
Learning for Humanoid Multi-Contact Navigation
Planning

by

Yu-Chi Lin

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Robotics)

in The University of Michigan
2020

Doctoral Committee:

Associate Professor Dmitry Berenson, Chair
Associate Professor Odest Chadwicke Jenkins
Associate Professor Matthew Johnson-Roberson
Associate Professor Ludovic Righetti, New York University

Yu-Chi Lin

linyuchi@umich.edu

ORCID iD: 0000-0001-5259-534X

c© Yu-Chi Lin 2020

For the freedom of mankind

ii

ACKNOWLEDGEMENTS

First, I would like to thank Dmitry for giving me the opportunity to be a part of the

Autonomous Robotic Manipulation Lab, and generously supporting me throughout

my PhD study. I also would like to thank Ludovic for advice during and after my

internship at Max Planck Institute. Thank you to my other committee members, Prof.

Jenkins and Prof. Johnson-Roberson. Although we only had a few opportunities to

meet, I am grateful for your suggestions.

Thanks to all my labmates. You have made all the difference in making my time

in ARM lab a great experience. Special thanks to Dale, Andreas, Ruikun, Brad, Glen

and Andrew for countless meaningful discussions which helped me in completing this

dissertation. I also would like to thank other members of the lab for broadening my

knowledge in robotics, software engineering, and many other subjects.

Thanks to my collaborators in Machine in Motion Lab in Max Planck Institute and

New York University. I really enjoyed the 2018 summer time in Tuebingen with beer,

BBQ and the world cup. I would like to thank Brahayam, Majid, Julian, Miroslav,

and Andrea for our discussions about humanoid momentum optimizations and neural

networks, which finally evolve into a major contribution of this dissertation.

Thanks to Robert, Jerry and other friends in IHMC to give me the opportunity to

intern at the Robotics Lab in IHMC. Although I did not have enough time to make a

contribution, it is an invaluable experience to me to finally see a working humanoid

robot in close distance at the end of my PhD study.

Also thanks to Jessy, Ella, Denise, and all other professors, staffs and students in

the Robotics Program. Thank you for building up such an amazing program. I really

enjoy my time here, and appreciate all the support I got from the program and the

student community.

Finally, thank you to my family, who always unconditionally support me. Without

them, I would not have any chance to start this journey of PhD study, and I would

not be able to overcome the self-doubt and setbacks along the path. With them, I

know I will always have a home waiting for me to come back.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . xii

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

II. Related Work . 6

2.1 Energy-based Foot Placement Selection 6
2.2 Footstep Planning . 6
2.3 Contact Planning using Multi-contact Motion 7
2.4 Reuse Previous Motion Plans 7
2.5 Traversability Estimation . 8
2.6 Contact Planning Combined with Different Planners 8
2.7 Contact Planning Involed with Dynamics Constraints 8
2.8 Capturability Analysis . 9

III. Planning from Scratch: Humanoid Contact Planning by Solv-
ing a Graph Search Problem . 11

3.1 Contact Planning Problem Statement 11
3.2 Contact Planning by Solving a Graph Search Problem 11
3.3 State Feasibility Check . 13

IV. Retrieve and Adapt Previously Generated Motion Plan . . . 16

iv

4.1 Introduction . 16
4.2 Problem Statement . 17
4.3 The PFS Module . 18
4.4 Learning Part of the Retrieve and Adapt (RA) Module 18

4.4.1 Motion Plan Feature Extraction 18
4.4.2 K-Means Clustering 20

4.5 Query Part of the RA Module 21
4.5.1 Contact Region Extraction 21
4.5.2 Environment to Motion Plan Cluster Matching . . . 21
4.5.3 Local Trajectory Optimization 24

4.6 Experiments and Results . 24
4.6.1 Random Surface Environment Test 25
4.6.2 Testing in Physics Simulation 27

4.7 Conclusion . 27

V. Humanoid Contact Planning in Large Unstructured Environ-
ments Using Traversability-Based Segmentation 29

5.1 Introduction . 29
5.2 Problem Statement . 31
5.3 Method Overview . 31
5.4 Torso Pose Guiding Path . 32

5.4.1 Torso Pose Guiding Path Planning 33
5.5 Learning Traversability . 34
5.6 Torso Pose Guiding Path Segmentation 38

5.6.1 Decide Segment Exploration Order 39
5.7 The Planning From Scratch (PFS) Approach 40
5.8 The Retrieve and Adapt (RA) Approach 42

5.8.1 Constructing the Motion Plan Library 42
5.8.2 Querying the Motion Plan Library 43

5.9 Connecting the Contact Sequences 45
5.10 Experiment on a Real Robot Platform - A Mobile Manipulator

on a Steep Ramp . 45
5.11 Experiments on the Proposed Framework 47

5.11.1 Two-Corridor Environment Test 49
5.11.2 Two-Staircase Environment Test 50

5.12 Conclusion . 50

VI. Efficient Humanoid Contact Planning using Learned Cen-
troidal Dynamics Prediction . 51

6.1 Introduction . 51
6.2 Problem Statement . 52
6.3 Centroidal Momentum Dynamics Optimization 53
6.4 Anytime Graph-Search Contact Planner 55

v

6.5 Evaluation of the Dynamics of Contact Transitions 57
6.6 Learning the Result of the Dynamics Optimization of Contact

Transitions . 58
6.7 Experiments and Results . 59

6.7.1 Wide Gap Environment Test 60
6.7.2 Steep Slope Environment Test 60
6.7.3 Rubble Field Environment Test 64
6.7.4 Rubble Corridor Environment Test 64
6.7.5 Prediction of Dynamics Optimizer Results 65

6.8 Conclusion . 65

VII. Robust Humanoid Contact Planning with Learned Zero- and
One-Step Capturability Prediction 67

7.1 Introduction . 67
7.2 Problem Statement . 69
7.3 Iterative Kino-Dynamic Optimization 69
7.4 Modeling External Disturbances 70
7.5 Evaluation of Capturability 71
7.6 Learning the Result of the Kino-Dynamic Optimization of Cap-

ture Motions . 71
7.7 Anytime Discrete-Search Contact Planner 74

7.7.1 Modelling disturbance rejection probability 76
7.7.2 Capturability Cost 76
7.7.3 Contact Planning Heuristic 77

7.8 Experiments . 77
7.8.1 Prediction of Zero-Step and One-Step Capturability 79
7.8.2 Narrow Flat Ground Test Environment 80
7.8.3 Rubble with Wall Test Environment 80
7.8.4 Oil Platform Test Environment 80
7.8.5 Summary of the Planning Results 81

7.9 Discussion . 81
7.10 Conclusion . 83

VIII. Conclusion . 84

APPENDICES . 85

BIBLIOGRAPHY . 86

vi

LIST OF FIGURES

Figure

1.1 Examples of unstructured environments. Top: A large environment
featuring rubble surfaces, and long stairways covered with debris.
Bottom Left: Surfaces with irregular shape extracted from a ship en-
vironment. Bottom Right: A rubble corridor environment emulating
a disaster scene. 2

3.1 Left: Foot contact transition model (57 steps); Middle: The projec-
tions of foot contact to get the next step pose; Right: An example of
palm contact transition model . 12

4.1 Left: A humanoid follows a planned sequence of contact poses to
navigate in a complex unstructured environment modeled as a set of
contact regions. Right: The structure of the proposed framework . . 17

4.2 Contact region sampling . 22

4.3 Contact pose vs. contact region distance. 23

4.4 Examples of plans in rubble-like environments. Planned contacts for
left foot (red), purple (right foot), blue (left palm), and orange (right
palm). 25

4.5 Left: Success rate and Right: Average planning time of successful
trials for the Planning from Scratch (PFS) module, the RA module
and the proposed framework with different sizes of libraries 26

4.6 Left: Results with different library sizes; Right: Number of trials in
which PFS or RA finishes first for different library sizes. 27

4.7 Gazebo simulation of robot navigating through a rubble-like environ-
ment. 27

5.1 Using different motion modes to traverse unstructured environments. 30

vii

5.2 The data flow of the proposed framework. Yellow denotes that the
blocks operate on segments of the torso pose guiding path. 30

5.3 Torso pose transition model in the torso pose grid. Note that we
only show the translation for one torso orientation here. To generate
translation for other torso orientation, we rotate the ellipse, which
represents the moving range of the torso, to align with the torso ori-
entation and count all cells inside the ellipse as possible translations
for the torso orientation. 32

5.4 The grid of contact points on a surface plane. The distance of each
contact point to the closest obstacle or surface boundary is marked
in color spectrum order. Note that the light gray surface is covered
by the dark gray surface, which causes part of its contact points to
be infeasible. 36

5.5 Several example environments used to collect the motion plans to
construct the motion plan library. 43

5.6 The mobile manipulator used in the experiment. The end-effectors
are padded with foam covers to reduce damage on the surface of the
end-effector when making contacts. 47

5.7 The experiment setting: The mobile manipulator moves along a steep
ramp while using palm contacts to stabilize itself. The robot has to
find a contact sequence to move across the window, and can only
make contact to the four cracked wall surfaces showing in grey. . . . 48

5.8 Left: The planned contact sequence using the standard planner.
Right: The planned contact sequence using the proposed PFS plan-
ner. Left and right palm contact are shown in red and green, respec-
tively. 49

5.9 Executing a planned contact sequence in Left: a two-corridor envi-
ronment. Right: a two-staircase environment. 49

6.1 Left: The robot goes down a steep slope where quasi-static motions
are not available. Right: The robot goes through a rubble corridor
using both palm and foot contacts. 52

viii

6.2 Left: The foot contact transition model used in training data col-
lection. (38 steps) Middle: The foot contact transition model used
in the experiment. (60 steps) Right: The palm contact transition
model, expressed as the projections from the approximated shoulder
to a wall. 55

6.3 The simplified robot model, shown as the purple box, and the envi-
ronment overlayed with the SE(2) grid. 56

6.4 Left: All categories of the contact transitions. The inner or outer
foot means the foot in the same or opposite side of the palm contact.
Each dimension includes all the initial contact poses, the new con-
tact pose (if there is any), and initial center of mass (CoM) position
and velocity. Right: An example environment to collect the training
data. The tilting angle of each surface, the wall orientation, and wall
distance to the robot are randomly sampled. 57

6.5 Left: the classification network. Right: the regression network. . . . 59

6.6 Planning examples of the proposed approach for wide gap (top left),
steep slope (top right), rubble field (bottom left) and rubble corri-
dor (bottom right) environments. The red line and blue line mark
the predicted CoM trajectory, and the CoM trajectory returned by
the dynamics optimizer, respectively. Contact sequences include left
foot(red), right foot(green), left palm(cyan), and right palm(magenta)
contacts. 61

6.7 Planning examples of the quasi-static contact planner for rubble field
(left) and rubble corridor (right) environments. 62

6.8 Time required to find dynamically feasible contact sequence in rubble
field environments (Unit: second) 62

6.9 Results for the rubble field corridor environments: (1) Contact plan-
ning and (2) Dynamics optimization success rates (3) Average num-
ber of tested contact sequence to find a dynamically feasible sequence
(4) Mean dynamics objective of the whole contact sequence (5) Mean
lin. momentum norm (kg·m/s) (6) Mean lin. momentum rate norm
(kg·m/s2) (7) Mean angular momentum norm (kg·m2/s) (8) Mean
angular momentum rate norm (N·m) (9) Mean RMS contact force
norm (10) Mean contact torque (N·m) (11) Mean lateral contact force
norm (12) Mean center of pressure (CoP) distance to contact bound-
ary (m). Contact forces are normalized by the robot weight and are
unitless. In (5)-(12), means are computed over all time steps of all
dynamically feasible trials. 63

ix

6.10 Performance of the neural networks to predict dynamic feasibility,
dynamics objective, final CoM and CoM velocity of a contact transi-
tion. Refer to Figure 6.4 for the meaning of each contact transition
category index. 66

6.11 Relationship between the sum of the predicted dynamics objective of
contact transitions and the actual dynamics objective of the whole
contact sequence. Data taken from the rubble field and rubble cor-
ridor environments. The linear model showing the correlation is fit
with robust regression Holland and Welsch (1977). 66

7.1 The robot walks over a rubble, and is impacted by a disturbance.
Top: The robot walks close to the wall, and capture itself using a
palm contact on the wall. Bottom: The robot cannot reach the wall,
and falls down under the disturbance. 68

7.2 (a) Left: Foot contact transition model in searching contact sequence,
(b) Right: Possible foot and palm contact projections for one-step
capture motion given the standing foot pose. The projections are
shown on flat surfaces as an illustrative example. When generating
training data we sample contact poses with random tilt angles. . . . 72

7.3 Left: Capture motions considered in this work and their feature di-
mension. Every capture motion initially has one foot contact, and
the side of the palm contacts is relative to the standing foot side.
Right: The network structure to predict capturability. The learning
rate is 5×10−5 and there are dropout layers between fully-connected
layers with 0.1 dropout rate. 73

7.4 Approximated CoM position and linear momentum used to check
capturability in Swing Phase Discretization. Blue and yellow boxes
represent standing and swing foot, respectively. In practice, we let
nt = 4 to represent 4 time steps in the swing phase: 0+, 0.1, · · · , 0.3
seconds from the start of the swing. 75

7.5 From left to right: The planned footstep sequence in the narrow flat
corridor, the rubble with wall, and the oil platform (wind in −X and
+Y direcitons). The CoM trajectories returned by the kino-dynamic
optimizer given the footstep sequences are shown in blue. 78

7.6 The neural networks’ performance 79

x

7.7 The performance of each approach in all test environments. Note
that there are 4 and 6 time steps in swing and double support phase,
respectively. Psuccess(Tcp) is only affected by failed time step - distur-
bance pairs, so even some contact sequences are longer, its Psuccess(Tcp)
can still be higher. 82

xi

LIST OF ABBREVIATIONS

C-Space Configuration Space

DOF degree of freedom

PFS Planning from Scratch

RA Retrieve and Adapt

ANA* Anytime Non-parametric A*

CES Contact-consistent Elastic Strip

CoM center of mass

CoP center of pressure

xii

ABSTRACT

Humanoids’ abilities to navigate uneven terrain make them well-suited for dis-

aster response efforts, but humanoid motion planning in unstructured environments

remains a challenging problem. In this dissertation we focus on planning contact

sequences for a humanoid robot navigating in large unstructured environments us-

ing multi-contact motion, including both foot and palm contacts. In particular, we

address the two following questions: (1) How do we efficiently generate a feasible

contact sequence? and (2) How do we efficiently generate contact sequences which

lead to dynamically-robust motions?

For the first question, we propose a library-based method that retrieves motion

plans from a library constructed offline, and adapts them with local trajectory opti-

mization to generate the full motion plan from the start to the goal. This approach

outperforms a conventional graph search contact planner when it is difficult to de-

cide which contact is preferable with a simplified robot model and local environment

information. We also propose a learning approach to estimate the difficulty to tra-

verse a certain region based on the environment features. By integrating the two

approaches, we propose a planning framework that uses graph search planner to find

contact sequences around easy regions. When it is necessary to go through a difficult

region, the framework switches to use the library-based method around the region to

find a feasible contact sequence faster.

For the second question, we consider dynamic motions in contact planning. Most

humanoid motion generators do not optimize the dynamic robustness of a contact

sequence. By querying a learned model to predict the dynamic feasibility and robust-

ness of each contact transition from a centroidal dynamics optimizer, the proposed

planner efficiently finds contact sequences which lead to dynamically-robust motions.

We also propose a learning-based footstep planner which takes external disturbances

into account. The planner considers not only the poses of the planned contact se-

quence, but also alternative contacts near the planned contact sequence that can be

used to recover from external disturbances. Neural networks are trained to efficiently

predict multi-contact zero-step and one-step capturability, which allows the planner

to generate contact sequences robust to external disturbances efficiently.

xiii

CHAPTER I

Introduction

Humanoid robots and other kinds of legged robots navigate by breaking and mak-

ing contacts in the environment. Such motion only requires a small part of the envi-

ronment being contacted by the robot, and can overcome terrains with large sudden

changes in height, such as stairs. Moreover, compared to other legged robots with

more legs, humanoid robots have the smallest projection area on the ground, which

makes them more suitable to navigate through narrow spaces. Therefore, despite the

difficulty of controlling humanoid robots, humanoid robots are still promising solu-

tions for navigating in unstructured environment, such as a disaster site. In such

situation, the robots are expected to operate in very complicated and unstructured

environments with limited rescue time. Although a robot can be commanded by a

human with remote control, with limited communication bandwidth, the robot still

needs to plan its motion quickly. Therefore, this dissertation focuses on autonomous

humanoid navigation planning in large unstructured environments (see Figure 1.1).

Although the robot’s sensing range may be limited to only a few meters, it is still

important to construct a long-term navigation plan to ensure the robot can reach its

goal. Such a plan can be constructed from a pre-generated map of the environment;

e.g., using a drone to map the environment before the humanoid enters.

The most common formulation for robot motion planning is to plan in Configura-

tion Space (C-Space). This formulation captures the robot kinematics, which allows

a planner to easily check all the kinematic constraint including collision avoidance via

rejection sampling. However, such a formulation is very inefficient for humanoid

robots. First, humanoid robots generally have a high number of degree of free-

dom (DOF), which makes sampling configuration in the C-Space inefficient. Second,

humanoid robots navigate by making contacts, so a feasible configuration is always

limited to some lower-dimensional manifolds in C-Space. Each lower-dimensional

manifold corresponds to a set of contacts the robot makes, also called a stance in

1

Figure 1.1: Examples of unstructured environments. Top: A large environment fea-
turing rubble surfaces, and long stairways covered with debris. Bottom
Left: Surfaces with irregular shape extracted from a ship environment.
Bottom Right: A rubble corridor environment emulating a disaster scene.

this dissertation. Although projection methods can be applied to sample the config-

urations in lower-dimensional manifolds, the configuration samples are generally not

in the same lower-dimensional manifold. Therefore, the robot cannot simply move

between any two close configurations with straight lines in C-Space. Instead, the

robot has to first determine if the two configurations are in the same manifold before

moving from one configuration to the other.

To increase planning efficiency, many approaches (Kuffner et al., 2001; Chest-

nutt et al., 2003; Chung and Khatib, 2015; Ponton et al., 2016; Tonneau et al.,

2018) decompose the problem into planning a sequence of lower-dimensional man-

ifolds and then planning a trajectory within each lower-dimensional manifold. Each

2

lower-dimensional manifold corresponds to a set of contacts, so the planning of a

lower-dimensional manifold sequence is equivalent to the planning of a contact se-

quence, which we call contact planning throughout this dissertation. This formulation

can reduce the dimensionality of the problem if the robot has redundant manipula-

tors. Furthermore, since all the C-Space path corresponding to a contact transition

are represented by single edge in contact planning, the solution path in contact plan-

ning is much smaller in the number of edges than the one derived from directly

planning in C-Space, which reduces the search space significantly. Finally, in each

lower-dimensional manifold, the joint trajectories can be represented by some pre-

defined motion primitive, such as a parabolic trajectory for the moving end-effector,

and planning in C-Space can be avoided.

However, to plan contact sequence without C-Space still requires a simplified

model which aims to capture the robot’s kinematic and dynamic constraints, and

this approach suffers from the trade-off between planning efficiency and accuracy of

the simplified model. In structured environments (Kuffner et al., 2001; Chestnutt

et al., 2003), a simplified model can easily be found to capture the robot’s kinematic

and dynamic constraint, but it is challenging to find a simplified model working in

unstructured environments.

Therefore, we are interested in the contact planning of humanoid robot to traverse

unstructured environments, represented as a set of contactable surfaces, as shown in

Figure 1.1. In such environments, humanoid navigation can benefit greatly from

the use of palm contacts for more robust balance and control, but it poses important

computational challenges. First, adding palm contacts requires multiple non-coplanar

contacts, which prevents the use of some popular simplified dynamics models, such as

the linear inverted pendulum model, and the support polygon for balance checking.

Second, in multi-contact motion scenarios, the robot can use any combination of the

end-effectors, which increases the planning complexity, and emphasizes the need for

a fast evaluation of contact pose feasibility. Finally, it is also difficult to consider

dynamic robustness of multi-contact motions in contact planning because it requires

expensive computation to solve optimization problems.

In this dissertation, we summarize the above challenges as the following two ques-

tions:

• How do we efficiently generate a feasible contact sequence?

• How do we efficiently generate contact sequences which lead to dynamically-

robust motions?

3

The keys to both questions are the high dimensionality and branching factor in hu-

manoid contact planning using multi-contact motions. Fortunately, we can utilize

previous experience of the robot navigating in different environment and train mod-

els to help improve the efficiency of contact planning. Therefore, we propose multiple

learning-based approaches to plan contact sequences more efficiently by sampling con-

tact poses more intelligently with a learned heuristic and approximating expensive

dynamic robustness evaluation with neural networks. We show that the proposed

learning-based approaches significantly improves existing search-based contact plan-

ner in its efficiency and solution quality.

The rest of this dissertation is organized as follows. We introduce the related

work in Chapter II. Chapter III briefly describes the baseline search-based contact

planner, the Planning from Scratch (PFS) approach. The subsequent chapters feature

the proposed learning approaches, and are intended to be mostly self-contained.

In Chapter III, to solve the contact planning problem, we first construct a baseline

approach based on Kuffner et al. (2001) by formulating the problem as a graph

search. We call this approach PFS. Given an initial stance and a goal region in

the environment, PFS produces a sequence of contact transitions, including both

palm and foot contacts, to move the robot from the start stance to the goal region.

In its basic form, PFS aims to find a sequence of contact transitions with shorter

end-effector traveling distance and fewer number of steps. By adjusting the edge

cost definition in the graph search problem, PFS can produce solutions with different

objectives.

