
Deformable Object Manipulation:
Learning While Doing

by

Dale McConachie

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Robotics)

in The University of Michigan
2020

Doctoral Committee:

Associate Professor Dmitry Berenson, Chair
Professor Jessie Grizzle
Associate Professor Chad Jenkins
Professor Leslie Pack Kaelbling, Massachusetts Institute of Technology

Dale McConachie

dmcconac@umich.edu

ORCID iD: 0000-0002-2615-3473

c© Dale McConachie 2020

ACKNOWLEDGEMENTS

Thanks to Calder Phillips-Grafflin, Brad Saund, Andrew Dobson, and Yu-Chi Lin for

helpful discussions. Thank you to all my collaborators from the Autonomous Robotic

Manipulation Lab. Thanks to my advisor Dmitry Berenson for his guidance and

encouragement. Thanks to Chad Jenkins, Jessie Grizzle, and Leslie Pack Kaelbling

for their advice. Thanks to my parents for supporting my return to university and

advice throughout. Finally, special thanks to my wife Molly for everything.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

II. Related Work . 5

2.1 Modelling Deformable Objects 5
2.2 Local Control for Manipulation Tasks 6
2.3 Using Multiple Models . 6
2.4 Motion Planning for Deformable Objects 8
2.5 Interleaving Planning and Control for Deformable Object Ma-

nipulation . 9
2.6 Learning for Planning in Reduced State Spaces 10

III. Deformable Object Modelling 11

3.1 Definitions . 12
3.2 Diminishing Rigidity Jacobian 14
3.3 Constrained Directional Rigidity 15

3.3.1 Model Overview . 15
3.3.2 Directional Rigidity 16

3.4 Results . 20
3.4.1 Simulation Environment Model Accuracy Results . 21
3.4.2 Physical Robot Experiments 22
3.4.3 Computation Time 24

iii

IV. Local Control . 25

4.1 Problem Statement . 25
4.2 Reducing Task Error . 26
4.3 Stretching Avoidance Controller 26

4.3.1 Stretching Correction 27
4.3.2 Finding the Best Robot Motion and Avoiding Collisions 29

4.4 Stretching Constraint Controller 32
4.4.1 Overstretch . 32
4.4.2 Collision . 34
4.4.3 Optimization Method 34

4.5 Results . 35
4.5.1 Constraint Enforcement 35
4.5.2 Controller Task Performance 37
4.5.3 Physical Robot Experiment 38
4.5.4 Computation Time 38

V. Estimating Model Utility . 40

5.1 Problem Statement . 41
5.2 Bandit-Based Model Selection 42
5.3 MAB Formulation for Deformable Object Manipulation . . . 43
5.4 Algorithms for MAB . 43

5.4.1 UCB1-Normal . 43
5.4.2 KF-MANB . 44
5.4.3 KF-MANDB . 44

5.5 Experiments and Results . 47
5.5.1 Synthetic Tests . 48
5.5.2 Simulation Trials 49

5.6 Discussion . 53

VI. Interleaving Planning and Control 55

6.1 Problem Statement . 57
6.2 Interleaving Planning and Control 58

6.2.1 Local Control . 59
6.2.2 Predicting Deadlock 60
6.2.3 Setting the Global Planning Goal 64

6.3 Global Planning . 68
6.3.1 Planning Setup . 68
6.3.2 Planning Problem Statement 69
6.3.3 RRT-EB . 70

6.4 Probabilistic Completeness of Global Planning 72
6.4.1 Assumptions and Definitions: 72
6.4.2 Proof of Nearest-Neighbors Equivalence 74

iv

6.4.3 Construction of a δq-similar Path 76
6.5 Simulation Experiments and Results 83

6.5.1 Single Pillar . 84
6.5.2 Double Slit . 86
6.5.3 Moving a Rope Through a Maze 87
6.5.4 Repeated Planning 88
6.5.5 Computation Time 91

6.6 Physical Robot Experiment and Results 92
6.6.1 Experiment Setup 92
6.6.2 Experiment Results 93

6.7 Discussion . 95
6.7.1 Parameter Selection 96
6.7.2 Limitations . 96

VII. Learning When To Trust Your Model 98

7.1 Introduction . 98
7.2 General Problem Formulation 100
7.3 Learning Transition Reliability 102

7.3.1 Data Generation and Labeling 102
7.3.2 An Illustrative Navigation Example 103
7.3.3 What can be learned 104
7.3.4 Using the Classifier in Planning 105

7.4 Application to a Torque-Limited Planar Arm 106
7.4.1 Problem Statement 106
7.4.2 Data Collection, Labelling, and Training 107
7.4.3 Planning and Results 107

7.5 Application to Rope Manipulation 108
7.5.1 Problem Statement 108
7.5.2 Reduction . 109
7.5.3 Learning the Classifier 110

7.6 Rope Manipulation Experiments 110
7.6.1 Scenarios . 111
7.6.2 Data Collection . 112
7.6.3 Training the Classifier 112
7.6.4 Planning Results 113

7.7 Discussion . 113

VIII. Discussion and Future Work . 115

BIBLIOGRAPHY . 119

v

LIST OF FIGURES

Figure

3.1 Euclidean distance measures length of the shortest path between pi
and pj in R3 (gold). Geodesic distance measures the length of the
shortest path, constrained to stay within the deformable object (red). 13

3.2 An illustrative example of directional rigidity. Left: The rope moves
almost rigidly when dragging it by one end to the left. Right: The
rope deforms when pulling it on the right in the opposite direction. 15

3.3 The length of the the red segment on the rope is the geodesic distance
Dij. vij is the vector showing the relative position of pj with respect
to pi. 17

3.4 Projection process for points that are predicted to be in collision after
movement. 20

3.5 RMS model prediction error for the simulated rope model accuracy
test. The gripper pulls the rope for the first 4.5 seconds, then turns
for half a second, then moves in the opposite direction at the 5 second
mark. 21

3.6 RMS model prediction error for the simulated cloth model accuracy
test. The grippers pull the cloth for the first 2.3 seconds, then turn for
0.63 seconds, then move in the opposite direction at the 2.93 second
mark. At the 5 second mark the cloth is no longer folded. 22

3.7 Initial setup for the physical robot model accuracy experiment. . . . 23
3.8 RMS model prediction error for the physical cloth accuracy test. The

grippers pull the cloth toward the robot for the first 10 timesteps,
upward for 5 timesteps, rotate for 15 timesteps, diagonally down and
away for 9 timesteps, then directly away from the robot. 23

3.9 Initial state of the four experiments, where the red points act as
attractors for the deformable object. (a) Rope wrapping cylinder.
(b) Cloth passing single pole. (c) Cloth covering two cylinders. (d)
Rope matching zig-path . 24

4.1 Top Line: moving the point does not change the error, thus the
desired movement is zero, however, it is not important to achieve zero
movement, thus Wd = 0. Bottom Line: error is at a local minimum;
thus moving the point increases error. 26

vi

4.2 The arrows in gray show the direction of each stretching vector at the
corresponding gripper with respect to the gripper pair qg and qk. Left:
stretching vectors on the rope when the rope is at rest (above) or is
deformed (below). Right: stretching vectors on the cloth when the
cloth is at rest (above) or is deformed (below). The red lines denote
the geodesic connecting the corresponding pIg(qg ,qk) and pIk(qg ,qk) on
the object. 33

4.3 Initial state of the four experiments, where the red points act as
attractors for the deformable object. (a) Rope wrapping cylinder.
(b) Cloth passing single pole. (c) Cloth covering two cylinders. (d)
Rope matching zig-path . 36

4.4 (a) The red line shows the γ of the benchmark and the blue line shows
the γ of the new controller with ss = 0.4 throughout the simulation.
(b) The purple line shows the γ of the benchmark, and the blue, red,
and yellow lines each show the γ of the new controller with ss = 0.4,
ss = 0.6, and ss = 0.8, respectively. 37

