contrast, by formulating our problem as a MILP, our method
avoids enumeration, directly searching the full continuous
space of possible constraint parameters. It also enables us to
learn non-convex, nonlinear constraints while retaining formal
guarantees on the conservativeness of the recovered constraint.

There also exists prior work in learning geometric state
space constraints [12], [13], which our method generalizes
by learning non-convex constraints not necessarily defined
in the state space. Learning local trajectory-based constraints
has also been explored in [14]–[19] by reasoning over the
constraints within a single trajectory or task. These methods
complement our approach, which learns a global constraint
shared across tasks. In the constraint-learning literature, our
work is closest to [5] and [6], which learn a global shared
constraint by sampling unsafe trajectories using globally-
optimal demonstrations, a known cost function, and a system
simulator. In addition to the drawbacks of global optimality
and assuming a known cost as mentioned previously, sam-
pling unsafe trajectories can be difficult for systems with
complicated dynamics. By using the KKT conditions, which
implicitly define the unsafe set instead of explicitly through
unsafe trajectories, our method sidesteps both the need for an
exact cost function to classify the safety of sampled trajectories
as well as any sampling difficulties.

III. PRELIMINARIES AND PROBLEM SETUP

We consider discrete-time nonlinear systems xt+1 =
f(xt, ut, t), x ∈ X and u ∈ U , performing tasks Π, which
are represented as constrained optimization problems over
state/control trajectories ξxu

.
= (ξx, ξu):

Problem 1 (Forward problem / “task” Π):

minimize
ξxu

c(ξxu, γ)

subject to φ(ξxu) ∈ S(θ) ⊆ C
φ̄(ξxu) ∈ S̄ ⊆ C̄
φΠ(ξxu) ∈ SΠ ⊆ CΠ

(1)

where c(·, γ) is a potentially non-convex cost function, pa-
rameterized by γ ∈ Γ. In Sec. IV-A to IV-C, we assume
that γ is known (through possibly inaccurate prior knowledge)
to ease notation; we later relax this assumption and discuss
how to learn γ from the demonstrations. Further, φ(·) is a
known mapping from state-control trajectories to a constraint
space C, elements of which are referred to as constraint states
p ∈ C. Mappings φ̄(·) and φΠ(·) are known and map to
constraint spaces C̄ and CΠ, containing a known shared safe
set S̄ and a known task-dependent safe set SΠ, respectively. In
this paper, we encode the system dynamics in S̄ and start/goal
constraints in SΠ. Grouping the constraints of Problem 1 as
equality/inequality (eq/ineq) constraints and known/unknown
(k/¬k) constraints, we can write:

hi,k(ξxu) = 0, i = 1, ..., N eq
k ⇔ hk(ξxu) = 0

gi,k(ξxu) ≤ 0, i = 1, ..., N ineq
k ⇔ gk(ξxu) ≤ 0

gi,¬k(ξxu, θ) ≤ 0, i = 1, ..., N ineq
¬k ⇔ g¬k(ξxu, θ) ≤ 0

(2)

where hk(ξxu) ∈ RN
eq
k , gk(ξxu) ∈ RN

ineq
k , and

g¬k(ξxu, θ) ∈ RN
ineq
¬k . Note that unknown equality con-

straints h¬k(ξxu, θ) = 0 can be written equivalently as
h¬k(ξxu, θ) ≤ 0,−h¬k(ξxu, θ) ≤ 0. As shorthand, let
g(p, θ)

.
= maxi∈{1,...,N ineq

¬k }
(
gi,¬k(p, θ)

)
. We now define

S(θ)
.
= {p ∈ C | g(p, θ) ≤ 0} (3)

A(θ)
.
= S(θ)c = {p ∈ C | g(p, θ) > 0} (4)

as an unknown safe/unsafe set defined by unknown parameter
θ ∈ Θ, for possibly unknown parameterizations gi,¬k(·, ·).
Last, we restrict Γ and Θ to be unions of polytopes.

Intuitively, a trajectory ξxu is locally-optimal if all trajec-
tories within a neighborhood of ξxu have cost greater than or
equal to c(ξxu). More precisely, for a trajectory to be locally-
optimal, it necessarily satisfies the KKT conditions [20]. We
define a demonstration ξloc as a state-control trajectory which
we assume approximately solves Problem 1 to local optimality,
i.e. it satisfies all constraints and is in the neighborhood of a
local optimum.

Our goal is to recover the safe set S(θ) and unsafe set
A(θ), given Ns demonstrations {ξloc

j }
Ns
j=1, known shared safe

set S̄, and task-dependent constraints SΠ. As a byproduct, our
method can also recover unknown cost parameters γ.

IV. METHOD

We detail our constraint-learning algorithm. First, we for-
mulate the general KKT-based constraint recovery problem
(Sec. IV-A) and then develop specific optimization problems
for the cases where the constraint is defined as a union
of offset-parameterized (Sec. IV-B) or affinely-parameterized
constraints (Sec. IV-D). We show how to extract guaranteed
safe/unsafe states (Sec. IV-C), handle unknown constraint
parameterizations (Sec. IV-E), and handle cost function un-
certainty (Sec. IV-F). In closing, we show how our method
can be used within a planner to guarantee safety (Sec. IV-G).