In Chapter IV, we propose a humanoid robot navigation planning framework that

reuses previous experience to decrease planning time. In the proposed framework,

an experience-retrieval module is added in parallel to PFS. This module collects

previously-generated motion plans and clusters them based on contact pose similarity

to form a motion plan library. To retrieve an appropriate plan from the library for

a given environment, the framework uses a distance between the contact poses in

the plan and environment surfaces. Candidate plans are then modified with local

trajectory optimization until a plan fitting the query environment is found.

In Chapter V, we build on the finding from Chapter IV that using library-based

methods to help the planner solve difficult navigation planning problems requiring

palm contacts, but such methods are not efficient when navigating an easy-to-traverse

part of the environment. To maximize planning efficiency, we would like to use PFS

when an area is easy to traverse and switch to the library-based method only when

traversal becomes difficult. We present a method that 1) Plans a guiding torso path

4

which accounts for the difficulty of traversing the environment as predicted by learned

regressors; and 2) Decomposes the guiding path into a set of segments, each of which

is assigned a motion mode (i.e. a set of feet and hands to use) and a planning method.

Easily-traversable segments are assigned to PFS, while other segments are assigned

a library-based method that fits existing motion plans to the environment near the

given segment.

In Chapter VI, we propose an approach to consider the dynamics of the robot

motion in contact planning. Traditional contact planning approaches assume a quasi-

static balance criterion to reduce the computational challenges of selecting a contact

sequence in unstructured environment. However, this limits the applicability of the

approach when dynamic motions are required, such as when walking down a steep

slope or crossing a wide gap. In this work, we go beyond current approaches by

learning a prediction of the dynamic evolution of the robot centroidal momenta,

which can then be used for quickly generating dynamically-robust contact sequences.

In Chapter VII, we propose a footstep planner which takes external disturbances

into considertation to generate robust contact sequences. Most existing contact plan-

ners only consider kinematic constraints, and few, including the contact planner pro-

posed in Chapter VI, take dynamic constraints into consideration. However, the

robot motion robustness depends on not only the existing contacts and centroidal

momenta, but also how many alternative contacts around the robot that can used by

the robot to recover from external disturbances. Therefore, We improve the contact

planner proposed in Chapter VI by explicitly modeling the external disturbances, and

finding contact sequences that maximize the robot’s success rate to reach the goal

without falling under a disturbance. To achieve this, we propose a learning approach

to approximate the zero-step and one-step capturability during multi-contact motion,

and use the capturability prediction to inform the contact planner. The result shows

that the capturability estimate help generate contact sequences that are robust to

external disturbances.

5

CHAPTER II

Related Work

2.1 Energy-based Foot Placement Selection

Energy-based contact placement selection has been widely adopted in gaited legged

robot locomotion. These approaches assumes flat terrain, decide foot placement based

on the kinetic energy of the simplified robot dynamics model. Hodgins and Raibert

(1991) modeled legged robot as a spring-loaded inverted pendulum, and decide the

foot placement by controlling the speed of the robot. Similar idea has been applied

to many legged system including robots developed in Boston Dynamics. Pratt et al.

(2006) proposed the capture point approach which decides the next foot placement

based on the instantaneous robot momentum to keep the robot stable. This approach

and its variation are widely adopt in humanoid community to develop walking con-

trollers. Nguyen et al. (2020) interpolated the sampled offline-computed motion tra-

jectories to achieve fast online computation of motion trajectories of different step

length and width. However, these approaches cannot generalize to multi-contact mo-

tions without gaits and only consider terrain variations as execution errors which are

dealt by the controller reactively.

2.2 Footstep Planning

To deal with more unstructured terrain, footstep planning approaches shift the

computation of contact placement from the controller to the planner to make higher-

level decision, such as colliison avoidance. Footstep planning for humanoid robot has

been studied extensively Kuffner et al. (2001); Chestnutt et al. (2003); Michel et al.

(2005); Baudouin et al. (2011); Hornung et al. (2012); Kanoun et al. (2009); Deits

and Tedrake (2014). In these works, the planner plans a footstep sequence to avoid

obstacles on the ground and remain inside the specified contact regions on a flat

6

or piecewise-flat ground. To increase the likelihood of success, they incorporate an

approximation of robot balance and kinematic reachability into the contact transition

model, and do not explicitly perform balance check online.

2.3 Contact Planning using Multi-contact Motion

There are works addressing contact planning in unstructured environment using

both palm and foot contacts. Escande et al. (2009) used optimization to find con-

tacts in the neighborhood of a “rough” trajectory. However, its planning time is

prohibitively long. Hauser et al. (2006) proposed a humanoid robot planner that

used learned motion primitives. Chung and Khatib (2015) combined discrete-search-

based contact space planning with a local trajectory optimizer. They generated an

initial trajectory only obeying the reachability constraint, and locally optimize it to

be feasible. Tonneau et al. (2018) use a sampling-based planner to first plan the torso

path based on the kinematic reachability heuristic using a sampling-based planner,

and then plan contacts around the torso path. However, these approaches assumes

quasi-static motions, and drops solutions involving dynamic motions.

2.4 Reuse Previous Motion Plans

Reusing pre-computed plans has been studied in computer animation (Lau and

Kuffner, 2006) and trajectory optimization (Myung et al., 2007). However, using

path libraries for high-dimensional humanoid locomotion planning with balance and

collision constraints and both hand and foot contact has not yet been explored.

Robot motion libraries have been used to speed up motion planning in C-Space

(Berenson et al., 2012). However, the distance metric of (Berenson et al., 2012) is not

adequate in our context because it does not consider contact with the environment,

which is key for humanoid robot navigation. Recently Coleman et al. (2015) improved

on (Berenson et al., 2012) by storing the experience in a sparse roadmap spanner.

However, humanoid navigation involves multiple contact switches, necessitating that

the robot travel through manifolds of differing dimension, which cannot be done with

this sparse roadmap spanner. Jetchev and Toussaint (2013) also proposed a motion

plan library framework by learning the mapping between environments and plans.

However, this approach may overlook plans that come from an environment which is

not similar to the query environment, but are nevertheless a good fit.

7

2.5 Traversability Estimation

There has been work proposing traversability estimation algorithms for mobile

robots (Suger et al., 2015; Cunningham et al., 2017; Shneier et al., 2008). These

methods learn models to estimate the terrain types based on visual, range or thermal

inertia sensor data. The goal is to avoid certain types of terrain which may cause the

mobile robot to slip or be stuck. In our work, the traversability does not measure the

effect of the texture of the terrains for navigation, instead, it measures the richness

of the space for humanoid robot contact placement.

Researchers have investigated predicting traversability for quadruped robots (Chil-

ian and Hirschmuller, 2009; Wermelinger et al., 2016). They computed traversability

features such as slope, terrain roughness and step height from visual data. Those fea-

tures are combined in a weighted-sum cost function, which guides the robot. In our

approach, we not only capture features from the environment, but also use simulation

to learn a model to predict the actual traversability of the robot in the environment.

2.6 Contact Planning Combined with Different Planners

There has been work addressing humanoid locomotion planning using different

planners or action types. Grey et al. (2017) proposed a probabilistic planner to

plan humanoid locomotion on flat ground with doorways and small obstacles on the

ground. The planner saves computation by generating periodic footstep motions on

open flat ground, and plans for whole-body motion only when an obstacle is close by.

Dornbush et al. (2018) proposed an approach to plan with adaptive dimensionality.

The planner plans for multiple tasks, such as walking or climbing a ladder, in a low-

dimensional representation with multi-heuristic A*, and computes high dimensional

plans for each task. While this work is promising for planning a sequence of tasks, it

is not clear how well it can perform if the task involves acyclic motions that require

fine planning for the contact placements, such as traversing rubble.

2.7 Contact Planning Involed with Dynamics Constraints

Approaches to synthesize dynamically feasible multi-contact motions have also

been extensively studied (Herzog et al., 2016; Carpentier et al., 2016; Dai and Tedrake,

2016; Caron and Kheddar, 2016; Audren et al., 2014). However, it is not trivial to

include planning of contact poses in these approaches because contacts planning in

general involves discrete or non-convex constraints for the contact poses. Deits and

8

Tedrake (2014) addresses the non-convexity by decomposing the environment into a

set of convex regions and approximating the rotation using piecewise affine functions.

The problem is then formulated as a mixed integer convex program and solved to

global optimality. Although Deits and Tedrake (2014) only uses foot contact, and

does not consider dynamics, it points a direction to include contact planning in an

optimization problem.

Extensions of (Deits and Tedrake, 2014) for dynamic planning of a contact se-

quences are proposed in Ibanez et al. (2014); Ponton et al. (2016), which extend

(Deits and Tedrake, 2014) with the selection of contact timings or hand contacts re-

spectively. More recent works (Aceituno-Cabezas et al., 2017, 2018) use the same

concept to plan gait sequences for quadruped robots and produce dynamically ro-

bust motions. However, mixed-integer approaches scale poorly against the number

of integer decision variables. For instance, their applicability is limited to online con-

tact generation in environments with few convex terrain regions, and short planning

horizons.

Fernbach et al. (2017) proposes a kinodynamic sampling-based contact planner to

plan kino-dynamically feasible contact sequences. They use a simplified robot model

to dynamically plan smooth CoM trajectories based on convex optimization and then

search for kinematically feasible contact poses around it. It shows a unified planning

framework to consider dynamics and kinematics constraints, but it suffers from long

planning time. Fernbach et al. (2018) proposes an efficient dynamic feasibility check

by conservatively reformulating the problem as a linear program. While the check

guarantees to reject dynamically infeasible motions, they do not address dynamical

robustness in the stability check. Kim et al. (2013) learns quadratic dynamics objec-

tive of humanoid walking motion, and applies this learned model to select steps in a

search-based footstep planner. However, their dynamics model assumes flat contact,

and does not consider palm contacts, which limits the applicability of the approach.

2.8 Capturability Analysis

Capturability analysis of linear inverted pendulum (LIP) model is first proposed

by Koolen et al. (2012). Since then, it is widely used to determine footstep placement

in planning and control of robot dynamic walking (Sugihara, 2009; Takenaka et al.,

2009; Morisawa et al., 2012; Englsberger et al., 2015; Griffin et al., 2017). There are

also works address the capturability analysis for more complex variable-height in-

verted pendulum (VHIP) model to account for the height changes of the CoM. Pratt

9

and Drakunov (2007); Ramos and Hauser (2015); Koolen et al. (2016) address the

balance control of humanoid robot using VHIP model for planar motions. Caron et al.

(2019) further extends it to consider 3D movements, and develops analytical tool to

determine capturability in VHIP model. Del Prete et al. (2018) proposes efficient

analytical tool to compute zero-step capturability for multi-contact configuration us-

ing centroidal dynamics model. However, it has strong assumptions on using zero

angular momentum, and cannot generalize to use more steps.

10

CHAPTER III

Planning from Scratch: Humanoid Contact

Planning by Solving a Graph Search Problem

3.1 Contact Planning Problem Statement

Given an environment represented as a set of contactable surfaces, we wish to

output a feasible path from the start stance to a goal region in the workspace. The

path is defined as a series of stances, and consecutive stances in the path differ by one

foot or palm contact pose. When executing this path, the robot must obey balance

and collision constraints at all times. We assume that the robot can generate sufficient

torque to balance itself. We also assume the friction coefficients are given. Our goal

is to compute a feasible path for the robot as quickly as possible.

3.2 Contact Planning by Solving a Graph Search Problem

In PFS, the contact planning problem includes both palm and foot contacts, and

is formulated as a graph search problem. The state of the planner is defined as the

stance of the robot, the set of the contact poses corresponding to each end-effector.

The end-effectors should be on one of the surfaces, and free from collision with all the

surfaces except for the contact surface. The robot should also be in static balance in

every configuration.

An action in the planner is defined as the robot switching one of the end-effectors’

contact poses. Given a state, the possible next actions are described as a pre-defined

transition model relative to the current end-effector poses, as shown in Figure 3.1. We

do not specify the order of end-effector transitions other than requiring that the same

end-effector is not used in consecutive actions. To determine the next foot contact,

we first project the standing foot contact pose to the XY plane along the global Z

11

Figure 3.1: Left: Foot contact transition model (57 steps); Middle: The projections
of foot contact to get the next step pose; Right: An example of palm
contact transition model

axis, use the transition model to find the next step in the XY plane, and then project

the pose to the ground to get the next foot contact pose, as shown in Figure 3.1.

For palm contacts, we first approximate the torso pose pt based on the poses of

the feet with the following equations:

pt =
[
xlf+xrf

2

ylf+yrf
2

zlf+zrf
2

+ zoffset 0 0
θlf+θrf

2

]T
(3.1)

where [xlf , ylf , zlf] and [xrf , yrf , zrf] are the left and right foot positions, respectively,

θlf and θrf are the rotations of each foot about the z axis, and zoffset represents the

nominal body height relative to the feet. Given the approximated torso pose in each

state, we can derive the approximated shoulder points of the robot. The potential

palm contacts are then computed by ray-casting from the approximated shoulder

points, as shown in Figure 3.1.

For each edge from state s to s′, the edge cost ∆g(s, s′) is defined as:

∆g(s, s′) = de(s, s
′) + wθdθ(s, s

′) + ws (3.2)

where de is the translation of the moving end-effector, dθ is the difference in robot

orientation (defined as the mean of the two feet’s rotation about the Z axis), and wθ

and ws are the weight for robot orientation difference and the step cost, respectively.

With this formulation, the contact planner will try to find shorter path by reducing

the total distance the end-effectors travel, and avoid changing direction. Adding step

cost ws helps reduce the number of steps used in the plan. The heuristic for each

12

state s used in the planner is:

h(s) = wθhθ(s) +

|end-effectors|∑
i

he,i(s) + ws
he,i(s)

de,i,max
(3.3)

where hθ is the difference between the current and goal robot orientations, he,i is the

Euclidean distance between the pose of end-effector i and the goal, and de,i,max is the

maximum possible translation for end-effector i in one action. The above formulation

of ∆g(s, s′) and h(s) focuses on reducing the number of steps and the total traveling

distance of the end-effectors. In Chapter V and VI, we will modify the definition of

∆g(s, s′) and h(s) to consider other objectives.

In PFS, we solve the contact planning problem with Anytime Non-parametric

A* (ANA*). To traverse through unstructured environment, the planner needs a fine

discretization of possible contact pose transitions, as shown in Figure 3.1. However,

this would significantly increase the branching factor, and could have a case where

multiple contact transitions are similar in edge cost, which cause a conventional A*

planner to waste time on evaluating similar contact transitions. To deal with this

problem, we solve the contact planning problem in PFS using ANA*. ANA* is an

anytime planning algorithm, which performs depth-first search in the beginning to

quickly find a feasible solution, and then refines the solution overtime once the first

one is found. This is achieved by exploring the state with highest priority function

valuee(s) (Lines 1 to 3 and 8 to 10 in Algorithm 1). Initially, when G, the total cost

of the current best solution, is high, g(s) has little impact on e(s). Therefore, the

algorithm will favor states with lower h(s), which behaves like a depth-first search.

ANA* updates G when a solution is found (Line 12 in Algorithm 1). As G goes down,

g(s) becomes more important in e(s), which shifts the searching behavior from depth-

first search gradually toward breadth-first search. In this way, the planner can avoid

early comparison between similar contact transitions, and reduce the time required

to find a feasible solution.

3.3 State Feasibility Check

The contact planner targets planning in unstructured environments. When ex-

panding the search tree, the discretized foot and palm contacts are projected to

environment surfaces to get the contact poses. Therefore, we must decide an state’s

feasibility online.

When considering each candidate contact pose, the planner checks if the contact

13

end-effector link is free from collision with all the surfaces except for the contact sur-

face, and reject contact poses that does not pass this check. Besides obeying collision

constraints, the robot must be able to reach the specified contact poses and maintain

balance when moving from the parent state to the current state. A typical approach

to address reachability in contact planning is to derive a contact transition model

in which all possible moves are within a conservative bound of reachability. Since

we expect the robot to navigate in an unstructured environment, such a boundary

is hard to derive without sacrificing significant reachability. To better describe the

robot’s reachability, we filter out impossible transitions with a loose bound based on

the length of the manipulators, and then use Jacobian-based IK to directly check

reachability. Joint limit and self-collision constraints are also checked.

To ensure the robot remains in balance, we use the method described in Caron

et al. (2015) as the balance checker which is treated as a constraint in the inverse

kinematics solver. To speed up the process, we approximate the balance check for the

entire transition by checking two critical configurations: the beginning of the contact

transition where the moving end-effector has just broken contact and the end of the

contact transition where the moving end-effector is about to make contact.

14

Algorithm 1: The Anytime Nonparametric A* algorithm (Reproduced from
van den Berg et al. (2011))

1 e(s):

2 return G−g(s)
h(s)

3

4 ImproveSolution():
5 while OPEN 6= ∅ do
6 s← argmaxs∈OPEN {e(s)}
7 OPEN ← OPEN \ {s}
8 if e(s) < E then
9 E ← e(s)

10 end
11 if IsGoal(s) then
12 G← g(s)
13 return

14 end
15 foreach successor s′ of s do
16 if g(s) + ∆g (s, s′) < g (s′) then
17 g (s′)← g(s) + ∆g (s, s′)
18 predecessor (s′)← s
19 if g (s′) + h (s′) < G then
20 Insert of update s′ in OPEN with key e (s′)
21 end

22 end

23 end

24 end
25

26 ANA∗():
27 G←∞; E ←∞;OPEN ← ∅;∀s : g (s)←∞; g (sstart)← 0
28 Insert sstart into OPEN with key e (sstart)
29 while OPEN 6= ∅ do
30 ImproveSolution()
31 Report current E-suboptimal solution
32 Update keys e(s) in OPEN and prune if g(s) + h(s) ≥ G

33 end

15

CHAPTER IV

Retrieve and Adapt Previously Generated Motion

Plan

4.1 Introduction

In Chapter III, we describe the formulation of the contact planning problem as

a graph search problem, and solved with ANA*. Although ANA* could speed up

the search by compromising on optimality and find a path quickly in a contact-rich

environment, it is difficult to compute which state is closer to the goal in the search

tree with a heuristic function when the environment is difficult to traverse. As a

result PFS may become stuck in a cul-de-sac, i.e. a region with scarce contacts. The

approach proposed in this chapter adds an experience-retrieval module in parallel to

PFS, which reduces the planning time by reusing previous experience.

In this work, there are two modules running in parallel: the PFS module and the

Retrieve and Adapt (RA) module, as shown in Figure 4.1. The PFS module first plans

a contact sequence without considering collision with the environment (except for the

end-effector links), as described in Chapter III. The resulting contact sequence is then

interpolated, inverse kinematics is computed, and the entire sequence of configurations

is optimized locally to avoid obstacles. We call the output joint trajectory and the

corresponding contact sequence of this process a “motion plan.”

RA, on the other hand, provides solutions by retrieving motion plans from a li-

brary. RA stores and clusters motion plans generated by the framework to form a

motion plan library based on the contact poses of each plan. Given a new environ-

ment, RA queries the library to find an appropriate plan based on its contact poses

and modifies it to fit the environment. Both modules start planning simultaneously

and the one that finishes first stops the other one. Finally, the generated motion plan

is added to the library if it differs significantly from other plans in the library.

16

Figure 4.1: Left: A humanoid follows a planned sequence of contact poses to navi-
gate in a complex unstructured environment modeled as a set of contact
regions. Right: The structure of the proposed framework

The main contributions of this work are: (1) A framework for building humanoid

robot motion plan libraries based on contact pose sequences; (2) A fast distance

function for retrieving feasible plans from the library for a new environment.

Our experiments show that the proposed framework achieves a higher success

rate in unstructured environments compared to planning-from-scratch. Additionally,

the framework is agnostic to the PFS module, so new developments in navigation

planning can be integrated easily.

4.2 Problem Statement

We address the humanoid navigation planning problem. Given an environment

represented as a set of contactable surfaces, we wish to output a feasible trajectory

from the start configuration to a goal region, defined as an area the feet must be

within. We are interested in using the hands to help balance the robot against

potential disturbances. Therefore, a feasible path should have at least three end-

effectors in contact at any time, and must obey balance and collision constraints. We

assume (as in Caron et al. (2015)) that the robot can generate sufficient torque to

balance itself. We also assume the friction coefficients are known.

17

4.3 The PFS Module

The PFS module first plans a sequence of contacts using ANA* and then uses

inverse kinematics and CES to construct a feasible trajectory from the contacts. The

PFS contact planner follows the definition in Chapter III.

To obtain the final robot trajectory, the contact sequence returned by the contact

planner is interpolated with parabolic trajectories for each contact transition. IK is

computed for the interpolated poses and the sequence of resulting configurations is

then optimized with the CES algorithm to avoid obstacles in the environment.

4.4 Learning Part of the RA Module

To efficiently retrieve a feasible motion plan in a new environment, the RA module

needs to identify promising plans in the library quickly. This is achieved by clustering

the motion plans. Motion plans inside each cluster are represented by a cluster

representative, so that the RA module can find promising motion plans by checking

these cluster representatives instead of the entire library. We denote the motion

plan library as L, which can also be represented as K clusters of motion plans:

L = [C1, C2, ..., CK].

Each new motion plan Pnew generated by the proposed framework is first examined

by the motion plan manager. If the motion plan’s distance to other motion plans in

the library is above a user-defined threshold dmin, it will be added to the library. The

algorithm used in the learning part of the RA module is shown in Algorithm 2.