4.5 Cloth-covering-two-cylinder task start and end configurations. Both
controllers are unable to make progress due to a local minima. . . . 37

4.6 Rope-matching-zig-path start and end configurations. Both con-
trollers are able to succeed at the task, bringing the rope into align-
ment with the desired path. 38

4.7 Initial setup for the physical robot stretching avoidance test. 38
5.1 Sequence of snapshots showing the execution of the simulated exper-

iments using the KF-MANDB algorithm. The rope and cloth are
shown in green, the grippers is shown in blue, and the target points
are shown in red. The bottom row additionally shows Ṗd as green
rays with red tips. 50

5.2 Experimental results for the rope-winding task. Top left: alignment
error for 10 trials for each MAB algorithm, and each model in the
model set when used in isolation. UCB1-Normal, KF-MANB, KF-
MANDB lines overlap in the figure for all trials. Top right: Total
regret averaged across 10 trials for each MAB algorithm with the
minimum and maximum drawn in dashed lines. Bottom row: his-
tograms of the number of times each model was selected by each
MAB algorithm; UCB1-Normal (bl), KF-MANB (bm), KF-MANDB
(br). 52

5.3 Experimental results for the table coverage task. See Figure 5.2 for
description. 53

5.4 Experimental results for the two-part coverage task. See Figure 5.2
for description. 54

vii

6.1 Four example manipulation tasks for our framework. In the first two
tasks, the objective is to cover the surface of the table (indicated
by the red lines) with the cloth (shown in green). In the first task,
the grippers (shown in blue) can freely move however the cloth is
obstructed by a pillar. In the second task, the grippers must pass
through a narrow passage before the table can be covered. In the
third task, the robot must navigate a rope (shown in green in the
top left corner) through a three-dimensional maze before covering
the red points in the top right corner. The maze consists of top and
bottom layers (purple and green, respectively). The rope starts in the
bottom layer and must move to the target on the top layer through
an opening (bottom left or bottom right). For the fourth task, the
physical robot must move the cloth from the far side of an obstacle
to the region marked in pink near the base of the robot. 56

6.2 Block diagram showing the major components of our framework. On
each cycle we use either the local controller (dotted purple arrows)
or a planned path (dashed red arrows) to predict if the system will
be deadlocked in the future, planning a new path is needed to avoid
deadlock. 59

6.3 Motivating example for deadlock prediction. The local controller
moves the grippers on opposite sides of an obstacle, while the geodesic
between the grippers (red line) cannot move past the pole, eventually
leading to overstretch or tearing of the deformable object if the robot
does not stop moving towards the goal. 60

6.4 Example of estimating the gross motion of the deformable object
for a prediction horizon Np = 10. The magenta lines start from
the points of the deformable object that are closest to the target
points (according to the navigation function). These lines show the
paths those points would follow to reach the target when following
the navigation function. 64

6.5 Estimated gross motion of the deformable object (magenta lines) and
end effectors (blue spheres). The VEB (black lines) is forward prop-
agated by tracking the end effector positions, changing to cyan lines
when overstretch is predicted. 65

6.6 Left: q(2) is the nearest node to the brand in robot space, but it my be
as far as Dmax,b away in the full configuration space. By considering
all nodes within Dmax,b in robot space, we ensure that any node (such
as b(1)) that is closer to brand than b(2) is selected as part of V near,
while nodes such as b(4) are excluded in order to avoid the expense
of calculating the full configuration space distance. Right: we then
measure the distance in the full configuration space to all nodes that
could possibly be the nearest to brand, returning b(1) as the nearest
node in the tree. 75

viii

6.7 Example covering ball sequence for an example reference path with a
distance along the path of δs between each ball. Given that the path
is δq-robust, each ball is a subset of Qvalid. 76

6.8 Minimum domination region for a node bi, adapted from Li et al.
[1] Lemma 23. Sampling brand in the shaded region guarantees that a
node bnear ∈ Bδq(b∗k) is selected for propagation so that either bnear = bi
or Cost(bnear) < Cost(bi). 81

6.9 Sequence of snapshots showing the execution of the first experiment.
The cloth is shown in green, the grippers are shown in blue, and
the target points are shown as red lines. (1) The approximate in-
tegration of the navigation functions from error reduction over Np

timesteps, shown in magenta, pull the cloth to opposite sides of the
pillar. (2) A sequence of VEBs between the grippers is shown in
black and teal, indicating the predicted gripper configuration over
the prediction horizon as the local controller follows the navigation
functions. The elastic band changes to teal as the predicted motion
of the grippers moves the cloth into an infeasible configuration. (3 -
5) The resulting plan by the RRT, shown in magenta and red, moves
the system into a new neighbourhood. (6) Final system state when
the task is finished by the local controller. 85

6.10 Sequence of snapshots showing the execution of the second exper-
iment. We use the same colors as the previous experiment (Fig-
ure 6.9), but in this example instead of detecting future overstretch
in panel (2), we detect that the system is stuck in a bad local mini-
mum and unable to make progress. 86

6.11 Sequence of snapshots showing the execution of the third experiment.
The rope is shown in green starting in the top left corner, the grippers
are shown in blue, and the target points are shown in red in the top
right corner. The maze consists of top and bottom layers (green and
purple, respectively). The rope starts in the bottom layer and must
move to the target on the top layer through an opening (bottom left
or bottom right). 88

6.12 Sequence of snapshots for the fourth experiment. We use the same
colors as the previous experiment (Figure 6.11), but in this example
the local controller gets stuck twice, in panels 3 and 6. In panel 7
the global planner finds a new neighbourhood that is distinct from
previously-tried neighbourhoods. 89

6.13 Cloth placemat task. The placemat starts on the far side of an ob-
stacle and must be aligned with the pink rectangle near the robot. . 92

6.14 Constraint and objective graph for Eq. (6.37). Note that not all
constraints are shown to avoid clutter; every estimated position has
a constraint between itself and every other estimated position. . . . 93

6.15 Histogram of planning times across 100 trials for the cloth placemat
experiment. 95

ix

7.1 Top: a plan generated without using a classifier moves the rope under
a hook and gets caught. Bottom: a plan generated with a classifier
avoids this mistake, and reaches the goal. 99

7.2 An outline of our framework. First, we plan and execute many con-
trol sequences to gather a dataset of transitions. These transitions
are labeled according to a function l and used to train a classifier
which predicts whether a transition is reliable given the model reduc-
tion. This classifier is used to bias the planner away from unreliable
transitions. 101

7.3 Circles represent variables and boxes represent functions. Orange:
variables defining the tth transition. Red path: reduced dynamics
prediction; Blue path: rollout result. 103

7.4 Illustration of desired prediction from a classifier. Dotted triangles
indicate b̂1s from different ub0 inputs. Green: Classifier predicts these
transitions are Reliable. Red: Classifier predicts these transitions
are Unreliable. Note that the line between b0 and b̂1 is collision-free
for all examples shown. 104

7.5 Illustration of the effect of information loss on the predictability of
a transition. In both scenarios states with different velocities reduce
to the same b0. Left: A case where rolling out the same ub from
different initial velocities (blue) produces the same b̃1 values, since
the controller is robust to initial velocity in this case. Right: A case
where rolling out the same ub with different initial velocities produces
different b̃1 values. At high initial velocity (c) the controller cannot
turn before reaching the obstacle. 105

7.6 Left: Plan generated using the learned classifier to go from [−pi
2
, 0, 0]

to [pi
2
, 0, 0]. The plan avoids transitions which move the arm toward

a horizontal position and successfully completes the task. Center:
Plan generated without the classifier. The plan takes the arm to
the horizontal position where it fails due to the torque limit. Right:
Number of successes as success threshold β varies 108