A. Constraint recovery via the KKT conditions
Recall that the KKT conditions are necessary conditions for

local optimality of a solution of a constrained optimization
problem [20]. For constraints (2) and Lagrange multipliers
λ and ν, the KKT conditions for the jth locally-optimal
demonstration ξloc

j , denoted KKT(ξloc
j ), are:

Primal feasibility: hk(ξ
loc
j ) = 0, (5a)

gk(ξ
loc
j ) ≤ 0, (5b)

g¬k(ξ
loc
j , θ) ≤ 0, (5c)

Lagrange mult. λji,k ≥ 0, i = 1, ..., N ineq
k ⇔ λjk ≥ 0 (5d)

nonnegativity: λji,¬k ≥ 0, i = 1, ..., N ineq
¬k ⇔ λj¬k ≥ 0 (5e)

Complementary λjk � gk(ξ
loc
j ) = 0 (5f)

slackness: λj¬k � g¬k(ξ
loc
j , θ) = 0 (5g)

Stationarity: ∇ξxucΠ(ξ
loc
j ) + λjk

>∇ξxugk(ξ
loc
j )

+ λj¬k
>∇ξxug¬k(ξ

loc
j , θ) (5h)

+ νjk
>∇ξxuhk(ξ

loc
j ) = 0

where ∇ξxu
(·) takes the gradient with respect to a flattened

trajectory ξxu and � denotes elementwise multiplication.
For compactness, we vectorize the multipliers λjk ∈ RN

ineq
k ,

λj¬k ∈ RN
ineq
¬k , and νjk ∈ RN

ineq
k . We drop the γ dependency,
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as the cost is assumed known for now, as well as (5a)-
(5b), as they involve no decision variables. Then, finding a
constraint consistent with the local optimality conditions of the
Ns demonstrations amounts to finding a constraint parameter
θ which satisfies the KKT conditions for each demonstration.
That is, we can solve the following feasibility problem:

Problem 2 (KKT inverse, locally-optimal):

find θ,λjk,λ
j
¬k,ν

j
k, j = 1, ..., Ns

subject to {KKT(ξloc
j )}Ns

j=1

(6)

Further, to address suboptimality (i.e. approximate local-
optimality) in the demonstrations, we can relax the stationarity
(5h) and complementary slackness constraints (5f)-(5g) and
place corresponding penalties into the objective function:

Problem 3 (KKT inverse, suboptimal):

minimize
θ,λj

k,λ
j
¬k,ν

j
k

Ns∑
j=1

(
‖stat(ξloc

j )‖1 + ‖comp(ξloc
j )‖1

)
subject to (5c)− (5e), ∀ξloc

j , j = 1, . . . , Ns

(7)

where stat(ξloc
j ) denotes the LHS of Eq. (5h) and comp(ξloc

j )
denotes the concatenated LHSs of Eqs. (5f) and (5g).

Denote the projection of the feasible set of Problem 2 onto
Θ as F . We define the set of learned guaranteed safe/unsafe
constraint states as Gs/G¬s, respectively. For Problem 2, a
constraint state p is learned guaranteed safe/unsafe if p is
marked safe/unsafe for all θ ∈ F . Formally, we have:

Gs
.
=
⋂
θ∈F

{p | g(p, θ) ≤ 0} (8) G¬s
.
=
⋂
θ∈F

{p | g(p, θ) > 0} (9)

We now formulate variants of Problem 2 which are effi-
ciently solvable for specific constraint parameterizations. For
legibility, we describe the method assuming C = X and φ(·) is
the identity. Due to the bilinearity between decision variables
in Problems 2 and 3 for some parameterizations, we describe
exact (Sec. IV-B) and relaxed (Sec. IV-D) formulations for
recovering the unknown parameters.

B. Unions of offset-parameterized constraints

Consider when Problem 1 involves avoiding an unsafe
set A(θ) described by the union and intersection of offset-
parameterized half-spaces (i.e. θ does not multiply p):

A(θ) =

Nc⋃
m=1

Nm
c⋂

n=1

{p | a>m,np < bm,n(θ)} (10)

This parameterization can represent any arbitrarily-shaped
unsafe set if Nc is sufficiently large (i.e. as a union of
polytopes) [21], though in practice our method may not be
efficient for large Nc. We will often use the specific case of
unions of axis-aligned Nm

c -dimensional hyper-rectangles,

A(θ) =

Nc⋃
m=1

Nm
c⋂

n=1

{p | p < θ
m

n ,−p < −θ
m
n }, (11)

where θ
m

n /θ
m
n are the upper/lower extents of dimension n of

box m. We now modify the KKT conditions to handle the
“or” constraints in (10). Primal feasibility (5c) changes to

∀p ∈ ξloc
j , ∀m = 1, ..., Nc,

Nm
c∨

n=1

(
a>m,np ≥ bm,n(θ)

)
, (12)

which can be implemented using the big-M formulation [22]:
∀p, ∀m,A>

mp ≥ bm(θ)−M(1− zj,pm ),
∑Nm

c
n=1 z

j,p
m (n) ≥ 1, (13)

where M is a large positive number, Am ∈ RNm
c ×|p| and

bm ∈ RNm
c are the vertical concatenation of am,n and bm,n

for all n, zj,pm ∈ {0, 1}N
m
c are binary variables encoding that

at least one half-space constraint must hold, and zj,pm (n) is the
nth entry of zj,pm . For demonstration ξloc

j to be locally-optimal,
we know that for each p ∈ ξloc

j , the complementary slackness
condition, λj,p(m,n),¬k(a>m,np − bm,n(θ)) = 0, must hold for
at least one n and for all m in Eq. (12). Furthermore, in
the stationarity condition (5h), λj,p(m,n),¬k∇pg(m,n),¬k(ξloc

j , θ)

terms should only be included for (m,n) pairs where the
complementary slackness condition is enforced. To implement
this, we can enforce that λj,p(m,n),¬k(a>m,np − bm,n(θ)) = 0

holds for all p ∈ ξloc
j , for all m ∈ {1, ..., Nc}, and for some

n ∈ {1, ..., Nm
c } by writing:

∀p,m,
[

λj,pm,¬k
A>
mp− bm(θ)

]
≤M

[
zj,pm,1
zj,pm,2

]
, zj,pm,1 + zj,pm,2 ≤ 2− qj,pm ,

∑Nm
c

n=1 qj,pm (n) ≥ 1, zj,pm,1, zj,pm,2, qj,pm ∈ {0, 1}Nm
c

(14)

together with (5d) and (5e), where we use a big-M formu-
lation with binary variables z (encoding the complementary
slackness condition) and q (encoding if the complementary
slackness condition is being enforced). We have denoted
ηj,pm

.
= [ηj,p(m,1), . . . , η

j,p
(m,Nm

c )]
> for η ∈ {λ, z, q}. Next, we

replace line 2 of constraint (5h) with:
Nc∑
m=1

[
(λj,pm,¬k � qj,pm )>∇p(bn(θ)−A>

mp)
] .
=

Nc∑
m=1

qj,pm
>
Lj,pm (15)

for all p ∈ ξloc
j , where the (i, n)-th entry of Lj,pm ∈ RNm

c ×|p|,
Lj,pm (i, n), refers to λj,p(m,n),¬k∇p(i)(bm,n(θ) − a>m,np). Note
that λ (continuous variables) and q (binary variables) are
bilinear (as ∇p(bm,n(θ) − a>m,np) has no decision variables
as θ does not multiply p). By assuming bounds M ≤
Lj,pm (i, n) ≤ M , this can be reformulated exactly in a linear
fashion (i.e. linearized) [23] by replacing each bilinear product
qj,pm (n)Lj,pm (i, n) in (15) with slack variables Rj,p

m (i, n) and
adding constraints (where q̃j,pm (n)

.
= 1− qj,pm (n) for short):

min(0,M) ≤ Rj,p
m (i, n) ≤M

Mqj,pm (n) ≤ Rj,p
m (i, n) ≤Mqj,pm (n)

Lj,pm (i, n)− q̃j,pm (n)M ≤ Rj,p
m (i, n) ≤ Lj,pm (i, n)− q̃j,pm (n)M

Rj,p
m (i, n) ≤ Lj,pm (i, n) + q̃j,pm (n)M

(16)

Finally, let Rj
m / Ljm be the horizontal concatenation of Rj,p

m

/ Lj,pm , for all p ∈ ξloc
j . We can now pose the full problem:

Problem 4 (KKT inverse, unions):
find θ,λj,pk ,λj,p¬k,ν

j
k,R

j
m,L

j
m,q

j,p
m , zj,pm,1, z

j,p
m,2,

∀p ∈ ξloc
j ,m = 1, ..., Nc, j = 1, ..., Ns

s.t. -------- Primal feasibility --------
Equation (13), j = 1, ..., Ns
--- Lagrange mult. nonnegativity ---
λj,pk ≥ 0, ∀p ∈ ξloc

j , j = 1, . . . , Ns
λj,pm,¬k ≥ 0, ∀p ∈ ξloc

j , m = 1, ..., Nc, j = 1, ..., Ns
------ Complementary slackness -----
Equation (14), j = 1, . . . , Ns
----------- Stationarity -----------
∇ξxucΠ(ξ

loc
j ) + λj¬k

>∇ξxugk(ξ
loc
j ) +

∑Nc
m=1 1

>
Nm

c
Rj
m

+νj¬k
>∇ξxuhk(ξ

loc
j ) = 0, j = 1, ..., Ns

Equation (16), ∀p ∈ ξloc
j ,m = 1, ..., Nc,

n = 1, ..., Nm
c , j = 1, ..., Ns

(17)
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C. Extraction of safe and unsafe states

Before moving onto affine parameterizations, we first detail
how to check guaranteed safeness/unsafeness (as defined in
(8)-(9)). One can check if a constraint state p ∈ Gs or p ∈ G¬s
by adding a constraint g(p, θ) > 0 or g(p, θ) ≤ 0 to Problem
2 and checking feasibility of the resulting program:

Problem 5 (Query if p is guaranteed safe OR unsafe):
find θ,λjk,λ

j
¬k,ν

j
k, j = 1, ..., Ns

s.t. {KKT(ξloc
j )}Ns

j=1, g(p, θ) > 0 OR g(p, θ) ≤ 0 (18)

If Problem 5 is infeasible, then p ∈ Gs or p ∈ G¬s. Solving
this problem is akin to querying an oracle about the safety of
p. The oracle can return that p is guaranteed safe (program
infeasible after forcing p to be unsafe), guaranteed unsafe
(program infeasible after forcing p to be safe), or unsure
(program is feasible despite forcing p to be safe or unsafe).