4.4.1 Motion Plan Feature Extraction

To find promising motion plans, the RA module should measure how close the

contacts of the motion plan are to the surfaces in the query environment. The set of

contact poses C(π) is extracted from each motion plan π:

C(π) = {〈ck, ek〉 |ck = 〈Xk,Qk〉 ∈ SE(3); k = 1, 2, ..., Nc} (4.1)

where Nc is the number of contact poses, ek is an index which indicates the corre-

sponding end-effector, and Xk and Qk are the translation vector and the rotation

quaternion, respectively. As suggested by Kuffner (2004), the distance between two

18

Algorithm 2: Learning Part of the RA Module

1 close to existing motion plan← False;
2 for i in 1 to K do
3 Ci ← L [i];
4 for j in 1 to |Ci| do
5 πi,j ← Ci [j];
6 if d(πi,j, πnew) < dmin then
7 close to existing motion plan← True;
8 end

9 end

10 end
11 if not close to existing motion plan then
12 L← L ∪ πnew;
13 K ← 1;
14 do
15 [C1, C2, ..., CK]← K-means(L,K);

16 L
′ ← [C1, C2, ..., CK];

17 [dC1 , dC2 , ..., dCK]← Get In-Cluster Dist(L
′
);

18 dC ← max ([dC1 , dC2 , ..., dCK]);
19 K ← K + 1;

20 while dC > dmax;

21 L← L
′
;

22 end
23 return L;

contact poses is:

η(〈ci, ei〉 , 〈cj, ej〉)

=

{
|Xi −Xj|+ wr · (1− |Qi ·Qj|), wr > 0 , ei = ej

∞ , ei 6= ej

(4.2)

To calculate the distance between motion plans, the motion plans need to be aligned.

We define the start and goal point of the motion plan as the mean position of the feet

in the first and last configurations of the trajectory. We then align the start points of

the two plans and subsequently rotate the C(π) of one plan about the global Z axis

to align the start and the goal points of both motion plans on the same line.

The distance between a pair of motion plans π1 and π2 is defined as the Hausdorff

19

Algorithm 3: Query part of the RA Module

1 Lsorted ← Env Match and Sort(L) ;
2 for i in 1 to K do
3 Ci ← Lsorted [i];
4 Ci,sorted ← Env Match and Sort(Ci);
5 for j in 1 to |Ci,sorted| do
6 πj ← Ci,sorted [j];
7 πoptimized ← CES (πj);
8 if πoptimized is feasible then
9 return πoptimized;

10 end

11 end

12 end
13 return Failure

distance of the between their sets of contact poses:

d(π1, π2) = max{ sup
〈ci,ei〉

inf
〈cj,ej〉

η(〈ci, ei〉 , 〈cj, ej〉),

sup
〈cj,ej〉

inf
〈ci,ei〉

η(〈ci, ei〉 , 〈cj, ej〉)}
(4.3)

where 〈ci, ei〉 ∈ C(π1) and 〈cj, ej〉 ∈ C(π2). Hausdorff distance allows comparisons

between motion plans with different numbers of contacts, automatically separating

motion plans with different lengths. The drawback of Hausdorff distance is its sensi-

tivity to outlying data. However, it is not an issue in our context because the contact

poses are bounded by the reachability and balance constraints.

4.4.2 K-Means Clustering

The motion plans in the library are clustered with the K-means algorithm using

the Hausdorff distance described in Eq. 4.3. K is determined by running K-means

with iteratively increasing K until the maximum distance between every motion plan

pair in each cluster is below a user-defined bound dmax. Lowering the bound can

increase the similarity in each cluster, but it also increases the number of clusters and

lengthens the time to evaluate all clusters.

In each cluster the plan with the minimum sum-of-squared distance to every other

motion plan is selected as the cluster representative. The cluster representative is used

to estimate how well the plans in this cluster fit the query environment.

20

4.5 Query Part of the RA Module

In the query part, the input is a combination of a goal and a query environment

modeled as a set of contact regions. The objective is to generate a feasible motion

plan as soon as possible. The RA module first calculates the distance of each cluster

representative to the query environment. The clusters are then sorted by the distance,

and searched in that order. The plans in the searched cluster are also sorted in

the same manner, and then deformed by the Contact-consistent Elastic Strip (CES)

algorithm (Chung and Khatib, 2015) to adapt to the query environment one-by-one

until a feasible motion plan is found (see Algorithm 3).

4.5.1 Contact Region Extraction

The environment can be viewed as a union of possible contact poses for each

end-effector. In this representation, the distance between any end-effector pose to the

environment is simply the distance between the end-effector pose and the nearest con-

tact pose in the environment. Therefore, it is important to convert the environment

into the contact pose union representation in order to define the distance between a

motion plan and an environment.

We adopt the idea in (Chung and Khatib, 2015) to express the environment as a

union of circular contact regions. We sample multiple circle origins with a pre-defined

density, and sequentially grow circular regions from samples not covered by other re-

gions. The circular regions aim to cover all possible contact poses of the environment.

If the radius of a region is smaller than the density, the process will iteratively increase

the sampling density in its neighborhood until reaching a density bound dcr,min. We

denote the set of contact regions as CR. Since the contact region does not consider

rotation about the contact normal, this representation is a conservative estimation

of the available contact poses in the environment, as shown in Figure 4.2, but it can

be generated automatically. Note that end-effector size is considered in the genera-

tion of contact regions. The start and goal regions are modeled as circles centered

at the specified start/goal position and bounded by the nearest obstacles or surface

boundaries.

4.5.2 Environment to Motion Plan Cluster Matching

In order to find a promising plan to navigate through the query environment,

we define a distance between a motion plan and an environment. Based on the

assumption that a motion plan is more likely to be modified to become feasible in the

21

Figure 4.2: Contact region sampling

environment if its contact poses are closer to the contact regions in the environment,

we match a motion plan to an environment based on the distance between contact

poses in the motion plan and the contact regions in the environment. This is done in

the Env Match and Sort function in Algorithm 3 as follows:

We define a contact region’s frame by aligning the Z axis to the contact region

normal, and X axis to an arbitrary vector on the surface. The distance between a

pose c and a contact region cr ∈ CR is defined as:

ξ(c, cr) =
√
d2
xy + d2

z + wrdori

dxy = max (0, |(x′c, y′c)| − rcr) , dz = |z′c|

dori = 1− n′c · [0, 0, 1]T

(4.4)

where (x′c, y
′
c, z
′
c) and n′c are the contact position and normal in the contact region

frame, wr ∈ R+ is a weighting factor, and rcr is the radius of the contact region.

Furthermore, we can define the projection of the contact pose to the contact region

by shifting the contact pose to the closest point inside the contact region, and rotate

the pose to align the contact pose normal to the contact region normal, as shown in

Figure 4.3.

Since a motion plan starts and stops inside circular regions, there exist an infinite

number of alignments of the plan before deformation of the contact poses. If we treat

the whole contact series of a motion plan as a rigid body with 4 degrees of freedom:

translation in the X, Y and Z directions, and rotation about the Z axis, expressed as

(xrp, yrp, zrp, θrp), the initialization problem is then to find a transform of the entire

plan that minimizes the distance between the plan and the environment. We call

this representation of a plan as a rigid body a rigid plan. Finding a globally-optimal

alignment of the rigid plan is costly so we find a local solution using a Jacobian-based

22

Figure 4.3: Contact pose vs. contact region distance.

approach. This approach “snaps” the rigid plan to the nearest set of contact surfaces.

Given a query environment, the start region is at (xs, ys, zs) with radius rs and

the goal region is at (xg, yg, zg) with radius rg. The distance between the start and

goal poses is lsg, and the distance between the first and last poses of the rigid plan is

lrp. The algorithm initializes the rigid plan pose Trp = (x0,rp, y0,rp, z0,rp, θ0,rp) as:

x0,rp = xs + (lsg − lrp)
rs

rs + rg

|xg − xs|
lsg

y0,rp = ys + (lsg − lrp)
rs

rs + rg

|yg − ys|
lsg

z0,rp = (zs + zg) /2

θ0,rp = atan2(yg − ys, xg − xs)

(4.5)

This initialization guarantees the rigid plan’s first and last poses will be inside the

start and goal regions, respectively, if lsg − rs − rg ≤ lrp ≤ lsg + rs + rg.

After initialization, we iteratively update Trp to move the rigid plan’s C(π) closer

to their nearest contact regions. At each iteration, we find crmin,i, the closest contact

region to 〈ci, ei〉 ∈ C(π). To ensure that the motion plan connects the start and the

goal, the foot poses of the start and the goal configurations are matched to the start

and the goal regions, respectively. Jacobian Ji relates Ṫrp, the change in the rigid

plan pose, to ċi, the desired change in the pose of contact ci. We can then combine

the Jacobians for all ci: 
ċ1

ċ2

...

˙cNc

 =


J1

J2

...

JNc

 Ṫrp = JṪrp (4.6)

23

We then use the pseudo-inverse J+ to arrive at a Ṫrp that takes into account the

desired motion of all ci:

Ṫrp = J+
[
ċ1
T , ċ2

T , . . . , ˙cNc
T
]T

(4.7)

The rigid plan pose will converge to a local minimum T′rp through iterative application

of Eq. 4.7. The distance between a rigid plan and the query environment is then

defined as:

Ξ(C(π), CR) =
1

Nc

Nc∑
i=1

ξ (c′i, crmin,i) (4.8)

where c′i is the ith contact pose in C(π) transformed by T′rp. The clusters are sorted

by this distance, and searched in this order. Motion plans inside the searched cluster

are also sorted in the same manner.

4.5.3 Local Trajectory Optimization

The motion plan, expressed as a sequence of configurations, is modified and op-

timized to fit the query environment with CES (Chung and Khatib, 2015). Each

configuration of the trajectory will move its contact toward the nearest contact re-

gion, remain balanced, and avoid obstacles simultaneously. Although each contact

pose converges to the nearest contact region according to the contact constraint, the

contact pose is also affected by balance constraints and collision avoidance during

each iteration. Therefore, contact poses may not end in the initial nearest contact

region. In our setup the task priority of CES was (1) obey joint limits; (2) three tasks

in parallel: maintain contact, remain in balance, avoid collision; and (3) “internal

forces” used to smooth the trajectory, as described in Brock and Khatib (2002).

4.6 Experiments and Results

We test on the ESCHER humanoid robot. ESCHER had 33 DOF in our setup:

two 7-DOF arms, two 6-DOF legs, one waist joint, and a 6-DOF base transform.

The robot is to be in contact with at least 3 of its manipulators at any given

time. We implemented our algorithms and test examples in OpenRAVE (Diankov,

2010) and also tested in the Gazebo physics simulator (Koenig and Howard, 2004).

All experiments were run on an Intel Core i7-4790K 4.40 GHz CPU with 16GB

RAM. The values of the parameters used in the experiments are the following:

wθ = 0.3m/rad, ws = 10m, dcr,min = 0.01m, wr = 0.5, dmin = 0.1, dmax = 0.5. Time

24

Figure 4.4: Examples of plans in rubble-like environments. Planned contacts for left
foot (red), purple (right foot), blue (left palm), and orange (right palm).

limit for each trial is 5 minutes.

4.6.1 Random Surface Environment Test

We set up complex random surface test environments. We generate the envi-

ronments with randomly tilted quadrilateral surfaces, as shown in Figure 4.4. Each

environment is between 2m and 4m long. The surfaces may cover or intersect with

each other, and leave part of the surface non-contactable, which causes the environ-

ment to be very challenging. Since this environment is extremely complex, the recall

rate of the reachability and balance databases in these test environments are 10.3%

and 30.2%, respectively with 1.5 million entries in the database. This does not pro-

vide a significant improvement in planning time, further motivating the need for the

RA module.

To evaluate the proposed framework, we generated 100 random surface environ-

ments, and record the performance of PFS alone (the baseline) vs. the proposed

framework with different sizes of motion plan libraries. If a trial’s runtime exceeds

5 minutes, it is counted as a failure. For the PFS module, the failure cases also

include optimization failure: the case when the local optimization after contact plan-

ning cannot find a feasible trajectory. For the RA module, the case when no feasible

motion plan can be found in the library is counted as a failure. Examples of the test

environments and plans generated by our framework are shown in Figure 4.4.

Figure 4.5 shows the success rate of the proposed framework with different library

sizes. Even with a small library size, the proposed framework significantly improves

the success rate. One of the major reason is that CES used in the RA module can shift

contact poses in continuous space to arrive at small contact regions. However, PFS

25

Figure 4.5: Left: Success rate and Right: Average planning time of successful trials
for the PFS module, the RA module and the proposed framework with
different sizes of libraries

may not find feasible next contacts in the transition model, and needs redundant

contacts in order to adjust the standing foot to find feasible contacts at the next

transition. Those redundant contacts increase the search depth and the planning

time.

Furthermore, to navigate in such a complex environment, PFS requires a large

transition model that densely discretizes the reachable space of the end-effectors.

This entails a higher branching factor. When the heuristic is not accurate, this high

branching factor slows down the planner.

Figure 4.5 shows the average planning time of the successful trials. Although

the RA module takes more time to find a solution with a larger library, the increase

in planning time of the successful trials is partly because the RA module with a large

library can find solutions in difficult cases which cannot be solved within the time

limit using a small library. For a library with 20 entries, RA outperforms the PFS

success rate by 10%, and the combined framework outperforms PFS by 28%. For

a library with 200 entries, RA outperforms the PFS success rate by 44%, and the

combined framework outperforms PFS by 49%.

In Figure 4.6, we can observe that the number of trials in which the RA module

finishes first increases as the size of the motion plan library grows. However, the trend

saturates after the size exceeds 100. This is a mixture of two effects: (1) The RA

module can solve more problems with a larger library. (2) The RA module requires

more time to find a feasible motion plan in a larger library. This effect can be observed

in Figure 4.6 as the successful and timeout cases both increase with a larger library.

26

Plan
found

Opt.
Fail

Time
out

Lib.
Exhaust

PFS 35 21 44 -
RA(20) 45 - 0 55
RA(40) 52 - 1 47
RA(60) 61 - 2 37
RA(80) 65 - 6 29
RA(100) 69 - 6 25
RA(120) 75 - 4 21
RA(140) 69 - 10 21
RA(160) 75 - 7 18
RA(180) 69 - 11 20
RA(200) 79 - 10 11

Figure 4.6: Left: Results with different library sizes; Right: Number of trials in which
PFS or RA finishes first for different library sizes.

Figure 4.7: Gazebo simulation of robot navigating through a rubble-like environment.

4.6.2 Testing in Physics Simulation

To verify the feasibility of trajectories produced by the framework, we executed the

plans in a random surface environment in the Gazebo simulator. The robot can walk

through the “rubble” while using palm contacts for balance, as shown in Figure 4.7

and the attached video.

4.7 Conclusion

In this work, we proposed a humanoid navigation planning framework running two

modules in parallel: Planning from Scratch (PFS) and Retrieve and Adapt (RA).

PFS is a discrete-search-based contact planner. RA stores and clusters previously

generated motion plans based on the Hausdorff distance of the contact poses. When

the robot encounters a new environment, the module matches each cluster represen-

tative to the environment, and searches motion plan clusters based on the distance

27

between the motion plan cluster representative and the environment. Each plan in

the searched cluster is then sorted by distance to the environment and then modified

by CES algorithm to fit the environment until a valid plan is found. The results

show that the proposed framework outperforms the baseline planning-from-scratch

algorithm in success rate in difficult unstructured environments.

28

CHAPTER V

Humanoid Contact Planning in Large

Unstructured Environments Using

Traversability-Based Segmentation

5.1 Introduction

Disaster response is an important potential application for humanoid robots be-

cause of their abilities to navigate stairs and uneven terrain, such as rubble. This

work focuses on constructing navigation plans for a humanoid in such large unstruc-

tured environments (see Figure 5.1). Even though the robot’s sensor range may be

limited to only a few meters, it is still important to construct a long-term navigation

plan to ensure the robot can reach its goal. Such a plan can be constructed from a

pre-generated map of the environment; e.g., using a drone to map the environment

before the humanoid enters.

In such environments, humanoid navigation can benefit greatly from the use of

palm contacts. Palm contacts provide additional support to allow the robot to make

larger steps to avoid obstacles, cross gaps, or help with balance. However, considering

palm contact in graph-search navigation planning algorithms (Kuffner et al., 2001;

Chestnutt et al., 2003; Michel et al., 2005) greatly increases the branching factor

of the search, resulting in impractical planning times for large environments. The

planning is also difficult because palm contacts may not be available in all locations

and sometimes they may be unnecessary, so the robot needs to decide when and

where to use its palms. In previous work we explored using library-based methods

to address difficult navigation planning problems requiring palm contacts Lin and

Berenson (2016), but such methods are not efficient when navigating an easy-to-

traverse part of the environment. To maximize efficiency, we would like to use graph-

search, PFS, to traverse easy areas and switch to the library-based method, RA, when

29

Figure 5.1: Using different motion modes to traverse unstructured environments.

Figure 5.2: The data flow of the proposed framework. Yellow denotes that the blocks
operate on segments of the torso pose guiding path.

traversal becomes difficult.

Thus, to plan a contact sequence in a large unstructured environment we present

the framework shown in Figure 5.2. This framework relies heavily on the concept

of humanoid traversability, which we introduced in previous work Lin and Berenson

(2017). Traversability is defined as the time PFS will require to traverse a given area of

the environment. Computing it is computationally expensive, so we have developed

a way to learn a traversability estimator from data. In this work, we extend this

process to consider multiple predefined motion modes (i.e. different combinations of

palms and feet).

The key novel contribution of our framework is the method to segment the guiding

torso path to minimize planning time. We first segment the guiding path into motion

modes based on traversability predictions for each mode. We then further segment

each segment based on the average traversability within the segment. This process

results in segments that have either high or low average traversability. Based on the

30

motion mode and the traversability of each segment we then assign a planning method

to use: either PFS, when the segment is easy to traverse, or RA, when it is difficult.

In addition to this contribution, we also improve on the computational overhead of

our RA method and generalize it to consider motion plans of widely-varying length.

Our results on randomly-generated environments with rubble suggest that our

segmentation approach greatly outperforms standard graph search planning in terms

of success rate. We also confirm that using the RA method for more difficult segments

gives a benefit over using PFS.

5.2 Problem Statement

We address the humanoid contact navigation planning problem. Given an envi-

ronment represented as a set of contactable surfaces, we wish to output a feasible

sequence of stances from the start stance to a goal region in the workspace as quickly

as possible. The sequence is as a series of stances, and consecutive stances in the

sequence differ by one foot or palm contact pose. When executing this sequence, the

robot must obey balance and collision constraints at all times. We assume that the

robot can use any sequence of motion modes (from a predefined set) to traverse the

environment. The motion modes are defined in terms of which end-effectors to use.

The robot should always use the foot contacts, but can choose to use either or both

palms to help it navigate. We assume that the robot can generate sufficient torque

to balance itself. We also assume the friction coefficients are given.

5.3 Method Overview

Our framework is depicted in Figure 5.2. The process starts by computing a

guiding path for the torso of the robot by planning a path in an SE(2) ×M grid

using the A* algorithm, where M is the set of motion modes (feet only, feet and

left palm, feet and right palm, and all end-effectors). This planner uses estimates of

traversability from our learned regressors to find a path that is as easy as to traverse

as possible while also being biased to reduce the number of motion mode changes.

Given the torso pose guiding path found by A*, we then segment the path in

two phases: first by motion mode, and then further by the traversability. This pro-

cess produces segments which have either high or low average traversability. High

traversability segments tend to be contact-rich, i.e. there are many viable options

for contact placement. In these cases it is appropriate to use PFS to plan a contact

31

Figure 5.3: Torso pose transition model in the torso pose grid. Note that we only show
the translation for one torso orientation here. To generate translation for
other torso orientation, we rotate the ellipse, which represents the moving
range of the torso, to align with the torso orientation and count all cells
inside the ellipse as possible translations for the torso orientation.

sequence because the planner is likely to quickly find feasible contact placements. For

low-traversability segments PFS is unlikely to find a solutions quickly, so we use RA,

which searches a library of previously-computed motion plans for one that is appro-

priate for a current segment and locally-deforms the plan to the given environment.

If the library is exhausted before finding a fitting plan, we default to PFS for this

segment. Because PFS and RA have different start/goal specifications (RA: regions

only, PFS: stance or region), before initiating planning for each segment, we order

them so that connecting the segments becomes easier. Finally, when we have planned

a valid contact pose sequence for all segments, we connect them with a PFS planner

to produce the final result.

In the following sections, we first describe how we compute the torso pose guiding

path, and how traversability for different motion modes is estimated. We then in-

troduce the segmentation algorithm and describe how segments are ordered. Finally,

we describe the PFS and RA approaches used in this work to generate the contact

sequences and how sequences are connected.

5.4 Torso Pose Guiding Path

The purpose of computing a torso pose guiding path with a simplified model is

to guide the higher-dimensional contact planning search. In this work, we discretize

the robot torso pose in x and y, and the rotation about the z axis, θ, and call the

32

resulting grid the torso pose grid. In this work, we assume that the robot is traveling

on a surface, so z is uniquely defined by the x and y coordinates. Thus we do not

include z in the grid. The grid cells in which there is no contactable surface or the

torso collides with the environment will be marked as invalid by the torso planner.

The possible transitions of the robot torso for one step are shown in Figure 5.3. The

ellipse shape captures the fact that the robot can travel farther with a forward or

backward step than a lateral step.

A torso pose guiding path Ptp is a sequence of torso poses:

Ptp = {pt,1, pt,2, . . . , pt,Np
∣∣pt,1, . . . , pt,Np ∈ SE(2)} (5.1)

where Np is the number of torso poses in Ptp. Note that Ptp is defined on a grid, so the

values of each torso pose is discretized based on the density of the grid. To introduce

the motion mode into the torso pose grid, we append the motion mode indicator m

to each cell in the grid. m represents the motion mode of the action used to reach

the cell. Based on this definition of a torso pose grid, we can rewrite Ptp as:

Ptp = {(m1, pt,1) , (m2, pt,2) , . . . ,
(
mNp , pt,Np

)
} (5.2)

where mi is the motion mode used to reach torso pose i, (note that m1 can be any

motion mode). This change in the torso pose grid will quadruple the number of cells.