7.7 Input to the VoxNet classifier is a 3-channel voxel grid, where white
is the local environment, red is the pre-transition band, and blue is
the post transition band. Positions outside the bounds of the envi-
ronment are marked as occupied in the local environment channel. . 111

7.8 The rope is shown in green, with the grippers shown in blue. The
target area for the grippers is shown in red. Walls with narrow slits
for the grippers are shown in purple. Hooks and other obstacles are
shown in dark cyan. Left: Simple Hook; Center Left: Multi Hook;
Center Right: Complex Hook; Right: Engine Assembly 111

x

LIST OF TABLES

Table

3.1 Top two rows: Mean computation time (ms) per model prediction
for a given gripper motion. BT: Bullet simulator; CDR: constrained
directional rigidity. Bottom row: Mean number of times the model
was evaluated when executing the controller in Section 4.4. 24

4.1 Mean computation time (s) to compute the gripper motion for a given
state. BM: stretching avoidance controller; NM: stretching constraint
controller. 39

5.1 Controller parameters . 48
5.2 KF-MANB and KF-MANDB parameters 48
5.3 Synthetic trial results showing total regret with standard deviation

in brackets for all bandit algorithms for 100 runs of each setup. . . . 49
6.1 Deadlock prediction parameters . 83
6.2 Distance and planner parameters 84
6.3 Planning statistics for the first plan for each example task in sim-

ulation, averaged across 100 trials. Standard deviation is shown in
brackets. 90

6.4 Smoothing statistics for the first plan for each example task in sim-
ulation, averaged across 100 trials. Standard deviation is shown in
brackets. 90

6.5 Local controller and deadlock prediction avg. computation time per
iteration for each type of deformable object, averaged across all trials. 91

6.6 Average computation time to compute the effect of a gripper motion. 91
6.7 Planning statistics for the cloth placemat example, averaged across

100 trials. Standard deviation is shown in brackets. 94
6.8 Smoothing statistics for the cloth placemat example, averaged across

100 trials. Standard deviation is shown in brackets. 94
7.1 Planning statistics, averaged over 30 trials 114

xi

ABSTRACT

This dissertation is motivated by two research questions: (1) How can robots

perform a broad range of useful tasks with deformable objects without a time con-

suming modelling or data collection phase? and (2) How can robots take advantage

of information learned while manipulating deformable objects?

To address the first question, I propose a framework for deformable object manip-

ulation that interleaves planning and control, enabling complex manipulation tasks

without relying on high-fidelity modeling or simulation. Each part of the framework

uses a different representation of the deformable object that is well suited for the

specific requirements of each component. The key idea behind these techniques is

that we do not need to explicitly model and control every part of the deformable

object, instead relying on the object’s natural compliance in many situations.

For the second question, I consider the two major components of my framework

and examine what can cause failure in each. The goal then is to learn from experience

gathered while performing tasks in order to avoid making the same mistake again and

again. To this end I formulate the controller’s task as a Multi-Armed Bandit problem,

enabling the controller to choose models based on the current circumstances. For the

planner, I present a method to learn when we can rely on the robot’s model of the

deformable object, enabling the planner to avoid generating plans that are infeasible.

This framework is demonstrated in simulation with free floating grippers as well

as on a 16 DoF physical robot, where reachability and dual-arm constraints make the

tasks more difficult.

xii

CHAPTER I

Introduction

In the 1950s and 1960s George Devol, Joseph Engleberger, and many others be-

gan developing machines that were programmable manipulators of objects. Indus-

trial manufacturers, in a desire to reduce labour costs, improve quality, and reduce

delivery times were early adopters of this technology. These industrial robots were

programmed to perform highly repetitive manipulation of various rigid objects in

fixed environments. Key to the robot’s success are the specific program instructions

derived from previously measured and calculated features of the real-world objects

under manipulation in a fixed environment. The pervasive use of industrial robots

performing flawlessly around the globe in factories performing tasks like medical lab-

oratory testing, automobile assembling, or electronics circuit board manufacturing

demonstrate the success of programmable manipulators of objects. Complexity has

increased, dexterity has improved, and a given robot may be capable of more than

one task or can be applied to a different, but previously known size of object or

in a different, fully described environment; but, the vast majority of the modeling

and planning remains a human creation and is merely programmed into the robot in

advance. The industrial robot certainly does not learn.

Indeed, 35 years ago, Michael Brady [2] argued that “Since robotics is the field

concerned with the connection of perception to action, Artificial Intelligence must

have a central role in Robotics if the connection is to be intelligent.” Since then,

there have been great strides made developing robots with intelligence; one promi-

nent example of this is the self-driving automobile. Like industrial manipulators, a

self-driving automobile knows much about its own dimensions and physics but it is

constantly relying on computation-intensive processes for intelligence. The robot’s

task is achievable because the environment being modeled is rigid, the automobile’s

dynamics are known, and advancements in computing speed have soared, making

it possible for the robot to execute a very large, but finite, number of calculations

1

quickly enough for secure and accurate control. Brady went on to say, “Robotics

challenges AI by forcing it to deal with real objects in the real world.” As true as

that statement certainly is for robots such as self-driving automobiles, it is all the

more true for robots that manipulate deformable objects possessing an infinite num-

ber of degrees of freedom and the inherently incomplete description of the object in

all of its possible arrangements. An interesting example of a robot that manipulates

deformable objects in current use is the da Vinci surgical robot, well known for its

YouTube video demonstrating it stitching a grape back together with thread. Its

relevance to this paper is simple: The surgical robot does not learn, plan, or control

anything directly; those computationally intensive tasks are performed by a human

who controls the robot’s manipulating tools. The only way an argument could be

made for declaring this surgical robot a learning, autonomous robot would be to as-

sume that it ships from the factory, complete with a human operator who is deemed

one of its components. Computational intensity is one of it’s biggest hurdles. The

computational challenge posed by modeling, planning, and control for deformable

objects will be addressed in this dissertation; and, we describe a framework that we

successfully used to obtain measurable improvements against that challenge.

Traditional motion planning techniques such as A*, probabilistic roadmaps, and

rapidly-exploring random trees were designed with rigid body motion in mind. In

this framework contact with the environment is explicitly disallowed. In order to

manipulate an object a typical approach is to build a model of the object being

grasped; this model is then used to ensure that the object does not collide with

anything during a particular motion. In contrast, when working with deformable

objects, interaction with the environment is common (and often required), with the

deformable object complying to the environment rather than colliding with it. This

raises the question “How accurate do our models need to be?” There are a broad

range of deformable object manipulation tasks that robots have performed without

highly accurate models ranging from surgical applications [3] to knot-tying [4]. While

these methods have some success they rely on either a hand designed sequence of

actions (or controllers), or a time-consuming data collection phase.

To address these limitations, this dissertation is motivated by two key research

questions: (1) How can robots perform a broad range of tasks with deformable objects

without high-fidelity models and simulation? and (2) How can robots take advantage

of information learned while manipulating deformable objects? By answering these

questions we can take a step towards a household robot that is capable of performing

a broad range of tasks without any additional training, and can improve its ability

2

to perform the specific tasks that it commonly encounters.

Examples of deformable object manipulation range from domestic tasks like fold-

ing clothes to time and safety critical tasks such as robotic surgery. One of the

challenges in planning for deformable object manipulation is the high number of de-

grees of freedom involved; even approximating the configuration of a piece of cloth

in 3D with a 4 × 4 grid results in a 48 degree of freedom configuration space. In

addition, the dynamics of the deformable object are difficult to model [5]; even with

high-fidelity modeling and simulation, planning for an individual task can take hours

[6]. Local controllers on the other hand are able to very efficiently generate motion,

however, they are only able to successfully complete a task when the initial configura-

tion is in the “attraction basin” of the goal [7, 8]. We propose combining the strengths

of global planning with the strengths of local control while mitigating the weakness of

each; we propose a framework for interleaving planning and control which uses global

planning to generate gross motion of the deformable object, and a local controller to

refine the configuration of the deformable object within the local neighborhood. By

separating planning from control we are able to use different representations of the

deformable object, each suited to efficient computation for their respective roles.