Since the constraint space is continuous, it is not possible to
check via enumeration if each p ∈ G¬s or p ∈ Gs. To address
this, we can check the neighborhood of a constraint state pquery
for membership in G¬s by solving the following:

Problem 6 (Volume extraction):
minimize

ε,pnear,θ,λ
j
k,λ

j
¬k,ν

j
k

ε

subject to {KKT(ξloc
j )}Ns

j=1

‖pnear − pquery‖∞ ≤ ε
g(pnear, θ) > 0

(19)

Intuitively, Problem 6 finds the largest box centered at pquery
contained within Gs. An analogous problem can also be posed
to recover the largest hypercube centered at pquery contained
within G¬s. For some common parameterizations (axis-aligned
hyper-rectangles, convex sets), subsets of Gs and G¬s can be
even more efficiently recovered by performing line searches
or taking convex hulls of guaranteed safe/unsafe states, details
of which are in Appendix B of [6]. Volumes of safe/unsafe
space can thus be produced by repeatedly solving Problem 6
for different pquery.

D. KKT relaxation for unions of affine constraints

Now, consider when Problem 1 involves avoiding an unsafe
set A(θ) described by a union of affine constraints:

A(θ) =

Nc⋃
i=1

{p | gi,¬k(p, θ) > 0} (20)

where gi,¬k(p, θ) is an affine function of θ for fixed p. Unlike
in Sec. IV-B, formulating the recovery problem like Problem
4 yields trilinearity in the stationarity condition between
continuous variables θ and λ and binary variables q, since
for the affine case, ∇ξxugi,¬k(·, θ) remains a function of θ.
As the product of two continuous decision variables cannot
be linearized exactly, one must solve a MINLP to recover θ
in this case, which can be inefficient. However, a relaxation
which enables querying of guaranteed safeness/unsafeness via
Problem 5 can be formulated as a MILP. For legibility, we
present the Nc = 1 case, where there is only one affine
constraint (and hence the binary variables q seen in Problem
4 are all set to 1 and can thus be dropped). Each bilinear
term λj,p1,¬k∇pg1,¬k(p, θ) is replaced with lj,p1 zj,p1,1, where lj,p1

is a variable which represents the bilinear term and zj,p1,1 is an
indicator variable encoding that if zj,p1,1 is 0, then λj,p1,¬k must
be 0. Hence, by linearizing the bilinear term as such, there is
no relaxation gap when the Lagrange multipliers are zero; the
only loss is when the Lagrange multipliers are non-zero (i.e.
when the demonstration touches the constraint boundaries). In
this case, coupling between λ and θ is lost by introducing
the lj,p1 variables. We further linearize lj,p1 zj,p1,1 (product of
continuous, binary variables) with the same procedure in Sec.
IV-B by again introducing slack variables rj,p1 and constraining
them accordingly with (16), where the qj,pm,n are replaced
with zj,p1,1. Putting things together, we can write the following
relaxed constraint recovery problem for Nc = 1:

Problem 7 (KKT relaxation, affine):

find θ,λj,pk ,λj,p¬k,ν
j
k, r

j
1, `

j
1, z

j,p
1,1, z

j,p
1,2, ∀p ∈ ξ

loc
j , j = 1, ..., Ns

s.t. -------- Primal feasibility --------
g1,¬k(p, θ) ≤ 0, ∀p ∈ ξloc

j , j = 1, . . . , Ns
--- Lagrange mult. nonnegativity ---
λj,pk ≥ 0, ∀p ∈ ξloc

j , j = 1, . . . , Ns
λj,p1,¬k ≥ 0, ∀p ∈ ξloc

j , j = 1, . . . , Ns
------ Complementary slackness -----[

λj,p1,¬k
−g1,¬k(p, θ)

]
≤M

[
zj,p1,1

zj,p1,2

]
, zj,p1,1 + zj,p1,2 ≤ 1,

∀p ∈ ξloc
j , j = 1, . . . , Ns

----------- Stationarity -----------
∇ξxucΠ(ξ

loc
j ) + λjk∇ξxugk(ξ

loc
j ) + rj1

+νjk∇ξxuhk(ξ
loc
j ) = 0, j = 1, . . . , Ns

min(0,M)1 ≤ rj1 ≤M1, Mzj1,1 ≤ rj1 ≤Mzj1,1,

`j1 − (1− zj1,1)M ≤ rj1 ≤ `
j
1 − (1− zj1,1)M,

rj1 ≤ `
j
1 + (1− zj1,1)M, j = 1, . . . , Ns

(21)

where rj1, zj1,1, `j1 denote horizontal concatenation of rj,p1 ,
zj,p1,1, lj,p1 for all p ∈ ξloc

j . The case if the constraint is a union
of affine constraints yields quadrilinearity and can be handled
similarly, requiring one extra step to linearize the products of
binary variables qj,pm and zj,p1,1, which can be done exactly.

While Problem 7 cannot recover the constraint parameter θ
directly, one can still check if a constraint state is guaranteed
safe/unsafe using Problem 5 (see Theorem 2 for reasoning).

E. Unknown constraint parameterization
In many applications, we may not know a constraint pa-

rameterization a priori. However, complex unsafe/safe sets can
often be approximated as the union of many simple unsafe/safe
sets. Thus, we adapt the method in [6] for incrementally
growing a parameterization based on the complexity of the
provided demonstrations. More precisely, suppose the true
parameterization g(p, θ) of the unsafe set A(θ) = {p |
g(p, θ) > 0} is unknown but can be exactly/approximately
written as the union of N∗ simple sets A(θ) u

⋃N∗
i=1{p |

gs(p, θi) > 0} .
=
⋃N∗
i=1A(θi). Each simple set A(θi) has a

known parameterization gs(·, ·) but N∗, the minimum number
of simple sets needed to reconstruct A, is unknown. We can
estimate a lower bound on N∗, N , by incrementally adding
simple sets until Problem 2 is feasible (i.e. there exists a
sufficiently complex constraint which can satisfy the demon-
strations’ KKT conditions). Issues with conservativeness of
the recovered constraint when N < N∗ are discussed in [6]
and also hold here, which we omit for brevity.
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F. Handling cost function uncertainty
We now extend the KKT conditions presented in (5) and

Problems 2 and 3 to learn constraints with parametric uncer-
tainty in the cost function (i.e. if γ in Problem 1 is unknown).
To address this, the first term in the stationarity condition (5h)
must be changed to ∇ξxucΠ(ξloc

j , γ). Then, if cΠ(·, γ) is affine
in γ, γ can be found using a MILP.