Although it is possible to only include motion mode information in the edges of the

graph and allow the nodes to remain in SE(2), we use the information of the motion

mode at each node to avoid frequent changes in motion modes along the path. We do

this by assigning a penalty for changing motion modes (see below). It is important

to minimize the number of motion mode changes because each segment of the path is

assigned a single motion mode. Frequent changes in motion mode will create many

segments, and thus create many subgoals along the torso pose guiding path. This

adds additional (possibly unnecessary) constraints to the original problem as well as

increasing the number of calls to PFS and RA, so we would like to reduce the number

of segments by reducing the number of motion changes. The algorithm to find an

optimal Ptp is discussed below.

5.4.1 Torso Pose Guiding Path Planning

To find an optimal Ptp, we formulate the search problem as a graph search problem,

and solve it with the A* algorithm. The edge cost ∆gtp between two cells (mi, pt,i)

33

and (mj, pt,j) is defined as

∆gtp ((mi, pt,i) , (mj, pt,j)) =

l
pt,i
pt,j

+ ws + wtr∆gtr (pt,i, pt,j,mj) +M (mi,mj)

M (mi,mj) =

0, mi = mj

wm, mi 6= mj

(5.3)

where ws is a fixed cost of taking a step, wm is a fixed motion mode changing cost,

∆gtr(0 ≤ ∆gtr ≤ 1) is the traversability cost associated with the transition from pt,i

to pt,j using motion mode mj (described in Section 5.5), and wtr is a weighting factor

for ∆gtr. Possible actions are the combination of torso pose transitions shown in

Figure 5.3 and the motion modes used. The heuristic function for planning the torso

pose guiding path is

htp ((mi, pt,i)) = dtgoal(pt,i) + ws
dtgoal(pt,i)

dt,max
(5.4)

where dtgoal(pt,i) is the Euclidean distance of the torso pose pt,i to the goal, and dt,max

is the maximum traveling distance of the torso pose in one transition. The first and

the second term are the admissible estimates of the remaining distance to the goal

and the remaining transitions needed to go to the goal, respectively. Since we do

not know what regions of the environment we need to traverse to reach the goal and

which modes will be used in the future, the heuristic function does not contain any

information related to motion mode change and traversability.

5.5 Learning Traversability

Traversability describes how quickly the contact planner can find a contact se-

quence to traverse through a region. If the planner knows which region has a higher

traversability before planning, it can bias its search to avoid difficult regions, and gen-

erate a contact sequence more quickly. However, the true traversability will only be

known after the contact planner has found a path. Therefore, we propose a learning

approach to quickly estimate traversability.

For a given torso pose pt in an environment E, a traversability estimator is defined

as |Γ+| : {v,m} → R+, where v is a 2D torso pose translation in the XY plane, and E

is expressed as the set of planar contact surfaces. We use a finite set of v, as shown in

Figure 5.3, and train an estimator for each {v,m} pair. Given a transition between

34

two torso pose pt,i and pt,j using motion mode m, we can compute v, and then use

the estimator with the matching m and closest v.

To estimate the traversability, we start by finding a set of feasible footstep com-

binations Γ at pt. To compute Γ, we first use the footstep transition model shown in

Figure 3.1 and Eq. 3.1 to find possible footstep combinations given pt = (xt, yt, θt).

For example, if a transition is that the right foot moves to
(
xlfrf , y

lf
rf , θ

lf
rf

)
relative to

the left foot, then the left foot and right foot pose can be computed in the world

frame as:

θlf = θt −
1

2
θlfrf ; θrf = θt +

1

2
θlfrf[

xrf

yrf

]
=

1

2

[
cos θlf − sin θlf

sin θlf cos θlf

][
xlfrf
ylfrf

]
+

[
xt

yt

]
(5.5)

The calculation is analogous for the left foot moving. These 3D poses of the feet will

then be projected to the environment to obtain the full 6D pose. If there exists a

valid projection on the environment for both feet, this footstep combination is feasible.

The above computation corresponds to GetFeasibleFootstepCombination function in

Algorithm 4. We denote the set of all foot and palm contact transitions as FC∆ and

PC∆, respectively.

Given an environment, a {v,m} pair and a starting footstep combination γ ∈ Γ, if

the contact planner can generate a contact sequence which applies the palm contacts

specified by the motion mode m and moves the torso to the cell to which pt+v belongs

in the torso pose grid, we call such γ a useful footstep combination and denote its set

Γ+. To limit the search space, we limit the number of palm contact poses that the

planner can explore, denoted np,lim. Therefore, the planner will return failure only

when the search tree is exhausted. The number of useful footstep combinations, |Γ+|
serves as an indicator for the traversability. The process computing the ground truth

is summarized in Algorithm 4. We randomly generate rubble corridor environments

to collect training data.

To compute the feature vector to estimate |Γ+|, we first discretize each surface

frame into a set of contact points Cp,i which form a grid. We denote the set of all

contact points, which is also the union of all Cp,is from all surface, as Cp. For each

contact point cp ∈ Cp, we cast a ray from each contact point along the normal of each

surface to check if the contact point is collision-free. The distance of each contact

point to the closest obstacle, denoted as δ (cp), is approximated as the closest distance

35

Algorithm 4: Compute Traversability Ground Truth Label

1 Input : pt,E,v,m,FC∆ ;
2 Γ← GetFeasibleFootstepCombinations (pt,FC∆,E);
3 Γ+ ← { };
4 for γ in Γ do
5 if ContactSequenceExists (E,v,m, γ) then
6 Γ+ ← {γ} ∪ Γ+;
7 end

8 end
9 return |Γ+|;

Figure 5.4: The grid of contact points on a surface plane. The distance of each
contact point to the closest obstacle or surface boundary is marked in
color spectrum order. Note that the light gray surface is covered by the
dark gray surface, which causes part of its contact points to be infeasible.

to any contact point in collision. Figure 5.4 shows an example contact point grid of

a surface. We can define the following scoring function to represent the clearance of

each contact point:

S (cp) =


0 δ (cp) < rins

δ(cp)−rins
rcir−rins rins ≤ δ (cp) < rcir

1 δ (cp) ≥ rcir

(5.6)

rins and rcir are the radius of the inscribed and circumscribed circle of the contact

end-effector shape, respectively. For each contact, if δ (cp) is larger than rcir, there

must exist enough free space for any contact pose at the contact point cp. However,

if δ (cp) is lower than rins, it is impossible to make contact at cp regardless of the

orientation of the contact.

S describes how likely a contact pose is feasible given its corresponding contact

point cp. In other words, each collision check is turned into a table lookup, which

speeds up the process. For foot contacts, based on the footstep transition projection

36

shown in Figure 3.1, we can further project all the contact points on ground surfaces

to a 2D grid on XY plane so that S can be queried with only the X and Y coordinate

of the foot contact.

For each feasible foot combination γ ∈ Γ, we expand the contact planning search

tree based on the transition model shown in Figure 3.1 for only one step. For each

expansion, we can define a footstep translation tuple α as α =
{
ttlf , t

t
rf , t

t
ex

}
. ttlf and

ttrf are the 2D translation of the left foot and right foot in the torso frame in the XY

plane, and ttex is the 2D translation of the expanded footstep in the torso frame in

the XY plane. Following the definition of torso pose pt in Eq. 3.1, each α corresponds

to a translation v in the torso grid. Since each position in α is in the XY plane, we

can pre-compute all α, and label each α by its corresponding nearest v. We denote

the set of α for each v as A (v).

Lines 4 to 11 in Algorithm 5 describe the process of computing the footstep score

Sf . We first iterate through each α labeled as moving in the direction v. For each

foot placement in the tuple, we find its nearest contact point, and the corresponding

score using Eq. 5.6. The multiplication shown in Line 9 captures the idea that the

feasibility of each footstep transition α requires all three foot contacts to be collision-

free. Finally we sum the scores for each α to obtain the footstep score Sf .

For palm contacts, we project palm contacts with a given torso pose pt as shown in

Figure 3.1. Each projection returns a nearest contact point cp on one of the surfaces.

We divide the palm scores into the four quadrants of the torso frame: Sp[i] for the

ith quadrant. This process corresponds to Lines 12 to 17 in Algorithm 5. Therefore,

we define the feature vector S (pt,v,m,E) as:

S (pt,v,m,E) =

[Sf] , m = feet only

[Sf ,Sp[1],Sp[2]] , m = feet and left palm

[Sf ,Sp[3],Sp[4]] , m = feet and right palm

[Sf ,Sp[1],Sp[2],Sp[3],Sp[4]] , m = all end-effectors

(5.7)

To train the estimator for each motion mode, we generate multiple environment

with randomly tilted surfaces, and collect ground truth data for the difficulty in

planning using the PFS approach. We then learn each estimator using Support Vec-

tor Regression (SVR) with an RBF kernel. We then define the traversability cost

∆gtr (v,m) = e−|Γ+|(v,m), where |Γ+| is the appropriate traversability estimator for

that transition. With this definition, higher traversability implies a lower traversabil-

37

Algorithm 5: Generate the Feature Vector to Estimate Traversability

1 Input : pt,v,E, A (v) ,PC∆, Cp;
2 Tpt ← GetTransformaionMatrix (pt);
3 Sf ← 0, Sp ← [0, 0, 0, 0];
4 for α in A (v) do
5 Sα ← 1;
6 for t in α do
7 cNearest ← GetNearestContactPoint (Tptt, Cp);
8 Sα ← SαS(cNearest);

9 end
10 Sf ← Sf + Sα;

11 end
12 for pc in PC∆ do
13 ppalm ← GetPalmPose (pt, pc);
14 cNeareset ← GetNearestContactPoint (ppalm, Cp);
15 iq ← GetPalmQuadrant (pt, ppalm);
16 Sp[iq]← Sp[iq] + S(cNeareset);

17 end
18 return [Sf ,Sp];

ity cost, and vice versa.

5.6 Torso Pose Guiding Path Segmentation

As mentioned in Section 5.3, we would like to segment the torso pose guiding

path based on the motion modes and the traversability of each transition to use

appropriate motion modes and planning methods (PFS or RA) for each segment.

To segment the torso pose guiding path Ptp, we first define the torso pose transition

sequence. Given a torso pose guiding path Ptp defined in Eq. 5.2, we can extract the

torso pose transition sequence Tδ (Ptp) defined as:

Tδ (Ptp) = {δ1, δ2, . . . , δNδ}

δi = (v (pt,i, pt,i+1) ,∆θ (pt,i, pt,i+1) ,mi+1)
(5.8)

where Nδ = Np−1 is the number of transitions in Ptp. To solve the segmentation prob-

lem, we are looking for a partition of Tδ such that each subset in the partition contains

torso pose transitions with continuous indices. For example, Tδ = {{δ1}, {δ2}, {δ3}},
{{δ1, δ2}, {δ3}} and {{δ1, δ2, δ3}} are valid segmentations, but {{δ1, δ3}, {δ2}} is not.

We denote the set of all valid partitions of Tδ as Ψ(Tδ).

We segment the torso pose transition sequence using a two-stage approach. First,

38

we segment at every motion mode change point in Tδ, and denote this segmentation

as ψmm. We then further segment each segment of ψmm based on the traversability.

However, we would like to avoid segments that are too short. Therefore, if the number

of transitions in a segment is less than a threshold Nseg, we do not segment it further;

otherwise, we solve the following optimization problem to further decompose each

segment of ψmm:

argmax
ψ∈Ψ(ψmm[k])

|ψ|∑
i=1

∣∣∣∣∣∣
∑
δj∈ψ[i]

∆gtr (v (δj) ,m (δj))− |ψ[i]|Ttr

∣∣∣∣∣∣
subject to |ψ[i]| ≥ Nseg

(5.9)

where ψ is a segmentation of the kth torso pose transition sequence, ψ[i] is the ith

segment in that segmentation, and Ttr is a traversability cost threshold which serves

as a way to decide which method (PFS or RA) to use to generate the contact sequence.

This optimization will try to generate segments whose average ∆gtr is above or below

Ttr as much as possible. We also add a constraint to exclude segments that are

too short. Again, it is important to reduce the number of segments for the reasons

described in Section 5.4.

To solve the optimization problem we could apply existing segmentation methods,

however we found that the space of segmentations was relatively small and the objec-

tive function was very fast to evaluate, thus instead we enumerate all segmentations,

compute the cost of each, and choose the one that is optimal.

After the segmentation, the contact sequence generation method µ(ψ∗[k]) ∈ {PFS,RA}
for each segment ψ∗[k] ∈ ψ∗ can be decided using the threshold Ttr. In this work, we

tested two ways to make the decision. The first is to decide based on the average ∆gtr

in the segment. If ∆gtr is above Ttr, that means the region around this torso pose

path segment is more difficult, so we use RA to generate the contact sequence. We

use PFS for other segments. The second approach is based on the observation that a

segment may have low average ∆gtr, but contain some spikes in ∆gtr, and cause the

PFS to be stuck in that part of the segment. Therefore, the second approach com-

pares the maximum of ∆gtr with Ttr. We compare the performance of these methods

in the Results section.

5.6.1 Decide Segment Exploration Order

After the segmentation is complete, each segment is planned for using either PFS

or RA separately. To better connect motion plans in each segment, if a segment using

39

Algorithm 6: Decide Segment Exploration Order

1 Input : ψ∗;
2 ψexplore ← { };
3 ψPFS ← { };
4 for ψ∗[k] in ψ∗ do
5 if µ(ψ∗[k]) = PFS then
6 ψPFS ← ψPFS ∪ ψ∗[k];
7 end
8 else
9 if µ(ψ∗[k]) = RA then

10 ψexplore ← ψexplore ∪ ψ∗[k] ∪ ψPFS;
11 ψPFS ← { };
12 end

13 end

14 end
15 ψexplore ← ψexplore ∪ ψPFS;
16 return ψexplore;

RA directly follows a segment using PFS, we can generate the contact sequence of the

latter segment first, and set the first stance in the latter segment as the goal for PFS

in the previous segment. Similarly, if two neighboring segments both use PFS, we

will always explore the previous one first, so that the latter segment can use the last

stance of the previous segment as the initial state. By doing this, we automatically

connect these two segments using PFS. The only exception is the connection between

two segments both using RA. In this case, we will run another PFS starting from the

last stance in the previous segment, and set the first stance in the latter segment as

goal. Algorithm 6 shows the procedure used to decide the segment exploration order.

5.7 The Planning From Scratch (PFS) Approach

In PFS, we follow Chapter III to formulate the contact planning problem as a

graph search problem, and solve it with ANA*. Since PFS is a search-based planner,

a cost is required for each action. For the foot contact transition between state s and

s′, we define the cost function as ∆gf (s, s
′) = dt(s, s

′)+ws, where dt is the distance the

approximated torso, defined in Eq. 3.1, travels in this action. For the palm contact

transition, the cost is ∆gp(s, s
′) = dp(s, s

′) + ws, where dp is the distance the palm

travels in this action. We use a heuristic function to allow the planner to explore

transitions in a goal-biased way. To compute the heuristic for each state, similar to

the approach for planning the torso pose guiding path, we first plan on the torso pose

grid. Our purpose here is to find the expected cost from each cell on the torso pose

40

grid to the goal cell. Therefore, we adopt the edge cost definition in Eq. 5.3, but

use Dijkstra’s algorithm to find the cost of each cell to the goal cell. This algorithm

outputs a torso policy (i.e. a direction to move for each cell) in the form of a tree.

PFS queries the policy using the approximated torso pose pt defined in Eq. 3.1 to

get the corresponding cost of each cell gtp for use in the contact planner’s heuristic

function:

gtp (pt(s),m) =
∑

∆gtp (pi, pi,parent,m)

= ltgoal(pt(s)) + wsNs + wtrgtr (m)
(5.10)

where pt,parent is the parent cell of the cell containing pt in the torso policy tree, ltgoal
is the length of the path from the cell containing pt to the goal cell, and Ns is the

number of steps taken along that path. Note that we do not include the M term

because there is only a single mode per segment.

The torso policy above will be queried as part of the heuristic for PFS. However,

since the torso policy does not include palm contact, we add a component to estimate

the cost of palm contact transitions along the path to the goal. We define the left

and right palm component of the contact planner’s heuristic as:

hp,lp (pt(s)) = llp(Ppt) + ws
llp(Ppt)

dlp,max

hp,rp (pt(s)) = lrp(Ppt) + ws
lrp(Ppt)

drp,max

(5.11)

where Ppt is the path from the cell containing pt to the goal in the torso policy, llp

is the length of the portion of Ppt where it is possible to make left and palm contact

with the environment, and likewise lrp for right palm contact. dlp,max and drp,max are

the maximum distances each palm contact can travel in one action. For a given mode,

we define the palm heuristic hp (pt(s),m) as the sum of the heuristics for all palms in

that mode (0 for feet only).

To evaluate the heuristic for each state in PFS we find the grid cell containing

pt, which is estimated by taking the mean pose of foot contacts. We then combine

that cell’s cost gtp from the torso policy with the palm component hp to arrive at the

heuristic: h (pt(s),m) = gtp (pt(s),m) + hp (pt(s),m).

41

5.8 The Retrieve and Adapt (RA) Approach

In Chapter IV, we showed that deforming an existing contact sequence to fit to

the environment is an efficient approach to solve difficult contact planning problems.

We constructed a motion plan library, sorted the motion plans based on how well the

contacts matched to the environment, and finally deformed motion plans one-by-one

until a matching motion plan was found. In this work, we keep the motion plan

contact sequence matching process presented in Chapter IV, but modify it to have

less computational overhead in selecting a motion plan from the library. We also

generalize the original approach to allow extraction of partial motion plans in order

to fit a longer plan to a closer goal. In addition we allow connecting multiple plans

to reach a distant goal by making multiple queries to the library for a single segment.

We first sort the motion plan library offline based on its length. When given a

query environment, we evaluate if a motion plan is promising for the given segment

by measuring the distance of its contact poses to the environment surfaces after

an alignment process. RA will deform the motion plan if those checks are passed;

otherwise, it will skip the motion plan, continuing until either a suitable motion plan

is found or the library is exhausted. We describe the library construction and query

processes below.

5.8.1 Constructing the Motion Plan Library

We construct a motion plan library for each motion mode, with each mode’s library

containing Nmp motion plans. For each motion mode, we collect a library of motion

plans by planning with the PFS method in randomly tilted surface environments with

and without stairs. Figure 5.5 shows some examples. Each motion plan π consists

of a joint trajectory, the corresponding contact sequence C(π), and the motion plan

torso path Pt(π). C(π) is defined as

C(π) = {〈ck, ek〉 |ck ∈ SE(3); k = 1, 2, ..., Nc} (5.12)

where ck is the pose of contact k in the motion plan, ek is an indicator of which

end-effector the contact k belongs to, and Nc is the number of contacts. Given the

foot contact poses, we can find all approximated torso poses along the path by taking

the mean of the foot contacts, and then project each approximated torso pose on the

torso pose grid to form a torso path:

Pt(π) = {pk|pk ∈ SE(2); k = 1, 2, ..., Np} (5.13)

42

Figure 5.5: Several example environments used to collect the motion plans to con-
struct the motion plan library.

When matching a motion plan to a torso pose guiding path segment, Pt provides

a mapping between the contact sequence and its location on the torso pose grid.

Therefore, Pt(π) can help extract partial contact sequences from π to move the robot

to the goal. We then extract a set D(π) from the torso path Pt(π) as the set of

Euclidean distance in the XY plane between the start torso pose p0 and all torso

poses pk ∈ Pt(π).

D(π) =
{
dk|dk = d (p1, pk) , d1 ≤, . . . ,≤ dNp , pk ∈ Pt

}
(5.14)

We force d(pk) to be monotonically increasing with k in every motion plan. If a motion

plan does not follow this assumption, it can be further decomposed and stored in the

library separately. We call the longest distance in D the motion plan length, lmp.

When searching through the library we check plans with larger lmp first because, if

successful, they will make the most progress toward the goal.

5.8.2 Querying the Motion Plan Library

Given a segment of the torso pose guiding path, denoted as Ptp,i, we define the

start and the goal at the first and the last torso pose in Ptp,i. We denote the Euclidean

distance between the start and the goal as lsg. Since it is unlikely to find a motion

plan to move the torso pose exactly to the goal, we define a goal radius rg to form a

circular region around the goal. When matching a motion plan to the environment, if

the motion plan length lmp is greater than lsg − rg, the motion plan has the potential

to move the robot from the start to the goal region. We then check if there exist

dj ∈ D(π), such that lsg−rg ≤ dj ≤ lsg +rg. If such dj exists, the partial motion plan

corresponding to the torso path segment between the 1st and the jth torso pose can

43

move the robot from the start to the goal region. We extract this part of the motion

plan as the effective segment of the motion plan πe.

When lmp < lsg − rg, the motion plan cannot move the robot from the start

to the goal region. In this case, the motion plan can only cover part of Ptp,i, and

stop in the neighborhood around a torso pose ptp ∈ Ptp,i. The part of Ptp,i after ptp

will then be used to query the library again. To find ptp, we search from the initial

torso pose in Ptp,i toward the end of Ptp,i, and stop at the first torso pose such that

d(ptp,1, ptp,k)− gr ≤ lmp ≤ d(ptp,1, ptp,k) + gr. In this case, the effective segment of the

motion plan would be the whole motion plan, so we let πe = π.