Two key ideas allow this framework to reliably perform tasks without a time-

consuming modelling or data collection phase. First, we do not need to explicitly

model and control every part of the deformable object, instead relying on the object’s

natural compliance in many situations. By doing so we drastically reduce the need

for model fidelity, enabling the use of model approximations that do not need to be

highly accurate. Second, our framework does not assume that the local controller or

global planner are infallible. Instead, we assume that mistakes will be made, and

implement learning algorithms designed to avoid making the same mistake again. To

this end I formulate the controller’s task as a Multi-Armed Bandit problem, enabling

the controller to chose models based on the current circumstances. For planning we

present a planning formulation that explicitly exposes the challenge of planning with

model approximations, as well as a method for learning when we can and cannot rely

on a model approximation during planning.

This dissertation makes seven contributions towards answering these research

questions:

• We introduce a more accurate geometric model of how the direction of gripper

motion and obstacles affect deformable objects.

• We specify a novel stretching avoidance constraint to prevent the object from

3

being overstretched by the robot as part of a local controller, allowing for the

use of less accurate models without risking tearing the deformable object.

• We formulate the task of the local controller as a Multi-Armed Bandit problem,

with each arm representing a model of the deformable object.

• We introduce a manipulation framework that interleaves planning and control,

choosing each when most useful.

• We present a global motion planner to generate gross motion of the deformable

object, and provide a proof of probabilistic completeness for our planner, which

is valid despite the fact that our system is underactuated and we do not have a

steering function.

• We introduce a novel formulation of planning in reduced state spaces.

• We propose a method for improving the performance of the global planner as

mistakes are made due to model approximations, enabling the planner to learn

from experience.

4

CHAPTER II

Related Work

Robotic manipulation of deformable objects has been studied in many contexts

ranging from surgery to industrial manipulation (see [9, 10, 11] for surveys). Below

we discuss the most relevant methods to the work presented in this dissertation,

starting with methods of modelling and simulating deformable objects. We then

discuss visual servoing and other local control methods for performing deformable

object manipulation tasks. Next we discuss related work for model selection and

using multiple models for control. We then describe work relevant to combining local

controllers and global planners for accomplishing tasks. We conclude with related

work in motion planning for deformable objects and ways to consider topology in

planning.

2.1 Modelling Deformable Objects

Much work in deformable object manipulation relies on simulating an accurate

model of the object being manipulated. Motivated by applications in computer

graphics and surgical training, many methods have been developed for simulating

string-like objects [12, 13] and cloth-like objects [14, 15]. The most common simu-

lation methods use Mass-Spring models [16, 5], which are generally not accurate for

large deformations [17], and Finite-Element (FEM) models [18, 19, 20]. FEM-based

methods are widely used and physically well-founded, but they can be unstable when

subject to contact constraints, which are especially important in this work. They also

require significant tuning and are very sensitive to the discretization of the object.

Furthermore, such models require knowledge of the physical properties of the object,

such as it’s Young’s modulus and friction parameters, which we do not assume are

known.

5

Also, we seek a model that can be evaluated very quickly inside an optimal con-

trol framework, and Finite-element models, while accurate, can be computationally-

expensive to simulate. While methods have been developed to track objects using

FEM in real-time [21], a controller may need to evaluate the model many times to

find an appropriate command, requiring speeds faster than real-time. Specialized

models have also been developed, e.g., [22] and [23] focus on elastic rods that are not

in contact. We seek a model that works well with rope-like and cloth-like materials

that can deform as a result of contact. Finally, researchers have also investigated

automatic modeling of deformable objects [24, 25]. However, these methods rely on

a time-consuming training phase for each object to be modeled, which we would like

to avoid.

Our work is complementary to methods that adapt the model of the object during

manipulation [26, 27, 28]. Our model can serve as an initial guess and a reference

for such methods so that the online adaptation process does not diverge too far

from a reasonable model as a result of perception or modeling error. Our modelling

methods build on the idea of diminishing rigidity Jacobians [7] by improving the

model by considering the effects of the direction of motion and static obstacles that

the deformable object interacts with.

2.2 Local Control for Manipulation Tasks

Given a model such as those above, researchers have investigated various control

methods to manipulate deformable objects. Model-based visual servoing approaches

bypass planning entirely, and instead use a local controller to determine how to move

the robot end-effector for a given task [29, 30, 31]. Other approaches [7, 26, 32, 27]

bypass the need for an explicit deformable object model, instead using approximations

of the Jacobian to drive the deformable object to the attractor of the starting state.

More recent work by Hu et al. [28] has enabled the use of Gaussian process regression

while controlling a deformable object. Our work builds on Berenson [7], capturing

overstretching and obstacle avoidance into control constraints that are more effective

at preventing damage to the deformable object.

2.3 Using Multiple Models

In order to accomplish a given manipulation task, we need to determine which

type of model to use at the current time to compute the next velocity command, as

6

well as how to set the model parameters. Frequently this selection is done manually,

however, there are methods designed to make these determinations automatically.

Machine learning techniques such as [33, 34] rely on supervised training data in order

to intelligently search for the best regression or classification model. These methods

are able to estimate the accuracy of each model as training data is processed, pruning

models from the training that are unlikely to converge or otherwise outperform models

that are kept. These methods are designed for large datasets rather than an online

setting where we may not have any training data a priori. While it may be possible to

adjust these methods to consider model utility instead of model accuracy, it is unclear

how to acquire the needed training data for the task at hand without having already

performed the task. The most directly applicable methods come from the Multi-

Armed Bandit (MAB) literature [35, 36, 37]. In this framework there are multiple

actions we can take, each of which provides us with some reward according to an

unknown probability distribution. The problem then is to determine which action to

take (which arm to pull) at each time step in order to maximize reward.

The MAB approach is well-studied for problems where the reward distributions

are stationary ; i.e. the distributions do not change over time [36, 38]. This is not

the case for deformable object manipulation; consider the situation where the object

is far away from the goal versus the object being at the goal. In the first case there

is a possibility of an action moving the object closer to the goal and thus achieving

a positive reward; however, in the second case any motion would, at best, give zero

reward. In the contextual bandits [39, 40] variation of the MAB problem, additional

contextual information or features are observed at each timestep, which can be used to

determine which arm to pull. Typical solutions map the current features to estimates

of the expected reward for each arm using regressions techniques or other metric-

space analysis. In order to use contextual bandits for a given task a set of features

would need to be engineered, however it is not clear what features to use.

Recent work [41] on non-stationary MAB problems offer promising results that

utilize independent Kalman filters as the basis for the estimation of a non-stationary

reward distribution for each arm. This algorithm (KF-MANB) provides a Bayesian

estimate of the reward distribution at each timestep, assuming that the reward is

normally distributed. KF-MANB then performs Thompson sampling [38] to select

which arm to pull, choosing each in proportion to the belief that it is the optimal

arm. We build on this approach in this paper to produce a method that also accounts

for dependencies between arms by approximating the coupling between arms at each

timestep.

7

For the tasks we address, the reward distributions are both non-stationary as well

as dependent. Because all arms are operating on the same physical system, pulling

one arm both gives us information about the distributions over other arms, as well

as changing the future reward distributions of all arms. While work has been done

on dependent bandits [42, 39], we are not aware of any work addressing the com-

bination of non-stationary and dependent bandits using a regret-based formulation.