Querying/volume extraction holds just as before; the only
difference is that γ is now a decision variable in Problem 5/6.
Note we are extracting constraint states that are guaranteed
safe/unsafe for all possible cost parameters; that is, we are
extracting safe/unsafe sets that are robust to cost uncertainty.

We summarize what we can solve for when using various
parameterizations. For the exact cases, we can solve for θ and
γ, but when relaxing, we can only solve for S and A via
queries. Note the constraint/cost can be nonlinear in p without
inducing relaxation, though it precludes usage of Problem 6
(as p is a decision variable in the latter, but not the former):

Constraint param. Cost param. Recover θ, γ? Gs/G¬s
θ: form of (10); p: affine γ: affine; p: nonlin. Yes: Prob. 4 Prob. 5/6
θ: form of (10); p: nonlin. γ: affine; p: nonlin. Yes: Prob. 4 Prob. 5
θ: form of (20); p: nonlin. γ: affine; p: nonlin. No Prob. 5

This only describes what we can solve for; the actual accuracy
of the recovered θ and γ and the size of the recovered Gs /
G¬s depends on how informative the demonstrations are, i.e.
the demonstrations should interact with the constraint.

G. Applications to safe planning
As learned constraints can be reused for novel tasks with the

same safety requirements, we end this section by describing
how our method can be used within a planner to guarantee
the safety of trajectories planned for such tasks. Recall that
Problems 5 and 6 can be used to query if a constraint state
p or a region around p is guaranteed safe/unsafe. The planner
can use this information by either:
• Extracting an explicit representation of the constraint by

repeatedly solving Problem 6 for different pquery to cover
S and A. Denote these extracted sets as Ŝ ⊆ S and
Â ⊆ A (the conservativeness of our method is proved in
Sec. V-A). Then, Ŝ can be passed to a planner and quickly
used for constraint/collision checking via set-containment
checks. A planned trajectory is guaranteed safe if each
state on it lies in Ŝ, since Ŝ is contained in true safe set
S. If Ŝ is small and the planner cannot find a feasible
trajectory, we can at least guarantee that a trajectory is
not definitely unsafe it it does not intersect with Â, as Â
is contained in the true unsafe set A.

• Extracting an implicit representation of the constraint by
solving Problem 5 as needed by the planner. This may
be less computationally efficient than the explicit case,
but we demonstrate in Sec. VI-C that we still achieve
reasonable planning times for a 7-DOF arm.

V. THEORETICAL ANALYSIS

In this section, we prove that our method provides a
conservative estimate of the guaranteed learned safe/unsafe
sets Gs,G¬s (Sec. V-A) and prove learnability results using
locally-optimal demonstrations (Sec. V-B).

A. Conservativeness
Definition 1 (Implied unsafe/safe set): For some set B ⊆ Θ,

let I¬s(B)
.
=
⋂
θ∈B{x | g(x, θ) > 0} be the set of states

implied unsafe by restricting the parameter set to B, i.e. I¬s(B)
is the set of states that all θ ∈ B mark as unsafe. Similarly, let
Is(B)

.
=
⋂
θ∈B{x | g(x, θ) ≤ 0} be the set of states implied

safe by restricting the parameter set to B.
We further introduce the following lemma:
Lemma 1 (Lemma C.1 in [6]): Suppose B ⊆ B̂, for some

other set B̂. Then, I¬s(B̂) ⊆ I¬s(B) and Is(B̂) ⊆ Is(B).
Theorem 1 (Conservativeness of Problem 2): Suppose the

constraint parameterization g(x, θ) is known exactly. Then,
extracting Gs and G¬s (as defined in (8) and (9), respectively)
from the feasible set of Problem 2 projected onto Θ (denoted
as F) returns G¬s ⊆ A and Gs ⊆ S.

Proof 1: We first prove that G¬s ⊆ A. Suppose that there
exists x ∈ G¬s such that x /∈ A. Then by definition, for all
θ ∈ F , g(x, θ) > 0. However, we know that all locally-optimal
demonstrations satisfy the KKT conditions with respect to
the true parameter θ∗; hence, θ∗ ∈ F . Then, x ∈ A(θ∗).
Contradiction. Similar logic holds for proving that Gs ⊆ S .
Suppose that there exists x ∈ Gs such that x /∈ S . Then by
definition, for all θ ∈ F , g(x, θ) ≤ 0. However, we know that
all locally-optimal demonstrations satisfy the KKT conditions
with respect to the true parameter θ∗; hence, θ∗ ∈ F . Then,
x ∈ S(θ∗). Contradiction.

Remark 1: Unfortunately, it is difficult to guarantee con-
servativeness when using suboptimal demonstrations (solving
Problem 3), as the relationship between cost suboptimality and
KKT violation is generally unknown. However, we note in
practice that the Gs,G¬s recovered using suboptimal demon-
strations still tend to be conservative (see Sec. VI-B).