In both cases, if we cannot find a πe to meet the distance requirement, we reject this

motion plan. If πe is found, we would like to deform its joint trajectory to move the

contact poses in C(πe) to the surface patches in the environment so that the robot can

make contact with the environment. To do this we apply the plan deformation process

in Chapter IV, which aligns the plan to the environment using an iterative Jacobian to

reduce the distance from the plan’s contacts to the environment and then deforms the

plan. We summarize the process below (see Chapter IV for details). This process first

treats the plan as a rigid object and is initialized in the following way: Given a query

environment with the start (xs, ys, zs(xs, ys), θs) and the goal (xg, yg, zg(xg, yg), θg),

the algorithm initializes the rigid plan pose Trp = (x0,rp, y0,rp, z0,rp, θ0,rp) as:

x0,rp = xs; y0,rp = ys; z0,rp = zs

θ0,rp = atan2(yg − ys, xg − xs)
(5.15)

After iteratively updating Trp until convergence, we check if the plan’s contacts

are too far from their nearest surfaces, and if so we reject the plan. If not, the motion

plan, now expressed as a sequence of configurations, is modified and optimized to fit

the query environment with CES (Chung and Khatib, 2015). Each configuration of

the trajectory will moves contacts toward the nearest contact region. To speed up the

process, we do not check the balance constraint in the loop of CES. Instead, we check

if the resulting contact sequence follows the end-point balance constraints. If not, we

reject the motion plan. Furthermore, to ensure connection between the motion plans

generated in each segment of the torso pose guiding path, we force the first and last

torso pose in the motion plan to be close in orientation to its corresponding pose in

the torso pose guiding path segment, which means the final motion plan should obey

44

these constraints after the deformation:

|θs − θπe,1| ≤ θ∆, |θg − θπe,Ne| ≤ θ∆ (5.16)

where θπe,1 and θπe,Ne are the orientation of the first and last torso pose of the motion

plan πe, respectively. θ∆ is the orientation threshold. If all the checks have been

passed, RA will output this final motion plan as the result.

5.9 Connecting the Contact Sequences

As discussed in Section 5.6.1, except for the case that the previous segment uses

PFS and the latter segment uses RA, the planner for the previous segment will lead the

robot to a goal region around the goal of the previous segment. If the motion modes

of the two segments are different, it is possible that the last stance of the previous

segment is not close enough to the next segment to make the contacts required by the

motion mode of the next segment, which causes the search to fail. Furthermore, to

connect two segments both using RA, the connecting planner, which uses PFS, has

to find a contact sequence in the neighborhood of the connecting torso pose to the

first stance of the latter segment. In a contact-scarce region, this could be difficult to

plan.

We solve both of the above issues by broadening the search space. We use PFS to

plan the connection sequence and allow it to use any motion mode near the connecting

torso pose. This approach has a high branching factor but the connection region

(which is the same size as a goal region) is very small, so the computation-time

impact is limited.

5.10 Experiment on a Real Robot Platform - A Mobile Ma-

nipulator on a Steep Ramp

In this experiment, we demonstrate the motion of a real robot executing the

contact sequence generated by the proposed contact planner. Since it is still an

open problem to control humanoid robots to perform multi-contact motions, we use

a mobile manipulator to demonstrate a real robot motion based on a planned contact

sequence in a disaster-response scenario. Figure 5.6 shows the mobile manipulator

used in this experiment. It is an HDT Adroit dual-arm manipulator mounted on

a Clearpath Husky robot. The dual-arm manipulator is equipped with two 7-DOF

45

arms, and a 2-DOF (pitch and yaw) torso.

In our testing scenario the robot traverses an earthquake disaster site. A fallen

ceiling forms a ramp which is so steep that the robot will tip over when driving on the

ramp unless it braces itself with its hands (Figure 5.7). The robot has to plan contact

sequences on the cracked and tilted wall. It can take one of two paths, either above

or under the window, to reach the goal. We set the goal to be slightly higher than

where the robot starts, so the path above the window is slightly shorter in distance,

although it is more difficult to traverse. We compare the proposed PFS planner using

our traversability estimates with a standard PFS planner which does not consider

traversability (wtr = 0). We use the following parameter values for the proposed PFS

planner: ws = 3, wtr = 10.

The contact planning for the mobile manipulator is analogous to the formulation

used in humanoid contact planning shown in Section 5.7. We transform the ground

descrbied in Section 5.7 to be the wall in the mobile manipulator experiment, and

the mobile manipulator is viewed as “walking” on the wall, as shown in Figure 5.7.

To check quasi-static balance for each contact transition in contact planning, we

set the base position to always align with the standing contact in the x direction,

and follow the end-point balance constraint checking described in Section 5.7. The

contact planner plans palm contacts using the transition model in which the new

contact is [0.1, 0.4] meters in the x axis and [−0.2, 0.2] meters in the z axis from the

standing contact with discretization resolution of 0.1 meter in both axes. The robot

uses circular contacts, so the contact orientation remains 0 degree throughout the

planning. To simplify the balance check, the support region is approximated with

a conservative square contact inside the circular contact. The torso pose transition

model is an 8-connected transition model in the torso pose grid in the XZ plane

as shown in Figure 5.7. Since the contact orientation is always 0 degree, the torso

orientation also remains 0 degree in the XZ plane.

Although this experiment uses a different platform which is not a humanoid robot,

we can still use the same approach described in Section 5.5 to learn traversability es-

timates. For each torso translation, we collect data over sampled randomly-tilted

surface environments, and train a traversability estimator with the mobile manipu-

lator’s contact transition model. The result in Figure 5.8 shows that the proposed

contact planner has a much shorter planning time, but the resulting path takes more

steps. Since the standard planner does not consider traversability, the planner will

explore the slightly-shorter path above the window first. However, the gap created

by the pipe make the path above the window require more steps than the path under

46

Figure 5.6: The mobile manipulator used in the experiment. The end-effectors are
padded with foam covers to reduce damage on the surface of the end-
effector when making contacts.

the window and the standard planner, misled by the heuristic, spends a large amount

of time rejecting states around the gap before searching below the window. Because

our heuristic is not admissible, we do not find a plan that is as short as the standard

planner’s, however we note that a difference of two steps in this context is not very

large.

Although the proposed framework is originally designed for humanoid robots, we

demonstrated that the application of the traversability estimates is not limited to

humanoids. The experiment on the mobile manipulator shows potential extension

of the proposed approach to reduce the planning time for different robot platforms

which require contact planning. With the real robot experiment, we also show that

the planned contact sequence is executable by a real robot.

5.11 Experiments on the Proposed Framework

We evaluate the performance of the proposed framework in planning to navigate

through two types of environments and we compare the proposed framework with

two baselines: The first one is the standard contact planning approach: PFS with

all motion modes possible (PFS only). Since this planner is not required to use

any palm contacts, it uses the feet-only motion mode heuristic to estimate the cost-

to-go. The second baseline (Segmentation+PFS) uses our segmentation approach

but only uses PFS to plan motion plan in each segment. Since it only uses PFS,

we segment the torso pose guiding path only when motion mode changes. For the

47

Figure 5.7: The experiment setting: The mobile manipulator moves along a steep
ramp while using palm contacts to stabilize itself. The robot has to find
a contact sequence to move across the window, and can only make contact
to the four cracked wall surfaces showing in grey.

Table 5.1: The Result for Two-Corridor Test Environment and Two-Stair Test Envi-
ronment

Environment Approach
Success

Rate
Average
Number

of Segments
(PFS/RA/Total)

Planning Time (sec.)
Torso
Path

Planning

Torso Path
Segmentation

Contact
Space

Planning

Segment Contact
Sequence

Connection
Total Time

PFS Only 17/50 1/0/1 24.05 0 114.05 0 138.10
Two-Corridor
Environment

Segmentation+PFS 27/50 4.11/0/4.11 24.81 0.01 138.95 0 163.77
Our Framework-Mean 38/50 4.08/1.63/5.71 25.63 0.03 96.91 1.76 124.33
Our Framework-Max 42/50 2.78/2.93/5.71 26.16 0.03 109.03 17.73 152.95

PFS Only 23/50 1/0/1 24.74 0 146.05 0 170.79
Two-Staircase
Environment

Segmentation+PFS 35/50 5.72/0/5.72 23.91 0.01 115.62 0 139.54
Our Framework-Mean 39/50 4.31/3.18/7.49 24.74 0.70 117.66 1.34 144.44
Our Framework-Max 38/50 2.74/4.75/7.49 24.67 0.71 108.11 5.19 138.68

proposed framework, we also implemented two versions using different decision criteria

to decide whether to plan with PFS or RA for a given segment: mean(∆gtr) (Our

Framework-Mean) and max(∆gtr) (Our Framework-Max).

We implemented our algorithms in OpenRAVE (Diankov, 2010), and tested on

the Escher (Knabe et al., 2015) robot model. All experiments were run on an Intel

Core i7-4790K 4.40 GHz CPU with 16GB RAM. We use the following parameter

values: Nmp = 50, Ttr = 0.3, Nseg = 5, ws = 3, wm = 2, wtr = 10, rg = 0.2m, θ∆ = 30◦.

The torso path grid is discretized to 0.15m resolution in x and y, and 30◦ in θ.

48

Figure 5.8: Left: The planned contact sequence using the standard planner. Right:
The planned contact sequence using the proposed PFS planner. Left and
right palm contact are shown in red and green, respectively.

Figure 5.9: Executing a planned contact sequence in Left: a two-corridor environ-
ment. Right: a two-staircase environment.

5.11.1 Two-Corridor Environment Test

In the two-corridor environment, we construct the environment as two wide rooms

connected with two parallel corridors (see Figure 5.9). The environment is formed

with 1.5m by 1.5m patches, each of which is randomly generated as either flat ground

or rubble with 50% probability. The rubble patches are formed with quadrilateral

surfaces whose roll and pitch are sampled from a uniform distribution in [−20◦, 20◦].

The walls are also generated in the same manner. We set the start and the goal to be

a random location in the lower and the upper room, respectively. We set a 500 second

time limit. If the planner finds a contact sequence within the time limit in a trial,

the trial is counted a success. We run on 50 testing environments, and compare the

performance of the different approaches in terms of success rate and planning time

for the successful trials (see Table 5.1).

49

The results show that the segmentation based on motion modes improves success

rate by 20%. Using our full framework (i.e. introducing RA to plan for difficult

segments) outperforms the other approaches in terms of success rate, while keeping

the planning time low. Setting the method decision criterion based on the max

traversability cost improves the success rate at the cost of higher average planning

time. This is because it uses RA in some regions that can be solved quickly using

PFS. The time required to connect segments also increases because there are more

segments which use RA, so we require additional time to connect those segments.

5.11.2 Two-Staircase Environment Test

A two-staircase environment is shown in Figure 5.9. Testing in this environment

confirms that the framework can be applied to environments with large height changes

even though the torso pose guiding path is defined in SE(2). In this environment,

we let the upper room to be elevated by a random amount between 1m and 1.5m,

and the height difference is equally distributed over 9 stairs. As in the two-corridor

environment, each stair could be a flat surface or rubble with 50% probability. We

use the same timeout and number of test environments as in the previous test. In this

test, we again see that using segmentation gives a large performance improvement

over the standard planning approach (24% increased success rate). We also see that

our full framework (i.e. including RA) slightly outperforms the approach using only

PFS. The improvement from using RA may be limited here because the stairs in the

staircase are relatively small, so even if some stairs are rubble, there tend to be many

flat steps, which are easy for PFS to traverse.

5.12 Conclusion

In this work we proposed a framework to plan humanoid navigation in unstruc-

tured environments using four predefined motion modes. The framework jointly con-

siders the motion mode and the traversability of the environment to segment a guid-

ing path for the torso into easy- and difficult-to-traverse segments and assigns the

appropriate planning method to each. The results suggest that the proposed frame-

work greatly outperforms standard planning without segmentation and that including

library-based planning methods can also improve performance in some environments.

50

CHAPTER VI

Efficient Humanoid Contact Planning using

Learned Centroidal Dynamics Prediction

6.1 Introduction

Humanoid robots keep balance and navigate unstructured environments by con-

trolling the contact interaction wrenches applied at selected end-effector contact

poses. In this work, we are interested in the efficient planning of such sequences

of contact poses that can be used by a robot with arms and legs to optimally tra-

verse highly dynamic, large and unstructured environments, as shown in Figure 6.1.

However, as stated in Chapter I, it is computationally costly to plan dynamically

feasible contact sequence. To cope with this challenge, previous approaches trade-

off different factors. For instance, on the one hand, some approaches Escande et al.

(2009); Hauser et al. (2006); Tonneau et al. (2018); Chung and Khatib (2015) use a

quasi-static balance criteria Bresler and Frankel (1950), which lowers computational

complexity but does not consider dynamic planning of contacts Bretl (2006); Caron

et al. (2015); Prete et al. (2016). On the other hand, for more dynamic motions, such

as when crossing a wide gap or walking down a steep slope, contact planners based

on mixed-integer programming Ibanez et al. (2014); Aceituno-Cabezas et al. (2016);

Aceituno-Cabezas et al. (2018) that can account for dynamics are better suited, but

still suffer from the high branching factor of the search, which in large environments

still remains computationally demanding for online contacts planning.

In this work, we incorporate motion dynamics within a search-based contact plan-

ner. We formulate the contact planning problem as a graph search problem where

each edge corresponds to a contact transition, and the motion dynamics are evaluated

for each edge. Considering motion dynamics enables the contact planner to not only

plan contact sequences for dynamic motions, but also select new contacts based on a

51

Figure 6.1: Left: The robot goes down a steep slope where quasi-static motions are
not available. Right: The robot goes through a rubble corridor using both
palm and foot contacts.

measure of “dynamical robustness” to achieve robust locomotion. To deal with the

computationally heavy optimization of motion dynamics within the contact planning

loop, we train neural networks to predict the dynamic evolution of optimal robot

momentum over contact transitions, and query the networks in the planning loop to

inform the contact planner how to produce contact sequences which are likely to be

dynamically-robust. Using a learned approximation of optimal momentum evolution

allows us to consider dynamic feasibility of transitions without paying the high com-

putational cost of solving a dynamics optimization problem for each considered edge

in the graph. The generated contact sequence is then used by a centroidal momen-

tum dynamics optimizer Ponton et al. (2018) to produce a time-optimal dynamically

feasible motion plan. To the best of our knowledge, this work is the first attempt

where a learned dynamics model is used for online planning of contact sequences for

a humanoid robot involving both foot and palm contacts.

In our experiments, we compare our method to a quasi-static search-based and a

mixed-integer contact planner. Our results suggest that our approach produces more

dynamically robust motions compared to the quasi-static planner which allows us to

traverse dynamically challenging environments, and can be orders of magnitude more

efficient than mixed-integer based planners in large unstructured environments.

6.2 Problem Statement

In this work, we focus our efforts on the dynamic planning of contact sequences

for humanoid robots. Given an environment specified as a set of polygonal surfaces,

a start stance, and a goal region, we seek to produce a dynamically-feasible contact

52

sequence along with a dynamics sequence, which includes centroidal momentum tra-

jectories and contact wrenches at each time step of the trajectory, to move the robot

from the start stance to the goal region within a specified planning time. The robot

always uses feet contacts, but can also optionally use palm contacts when they are

available. As considering variable transition times significantly increases the branch-

ing factor of the search, we assume fixed timing for each contact transition. We also

assume the friction coefficient of the environment is given and fixed.

6.3 Centroidal Momentum Dynamics Optimization

The momentum dynamics have been widely adopted to plan dynamically feasible

motions for floating base robots (Orin et al., 2013; Kajita et al., 2003). In this work,

we use the fixed-time formulation of the centroidal dynamics optimizer proposed by

Ponton et al. (2018). In the following, we briefly summarize them and explain how

we use them to generate robust motion plans. The dynamics of a floating-base robot

with n degrees of freedom is

H(q)q̈ + C(q, q̇) = ST τ + JTe λ (6.1)

where q =
[
qT , xT

]T
denotes the generalized robot states including joint positions

q ∈ Rn, and floating base frame x ∈ SE(3). H ∈ R(n+6)×(n+6) is the inertia matrix,

and C ∈ Rn+6 stands for the Coriolis, centrifugal, and gravity forces. S = [In×n 0] is

a selection matrix, τ ∈ Rn is the torques vector, Je is the endeffector jacobian, and

λ =
[
· · · fTe τTe · · ·

]T
comprises the force fe and torque τe of each endeffector contact.

We can then decompose Eq. (6.1) to actuated parts (Eq. (6.2a)), and unactuated

parts (Eq. (6.2b))

Ha(q)q̈ + Ca(q, q̇) = τ + JT
e,aλ

Hu(q)q̈ + Cu(q, q̇) = JT
e,uλ

(6.2a)

(6.2b)

Under the assumption that enough torque can always be generated by the robot, if

there exist robot states q, q̇, q̈, and the external forces λ that satisfy Eq. (6.2b), Eq.

(6.2a) is also satisfied. With the assumption and decomposition, Eq. (6.2b) verifies

the dynamic feasibility, and Eq. (6.2a) is only required to verify torque limits and

kinematic constraints. Eq. (6.2b) is equivalent to the Newton-Euler equations of

the robot (Wieber, 2006), which means that the momentum rate equals the applied

53

external contact wrenches. The centroidal dynamics expressed at the robot CoM isṙ

l̇

k̇

 =


1
M

l

Mg +
∑

fe∑
(Te(ze)− r)× fe + τe

 (6.3)

r is the CoM position. l and k are linear and angular momenta, respectively. M

is the robot mass. ze is the CoP of each contact in the contact frame. fe and τe

are the contact force and torque at the CoP of each end-effector and finally, Te is a

coordinate transform in the CoM frame. In addition to Eq. (6.3), contact forces need

to be inside friction cones, and CoPs inside the support regions of each contact, to

prevent the contact from sliding and tilting.

To compute a dynamically robust motion we follow Ponton et al. (2018) to min-

imize the weighted sum of the square norm of l, l̇, k, k̇, fe, and τe. Lower l and l̇

help improve dynamic stability (Wieber, 2008). Reducing k and k̇ help the robot

perform more natural motion (Herr and Popovic, 2008). fe and τe terms encourage

a more even distribution of forces and torques over all the contacts, which increase

controllability of the robot. Additionally, we append two terms, the lateral contact

forces fl in the contact frame

fl = [fc[x], fc[y]]T , fc = T−1
e (fe) (6.4)

and the weighted CoP position zw in each contact frame

zw = [
ze[x]

le,x
,
ze[y]

le,y
]T (6.5)

where le,x and le,y are the lengths of the support region in X and Y direction of the

contact frame. These two additional terms capture the robustness of the contact.

A lower lateral contact forces favor forces away from the friction cone limits and

therefore decrease the chances of sliding while a CoP position closer to the contact

center decreases chance of contact tilting during execution.

Here, the dynamics optimization does not have a CoM position goal and we do not

specify the final CoM position as part of the objective. Instead, a final CoM position

bound is enforced as a constraint based on the mean position of the last pair of feet

contacts. In the final time step of the whole contact sequence, we also constrain the

CoM velocity to zero to ensure the robot can finally come to a stop.

54

Figure 6.2: Left: The foot contact transition model used in training data collection.
(38 steps) Middle: The foot contact transition model used in the experi-
ment. (60 steps) Right: The palm contact transition model, expressed as
the projections from the approximated shoulder to a wall.

6.4 Anytime Graph-Search Contact Planner

We build on the PFS contact planner described in Chapter III with modification on

the state definition. In this work, in addition to the contact poses, each state further

includes a CoM position and a CoM velocity to represent the centroidal dynamics.

An action is either moving one end-effector to a new contact pose, or breaking one

palm contact. The contact transitions are based on a predefined discrete transition

model, shown in Figure 6.2, and we adopt the same contact projection scheme shown

in Figure 3.1. The edge cost of each action from a state s to a state s′ is defined as

∆g(s, s′) = wxyd(s, s′) + ws + wdynddyn(s, s′) (6.6)

where d(s, s′) is the XY distance the contact end-effectors’ mean position travels in

the contact transition, wxy is the weight corresponding to d(s, s′), ws ∈ R+ is a fixed

cost of a contact transition, ddyn is the dynamics cost, which captures the dynamical

robustness of the contact transition. The dynamic cost is the optimal objective value

of the dynamics optimization, discussed in Section 6.3, for the contact transition.

Running the optimization in the planner is too time consuming, and we will describe

how to estimate such a cost in Section 6.6. wdyn ∈ R+ captures how much emphasis

a user wants to put on minimizing the total dynamics cost of the path. In practice,

robust contact sequences may contain more steps, and the user can adjust wdyn to

trade-off between the number of steps and dynamic robustness.

We solve the contact planning problem with ANA*. To guide the search, we

define the heuristic function by computing the distance to reach the goal with a

55

Figure 6.3: The simplified robot model, shown as the purple box, and the environment
overlayed with the SE(2) grid.

simplified robot model, a floating box traveling on an SE(2) grid, as shown in Figure

6.3. We use an 8-connected grid transition model, and prune out cells where there

is a collision between the box and the environment. We then plan on this grid from

the cell containing the goal to every other cell in the environment using Dijkstra’s

algorithm. The result is a policy giving a motion direction for every cell, which can

also be used to estimate the amount of motion needed to reach the goal, which we

terms dDijkstra(s). During contact planning, the planner queries this policy with the

contacting end-effectors’ weighted mean position on the XY plane, and the mean feet

rotation about Z axis to compute the heuristic

h(s) = wxydDijkstra(s) + ws
dDijkstra(s)

∆dmax
(6.7)

where ∆dmax is an overestimate of the maximum length the weighted mean contact

pose can travel in one transition. The above heuristic is an example implementation

for our application. It can be swapped with other heuristics, such as a Euclidean

distance heuristic, or a simplified robot model policy in a discretized SE(3) space,

depending on the application.

The heuristic function in Eq. 6.7 depends on the distance of the current contact

poses to the goal, and does not contain any information about future dynamics cost.

While ANA* will improve the solution over time, the time needed to improve the

solution relies on the accuracy of the heuristic estimating future cost. The planner

may be stuck in a cul-de-sac, and can only escape when the states in the cul-de-sac

are exhausted. Since ANA* behaves like a depth-first search in the beginning, a

cul-de-sac is especially hard for it to escape.

56

Index
Initial

Contacts
Contact Transition Dim.

1 Only foot
contacts

Move a foot contact 24
2 Add a palm contact 24
3

Foot contacts
and a palm
contact

Move the inner foot contact 30
4 Move the outer foot contact 30
5 Break the palm contact 24
6 Move the palm contact 30
7 Add the other palm contact 30
8

All foot and
palm contacts

Move a foot contact 36
9 Move a palm contact 36
10 Break a palm contact 30

Figure 6.4: Left: All categories of the contact transitions. The inner or outer foot
means the foot in the same or opposite side of the palm contact. Each
dimension includes all the initial contact poses, the new contact pose (if
there is any), and initial CoM position and velocity. Right: An example
environment to collect the training data. The tilting angle of each surface,
the wall orientation, and wall distance to the robot are randomly sampled.