Our method for model selection is inspired by KF-MANB, however we directly use

coupling between models in order to form a joint reward distribution over all models.

This enables a pull of a single arm to provide information about all arms, and thus

we spend less time exploring the model space and more time exploiting useful models

to perform the manipulation task.

2.4 Motion Planning for Deformable Objects

Motion planning for manipulation of deformable objects is an active area of re-

search [10]. Saha et al. [43] present a Probabilistic Roadmap (PRM) [44] that plans

for knot-tying tasks with rope. Rodriguez and Amato [45] study motion planning in

fully deformable simulation environments. Their method, based on Rapidly-exploring

Random Trees (RRTs) [46], applies forces directly to an object to move it through

narrow spaces while using the simulator to compute the resulting deformations. Frank

et al. [47] presented a method that pre-computes deformation simulations in a given

environment to enable fast multi-query planning. Other sampling-based approaches

have also been proposed [48, 49, 50, 51, 52, 53]. However, all the above methods

either disallow contact with the environment or rely on potentially time-consuming

physical simulation of the deformable object, which is often very sensitive to phys-

ical and computational parameters that may be difficult to determine. In contrast

our method uses simplified models for control and motion planning with far lower

computational cost.

Our planning method has some similarity to topological [54, 55] and tethered

robot [56, 57] planning techniques; these methods use the topological structure of the

space to define homotopy classes, either as a direct planning goal, or as a way to help

inform planning in the case of tethered robots. Planning for some deformable objects,

in particular rope or string, can be viewed as an extension of the tethered robot case

where the base of the tether can move. This extension, however, requires a very

different approach to homotopy than is commonly used, particularly when working in

three-dimensional space instead of a planar environment. In our work we use visiblity

8

deformations from [54] as a way to encode homotopy-like classes of configurations.

Previous approaches to proving probabilistic completeness for efficient planning

of underactuated systems rely on the existence of a steering function to move the

system from one region of the state space to another, or choosing controls at random

[58, 59, 60, 1]. For deformable objects, a computationally-efficient steering function

is not available, and using random controls can lead to prohibitively long planning

times. Roussel et al. [53] bypass this challenge by analyzing completeness in the

submanifold of quasi-static contact-free configurations of a extensible elastic rods. In

contrast, we show that our method is probabilistically complete even when contact

between the deformable object and obstacles is considered along the path. Note that

it is especially important to allow contact at the goal configuration of the object to

achieve coverage tasks. Li et al. [1] present an efficient asymptotically-optimal planner

which does not need a steering function, however, they do rely on the existence of

a contact free trajectory where every point in the trajectory is in the interior of the

valid configuration space. Our proof of probabilistic completeness is based on Li et al.

[1], but we allow for the deformable object to be in contact with obstacles along a

given trajectory.

2.5 Interleaving Planning and Control for Deformable Ob-

ject Manipulation

The use of a local controller is not considered in the above methods, instead

relying on a global planner (and thus implicitly the accuracy of the simulator) to

generate a path that completes the entire task. In contrast, our framework combines

the strengths of global planning with the strengths of local control in order to perform

tasks.

Park et al. [61] considered interleaving planning and control for arm reaching tasks

in rigid unknown environments. In their method, they assume an initially unknown

environment in which they plan a path to a specific end-effector position. This path

is then followed by a local controller until the task is complete, or the local controller

gets stuck. If the local controller gets stuck, then a new path is planned and the

cycle repeats. In contrast, our controller is performing the task directly rather than

following a planned reference trajectory, incorporating deadlock prediction into the

execution loop, while our global planner is planning for both the robot motion as well

as the deformable object stretching constraint.

Approaches based on learning from demonstration avoid planning and deformable

9

object modelling challenges entirely by using offline demonstrations to teach the robot

specific manipulation tasks [4, 62]; however, when a new task is attempted a new

training set needs to be generated. In our application we are interested in a way to

manipulate a deformable object without a high-fidelity model or training set available

a priori. For instance, imagine a robot encountering a new piece of clothing for a

new task. While it may have models for previously-seen clothes or training sets for

previous tasks, there is no guarantee that those models or training sets are appropriate

for the new task.

2.6 Learning for Planning in Reduced State Spaces

In terms of applying machine learning to control and planning, prior work has

primarily used learned dynamics models for control [63, 64, 65, 66, 67]. Recent work

[68] has also explored planning in a learned reduced space, but they do not consider

the error in a reduced model’s prediction when planning. Visual Planning and Acting

(VPA) [69] learns a latent transition model based on visual input for planning. This

work uses on a classifier to prune infeasible transitions during planning. However,

despite this classifier, only 15% of generated plans were visually plausible, with only

20% of the visually plausible plans being executable. When considering machine

learning methods in this dissertation we do not focus on learning a reduction but

rather on creating a framework that can be used to overcome limitations in a given

model reduction.

10

CHAPTER III

Deformable Object Modelling

One of the key challenges in manipulating deformable objects is the inherent

difficulty of modeling and simulating them. While there has been some progress

towards online modeling of deformable objects [24, 25] these methods rely on a time-

consuming training phase for each object to be modeled. This training phase typically

consists of probing the deformable object with test forces in various configurations,

and then fitting model parameters to the generated data. While this process can

generate useful models, the time it takes to generate a model for each task can be

prohibitive for some applications. Of particular interest are Jacobian-based models;

in these models we assume that there is some function F : SE(3)G → RN which

maps a configuration of G robot grippers q ∈ SE(3)G to a parameterization of the

deformable object P ∈ RN , where N is the dimensionality of the parameterization of

the deformable object. These models are then linearized by calculating the Jacobian

of F :

P = F (q)

∂P
∂t

=
∂F (q)

∂q

∂q

∂t

Ṗ = J(q)q̇ . (3.1)

Computation of an exact Jacobian J(q) at a given configuration q is often compu-

tationally intractable and requires high-fidelity models anbd simulators, so instead

approximations are frequently used.

In this chapter we discuss a diminishing-rigidity based approximation first intro-

duced by Berenson [7] and extensions of this model. The diminishing-rigidity model

assumes that points on the deformable object that are near a gripper move “almost

rigidly” with respect to the gripper while points that are further away move “less

11

rigidly”. In addition to this Jacobian-based model, we also introduce a non-linear

modification of the diminishing-rigidity Jacobian which more accurately captures the

effect of the direction of gripper motion and obstacles.

3.1 Definitions

Let the robot be represented by a set of G grippers with configuration q ∈ SE(3)G.

We assume that the robot configuration can be measured exactly; in this work we

assume the robot to be a set of free floating grippers; in practice we can track the

motion of these with inverse kinematics on robot arms (see Sec 4.3.2.2 for an imple-

mentation). We use the Lie algebra [70] of SE(3) to represent robot gripper velocities.

This is the tangent space of SE(3), denoted as se(3). The velocity of a single gripper

g is then q̇g =
[
vTg ωTg

]T
∈ se(3) where vg and ωg are the translational and rotational

components of the gripper velocity. We define the velocity of the entire robot to be

q̇ =
[
q̇T1 . . . q̇TG

]T
∈ se(3)G. We define the inner product of two gripper velocities

q̇1, q̇2 ∈ se(3) to be

〈q̇1, q̇2〉 = vTv2 + cωT1 ω2 , (3.2)

where c > 0 is scaling factor relating rotational and translational velocities. This

defines the se(3) norm

‖q̇g‖2
se(3) = 〈q̇g, q̇g〉 . (3.3)

Let the configuration of a deformable object be a set of P points with configuration

P =
[
pT1 . . . pTP

]T
∈ R3P . We assume that we have a method of sensing P . Let D

be a symmetric P ×P matrix where Dij is the the geodesic distance (see Figure 3.1)

between pi and pj when the deformable object is in its “natural” or “relaxed” state.