Theorem 2 (Conservativeness of Problem 7): Suppose the
constraint parameterization g(x, θ) is known exactly. Then,
extracting Gs and G¬s (as defined in (8) and (9), respectively)
from the feasible set of Problem 7 (denoted as F) returns
G¬s ⊆ A and Gs ⊆ S.

Proof 2: Denote the Θ-projected feasible set of the original
unrelaxed problem (i.e. variables ri are not introduced and
the bilinear terms between θ and λ remain) as FMINLP and
the Θ-projected feasible set of Problem 7 as F . Using the
logic in Theorem 1, extracting Gs and G¬s from FMINLP yields
Gs ⊆ S and G¬s ⊆ A (since FMINLP is the true feasible set,
like assumed in Theorem 1). Furthermore, FMINLP ⊆ F , since
relaxing the bilinear terms to linear terms in Problem 7 ex-
pands the feasible set compared to the unrelaxed problem. By
definition, Gs = Is(FMINLP) and G¬s = I¬s(FMINLP), and via
Lemma 1, Is(F) ⊆ Is(FMINLP) and I¬s(F) ⊆ I¬s(FMINLP).
Hence, Is(F) ⊆ S and I¬s(F) ⊆ A.

Remark 2: For brevity, we omit conditions on M,M,M
for conservativeness; it is well-known that this is achieved by
choosing the big-M constants to be sufficiently large [22].

B. Global vs local learnability

Definition 2 (Local learnability): A state x ∈ A is locally
learnable if there exists any set of Ns locally-optimal demon-
strations, where Ns may be infinite, such that x ∈ I¬s(F),
where F is the Θ-projected feasible set of Problem 2. We also
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define the locally learnable set of unsafe states G loc,∗
¬s as the

union of all locally learnable states.
Definition 3 (Global learnability): A state x ∈ A is

globally learnable if there exists any set of Ns globally-
optimal demonstrations and N¬s sampled strictly lower-cost
(and hence unsafe) trajectories, where Ns and N¬s may be
infinite, such that x ∈ I(Fglo), where Fglo is the feasible set
of Problem 2 in [6] (which recovers a constraint consistent
with the demonstrations and sampled unsafe trajectories).
Accordingly, we define the globally learnable set of unsafe
states Gglo,∗

¬s as the union of all globally learnable states.
Note that a safe state xs ∈ S can always be learned

guaranteed safe, as there always exists a safe globally-optimal
or locally-optimal demonstration passing through xs. Armed
with these definitions, we show the following:

Theorem 3 (Global vs local): Suppose the initial constraint
parameter set Θ is identical for both the local and global
problems. Then, G loc,∗

¬s ⊆ G
glo,∗
¬s .

Proof 3: Any globally-optimal demonstration must also
satisfy the KKT conditions, as it is also locally-optimal.
Further conditions (in the form of lower-cost trajectories being
infeasible) must be imposed on a constraint parameter for
it to be globally-optimal. Hence, Fglo ⊆ F . By Lemma 1,
I(F) ⊆ I(Fglo), and thus G loc,∗

¬s ⊆ G
glo,∗
¬s .

Note that Theorem 3 holds in the limit of having sampled all
unsafe trajectories. In practice, the sampling is nowhere near
complete, especially for nonlinear dynamics. We see in these
cases (Sec. VI-C) that our KKT-based method learns more
compared to sampling-based techniques. Finally, we note that
cost function uncertainty can only decrease learnability, as it
enlarges the feasible set of Problem 2.

VI. RESULTS

We show our method, first on 2D examples (Sec. VI-A)
for intuition, and then on high-dimensional 7-DOF arm (Sec.
VI-B) and quadrotor (Sec. VI-C) constraint-learning problems
(see the accompanying video for experiment visualizations).
All computation times are recorded on a laptop with a 3.1
GHz Intel Core i7 processor and 16 GB RAM.

A. 2D examples
Global vs. local: Assuming global demonstration optimality
can enlarge Gs/G¬s compared to assuming local optimality
(Theorem 3). In this example, we show some common differ-
ences in the learned constraints when assuming global/local
optimality. Consider a 2D kinematic system χt+1 = χt + ut,
χ = [x, y]>, ‖ut‖ ≤ 1 avoiding the pink obstacle in Fig.
1. We use an axis-aligned box constraint parameterization. In
Fig. 1 (left), by assuming the demonstrations (cyan, green)
are globally-optimal and sampling lower-cost trajectories (the
middle state on each trajectory is plotted in red), the hatched
area is implied guaranteed unsafe, as any axis-aligned box
containing the sampled unsafe states (in red) must also contain
the hatched area. In contrast, assuming local optimality gives
us zero volume learned guaranteed safe/unsafe, as a measure-
zero horizontal line obstacle (orange dashed) can make the
demonstrations locally-optimal: as the line supports the mid-
dle state on each demonstration, the cost cannot be locally
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-1 -0.5 0 0.5 1
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-1 -0.5 0 0.5 1
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0
1
2
3

Fig. 1. Left: local learns less than global. Center: local learns the same as
global. Right: global recovers non-conservative solution. Red: sampled unsafe
trajectories. Pink: true constraint. Green/cyan: demonstrations.