To ease the problem, we adopt the ε-greedy strategy Valenzano et al. (2014): With

probability 1 − ε (0 ≤ ε < 1), the planner expands a node using the same rule as

ANA*, and with probability ε, it randomly explores a node in the priority queue.

Since the random exploration does not prune out any nodes in the priority queue,

and can only find new nodes or lower-cost paths to reach existing nodes, this variation

does not affect the guarantees of ANA*. This strategy helps the planner escape cul-

de-sacs faster by enabling the planner to explore nodes outside the cul-de-sac before

exhausting it.

6.5 Evaluation of the Dynamics of Contact Transitions

To precisely evaluate the dynamics cost ddyn of a contact transition to a new state,

a dynamics optimization from the initial state to the new state is required. However,

it is not only time consuming to compute, but also difficult to learn because the

input dimension can be arbitrarily high depending on the depth of the new state in the

search tree. Therefore, we approximate the dynamics evaluation as only the dynamics

optimization of the contact transition. Only after the contact sequence is returned by

the planner, we then apply dynamics optimization on the whole contact sequence to

finally output the dynamics sequence. However, even with this simplification, running

dynamics optimization for every contact transition in a search tree is still too time

57

consuming (in the order of 100 ms) for practical use. Therefore, we propose to learn

the prediction of the results of the dynamics optimization of each contact transition

using neural networks. In our test, each query to the network takes about 0.1 ms,

which is 3 orders of magnitude faster than the original dynamics optimization.

6.6 Learning the Result of the Dynamics Optimization of

Contact Transitions

For each contact transition, the dynamics optimizer needs to decide if it is dynam-

ically feasible, compute the objective value as part of the edge cost, and output the

CoM position and velocity of the child state. To capture the function of the dynamics

optimizer in contact planning, we train two kinds of neural networks:

• A classifier to predict the dynamic feasibility

• A regressor to estimate the objective value, and the CoM position and velocity

after the contact transition

The classifier has 1D binary output, which represents the feasibility of the transition,

and the regressor has 7D continuous value outputs, which includes 1D objective, 3D

CoM position, and 3D CoM velocity. The inputs of the neural networks are all the

contact poses in the contact transition, and the initial CoM position and velocity,

as same as the dynamics optimizer. To simplify the problem , we ignore CoM an-

gular velocities in the input/output vectors, and encode the angular momentum in

the objective function. We train separate neural network for each kind of contact

transition using different end-effectors. Since most of the humanoid robots have sym-

metric kinematic structure, we further exploit this symmetry to define 10 categories

of contact transition, and show its corresponding input dimensions in Figure 6.4.

The training data are collected by running the planner which calls the dynamics

optimizer in each new branch in randomly tilted surface environments, as shown in

Figure 6.4. The environments allow us to collect contact transitions with various

contact locations and orientations. Each contact pose is encoded as a R6 vector with

position and orientation in Tait-Bryan angles. Each angle is set to be in [−π, π) to

avoid the confusion of other coterminal angles. To capture the spatial relationship of

the orientation data which contain angles near π and −π, we duplicate those samples

with ±2π in the training data, but always query the neural network with angles

within [−π, π).

58

Figure 6.5: Left: the classification network. Right: the regression network.

The neural networks used in this work are shown in Figure 6.5. Although it is

possible to find the best-performing network structure for each category of contact

transitions, we find out that using the same structure for all categories performs

reasonably well, and is much simpler in implementation. For the classifier network,

the output layer uses softmax activation function, which makes the network a logistic

regressor. For the regression network, the output layer is a combination of linear

functions for CoM position and velocity, and ReLU for the objective value. ReLU

ensures the network to output positive objective values. The hidden layers for both

networks are the same, which are 3 layers of 256 fully-connected nodes using ReLU

activation function.

6.7 Experiments and Results

We evaluate the performance of the proposed approach in four environments in

simulation: a wide gap, a steep slope, a rubble field, and a rubble corridor, as shown

in Figure 6.6. For each test, we set wxy = 1, ws = 3, wdyn = 0.1, ε = 0.1, and

30 seconds time limit for the proposed approach. The contact planner will keep

improving solutions within this time limit, and outputs all solutions during the im-

provement process. With all the contact sequences returned by the ANA*, we run a

complete dynamics optimization to generate a full motion sequence, from the latest

to the first contact sequence until a dynamically feasible one is confirmed. For all

the dynamics optimization, we fix the time step to be 0.2 second. We also fix the

timing for each contact transition: 1 second in original contact (shifting CoM) and

1 second for moving the end-effector. The friction coefficient is 0.5. The weights of

each term in the objective function are: l:0.2, l̇:0.01, k:1, k̇:0.3, fe:0.01, τe:1, fl:10,

59

and zw:1. All parameters are chosen empirically to help generate kinodynamically

feasible motion. The dynamics optimization used in our approach is solved using

the Ipopt solver Wächter and Biegler (2006). The neural networks are trained offline

with Keras 2.1.6 Chollet et al. (2015) with Tensorflow 1.10.1 backend Abadi et al.

(2016) for 100 training epochs, and are queried online using frugally-deep Hermann

et al. (2016). All experiments were run on an Intel i7-6700 8-core 3.4GHz CPU. The

proposed approach only uses a single thread. The robot has 30 DOF; 7 DOF in each

manipulator and 2 torso DOF. We show the generated trajectories in the visualizer

provided by the SL simulator Schaal (2009) in the attached video.

In the following experiments, we compare our approach with a baseline quasi-

static contact planner, which tries to find the shortest quasi-static contact sequence

to the goal. The quasi-static contact planner follows the formulation shown in Section

6.4, but it does not consider any dynamics, and only verifies the static balance of the

robot stance at each state using Caron et al. (2015). We also impose the 30-second

time limit, and use dynamics optimization on the contact sequence generated by the

quasi-static contact planner to find its dynamics sequence. In addition to the quasi-

static contact planner, we also compare the proposed planner with a mixed-integer

contact planner Ponton et al. (2016) in the rubble field environment to show the

advantage of the proposed approach in a non-trivial environment.

6.7.1 Wide Gap Environment Test

In this test, we show that the proposed approach can plan dynamically feasible

contact sequence to cross a 0.5 meter wide gap on the ground. Including the length

of the robot feet, the robot has to make a 0.72 meter stride to cross the gap, which is

impossible to achieve by quasi-static walking. We use a dedicated foot contact tran-

sition model for making large step in this test, but query the same neural networks.

Figure 6.6 shows the contact plan, and CoM trajectory returned by the proposed

approach. It took 0.143 seconds to find the contact sequence, and 1.23 seconds for

dynamics optimization over the contact sequence.

6.7.2 Steep Slope Environment Test

In this test, the robot is required to go down a 3 meter long 30◦ slope. The robot

cannot maintain static balance on the slope, so the quasi-static contact planner is

not able to find any solution. Our approach finds the first solution in 0.702s, and

generating the contact sequence shown in Figure 6.6 takes 10.617s. The dynamics

60

Figure 6.6: Planning examples of the proposed approach for wide gap (top left), steep
slope (top right), rubble field (bottom left) and rubble corridor (bottom
right) environments. The red line and blue line mark the predicted CoM
trajectory, and the CoM trajectory returned by the dynamics optimizer,
respectively. Contact sequences include left foot(red), right foot(green),
left palm(cyan), and right palm(magenta) contacts.

61

Figure 6.7: Planning examples of the quasi-static contact planner for rubble field
(left) and rubble corridor (right) environments.

The Proposed
Approach

Mixed integer contact planner
with simplified dynamics model

12 Contacts 18 Contacts 24 Contacts
0.098 ± 0.037 85.93 ± 56.41 33.93 ± 18.54 46.40 ± 20.30

Figure 6.8: Time required to find dynamically feasible contact sequence in rubble
field environments (Unit: second)

62

T
es

t
A

p
p

ro
ac

h
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0
)

(1
1
)

(1
2
)

R
u

b
b

le
F

ie
ld

E
n
v
ir

on
m

en
t

Q
u

as
i-

st
at

ic
C

on
ta

ct
P

la
n
n

er
47

/5
0

4
7
/
4
7

1
.1

7
3
4
9
8
.5

1
2
.0

1
2
.7

0
.4
7
2

0
.7

0
6

0
.7

6
7

0
.0

1
2

0
.0
6
2

0
.0

0
6
8

T
h

e
P

ro
p

os
ed

A
p

p
ro

ac
h

5
0
/
5
0

5
0
/
5
0

1
.0
2

3
3
3
4
.2

6
.0
0

9
.6
8

0
.5

8
1

0
.5
5
9

0
.7
6
3

0
.0
1
0

0
.0

7
9

0
.0
0
7
9

R
u

b
b

le
C

or
ri

d
or

E
n
v
ir

on
m

en
t

Q
u

as
i-

st
at

ic
C

on
ta

ct
P

la
n
n

er
44

/5
0

4
4
/
4
4

1
.0
5

3
4
1
8
.7

1
1
.5

1
1
.1

6
0
.5
2
3

0
.6

1
8

0
.7

6
8

0
.0
1
3

0
.0
8
2

0
.0

0
6
9

T
h

e
P

ro
p

os
ed

A
p

p
ro

ac
h

5
0
/
5
0

4
9
/
5
0

1
.5

9
2
3
9
2
.5

4
.3
8

4
.8
3

1
.3

7
8

0
.3
4
9

0
.6
3
1

0
.0

2
5

0
.0

8
8

0
.0
1
7
3

F
ig

u
re

6.
9:

R
es

u
lt

s
fo

r
th

e
ru

b
b
le

fi
el

d
co

rr
id

or
en

v
ir

on
m

en
ts

:
(1

)
C

on
ta

ct
p
la

n
n
in

g
an

d
(2

)
D

y
n
am

ic
s

op
ti

m
iz

at
io

n
su

cc
es

s
ra

te
s

(3
)

A
ve

ra
ge

n
u
m

b
er

of
te

st
ed

co
n
ta

ct
se

q
u
en

ce
to

fi
n
d

a
d
y
n
am

ic
al

ly
fe

as
ib

le
se

q
u
en

ce
(4

)
M

ea
n

d
y
n
am

ic
s

ob
je

ct
iv

e
of

th
e

w
h
ol

e
co

n
ta

ct
se

q
u
en

ce
(5

)
M

ea
n

li
n
.

m
om

en
tu

m
n
or

m
(k

g·
m

/s
)

(6
)

M
ea

n
li
n
.

m
om

en
tu

m
ra

te
n
or

m
(k

g·
m

/s
2
)

(7
)

M
ea

n
an

gu
la

r
m

om
en

tu
m

n
or

m
(k

g·
m

2
/s

)
(8

)
M

ea
n

an
gu

la
r

m
om

en
tu

m
ra

te
n
or

m
(N
·m

)
(9

)
M

ea
n

R
M

S
co

n
ta

ct
fo

rc
e

n
or

m
(1

0)
M

ea
n

co
n
ta

ct
to

rq
u
e

(N
·m

)
(1

1)
M

ea
n

la
te

ra
l

co
n
ta

ct
fo

rc
e

n
or

m
(1

2)
M

ea
n

C
oP

d
is

ta
n
ce

to
co

n
ta

ct
b

ou
n
d
ar

y
(m

).
C

on
ta

ct
fo

rc
es

ar
e

n
or

m
al

iz
ed

b
y

th
e

ro
b

ot
w

ei
gh

t
an

d
ar

e
u
n
it

le
ss

.
In

(5
)-

(1
2)

,
m

ea
n
s

ar
e

co
m

p
u
te

d
ov

er
al

l
ti

m
e

st
ep

s
of

al
l

d
y
n
am

ic
al

ly
fe

as
ib

le
tr

ia
ls

.

63

optimization takes 6.32s to generate the dynamics sequence which contains 31 con-

tacts.

6.7.3 Rubble Field Environment Test

The rubble field environment (Fig. 6.6), simulates a common disaster-relief sce-

nario. The robot dynamically walks over a rubble to reach a goal about 3.4 meter

away. Contact surfaces are randomly tilted in X and Y axes in [−20◦, 20◦]. The

environment contains 14 convex contact surfaces.

In this test, we compare the performance of the proposed approach with the mixed

integer contact planners. We first compared to a custom implementation of a mixed

integer contact planner that internally solves the dynamics optimization problem as in

Ponton et al. (2018), which is also used for training our neural networks. After 7 hours

of planning time, it was not able to find a feasible solution. We then used a simplified

dynamics model Ponton et al. (2016) and assumed that the contacts are all point

contacts, which fixes each CoP to one point, and neglects the contact orientations. We

solved it with state-of-the-art mixed integer solver, Gurobi 8.0 Gurobi Optimization

(2018), using 8 threads. As shown in Figure 6.8, the mixed integer contact planner

using the simplified model still takes much longer than the proposed approach to

find a feasible solution. Furthermore, the mixed integer contact planner requires the

user to specify the number of contacts used in the plan. Since the planning is in

unstructured environments, it is not trivial to decide how many contacts are needed,

and different number of contacts can have a great impact on the planning time (Figure

6.8).

Compared to the quasi-static contact planner, the proposed approach produces

contact sequences with similar dynamics objective. However, as shown in Figure 6.9,

the proposed approach generates motion with lower linear momentum and rates of

linear and angular momenta. The angular momentum of the proposed approach is

higher because it does not always produce straight walking motion as the quasi-static

contact planner normally does, instead it may take a detour to achieve more robust

locomotion using our approach.

6.7.4 Rubble Corridor Environment Test

In this test, we set up the rubble corridor environment, where palm contacts are

available, and test the planner’s ability to find dynamically robust contact sequence

in such environment. The surfaces are randomly tilted as in Section 6.7.3. Without

64

any user specification, the proposed approach is able to discover palm contacts in the

search, as shown in Figure 6.6. The quasi-static contact planner, on the other hand,

does not consider the dynamics, and favors path with shorter traveling distance and

fewer number of contacts. Therefore, it outputs solutions without palm contact, as

shown in Figure 6.7. Compared to the quasi-static contact planner, the proposed ap-

proach generates motion with lower linear momentum, rates of the linear and angular

momenta, and higher CoP clearance to the contact boundary, as shown in Figure 6.9.

Although the angular momentum of the motion generated by the propose approach

is much higher, the robot momenta rates are much lower, which results in a much

lower dynamics objective of the whole contact sequence.

6.7.5 Prediction of Dynamics Optimizer Results

Here, we analyze the performance of the neural network in predicting useful in-

formation to guide the planner to find dynamically robust contact sequences. Figure

6.10 summarizes the networks’ performance on predicting the results of the dynam-

ics optimization over each contact transition. For each motion category, we use 105

training data, and tested with another 1000 data. The proposed approach estimates

the dynamics objective of the whole contact sequence with the sum of dynamics ob-

jective in each contact transition of the contact sequence. As shown in Figure 6.11,

this estimates is not accurate as it neglects previous and later contact poses in each

optimization over a contact transition. However, the estimates and the actual dy-

namics objective are highly correlated, which makes the estimates a suitable edge

cost function to select branches which lead to lower dynamics objective of the whole

contact sequence.

6.8 Conclusion

We proposed a contact planner which finds dynamically robust contact sequence

involving both foot and palm contacts. Costly dynamics optimization is replaced by

a learned prediction of dynamic feasibility and edge cost. The planner can leverage

these learned functions to efficiently evaluate contact options in the planning loop. In

the future, we would like to extend the contact planner to further consider timing of

each contact transition Ponton et al. (2018), so that the contact planner can generate

a wider variety of dynamic motions.

65

Contact
Transition
Category

Index

Dynamic
Feasibility
Prediction
Accuracy

Mean
Actual

Dynamics
Objective

Mean Absolute
Error in Regression

Dynamics
Objective

Final
CoM
(mm)

Final CoM
Velocity
(mm/s)

1 90.3% 1436.10 62.45 7.5 6.6
2 97.0% 740.85 40.38 6.0 5.4
3 95.3% 164.96 20.70 9.0 5.4
4 93.5% 119.85 11.07 6.7 4.7
5 94.3% 516.53 45.06 7.1 4.1
6 95.2% 87.80 12.39 9.1 4.1
7 98.1% 53.47 8.10 7.3 4.1
8 96.6% 50.66 17.28 8.1 2.4
9 96.1% 88.00 15.18 9.0 3.0
10 98.3% 62.40 7.56 8.1 3.7

Figure 6.10: Performance of the neural networks to predict dynamic feasibility, dy-
namics objective, final CoM and CoM velocity of a contact transition.
Refer to Figure 6.4 for the meaning of each contact transition category
index.

Figure 6.11: Relationship between the sum of the predicted dynamics objective of
contact transitions and the actual dynamics objective of the whole con-
tact sequence. Data taken from the rubble field and rubble corridor
environments. The linear model showing the correlation is fit with ro-
bust regression Holland and Welsch (1977).

66

CHAPTER VII

Robust Humanoid Contact Planning with Learned

Zero- and One-Step Capturability Prediction

7.1 Introduction

Algorithms efficiently computing contact sequences to traverse complex terrains

are a fundamental building block for multi-contact behaviors of legged robots, in

particular humanoids. In order to reduce computational complexity, most contact

planners generate contact sequences considering solely quasi-static constraints (Ton-

neau et al., 2018; Hauser et al., 2006; Escande et al., 2009; Chung and Khatib, 2015;

Lin and Berenson, 2018). However, a static stability criterion significantly decreases

the set of possible contact transitions, which quickly leads to planning failure when at-

tempting to traverse complex environments. More recently, in addition to the method

proposed in VI, efficient planners using more general dynamic feasibility constraints

have also been proposed (Fernbach et al., 2018; Ponton et al., 2016). Nevertheless, all

these approaches assume fixed, deterministic environments and do not consider the

robustness of contact sequences to potential environmental disturbances. In Figure

7.1, we show an example where the robot walks over rubble. There is a wall in the

environment, and the robot can use palm contacts to capture itself against potential

disturbances. However, without considering this information in the planner, a con-

ventional contact planner could take the shortest feasible path which does not have

access to the wall, and may cause the robot to fall down when a disturbance occurs.

In this capter, we propose a computationally efficient footstep planner that explic-

itly takes into account disturbances to increase motion robustness. In particular, we

consider zero-step and one-step capture motions using either foot or palm contacts.

Testing the existence of capture motions in multi-contact scenarios necessitates the

solution to a kino-dynamic optimal control problem (Del Prete et al., 2018; Wang and

67

Figure 7.1: The robot walks over a rubble, and is impacted by a disturbance. Top:
The robot walks close to the wall, and capture itself using a palm contact
on the wall. Bottom: The robot cannot reach the wall, and falls down
under the disturbance.

Hauser, 2018). However, it is prohibitively long to directly solve such problem in a

footstep planner, as every candidate contact transition requires such a test. Instead,

we propose to train neural networks to predict the existence of a dynamically feasi-

ble capture motion using data generated offline with a kino-dynamic optimizer. The

networks predict both zero-step and one-step capturability for a full-body dynamic

model using both foot and palm capture motions. We then query these networks in

the footstep planning loop to inform the Anytime Non-parametric A*(ANA*) planner

(van den Berg et al., 2011) about which footstep transitions are most robust to dis-

turbances by measuring how many sampled contact poses can reject the disturbances.

To the best of our knowledge, this work is the first footstep planner to use a learned

model that predicts robot capturability under disturbances to produce more robust

footstep sequences.

Our experiments first show that our neural networks achieve high accuracy in

predicting robot capturability. We then compare our planning approach to a conven-

tional distance-based footstep planner. Our results show that our approach generates

footstep sequences that are more robust to external disturbances than the conven-

tional method in four challenging scenarios.

68

7.2 Problem Statement

We focus on the problem of planning humanoid footstep sequences considering the

effect of external disturbances. Given an environment specified as a set of polygonal

surfaces, an initial stance (set of poses of contacting end-effectors), a goal region,

and a distribution of potential disturbances in the environment, we aim to output a

dynamically feasible footstep sequence to move the robot from the initial stance to

the goal region. In the planning, we consider not only where the robot can create

contacts to achieve dynamically feasible motions, but also how well the robot can cap-

ture itself with existing and nearby contact locations, using both feet and hands,

to reject disturbances sampled from the distribution of potential disturbances. While

it is important and desirable to generate those capture motions in real time, it is still

an open problem and beyond the scope of this work. Our goal is to find a footstep

sequence that maximizes the probability of the robot reaching the goal successfully

without falling as a result of a disturbance. Notice that only feet are used in locomo-

tion, but both feet and hands are available for rejecting potential disturbances. We

assume that the friction coefficient is given, as well as a fixed timing for each contact

transition. In this work, we consider both zero-step and one-step capture motions.

7.3 Iterative Kino-Dynamic Optimization

In order to decide whether a capturing motion exists for the full robot model, we

use the kino-dynamic optimization method described by Herzog et al. (2016). Given

a sequence of collision-free contact poses, the method decomposes the problem of

optimizing dynamically-consistent whole-body motions and contact forces into 1) a

dynamic optimization problem based on the centroidal dynamics (Orin et al., 2013)

and 2) a kinematic optimization problem for the full-body motions. The algorithm

computes the solution of each problems iteratively until both parts reach consensus

over the center of mass r, linear l and angular momentum k trajectories, leading to

a locally optimal solution of the original problem.

In this work, we use the algorithm proposed by Ponton et al. (2018) with fixed-

time to efficiently compute a solution for the dynamic optimization problem. The

centroidal dynamics expressed at the robot CoM is given byṙ

l̇

k̇

 =


1
M

l

Mg +
∑

fe∑
(Te(ze)− r)× fe + τe

 (7.1)

69

M is the robot mass. ze is the center of pressure (CoP) of each contact in the contact

frame. fe and τe are the contact force and torque at the CoP of each end-effector

and finally, Te is a coordinate transform in the CoM frame. In addition to Eq. (7.1),

contact forces need to be inside friction cones, and CoPs inside the support regions

of each contact, to prevent the contact from sliding and tilting.