To measure the norm of a deformable object velocity Ṗ =
[
ṗT1 . . . ṗTP

]T
∈ R3P we

will use a weighted Euclidean seminorm

‖Ṗ‖2
W =

P∑
i=1

wiṗi
T ṗi = ṖT diag (W)Ṗ (3.4)

where W =
[
w1 . . . wP

]T
∈ RP is a set of non-negative weights. The rest of the

environment is denoted O and is assumed to be both static, and known exactly.

The current state of the deformable object is a function of the current gripper pose

P , the history of gripper motions that have been applied Qhist, the object’s initial

12

Figure 3.1: Euclidean distance measures length of the shortest path between pi and pj
in R3 (gold). Geodesic distance measures the length of the shortest path, constrained
to stay within the deformable object (red).

configuration P0, and the obstacles in the environment O:

P = F (q,Qhist,P0,O) . (3.5)

Let a deformation model φ be defined as a function which takes as input the system

configuration, gripper velocities, and obstacle configuration to a deformable object

and returns a deformable object velocity:

Ṗ = φ(q, q̇,P ,O) . (3.6)

For brevity this will frequently be shortened to Ṗ = φ(q̇).

For Jacobian based models, we take the time derivative of Eq. (3.5) to get

dP
dt

=
∂F

∂q

∂q

∂t
+

∂F

∂Qhist

∂Qhist

∂t
+
∂F

∂P0

∂P0

∂t
+
∂F

∂O
∂O
∂t

. (3.7)

Only the first term is non-zero, thus

Ṗ =
∂F (q,Qhist,P0,O)

∂q
q̇ = J(q, q̇,P ,O)q̇. (3.8)

Note that Qhist and P0 are needed in F to compute the current state of the object,

but if we can sense P directly (as we assume), then Qhist and P0 are not needed to

compute the Jacobian J . Thus for Jacobian based models Eq. (3.8) directly defines

the deformation model φ

φ(q̇) ≈ J(q, q̇,P ,O)q̇ . (3.9)

13

3.2 Diminishing Rigidity Jacobian

The key assumption used by this method [7] is diminishing rigidity : the closer

a gripper is to a particular part of the deformable object, the more that part of

the object moves in the same way that the gripper does (i.e. more “rigidly”). The

further away a given point on the object is, the less rigidly it behaves; the less it moves

when the gripper moves. In this section we refine Berenson’s method by redefining

J rot
i,g and introducing an extra parameter. This results in two parameters ktrans ≥ 0

and krot ≥ 0 which control how the translational and rotational rigidity scales with

distance. Small values entail very rigid objects such as steel cable; high values entail

very deformable objects such as fine string.

For every point i and every gripper g we construct a Jacobian J rigid(i, g) such that

if pi was rigidly attached to the gripper qg then

ṗi = J rigid
i,g q̇g =

[
J trans
i,g J rot

i,g

]
q̇g . (3.10)

We then modify this Jacobian to account for the effects of diminishing rigidity. Let

the indices of the set of points grasped by gripper g be Gg ⊆ {1, . . . , P}. Let c(i, g) be

the index of the point with minimal relaxed geodesic distance to pi among the ones

grasped by gripper g:

c(i, g) = argmin
j∈Gg

Dij . (3.11)

Then the translational rigidity of point i with respect to gripper g is defined as

wtrans
i,g = e−k

transDic(i,g) (3.12)

and the rotational rigidity is defined as

wrot
i,g = e−k

rotDic(i,g) . (3.13)

To construct an approximate Jacobian J̃(i, g) for a single point and a single gripper

we combine the rigid Jacobians with their respective rigidity values

J̃(i, g) =
[
wtrans
i,g J trans

i,g wrot
i,g J

rot
i,g

]
, (3.14)

14

and then combine the results into a single matrix

J̃(q,P) =


J̃(1, 1) J̃(1, 2) . . . J̃(1, G)

J̃(2, 1)
. . .

...

J̃(P, 1)

 . (3.15)

3.3 Constrained Directional Rigidity

While the diminishing rigidity Jacobian method has been used to do practical

manipulation tasks with a deformable object [7], we observe that this rigidity does

not only diminish as the distance from the gripper increases. Instead, it is a function of

a larger set of variables derived from the configuration of the object. First, the rigidity

also depends on the direction of gripper motion. Figure 3.2 shows an example of an

object’s directional rigidity. In addition capturing the effects of directional rigidity, in

this section we seek to address contact with the environment, increasing the accuracy

of the approximation.

Figure 3.2: An illustrative example of directional rigidity. Left: The rope moves
almost rigidly when dragging it by one end to the left. Right: The rope deforms
when pulling it on the right in the opposite direction.

3.3.1 Model Overview

In Section 3.2, J is assumed to be independent of q̇ and O, yielding ∂F
∂q

=

J(q,Qhist,P0) = J(q,P), which is analogous to a rigid-body Jacobian. While these

assumptions allow a linear relationship between q̇ and Ṗ , and thus computational

convenience, they are not accurate in many situations (see Figure 3.2 for an exam-

ple). In this section we augment the definition of J to include effects from q̇ and

15

O:

Ṗ = J(q, q̇,P ,O)q̇ = φ(q, q̇,P ,O) . (3.16)

We now describe how J is approximated, focusing on how it accounts for direc-

tional rigidity (using q̇) and how it enforces obstacle penetration constraints (using

O).

3.3.2 Directional Rigidity

We build on the idea proposed by Berenson [7], which approximates J based on

the observation that the deformable object behaves rigidly near points grasped by the

robot grippers. [7] encoded this effect through a simple function that only considered

the distance of a point from the the nearest gripper. However, we find that we

can exploit geometric information in the object’s configuration to better predict the

object’s motion when we use a more complex model. We have observed that the

key features of the deformable object configuration for predicting its motion are its

deformability (which is determined by its material properties) and where it is slack.

The deformation influences the transmission of the force from the grippers, i.e., the

more stretchable the object, the more it will stretch when force is applied. However,

when a region of the object is taut, regardless of how stretchable it is, it will move

as if it were rigidly connected to a gripper (e.g. imagine a rope held taut by two

grippers). We also must take into account that points are not influenced equally by

different grippers; i.e., grippers farther away contribute less to the motion of a point

than those closer to it.

To incorporate the above effects into our model, we define the following variables,

which can be derived from q, q̇, and P :

• Dij: the geodesic distance (a scalar) between points pi and pj on the surface of

the object.

• vij: the vector starting at a point pi and ending at the point pj, as shown in

Figure 3.3.

• qg: the configuration of gripper g.

• q̇g: the velocity of gripper g.

Furthermore, let c(i, g) be the index of the point with the minimal geodesic dis-

tance to pi among the ones grasped by the g’th gripper. We address the notion of

rigidity in object motion by considering the slackness of the object and reformulating

16

Figure 3.3: The length of the the red segment on the rope is the geodesic distance
Dij. vij is the vector showing the relative position of pj with respect to pi.

the rigidity as a function of Dic(i,g), vic(i,g), and q̇g. For each point i and gripper g we

compute

J̃(i, g) = θi,g

[
wtrans
i,g J trans

i,g wrot
i,g J

rot
i,g

]
wtrans
i,g = wtrans(Dic(i,g), vic(i,g), q̇g)

wrot
i,g = wrot(Dic(i,g))

(3.17)

wtrans and wrot are the corresponding translational and rotational diminishing rigidity

factors defined by pi and gripper g (discussed below).

Our goal is to encode the directional rigidity of the object motion into wtrans

and wrot and use θi,g to describe the influence of gripper g on pi. Intuitively, wtrans

should decrease with the increasing geodesic Dic(i,g) distance between pi and pc(i,g).