-3 -2 -1 0 1 2

-2

-1

0

1

2 Fig. 2. Nonlinear
constraint. Blue: true
constraint boundary.
Red/green states: learned
in G¬s/Gs. Purple/orange:
two demonstrations.

improved. In Fig. 1, center, we show a case where there is
no gap in learnability: without assuming a parameterization,
the demonstrations can be explained by two horizontal line
obstacles, but together with the box parameterization, we
recover Gs = S and G¬s = A. Fig. 1 (right) shows that
assuming global optimality may result in non-conservative
constraint recovery (e.g. if the dotted red line were a sampled
unsafe trajectory), while a horizontal line obstacle (orange
dashed line) can explain local optimality of the demonstration,
yielding conservative constraint recovery.
Effects of cost uncertainty: We show that learnability under
cost uncertainty is more related to the possible behaviors
that a cost uncertainty set can represent, rather than the
actual size of the cost parameter space. For the demonstra-
tions/constraint in the center plot of Fig. 1, consider the
following cost uncertainty sets: A) c(ξ) =

∑T−1
t=1 γ1(xt+1 −

xt)
2 + γ2(yt+1 − yt)2, where γi ∈ [−5, 5], i = 1, 2 and B)

c(ξ) =
∑10
k=1

∑T−1
t=1

(
γ1,k(xt+1−xt)2k +γ2,k(yt+1− yt)2k

)
,

where γi,k ∈ [0.001, 5] for all i, k. While Set A has a
much smaller parameter space compared to Set B (2 vs 20
parameters), allowing γ1, γ2 to take negative values enables the
case where the demonstrator wants to maximize path length
(i.e. set γ1 = γ2 = −1). For fixed start/goal states and control
constraints, the observed demonstrations are actually locally-
optimal with respect to a cost function which maximizes path
length in an environment with no box state space constraint.
Hence, for Set A, our method returns Gs = G¬s = ∅. In
contrast, while Set B has a much larger parameter space, the
range of allowable behaviors is small (all cost terms must
penalize path length). Thus, despite the large cost parameter
space, Gs = S and G¬s = A.
Nonlinear constraint: We emphasize that while our method
requires an affine parameterization in the constraint parame-
ters, constraints that are nonlinear in the constraint state can
still be learned. Consider a parameterization g1,¬k(p, θ) =
2(x4 + y4)− 5(x3 + y3) + 5(x− 1)3 + 5(y + 1)3 − θ, which
yields a highly nonlinear state space constraint. With two
demonstrations for θ = 2 (see Fig. 2), Gs = S and G¬s = A.

B. 7-DOF arm

Robot bartender: Consider a 7-DOF Kuka iiwa robot bar-
tender which must deliver a drink from the bar cabinet (Fig.
3, brown box) or from another bartender to a customer at the
counter (Fig. 3, gray box). To do this, the arm must satisfy
an end-effector pose constraint to avoid spilling the drink, and
the swept volume of the arm must not collide with the bar
furniture while satisfying proxemics constraints (Fig. 3, green
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Fig. 3. Left:
demonstra-
tions for
bartender
example.
Right: novel
trajectories
planned
with learned
constraint.
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Fig. 4. Arm bartender statistics; x-axis color-coded with demos in Fig. 3.

box) with respect to the customer. We use a kinematic model
of the arm, jit+1 = jit +uit, i = 1, ..., 7, where ‖ut‖22 ≤ 0.8 for
all t. Five suboptimal human demonstrations, optimizing joint-
space path length c(ξ) =

∑T−1
i=1 ‖jt+1 − jt‖22, are captured in

a virtual reality environment using an HTC Vive. The prox-
emics constraints encoded in the demonstrations (Fig. 3, left)
disallow the arm from getting too close to the customer and
from making large sweeping motions from the left, right, and
particularly the top, as the customer can perceive such motions
as aggressive. We aim to learn these 15 constraint parameters:
[xctr, zctr, zctr] (unknown extents of the bar top), [xcab, zcab] (un-
known extents of the bar cabinet), [α, α, β, β, γ, γ] (unknown
pose constraint), and [xprox, yprox, yprox, zprox] (box proxemics
constraint).

The constraint parameters are recovered using the subopti-
mal analogue of Problem 4 (i.e. using the objective function
of Problem 3), taking 17.2 seconds to solve when using all
demonstrations. For tractability, we approximate the swept
volume constraint by sampling 18 points on the volume of
the arm, mapping them through the arm’s forward kinematics,
and ensuring that the resulting points are consistent with the
obstacle avoidance/proxemics constraint parameters. We solve
Problems 5/6 to extract the learned guaranteed safe/unsafe
sets Gs/G¬s, where each query takes 16.4/12.1 seconds on
average over 10 queries. Fig. 4 shows the coverage of Gs/G¬s

Fig. 5. Left:
arm demos
for ellipse
example.
Right: novel
trajectories
planned
using
learned
constraint.

Fig. 6. Left:
quadrotor
demon-
strations.
Right: novel
planned
trajectories.