To compute a dynamically robust motion we follow Ponton et al. (2018) to min-

imize the weighted sum of the square norm of l, l̇, k, k̇, fe, and τe. Lower values

of l and l̇ help improve dynamic stability (Wieber, 2008). Reducing k and k̇ help

the robot perform more natural motion (Herr and Popovic, 2008). The fe and τe

terms encourage a more even distribution of forces and torques over all the contacts,

which increases the controllability of the robot. The dynamic optimizer is run be-

fore the kinematic optimizer. After the first iteration, torque limits are included in

the dynamic optimizer by using the kinematic solution to find an approximation of

the torque changes during the centroidal dynamics optimization. To simplify the

problem, in this work, collision avoidance is not considered in the optimization. In

future works, we would like to incorporate the collision constraints using methods in

Schulman et al. (2013).

A contact transition is considered capturable if the algorithm converges to consen-

sus to a solution that satisfies all constraints after a maximum number of iterations,

where we set constraints on the linear and angular momenta at the end of the move-

ment to zero to ensure the robot will come to a stop.

7.4 Modeling External Disturbances

We model an external disturbance as an instant change in linear centroidal mo-

mentum. Therefore, an external disturbance δ is a 3D vector: δ ∈ R3. We assume

there is a known probability distribution of potential disturbances in each location

x ∈ R3 in the environment and the distribution is fixed during planning and execution

time. To facilitate capturability checking, we discretize the distribution by sampling

a set of representative disturbances from the distribution, and the probability of each

disturbance sample is the total probability integrated over the Voronoi cell of the dis-

turbance sample. Let D(x) be the set of all representative disturbances. We assume

that for any short period of time T , there will only be one disturbance, so we have

ND(x)∑
i=1

P (δi, T) = 1, D(x) = {δi |i = 1, 2, . . . , ND(x)} (7.2)

70

where P (δi, T) is the probability that δi happens once within time duration T , and

ND(x) is the number of disturbance samples in D(x).

7.5 Evaluation of Capturability

To evaluate capturability, we adopt the approach of iterative kino-dynamic op-

timization described in Section 7.3. Since we model the disturbance as an instant

change in linear momentum, we use the post-disturbance centroidal dynamics state

[r0, l0,k0]T , the centroidal dynamics state immediately after the disturbance δ, as the

initial state of the iterative kino-dynamic optimization, and define it as [r0, l0,k0]T =

[rb, lb + δ,kb]
T , where [rb, lb,kb]

T is the centroidal dynamics state before disturbance.

In this work, we consider two kinds of capture motions: zero-step capture (cap-

turing without making new contacts), and one-step capture (capturing by making

one new contact). For zero-step capture, the initial condition of the optimization

includes [r0, l0,k0]T , and existing contact poses. For one-step capture, in addition to

the above initial conditions, we also specify a target contact pose for one of the free

end-effectors.

To determine capturability, we first optimize the initial kinematic states [q0, q̇0]

to track [r0, l0,k0]T and the existing stance S (set of contacting end-effectors poses),

and then run kino-dynamic optimization for three iterations. If a kino-dynamically

feasible solution can be found such that the linear and angular momentum converge

to zero at the end of the motion, then the robot is capturable under the specified

initial conditions: (r0, l0,k0, S). For the one-step capture case, we try three different

durations for the robot to move the end-effector to make contact: 0.2, 0.4 and 0.6

seconds. If any duration is feasible, then the robot is capturable given the initial

conditions. The evaluation for each contact pose takes from the order of 100 ms to 1

s depending on the difficulty of the situation and the number of iterations attempted.

Although it is prohibitively long to be included in a planning loop, we can collect the

result offline, and fit it with an computationally efficient model.

7.6 Learning the Result of the Kino-Dynamic Optimization

of Capture Motions

For each contact transition evaluated in contact planning, the planner needs to

decide if the robot can capture itself under a set of disturbances D, and for each

disturbance δi ∈ D, many potential contacts may be considered to capture the robot

71

Figure 7.2: (a) Left: Foot contact transition model in searching contact sequence, (b)
Right: Possible foot and palm contact projections for one-step capture
motion given the standing foot pose. The projections are shown on flat
surfaces as an illustrative example. When generating training data we
sample contact poses with random tilt angles.

in one step. Therefore, it is computationally prohibitive to run the iterative kino-

dynamic optimization in the planning loop. To reduce online computation, we train

a set of neural network classifiers offline to determine capturability. Each neural

network corresponds to a separate capture motion involving different contacts, as

shown in Figure 7.3.

The classifiers predict whether the optimizer can find a kino-dynamically feasible

solution to capture the robot given the initial conditions described in Section 7.5.

Since angular momenta are generally low in walking motion (Herr and Popovic, 2008),

we assume k0 = 0 and do not include it as the input of the network to improve

data efficiency. As shown in Figure 7.3, the classifiers take the initial standing foot

pose, the capture contact pose, and [r0, l0]T as inputs, and have a 1D binary output,

which represents whether the optimizer can find a kino-dynamically feasible solution

to capture the robot. Because most humanoid robots have symmetric kinematic

structures, we utilize this symmetry and define 4 kinds of capture motion, as shown

in Figure 7.3. For zero-step capture cases, the involved contact poses are only the

existing contact poses; for one-step capture cases, a new contact pose of a free end-

effector is considered. Each contact pose is a R6 vector which consists of position and

orientation in Tait-Bryan angles, convention X-Y-Z, in [−π, π). To capture the spatial

relationship of the orientation with angles near ±π, we duplicate those samples with

∓2π in the training data.

72

Index
Capture

Motion Type
Capture
Motion

Input
Dim.

0
Zero-Step
Capture

Maintain one
foot contact

12

1
One-Step
Capture

Make the other
foot contact

18

2
Make the same
side palm contact

18

3
Make the opposite
side palm contact

18

Figure 7.3: Left: Capture motions considered in this work and their feature dimen-
sion. Every capture motion initially has one foot contact, and the side of
the palm contacts is relative to the standing foot side. Right: The net-
work structure to predict capturability. The learning rate is 5× 10−5 and
there are dropout layers between fully-connected layers with 0.1 dropout
rate.

To collect meaningful training data, we determine the sampling space based on

the robot’s reachability and the target application. If we randomly sample contact

poses in a wide space, most samples are not feasible or not useful for our application.

To address this issue, we first get a rough estimate of the robot’s reachability with

kinematic optimizers on a set of widely-sampled contact poses, and then reduce the

sampling space by defining sampling intervals in each dimension of SE(3) to focus

more on the robot’s reachable space and poses required by the application. Although

the training data will need to be recollected if different robots or applications are

considered, in this way, we can get a more balanced data set.

In this work, we collect data by sampling the initial standing foot contact pose

with random tilt angles within ±25◦ from Z axis. r0 is randomly sampled relative to

the foot pose based on the robot’s reachability, and l0 is randomly sampled in the

magnitude interval of m[0, 1]kg ·m/s, where m is the robot mass, and its orientation

is randomly sampled within ±45◦ from the XY plane. For one-step capture cases,

we sample capture contact poses using models shown in Figure 7.2. Each contact is

projected with randomly selected depth and tilt angle to form a diverse set of initial

conditions. Each sampled initial condition is supplied to the kino-dynamic optimizer

described in Section 7.5 to decide its label. A different neural network is trained to

determine capturability for each type of capture motion, but we use the same network

structure for all capture motions to simplify the implementation, as shown in Figure

7.3.

73

7.7 Anytime Discrete-Search Contact Planner

We formulate the contact planning problem as a graph search problem. Each state

s in the graph is represented by a set of: a stance S(s), a CoM position r(s), and a

linear momentum l(s). Each action is a foot contact transition, which means moving

one foot to a new pose. Contact transitions are predefined as a discrete set of foot

projections, shown in Figure 7.2(a), and we adopt the contact projection approach in

Lin and Berenson (2017).

For each contact transition ε(s, s′) from state s to state s′, the planner generates a

new state with a stance which differs from the current stance by the moving contact

pose. We assume there is a 0.4 second long swing phase followed by 0.6 second double

support phase for each contact transition. We follow methods in VI, given S(s), S(s′),

r(s) and l(s), we use neural networks to predict dynamic feasibility of the contact

transition, and determine r(s′) and l(s′).

We solve the contact planning problem with Anytime Non-parametric A*(ANA*)

algorithm (van den Berg et al., 2011). ANA* is an anytime variation of the A*

algorithm. It initially inflates the heuristic and determines which node to expand

mainly by evaluating its heuristic. Once a solution is found, it then reduces the

inflation of the heuristic, and improves the solution over time. In this way, a feasible

solution can be generated quickly, and helps reduce the search space to find a better

solution over time. The cost of each action connecting two states s and s′ is defined

as

∆g(s, s′) = d(s, s′) + ws + wcapccap(s, s
′) (7.3)

where d(s, s′) is the euclidean XY distance between the mean foot positions of state

s and s′, ws is a fixed step cost, and ccap is the capturability cost and wcap is its

corresponding weight. We aim to generate a contact sequence which maximizes the

robot’s success rate to reach the goal without falling due to disturbance. Therefore,

ccap should be determined by the probability that the robot can capture itself during

the contact transition ε(s, s′) from s to s′ given the probability distribution of the

disturbances. We denote the capture probability as Psuccess (ε(s, s′)).

To determine Psuccess (ε(s, s′)), we consider two different approaches:

• Swing Phase Discretization: Considering nt pairs of (r, l) from discretized time

steps during the swing phase of contact transition from s to s′, as shown in

Figure 7.4.

• Worst-case CoM Estimate: Considering only the (r, l) pair right after the robot

74

Figure 7.4: Approximated CoM position and linear momentum used to check cap-
turability in Swing Phase Discretization. Blue and yellow boxes repre-
sent standing and swing foot, respectively. In practice, we let nt = 4 to
represent 4 time steps in the swing phase: 0+, 0.1, · · · , 0.3 seconds from
the start of the swing.

breaks a contact to start the swing phase (approximated as (r(s), l(s))).

For Swing Phase Discretization, Psuccess (ε(s, s′)) is defined as

nt∏
t=1

ND(rt)∑
i=1

Preject

(
rt, lt, Sswing,ε(s,s′), δi

)
P

(
δi,

0.4

nt

)
{

rt = nt−t
nt−1

r(s) + t−1
nt−1

rswing,ε(s,s′)

lt = nt−t
nt−1

l(s) + t−1
nt−1

lswing,ε(s,s′)

t = 1, · · · , nt

(7.4)

where Preject

(
rt, lt, Sswing,ε(s,s′), δi

)
means the probability of the robot rejecting distur-

bance δi ∈ D(r(s)) with centroidal dynamics state before disturbance [rb, lb,kb]
T =

[rt, lt, 0]T , and the robot’s stance in swing phase Sswing,ε(s,s′). rswing,ε(s,s′) and lswing,ε(s,s′)

are r and l at the end of the swing phase, and they are set empirically to be

rswing,ε(s,s′) = 0.4r(s′) + 0.6r(s) and lswing,ε(s,s′) = l(s′), respectively. Although only

time steps in swing phase are considered here, empirically we find that for each step

cycle, the robot has similar performance to reject disturbances by reactive stepping

in double support phase or one-step capture in swing phase. Therefore, to reduce the

computation load, we sample only from the swing phase in planning.

For Worst-case CoM Estimate, Psuccess (ε(s, s′)) is defined as

ND(r(s))∑
i=1

Preject

(
r(s), l(s), Sswing,ε(s,s′), δi

)
P (δi, 0.4) (7.5)

In this definition, Psuccess (ε(s, s′)) only depends on s and Sswing,ε(s,s′), so for all s′ with

the same Sswing,ε(s,s′), Psuccess (ε(s, s′)) is the same. Therefore, compared to Swing

75

Phase Discretization, Worst-case CoM Estimate reduces the computation time signif-

icantly because it only considers one centroidal dynamics state. During the contact

transition, disturbances pushing toward +y direction in standing foot frame are hard

to capture with the swing foot because of the kinematic constraints. As seen in Figure

7.4, we observe that in dynamic walking, at the start of the swing phase, the robot

has the highest +y component of the linear momentum. Therefore, in Worst-case

CoM Estimate, we sample the start of the swing phase of each ε(s, s′), and use it to

determine Psuccess (ε(s, s′)).

7.7.1 Modelling disturbance rejection probability

Both definitions of Psuccess (ε(s, s′)) require the disturbance rejection probability

Preject (r, l, Sswing,ε, δ). For each Sswing,ε, we use the foot and palm projection model

shown in Figure 7.2(b) to find all possible capture poses. We then query the neural

networks with r, l, Sswing,ε and each of those capture poses, and count the number

of queries that output “capturable”, including the zero-step capture motion, denoted

as nc. Since the neural networks simplify the capturability check by abstracting the

initial kinematics state to be a combination of a stance and a dynamics state, and

assuming no initial angular momentum, we expect errors caused by these simplifica-

tions. Therefore, we would like to improve the planner robustness by favoring transi-

tions ε(s, s′) which are predicted by the networks to be capturable with more capture

poses (higher nc for each disturbance). Therefore, we model Preject (r, l, Sswing,ε, δ) as

1 − exp(−γnc), where γ ∈ R+ is a user defined constant. This model captures the

idea that the robot is more likely to reject the disturbance if more network queries

with different capture poses determine the condition to be capturable.

7.7.2 Capturability Cost

For a path Tcp (a sequence of K contact transitions), the probability that the

robot finishes the path without falling due to external disturbance is

Psuccess (Tcp) =
K∏
k=1

Psuccess (εk) (7.6)

where εk is the kth contact transition in Tcp. Our goal is to maximize Psuccess (Tcp),

which can be achieved by minimizing
∑K

k=1−log (Psuccess (εk)). Therefore, we define

ccap as

ccap(s, s
′) = −log (Psuccess (ε(s, s′))) (7.7)

76

With this definition of ccap, we can find a path with maximum success rate by mini-

mizing the total capturability cost of the path, which is done by the ANA* algorithm.

In practice, we set wcap � ws, d(s, s′) to let ANA* focus on maximizing Psuccess (Tcp).

7.7.3 Contact Planning Heuristic

To guide the search, we follow same method in 6.4 and define the heuristic function

by computing a policy for a simplified robot model moving on an SE(2) grid. The

robot simplified model is a floating box. We first prune out every cell in the grid where

there is no ground or there is collision between the box and the environment, and

plan with Dijkstra’s algorithm from the goal cell using an 8-connected grid transition

model. By doing so, every cell connected to the goal cell will get a shortest distance

dDijkstra(s) to reach the goal and a policy which indicates the neighboring cell to go

to. During contact planning, the planner queries this policy with the mean foot

position on the XY plane, and the mean foot rotation about the Z axis to compute

the heuristic.

h(s) = dDijkstra(s) + ws
dDijkstra(s)

∆dmax
(7.8)

where ∆dmax is an overestimate of the maximum distance the mean foot pose can

travel in one transition.

7.8 Experiments

We evaluate the performance of the proposed approaches in three test environ-

ments in simulation: a narrow, flat strip of ground, a field of rubble with an adjacent

wall, and part of an oil platform, as shown in Figure 7.5. For each test, we allow 1

minute planning time, and set ws = 3, wcap = 1000, γ = 0.1 and the friction coefficient

is 0.5. We compare the proposed approaches with the baseline approach which only

considers moving distance and step number (wcap = 0). For all test environments, we

show the planned footstep sequences in Figure 7.5, and summarize the quantitative

results in Figure 7.7.

Since small disturbances can be handled by the robot’s momentum controller,

and do not require the planner to explicitly find capture motion to reject them,

in the below experiment, we only consider the relatively rare but dangerous case

that high disturbances Dhigh act on the robot. Unless otherwise stated, we set the

probability of those high disturbances happening within every time step (0.1 second)

as P (Dhigh, 0.1) = 1%. To make the result easier to interpret, we let P (δi, 0.1), δi ∈

77

Figure 7.5: From left to right: The planned footstep sequence in the narrow flat
corridor, the rubble with wall, and the oil platform (wind in −X and
+Y direcitons). The CoM trajectories returned by the kino-dynamic
optimizer given the footstep sequences are shown in blue.

78

Index Precision Recall Accuracy
0 97.4% 98.3% 97.8%
1 98.0% 98.0% 98.0%
2 95.9% 94.3% 95.2%
3 92.2% 90.3% 91.3%

Figure 7.6: The neural networks’ performance

Dhigh evenly divide P (Dhigh, 0.1).

To evaluate the planned contact sequence, we first get its corresponding kinematic

trajectory using the iterative kino-dynamic optimizer described in Section 7.3. Each

trajectory is a discrete sequence of q, q̇ with time steps of 0.1 second. For each

time step tj of the kinematic trajectory, including both swing and double support

phases, we take the configuration as the initial kinematic state, and apply disturbances

δi ∈ Dhigh(r(tj)) one by one and check if the robot can capture itself using the

approach described in Section 7.5. For each disturbance δi, we first check if the

condition is zero-step capturable, if not, we then check if it is one-step capturable

with any of the capture poses generated using contact projection shown in Figure

7.2. In double support phase, when testing one-step capturability, we allow the

robot to break one existing contact, and make contact at a capture pose. With the

capturability of the robot for each time step - disturbance pair, we finally compute the

probability that the robot finishes the path without falling due to external disturbance

Psuccess (Tcp) to evaluate the path quality.

We run the experiments on an Intel i7-8700K 3.7GHz CPU, and use an NVIDIA

GeForce RTX 2080 GPU to speed up network queries for the Swing Phase Discretiza-

tion approach. The neural networks are trained with Keras 2.2.4, and queried with

Tensorflow 1.4 C++ API. The robot model we use is a Sarcos Humanoid robot.

7.8.1 Prediction of Zero-Step and One-Step Capturability

Figure 7.6 summarizes the performance of the neural networks in predicting cap-

turability given an initial stance, a CoM position and a linear momentum. For each

capture motion category, we train the network with 105 examples, and test it with

another 1000 examples. Although all models perform well in predicting the captura-

bility, the performance of predicting capture motions using palm contacts is worse

than its counterpart using foot contact. This may be because capture motions us-

ing palm contacts are more likely to violate kinematic constraints and have higher

variance in kinematic state, which cause them to be harder to learn.

79

7.8.2 Narrow Flat Ground Test Environment

In this test environment, we would like to show an intuitive result of how the

robot can adjust its footstep placement to be more robust to external disturbances.

We consider two lateral disturbances: Dhigh =
{
m[0,±0.6, 0]T

}
kg ·m/s. In this case,

the most dangerous situation is when the robot shifts its CoM to one side, and the

disturbance pushes in the same direction. In this situation, the robot mainly relies on

zero-step capture motion to reject the disturbance. The proposed approaches make

the robot increase the step width of the motion, which expands the support region in

the y direction, and hence makes the robot more stable.

7.8.3 Rubble with Wall Test Environment

In this test, the robot has to traverse through a rubble with a side wall, similar

to the rubble environment used in the DARPA Robotics Challenge. We test for

five randomly generated rubble surfaces with different tilt angles, and set Dhigh ={
m[0, 0.5, 0]T ,m[0, 0.6, 0]T , m[0, 0.7, 0]T ,m[0, 0.8, 0]T

}
kg · m/s. Although the wall

provides a wide space for the robot to capture itself using palm contacts, it is too

far away for the robot to reach if the robot simply walks straight to the goal. The

planner is able to incorporate this information, and adjust the path to be close to the

wall, and achieves a much more robust footstep sequence under the disturbances.

7.8.4 Oil Platform Test Environment

This test demonstrates how the planner adapts to different sets of disturbances.

We consider a part of an offshore oil platform with wind blowing. There are structures

on the oil platform that can block the wind, but are not suitable for palm contacts,

such as electronics and pipes. We first considerDhigh =
{
m[−0.6, 0, 0]T ,m[−0.7, 0, 0]T ,

m[−0.8, 0, 0]T
}

kg ·m/s, and the wind is blocked by the structure in the center, which

creates a region without disturbance, shown in grey in Figure 7.7. We show that the

proposed approaches leverage this region to produce low-risk contact sequences.

In another test, we consider a different wind direction with Dhigh =
{
m[0, 0.6, 0]T

,m[0, 0.7, 0]T ,m[0, 0.8, 0]T
}

kg·m/s. In this test, we show that the proposed approach

is able to adapt to this change and produce a different contact sequence, shown in

Figure 7.5. However, this wind direction imposes great challenges to the planner

because the robot will have to travel a long distance under the strong wind. This

will create many high-cost edges, which drive predicted Psuccess(Tcp) low, and many

paths look similarly costly in planning. Therefore, it is not easy for ANA* to reduce

80

search space quickly. In this case, the Worst-case CoM Estimate approach and the

baseline outperform the Swing Phase Discretization approach. The first reason is

that the shortest path happens to be a good path in this case. The second reason is

that Swing Phase Discretization approach branches each state much slower than the

other approaches due to the large amount of network queries. Therefore, it failed to

find a good solution within the time limit.

7.8.5 Summary of the Planning Results

In summary, we show that the proposed approaches generate contact sequences

more robust to disturbance for the scenarios considered, except for the oil platform

environment with +Y wind direction where Worst-case CoM Estimate approach and

the baseline have similar performance. Although Worst-case CoM Estimate simplifies

the capturability check of each contact transition for higher efficiency, its performance

is comparable to Swing Phase Discretization approach. In general, compared to the

baseline, the proposed approaches take longer to plan a contact sequence. However, if

we consider scenarios with shorter horizon, such as the narrow flat ground and rubble

with wall environment, Worst-case CoM Estimate approach has planning time much

shorter than the execution time, and could be used in a receding horizon fashion.