This is because the deformation of the region between pi and pc(i,g) will attenuate the

transmitted force of the gripper’s motion unless the object is taut. Since the effects

on wrot
i,g from q̇g and vic(i,g) are not as clear or significant as Dic(i,g), we keep wrot

i,g as a

function of Dic(i,g), where

1. wrot
i,g ranges between 0 and 1.

2. wrot
i,g decreases as Dic(i,g) increases.

We give the definition of wrot
i,g below.

From observation, we find two key reasons related to the slackness of the object

that induce the diminishing rigidity effect for translation motion, and we aim to

encode these factors into wtrans
i,g . The first case is that the moving direction of q̇g

makes the region on the object between pi and pc(i,g) less taut. The second case is

that this region is already slack. wtrans
i,g is thus a product of two terms:

wtrans
i,g = αi,gβi,g (3.18)

17

where αi,g addresses the effect in the first case (motion reducing tension), and βi,g

addresses the effect in the second case (object slackness). Both αi,g and βi,g are

functions of some of qg, q̇g, pi, or variables derived from these.

For pi on the object, we find αi,g is greatly impacted by vic(i,g) and vg. Decomposing

vg into vrad
g , the component in the direction of vic(i,g), and vperp

g , the component

perpendicular to vic(i,g). We observed that if vrad
g is in the opposite direction to vic(i,g),

then it is more likely to make the intervening region slacker and thus reduce the

transmission of force from the gripper to pi. Moreover, if vrad
g and vic(i,g) are in the

same direction when the object is not already slack, pi can move almost rigidly with

q̇g. Figure 3.2 shows an example of the impact of this alignment. Based on these

observations, we design the function αi,g = α(vic(i,g), q̇g) with the following properties:

1. α(vic(i,g), q̇g) ranges between 0 and 1.

2. α(vic(i,g), q̇g) > α(vjc(j,g), q̇g) if
〈
vic(i,g), vg

〉
>
〈
vjc(j,g), vg

〉
and Dic(i,g) = Djc(i,g).

3. α(vic(i,g), q̇g) > α(vjc(j,g), q̇g) if
〈
vic(i,g), vg

〉
=
〈
vjc(j,g), vg

〉
and Dic(i,g) > Djc(i,g).

We give the definition of α(vic(i,g), q̇g) below.

As mentioned above, βi,g depends on the current slackness of the intervening re-

gion. Without other external forces applied on the object, the pulling force applied

by the robot will tend to unwind or unfold the object eventually (we do not consider

cases where the object is tied into knots). For this reason, the part of the interven-

ing region on the object that is not already spread out is less likely to move rigidly

with gripper g. One indicator that can address this property is the ratio between the

Euclidean distance between pi and pc(i,g), and the geodesic distance Dic(i,g) between

them. We denote ri,g =
||vic(i,g)||
Dic(i,g)

to be this ratio. A larger ri,g indicates a tauter inter-

vening region. A tauter intervening region is more likely to result in ṗi moving more

rigidly. Thus we can design the function βi,g = β(ri,g) with the following properties:

1. β(ri,g) ranges between 0 and 1.

2. β(ri,g) = 1 if ri,g = 1.

3. β(ri,g) > β(rj,g) if ri,g > rj,g

Finally, θi,g, which captures the influence of gripper g on pi should have the fol-

lowing property (where k is the index of a different gripper on the robot):

1. θi,g ranges between 0 and 1.

18

2. θi,g < θi,k if Dic(i,g) > Dic(i,k).

3.
∑G

m=1 θi,m = 1.

Through experimentation, we obtained good results with the following functions:

α(vic(i,g), q̇g) = ek
dirDic(i,g)(cos∠(vic(i,g),vg)−1)

β(ri,g) =

(
‖vic(i,g)‖
Dic(i,g)

)kdist
wrot
i,g = e−k

rotDic(i,g)

θi,g =
xg∑G

m=0 xm

xm =
min{Dic(i,1), . . . , Dic(i,G)}

Dm

(3.19)

where kdir, kdist, and krot are non-negative parameters. Specifically, a larger kdir

indicates a greater impact on the diminishing in the rigidity from the motion reducing

tension. A larger kdist indicates a greater impact on the diminishing in the rigidity

from the slackness of the object in the current state. A larger krot indicates a faster

decrease in rotational rigidity as the distance from pi to the gripper increases.

3.3.2.1 Obstacle Penetration Constraints

By combining the contributions of each individual gripper using the model devel-

oped above, we get a prediction of a point’s movement from

p̃i =
[
J(i, 1) . . . J(i, G)

]
q̇ = Ji(q, q̇,P)q̇ (3.20)

However, at this stage, we haven’t taken into account the effect from the obstacles

O. Thus the predicted p̃i can move pi into an obstacle.

When the prediction of pi enters the obstacle, we project any penetration by the

predicted p̃i into the tangent space of the obstacle surface (Figure 3.4). Let di < ‖p̃i‖
be the distance to collision in direction p̃i from point pi; let λi = di

‖p̃i‖ ; let ni be the

unit surface normal of the obstacle in contact; and let Ni = (I3×3 − ~ni~n+
i). Then to

account for obstacles we compute

J̃i(q, q̇,P ,O) =

(λi + (1− λi)Ni)Ji(q, q̇,P) if pi + p̃i in collision

Ji(q, q̇,P) otherwise
(3.21)

19

𝑝𝑖

෨ሶ𝑝 = 𝐽𝑖
𝑑𝑟 𝑞, ሶ𝑞, 𝒫 ሶ𝑞

Φi 𝑞, ሶ𝑞, 𝒫, 𝒪 = ሶ𝑝i

Figure 3.4: Projection process for points that are predicted to be in collision after
movement.

To generate J for all the points and grippers we compute Ji(q, q̇,P) for each pi. These

matrices are modified using penetration constraints to get Ji(q, q̇,P ,O). These ma-

trices are then stacked to obtain J(q, q̇,P ,O). Finally, we arrive at our approximate

model: φ(q, q̇,P ,O) = J(q, q̇,P ,O)q̇.

3.4 Results

Our goal for the constrained directional rigidity model is to improve the accuracy

of the deformable object motion model (for use in the controller in Section 4.4), while

maintaining reasonable computation speed. Our benchmark model is the diminishing

rigidity model described in Section 3.2. To evaluate our method we perform exper-

iments in simulation and on a physical robot. The simulator used is Bullet physics

[71], however, we emphasize that our method has no knowledge of the simulation

parameters or simulation methods used therein. The simulator is used as a “black-

box,” mainly to stand in for a perception system and to allow us to do repeatable

experiments. The physical robot consists of two KUKA iiwa 7DoF arms with Robotiq

3-finger hands.

We ran experiments with scenarios involving both cloth and rope. The parameters

we used for the benchmark method (Section 3.2) are its default best value found in

[7]: ktrans = krot = 10 for rope and ktrans = krot = 14 for cloth. The parameters for

the new model (Section 3.3) are set as kdir = 4, kdist = 10, krot = 20 for the new

model. All experiments were run on a i7-8700K 3.7 GHz CPU with 32 GB of RAM. A

video showing the experiments can be found at https://www.youtube.com/watch?

v=Y-wPsPdQVgg.

20

3.4.1 Simulation Environment Model Accuracy Results

We evaluated model accuracy by pulling the rope in a straight line along the di-

rection of the rope, then turning the gripper and pulling back towards the rope as

shown in Figure 3.2. As shown in Figure 3.5, our new model is a better approxima-

tion of the true motion when the gripper is pulling the rope. When the gripper is

turning, both the baseline and the new model produce comparable error, but when

the gripper starts pulling again (this time in the opposite direction), the new model

is a significantly better approximation.

We also evaluated model accuracy by pulling the cloth in a similar fashion; pulling

the cloth one way, turning the grippers, and then pulling in the opposite direction.