compared to the true safe/unsafe sets S/A, as well as the
accuracy of the claimed safe/unsafe sets (Fig. 4). We use the
sampling-based approach described in [6] with Problem 3 of
[6] as a baseline. We note that [6] will have difficulty with
this example, since the swept volume constraint scales the
number of decision variables in Problem 3 of [6] by a factor
of 18; this limits the number of trajectory samples which can
be tractably used in the constraint-recovery problem. Despite
this, the pose constraint is learned fairly well by both the
baseline and our method, though the baseline experiences
accuracy dips due to suboptimality causing some safe lower-
cost trajectories. However, the baseline performs poorly on
the position constraints, as it does not learn that the bar top
or the bar cabinet are unsafe and does not fully learn the
safe set, due to insufficient trajectory samples. In contrast,
our KKT-based approach recovers Gs = S and G¬s = A.
Finally, we extract volumes of guaranteed safe space using the
procedure in Sec. IV-C and provide the extracted constraint to
the CBiRRT planner [24], generating the novel safe trajectories
in Fig. 3 (right). This experiment suggests that when Problem
1 has many constraints (in this case, due to the swept volume),
sampling trajectories leads to worse scalability and constraint-
recovery performance compared to our KKT-based approach.
Elliptical end-effector constraint: This example is meant to
demonstrate the efficacy of using Problem 5 in the planning
loop. Suppose the arm is manipulating a heavy object near
some glassware. For safety, the end effector’s center of mass
is constrained to lie outside an elliptical cylinder containing
the glassware: χ>t A(θ)χt − 2b(θ)>χt + c(θ) > 0, where
χt = [xt, yt]

>, A(θ) = diag([0.5, 2]), b(θ) = [0, 1.1]>, and
c(θ) = 0.505. We modify Problem 5 to use the affine-relaxed
KKT conditions, and solving this problem using two demon-
strations (Fig. 5, left) is enough to recover Gs = S , G¬s = A
via queries. To plan novel constraint-satisfying trajectories, we
use STOMP [25], where the usual collision/constraint checker
is replaced with Problem 5. We show two planned trajectories
(Fig. 5, right), where the planning times were 2 and 6 minutes.
Averaged over 10 different queries, solving Problem 5 takes
0.073 seconds. We note that this can be sped up by warm-
starting Problem 5 with the results of previous queries (since
like many trajectory optimizers, STOMP samples points near
previous iterates).

C. Quadrotor
We consider the scenario of a quadrotor carrying a delicate

payload in an urban environment (see Fig. 6). Accordingly,
the quadrotor is constrained to not collide with surrounding
buildings (i.e. (x, y, z) /∈ ([x1, x1] × [y

1
, y1] × [0, z1]) ∨

([x2, x2]×[y
2
, y2]×[0, z2])), satisfy control constraints ‖ut‖ ≤

U , pose constraints α ∈ [α, α], β ∈ [β, β], γ ∈ [γ, γ], and

angular velocity constraints α̇ ∈ [α̇, α̇], β̇ ∈ [β̇, β̇], γ̇ ∈
[γ̇, γ̇]. In this problem, we aim to recover all of these con-
straints (23 unknown constraint parameters total) using the six
demonstrations in Fig. 6 (left) by solving Problem 4, which
takes 19.4 seconds when using all demonstrations. We start
from a single box parameterization for each constraint and
detect from infeasibility that another box should be added
to the position constraint parameterization (see Sec. IV-E).
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Fig. 7. Quadrotor statis-
tics: coverage and accuracy
for Gs, G¬s. Demonstra-
tion axis is color coded with
the demonstrations shown
on the left in Fig. 6.

The demonstrations are synthetically generated by solving
trajectory optimization problems for the cost function c(ξ) =∑
r∈R

∑T−1
t=1 γr(rt+1 − rt)

2, where R = {x, y, z, α̇, β̇, γ̇}
and γr = 1. Our algorithm assumes parametric cost uncer-
tainty of γr ∈ [0.01, 3], and we assume the cost function is
known exactly for the baseline [6]. This problem is especially
challenging for the baseline, since having many unknown
constraint parameters can lead to non-identifiability of the
constraint from the sampled trajectories. Furthermore, the
nonlinearity of the quadrotor dynamics (we use the dynamics
in [6]) makes sampling difficult. We compute Gs/G¬s via
Problems 5/6, taking 26.6/43.0 seconds on average over 10
different queries. Fig. 7 compares the coverage and accuracy
of Gs and G¬s between our approach and the baseline [6]
for each of the constraint spaces (position, pose, velocity, and
control). The baseline and our approach perform comparably
for some of the “simpler” convex constraints (e.g. the angular
velocity/control safe sets). However, the baseline struggles to
learn the unsafe sets (due to the simultaneous identification of
so many constraints from poor trajectory samples) and position
constraints (as the quadrotor has second order dynamics,
it is difficult to sample combinations of trajectories which
uniquely imply a single state is unsafe). We also note that the
baseline accuracies fluctuate greatly due to imperfect trajectory
sampling and the difficulty of distinguishing between multiple
constraints: different data may cause the optimization to switch
unsafeness assignments from one constraint to another active
constraint). By extracting volumes of Gs using the method in
Sec. IV-C, we pass Gs to a trajectory optimizer [26] to generate
novel safe trajectories (Fig. 6, right). This experiment suggests
that by avoiding trajectory sampling, our KKT-based approach
performs better on high-dimensional nonlinear systems.

VII. DISCUSSION AND CONCLUSION

We present an algorithm which uses the KKT optimal-
ity conditions to determine constraints that make observed
demonstrations appear locally-optimal with respect to an un-
certain cost function. As the KKT conditions are an implicit
condition on the set of constraints that can possibly explain
the demonstrations, we sidestep the shortcomings of previous
methods [5], [6] which rely on sampling lower-cost trajectories
as explicit certificates of unsafeness. In future work, we aim
to address two shortcomings of our method: first, we require
the dynamics to be known in closed form, while [5], [6] just
need a simulator; second, the number of decision variables in
our method scales linearly with the number of demonstrations,
making it important that the demonstrations are informative
with respect to the unknown constraint. To address these
issues, we plan to extend our method to handle uncertain
dynamics and develop an active learning method to obtain
informative demonstrations.
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