7.9 Discussion

While the proposed approaches perform much better than the baseline, there still

are time steps that the robot failed to reject the disturbances when following the

footstep sequence generated with the proposed approaches. In addition to wrong

predictions by the network, the disturbance rejection probability model could some-

times be misleading. In Section 7.7.1, we define the disturbance rejection probability

to depend on the number of feasible capture poses. Since many capture poses are

similar, as shown in Figure 7.2, if there is a wrong prediction, the network is likely

to have multiple wrong predictions given by similar capture poses. To improve the

model, one possible direction for future work is to use ensemble learning to increase

the prediction’s robustness.

In this work, we plan humanoid contact sequences which enable the robot to

more easily capture itself under external disturbances. While the decision on where

to place contacts is crucial for a successful capture, CoM position and centroidal

momentum also play an important role. In our current approach, during planning,

the CoM position and centroidal momentum of the robot in each state is determined

81

T
es

t
E

n
v
ir

on
m

en
t

A
p

p
ro

ac
h

N
u

m
b

er
o
f

F
a
il

ed
T

im
e

S
te

p
-

D
is

tu
rb

a
n

ce
P

a
ir

s
S

te
p

N
u

m
b

er
P

la
n

n
in

g
T

im
e

(s
)

(F
ir

st
S

o
lu

ti
o
n

/
B

es
t

S
o
lu

ti
o
n

w
it

h
in

th
e

T
im

e
L

im
it

)

P
su

c
c
e
ss

(T
c
p
)

T
ot

al
S

w
in

g
P

h
a
se

D
o
u

b
le

S
u

p
p

o
rt

P
h

a
se

N
ar

ro
w

F
la

t
G

ro
u

n
d

B
as

el
in

e
36

1
4
/
4
0

2
2
/
6
0

5
0
.5

2
/
0
.5

2
8
3
.4

9
%

S
w

in
g

P
h

as
e

D
is

cr
et

iz
at

io
n

1
5

4
/
4
0

1
1
/
6
0

5
0
.8

8
/
2
.1

3
9
2
.7
5
%

W
or

st
-c

as
e

C
oM

E
st

im
at

e
18

6
/
7
2

1
2
/
1
0
8

9
0
.6

0
/
4
.2

9
9
1
.3

7
%

R
u

b
b

le
w

it
h

W
al

l

B
as

el
in

e
89

.8
0
±

2.
79

3
5
.4

0
±

2
.0

6
/
8
0

5
4
.4

0
±

3
.7

2
/
1
2
0

5
±

0
0
.5

4
±

0
.0

1
/
0
.5

4
±

0
.0

1
7
9
.8

3
±

0
.5

6
%

S
w

in
g

P
h

as
e

D
is

cr
et

iz
at

io
n

17
.8

0
±

7.
30

1
6
.6

0
±

5
.4

6
/
1
2
8

1
.2

0
±

2
.3

9
/
1
9
2

8
±

0
.6

3
1
.1

7±
0
.8

4
/
1
3
.7

4±
4
.5

8
9
5
.8

4
±

1
.6

5
%

W
or

st
-c

as
e

C
oM

E
st

im
at

e
1
1
.6
±
1
.3
6

1
1
.6
±

1
.3

6
/
1
1
2

0±
0
/
1
6
8

7
±

0
0
.5

8
±

0
.0

7
/
1
.0

9
±

0
.1

6
9
7
.1
4
±
0
.3
3
%

O
il

P
la

tf
or

m
(W

in
d

in
−
X

d
ir

ec
ti

on
)

B
as

el
in

e
25

1
0
/
1
4
4

1
5
/
2
1
6

1
2

0
.5

4
/
1
1
.3

5
3

9
1
.9

9
%

S
w

in
g

P
h

as
e

D
is

cr
et

iz
at

io
n

0
0
/
2
8
8

0
/
4
3
2

2
4

1
.2

4
9
/
2
2
.3

8
1

1
0
0
%

W
or

st
-c

as
e

C
oM

E
st

im
at

e
1

1
/
3
8
4

0
/
5
7
6

3
2

0
.5

8
2
/
3
0
.7

2
8

9
9
.6

7
%

O
il

P
la

tf
or

m
(W

in
d

in
+
Y

d
ir

ec
ti

on
)

B
as

el
in

e
45

1
8
/
1
4
4

2
7
/
2
1
6

1
2

0
.5

4
/
1
1
.3

5
3

8
6
.0

2
%

S
w

in
g

P
h

as
e

D
is

cr
et

iz
at

io
n

61
2
3
/
2
5
2

3
8
/
3
7
8

2
1

1
.1

0
3
/
2
.5

7
2

8
1
.5

4
%

W
or

st
-c

as
e

C
oM

E
st

im
at

e
4
2

2
3
/
3
1
2

1
9
/
4
6
8

2
6

0
.5

5
5
/
3
5
.8

9
4

8
6
.9
0
%

F
ig

u
re

7.
7:

T
h
e

p
er

fo
rm

an
ce

of
ea

ch
ap

p
ro

ac
h

in
al

l
te

st
en

v
ir

on
m

en
ts

.
N

ot
e

th
at

th
er

e
ar

e
4

an
d

6
ti

m
e

st
ep

s
in

sw
in

g
an

d
d
ou

b
le

su
p
p

or
t

p
h
as

e,
re

sp
ec

ti
ve

ly
.
P

su
cc

es
s(
T
cp

)
is

on
ly

aff
ec

te
d

b
y

fa
il
ed

ti
m

e
st

ep
-

d
is

tu
rb

an
ce

p
ai

rs
,

so
ev

en
so

m
e

co
n
ta

ct
se

q
u
en

ce
s

ar
e

lo
n
ge

r,
it

s
P

su
cc

es
s(
T
cp

)
ca

n
st

il
l

b
e

h
ig

h
er

.

82

by a neural network which learns from a dynamics optimizer without the information

of the disturbances. The solution quality may increase if we includes CoM position

and centroidal momentum as decision variables in the planner. However, this will

significantly increase the branching factor, and slow down the planning.

While our approach is capable of finding footstep sequences that are more robust

to potential disturbances, it is still necessary to have a controller to react to distur-

bances during execution and select the appropriate next contact in real-time. Several

approaches have been proposed to find the next contact location that helps stabilize

a robot, such as in Mason et al. (2018), but they often use a simplified model of the

dynamics. It could be interesting to extend the learning part of our approach to use

it in a real-time controller in order to remove the need for simplifying assumptions

on the dynamics.

7.10 Conclusion

In this capter we addressed the problem of finding contact sequences that are

not only dynamically feasible but are also robust to external disturbances. It is the

first time, to the best of our knowledge that a contact planning algorithm explicitly

considers the effect of external disturbances. In order to enable a fast evaluation of

the capturability of a transition, we trained classifiers using neural networks, leading

to a significant speed-up in planning time. Experimental results demonstrate that

our approach can quickly find contact plans that are less susceptible to external

disturbances, which leads to more robust behaviors when executed on a real robot.

83

CHAPTER VIII

Conclusion

This dissertation presented frameworks to address the humanoid multi-contact

navigation planning problem in unstructured environment. Based on a search-based

planner over the contact poses, we focused on efficiently selecting contact poses for a

humanoid robot to reach the goal assuming multi-contact motion which follows kine-

matic and dynamic constraints. From Chapter III to V, we focused on techniques that

reduces planning time in a large unstructured environment by using better heuristics

learned from environment traversability features and applying trajectory optimization

approaches to regions with low traversability. The results show great improvement

in success rate and planning time compared to a conventional search-based contact

planner. In the remaining two chapters, we proposed the use of neural networks as

function approximators to efficiently consider humanoid robot dynamics in contact

planning. The proposed approach can efficiently verify motion dynamic feasibility and

predict capturability under external disturbances, which enables the contact planner

to produce dynamically robust contact sequences.

One of the limitations in this dissertation is the assumption to decompose the

humanoid motion planning problem into contact planning and trajectory planning.

Although this assumption helps simplify the problem and enables the state-of-the-art

personal computer to solve the problem efficiently, this user-defined decomposition

can drop information and produce suboptimal solution. In this dissertation, we im-

prove the connection between contact planning and trajectory planning with the

learned centroidal dynamics approximator. However, the trajectory planning module

still cannot alter the contact poses returned by the contact planner. It would be

interesting to see an iterative approach where trajectory planning module provides

gradient for the contact planner to improve its solution locally.

84

APPENDICES

85

BIBLIOGRAPHY

86

BIBLIOGRAPHY

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), 2016, pp. 265–283. [Online]. Available:
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

B. Aceituno-Cabezas, H. Dai, J. Cappelletto, J. C. Grieco, and G. Fernndez-López,
“A mixed-integer convex optimization framework for robust multilegged robot loco-
motion planning over challenging terrain,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017.

B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu, D. G. Caldwell,
J. Cappelletto, J. C. Grieco, G. Fernndez-Lpez, and C. Semini, “Simultaneous
contact, gait, and motion planning for robust multilegged locomotion via mixed-
integer convex optimization,” IEEE Robotics and Automation Letters, vol. 3, no. 3,
pp. 2531–2538, July 2018.

B. Aceituno-Cabezas, J. Cappelletto, J. C. Grieco, and G. Fernández-López,
“A generalized mixed-integer convex program for multilegged footstep planning
on uneven terrain,” CoRR, vol. abs/1612.02109, 2016. [Online]. Available:
http://arxiv.org/abs/1612.02109

H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko, and Y. E., “Model
preview control in multi-contact motion-application to a humanoid robot,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2014. [Online]. Available: http://dx.doi.org/10.1109/IROS.2014.6943129

L. Baudouin, N. Perrin, T. Moulard, F. Lamiraux, O. Stasse, and E. Yoshida, “Real-
time replanning using 3d environment for humanoid robot,” in humanoids,” in
IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2011.

D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning framework that
learns from experience,” in ICRA, 2012.

E. Bresler and J. P. Frankel, “The forces and moments in the leg during level walking,”
Journal of Applied Mechanics, vol. 72, pp. 27–36, 1950.

87

T. Bretl, “Motion planning of multi-limbed robots subject to equilibrium
constraints: The free-climbing robot problem,” The Internation Journal of
Robotics Research, vol. 25, no. 4, pp. 317–342, Apr. 2006. [Online]. Available:
http://dx.doi.org/10.1177/0278364906063979

O. Brock and O. Khatib, “Elastic strips: A framework for motion generation in human
environments,” in IJRR, 2002.

S. Caron and A. Kheddar, “Multi-contact walking pattern generation based on model
preview control of 3D COM accelerations,” IEEE-RAS International Conference
on Humanoid Robots (Humanoids), 2016.

S. Caron, Q. Pham, and Y. Nakamura, “Leveraging cone double description for
multi-contact stability of humanoids with applications to statics and dynamics,” in
Robotics: Science and Systems (RSS), 2015.

S. Caron, A. Escande, L. Lanari, and B. Mallein, “Capturability-based pattern
generation for walking with variable height,” Mar. 2019, submitted. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01689331

J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard, “A versatile and
efficient pattern generator for generalized legged locomotion,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2016.

J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami, “Planning biped navigation
strategies in complex environments,” in IEEE-RAS International Conference on
Humanoid Robots (Humanoids), 2003.

A. Chilian and H. Hirschmuller, “Stereo camera based navigation of mobile robots on
rough terrain,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2009.

F. Chollet et al., “Keras,” https://keras.io, 2015.

S. Chung and O. Khatib, “Contact-consistent elastic strips for multi-contact locomo-
tion planning of humanoid robots,” in IEEE International Conference on Robotics
and Automation (ICRA), 2015.

D. Coleman, I. Sucan, M. Moll, K. Okada, and N. Correll, “Experience-based planning
with sparse roadmap spanners,” in ICRA, 2015.

C. Cunningham, W. L. Whittaker, and I. A. Nesnas, “Improving slip prediction
on mars using thermal inertia measurements,” in Robotics: Science and Systems
(RSS), 2017.

H. Dai and R. Tedrake, “Planning robust walking motion on uneven terrain via
convex optimization,” in IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2016.

88

R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-integer
convex optimization,” in IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2014.

A. Del Prete, S. Tonneau, and N. Mansard, “Zero step capturability for legged robots
in multicontact,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1021–1034,
Aug 2018.

R. Diankov, “Automated construction of robotic manipulation programs,” Ph.D. dis-
sertation, Carnegie Mellon University, 2010.

A. Dornbush, K. Vijayakumar, S. Bardapurkar, F. Islam, and M. Likhachev, “A
Single-Planner Approach to Multi-Modal Humanoid Mobility,” ArXiv e-prints, Jan.
2018.

J. Englsberger, C. Ott, and A. Albu-Schffer, “Three-dimensional bipedal walking
control based on divergent component of motion,” IEEE Transactions on Robotics,
vol. 31, no. 2, pp. 355–368, April 2015.

A. Escande, A. Kheddar, S. Miossec, and S. Garsault, “Planning support contact-
points for acyclic motions and experiments on hrp-2,” in Experimental Robotics,
2009, pp. 293–302.

P. Fernbach, S. Tonneau, A. D. Prete, and M. Tax, “A kinodynamic steering-method
for legged multi-contact locomotion,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017.

P. Fernbach, S. Tonneau, and M. Täıx, “CROC: Convex resolution of centroidal dy-
namics trajectories to provide a feasibility criterion for the multi contact planning
problem,” in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 2018.

M. X. Grey, A. D. Ames, and C. K. Liu, “Footstep and motion planning in semi-
unstructured environments using randomized possibility graphs,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2017.

R. J. Griffin, G. Wiedebach, S. Bertrand, A. Leonessa, and J. Pratt, “Walking stabi-
lization using step timing and location adjustment on the humanoid robot, atlas,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2017, pp. 667–673.

L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2018. [Online].
Available: http://www.gurobi.com

K. Hauser, T. Bretl, K. Harada, and J. Latombe, “Using motion primitives in prob-
abilistic sample-based planning for humanoid robots,” in International Workshop
on the Algorithmic Foundations of Robotics (WAFR), 2006.

T. Hermann et al., “frugally-deep,” https://github.com/Dobiasd/frugally-deep, 2016.

89

H. Herr and M. Popovic, “Angular momentum in human walking,” in Journal of
Experimental Biology, 2008, pp. 467–481.

A. Herzog, S. Schaal, and L. Righetti, “Structured contact force optimization
for kino-dynamic motion generation,” IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016. [Online]. Available: http:
//arxiv.org/abs/1605.08571

J. K. Hodgins and M. N. Raibert, “Adjusting step length for rough terrain locomo-
tion,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 289–298,
1991.

P. W. Holland and R. E. Welsch, “Robust regression using iteratively reweighted
least-squares,” Communications in Statistics - Theory and Methods, vol. 6, no. 9,
pp. 813–827, 1977.

A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz, “Anytime search-based
footstep planning with suboptimality bounds,” in IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids), 2012.

A. Ibanez, P. Bidaud, and V. Padois, “Emergence of humanoid walking behaviors from
mixed-integer model predictive control,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Chicago, IL, USA, September 14-18, 2014, 2014.

N. Jetchev and M. Toussaint, “Fast motion planning from experience: trajectory
prediction for speeding up movement generation,” in Autonomous Robots, 2013.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and
H. Hirukawa, “Resolved momentum control: humanoid motion planning based on
the linear and angular momentum,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2003.

O. Kanoun, E. Yoshida, and J. P. Laumond, “An optimization formulation for foot-
steps planning,” in IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids), 2009.

J. Kim, N. S. Pollard, and C. G. Atkeson, “Quadratic encoding of optimized hu-
manoid walking,” in IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2013.

C. Knabe, J. Seminatore, J. Webb, M. Hopkins, T. Furukawa, A. Leonessa, and
B. Lattimer, “Design of a series elastic humanoid for the darpa robotics challenge,”
in IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2015.

N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2004.

90

T. Koolen, M. Posa, and R. Tedrake, “Balance control using center of mass height
variation: Limitations imposed by unilateral contact,” in 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids), Nov 2016, pp. 8–15.

T. Koolen, T. de Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-
based analysis and control of legged locomotion, part 1: Theory and
application to three simple gait models,” The International Journal of
Robotics Research, vol. 31, no. 9, pp. 1094–1113, 2012. [Online]. Available:
https://doi.org/10.1177/0278364912452673

J. Kuffner, “Effective sampling and distance metrics for 3d rigid body path planning,”
in ICRA, 2004.

J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Footstep planning
among obstacles for biped robots,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2001.

M. Lau and J. Kuffner, “Precomputed search trees: planning for interactive goal-
driven animation,” in SCA, 2006.

Y. Lin and D. Berenson, “Humanoid navigation planning in large unstructured en-
vironments using traversability-based segmentation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018.

——, “Using previous experience for humanoid navigation planning,” in IEEE-RAS
International Conference on Humanoid Robots (Humanoids), 2016.

——, “Humanoid navigation in uneven terrain using learned estimates of traversabil-
ity,” in IEEE-RAS International Conference on Humanoid Robots (Humanoids),
2017.

S. Mason, N. Rotella, S. Schaal, and L. Righetti, “An MPC Walking Framework
With External Contact Forces,” in IEEE International Conference on Robotics
and Automation (ICRA), 2018.

P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade, “Vision-guided humanoid footstep
planning for dynamic environments,” in IEEE-RAS International Conference on
Humanoid Robots (Humanoids), 2005.

M. Morisawa, S. Kajita, F. Kanehiro, K. Kaneko, K. Miura, and K. Yokoi, “Balance
control based on capture point error compensation for biped walking on uneven
terrain,” in 2012 12th IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2012), Nov 2012, pp. 734–740.

H. Myung, J. Kuffner, and T. Kanade, “Efficient two-phase 3d motion planning for
small fixed-wing uavs,” in ICRA, 2007.

91

Q. Nguyen, X. Da, J. W. Grizzle, and K. Sreenath, “Dynamic walking on
stepping stones with gait library and control barrier functions,” Algorithmic
Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the
Algorithmic Foundations of Robotics, pp. 384–399, 2020. [Online]. Available:
https://doi.org/10.1007/978-3-030-43089-4 25

D. Orin, A. Goswami, and S. Lee, “Centroidal dynamics of a humanoid robot,”
Autonomous Robots, vol. 35, no. 2-3, pp. 161–176, Oct. 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10514-013-9341-4

B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of humanoid
momentum dynamics for multi-contact motion generation,” in IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids), 2016.

B. Ponton, A. Herzog, A. D. Prete, S. Schaal, and L. Righetti, “On time optimization
of centroidal momentum dynamics,” in IEEE International Conference on Robotics
and Automation (ICRA), 2018.

J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step toward
humanoid push recovery,” in 2006 6th IEEE-RAS International Conference on Hu-
manoid Robots, Dec 2006, pp. 200–207.

J. E. Pratt and S. V. Drakunov, “Derivation and application of a conserved orbital
energy for the inverted pendulum bipedal walking model,” in Proceedings 2007
IEEE International Conference on Robotics and Automation, April 2007, pp. 4653–
4660.

A. D. Prete, S. Tonneau, and N. Mansard, “Fast algorithms to test robust static
equilibrium for legged robots,” in IEEE International Conference on Robotics and
Automation (ICRA), 2016.

O. E. Ramos and K. Hauser, “Generalizations of the capture point to nonlinear
center of mass paths and uneven terrain,” in 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), Nov 2015, pp. 851–858.

S. Schaal, “The sl simulation and real-time control software package,” University of
Southern California, Los Angeles, CA, Tech. Rep., 2009, clmc. [Online]. Available:
http://www-clmc.usc.edu/publications/S/schaal-TRSL.pdf

J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding locally op-
timal, collision-free trajectories with sequential convex optimization,” in Robotics:
Science and Systems (RSS), 2013.

M. Shneier, T. Chang, T. Hong, W. Shackleford, R. Bostelman, and J. S. Albus,
“Learning traversability models for autonomous mobile vehicles,” Autonomous
Robots, vol. 24, no. 1, pp. 69–86, Jan 2008.

92

B. Suger, B. Steder, and W. Burgard, “Traversability analysis for mobile robots
in outdoor environments: A semi-supervised learning approach based on 3d-lidar
data,” in IEEE International Conference on Robotics and Automation (ICRA),
2015.

T. Sugihara, “Standing stabilizability and stepping maneuver in planar bipedalism
based on the best com-zmp regulator,” in 2009 IEEE International Conference on
Robotics and Automation, May 2009, pp. 1966–1971.

T. Takenaka, T. Matsumoto, T. Yoshiike, and S. Shirokura, “Real time motion gener-
ation and control for biped robot -2nd report: Running gait pattern generation-,”
in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Oct 2009, pp. 1092–1099.

S. Tonneau, A. D. Prete, J. Pettr, C. Park, D. Manocha, and N. Mansard, “An effi-
cient acyclic contact planner for multiped robots,” IEEE Transactions on Robotics,
vol. 34, no. 3, pp. 586–601, 2018.

R. Valenzano, N. R. Sturtevant, J. Schaeffer, and F. Xie, “A comparison of knowledge-
based gbfs enhancements and knowledge-free exploration,” in International Con-
ference on Automated Planning and Scheduling (ICAPS), 2014.

J. van den Berg, R. Shah, A. Huang, and K. Goldberg, “Anytime nonparametric A*,”
in AAAI, 2011.

A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming,” Mathematical Pro-
gramming, vol. 106, no. 1, pp. 25–57, Mar 2006.

S. Wang and K. Hauser, “Unified multi-contact fall mitigation planning for humanoids
via contact transition tree optimization,” in IEEE-RAS International Conference
on Humanoid Robots (Humanoids), 2018.

M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krsi, R. Siegwart, and M. Hut-
ter, “Navigation planning for legged robots in challenging terrain,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2016.

P. Wieber, “Holonomy and nonholonomy in the dynamics of articulated motion,”
Fast Motions in Biomechanics and Robotics: Optimization and Feedback Control,
pp. 411–425, 2006.

——, “Viability and predictive control for safe locomotion,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2008.

93