As shown in Figure 3.6, our new model is a better approximation of the true motion

when the grippers are pulling the cloth. As in the rope test, when rotating the

grippers both models produce comparable error. While the cloth is folded on itself

both models produce noisy results, but when the cloth lies flat again, the new model

achieves lower error.

Figure 3.5: RMS model prediction error for the simulated rope model accuracy test.
The gripper pulls the rope for the first 4.5 seconds, then turns for half a second, then
moves in the opposite direction at the 5 second mark.

21

Figure 3.6: RMS model prediction error for the simulated cloth model accuracy test.
The grippers pull the cloth for the first 2.3 seconds, then turn for 0.63 seconds, then
move in the opposite direction at the 2.93 second mark. At the 5 second mark the
cloth is no longer folded.

3.4.2 Physical Robot Experiments

To evaluate our new model on a physical system, we set up an experiment with a

cloth-like object manipulated by two 7DoF KUKA iiwa arms (Figure 3.7). To sense

the position of the cloth, we use the AprilTags [72] and IAI Kinect2 [73] libraries. We

use the same parameters as we used for simulated experiments. This test, which eval-

uates model accuracy, uses a motion profile similar to the simulation accuracy tests

(Figure 3.8). Similar to the simulation results, the new model improves performance

when dragging the cloth (first and last sections of Figure 3.8), and is comparable

during rotational motion and when the cloth is resting on edge perpendicular to the

table (see video).

22

Figure 3.7: Initial setup for the physical robot model accuracy experiment.

Figure 3.8: RMS model prediction error for the physical cloth accuracy test. The
grippers pull the cloth toward the robot for the first 10 timesteps, upward for 5
timesteps, rotate for 15 timesteps, diagonally down and away for 9 timesteps, then
directly away from the robot.

23

3.4.3 Computation Time

To verify the practicality of our method, we gathered data comparing its com-

putation time to the benchmark’s and to using the Bullet simulator for a variety of

tasks (see Figure 3.9 and Section 4.5). Table 3.1 shows a comparison between the

average time needed to evaluate the new model and the time needed to simulate a

gripper motion with the Bullet simulator. Note that the amount of time required for

the simulator to converge to a stable estimate depends on many conditions, includ-

ing what object is being simulated. Through experimentation we determined that

4 simulation steps were adequate for rope and 10 for cloth. Comparing the time

needed to do this simulation to the time needed to evaluate our model, we see that

the new model is indeed faster by at least an order of magnitude, in some cases by

two orders of magnitude, confirming that, despite being slower than the diminishing

rigidity model, our method still outperforms the simulator in terms of computation

time. This is particularly important given the average number of times a model is

evaluated in a control loop.

(a) (b) (c) (d)

Figure 3.9: Initial state of the four experiments, where the red points act as attractors
for the deformable object. (a) Rope wrapping cylinder. (b) Cloth passing single pole.
(c) Cloth covering two cylinders. (d) Rope matching zig-path

Table 3.1: Top two rows: Mean computation time (ms) per model prediction for a
given gripper motion. BT: Bullet simulator; CDR: constrained directional rigidity.
Bottom row: Mean number of times the model was evaluated when executing the
controller in Section 4.4.

rope-wrapping
-cylinder

rope-matching
-cylinder

cloth-passing
-single-pole

cloth-wrapping
-two-cylinder

BT 0.686 0.571 19.29 3.680
CDR 0.029 0.014 1.172 0.339

evals 50.72 143.5 83.81 63.32

24

CHAPTER IV

Local Control

The previous chapter presented multiple models that approximate the effects of

gripper motion on the deformable object. Next we introduce controllers that use

these models as part of our framework for performing a broad range of tasks.

The role of the local controller is not to perform the whole task, but rather to refine

the configuration of the deformable object locally. For our local controller we use a

controller of the form introduced in [7] and [8]. These controllers locally minimize

error while avoiding robot collision and excessive stretching of the deformable object.

We present two different methods for addressing overstretch in sections 4.3 and 4.4.

Both of these controllers rely on the same method for computing the direction to

move the deformable object in order to reduce task error.

4.1 Problem Statement

We define a task based on a set of T target points T ∈ R3T , a function ρ(T ,P) ≥ 0,

which measures the alignment error between P and T , and a termination function

Ω(T ,P) which indicates if the task is finished. The methods we present in this chapter

are local, i.e. at each time t they choose an incremental movement q̇t which reduces

the alignment error as much as possible at time t+ 1:

min
q̇t

ρ (T ,Pt+1) (4.1)

where Pt+1 is the result of executing q̇t for one unit of time. q̇t must also be feasible,

i.e. it should not bring the grippers into collision with obstacles and should not cause

the object to stretch excessively.

25

4.2 Reducing Task Error

We build on previous work [7], splitting the desired deformable object movement

into two parts: an error correction part and a stretching correction part. When

defining the direction we want to move the deformable object to minimize error we

calculate two values: which direction to move the deformable object points Ṗe and

the importance of moving each deformable object point We. This is analogous to

computing the gradient of error, as well as an “importance factor” for each part of

the gradient. We need these weights to be able to differentiate between points of the

object where the error function is a plateau versus points where the error function is

at a local minimum (Figure 4.1). Typically this is achieved using a Hessian, however

our error function does not have a second derivative at many points.

Figure 4.1: Top Line: moving the point does not change the error, thus the desired
movement is zero, however, it is not important to achieve zero movement, thus Wd =
0. Bottom Line: error is at a local minimum; thus moving the point increases error.

In order to calculate Ṗe and We, we start by defining a workspace navigation func-

tion for each target point Tk ∈ T towards Tk using Dijkstra’s algorithm. This gives

us the shortest collision-free path between any point in the workspace and the target

point, as well as the distance travelled along that path. Using these distances, at ev-

ery timestep for every target point Tk, we recalculate which point on the deformable

object pi is closest (Alg. 1). The directions each navigation function indicates are

added together to define the overall direction to manipulate a point (Alg. 2 line 5).

For the importance factors We,i, we take only the largest distance that pi would have

to move as a way to mitigate discretization effects (Alg. 2 line 6).

4.3 Stretching Avoidance Controller

An outline of how this controller functions is shown in Alg. 3; first, we calculate

the error reduction direction and weight as discussed in the previous section (Lines

2 and 3). These error reduction terms are then combined with stretching avoidance

terms Ṗs,Ws to define the desired manipulation direction and importance weights

26

Algorithm 1 CalculateCorrespondences(P , T)

1: PC = [∅]1×P
2: for k ∈ {1, 2, . . . , T} do
3: i← argminj∈{1,2,...,P} dDijkstras(Tk, pj)
4: d← dDijkstras(Tk, pi)
5: PC [i]← {PC [i] ∪ (k, d)}
6: end for
7: return PC

Algorithm 2 FollowNavigationFunction(P ,PC)

1: Ṗe ← 03P×1

2: We ← 0P×1

3: for i ∈ {1, 2, . . . , P} do
4: for (k, d) ∈ PC [i] do
5: ṗe,i ← ṗe,i+ DijkstrasNextStep(pi, k)
6: We,i ← max(We,i, d)
7: end for
8: end for
9: return Ṗe,We

Ṗd,Wd at each timestep (Lines 3 and 3). We then find the best robot motion to

achieve the desired deformable object motion, while preventing collision between the

robot and obstacles (Line 5).

Algorithm 3 StretchingAvoidanceController(q,P , T)

1: PC ← CalculateCorrespondences(P , T)
2: Ṗe,We ← FollowNavigationFunction(P ,PC)
3: Ṗs,Ws ← StretchingCorrection(P)
4: Ṗd,Wd ← CombineTerms(Ṗe,We, Ṗs,Ws)
5: q̇cmd ← FindBestRobotMotion(q,P , Ṗd,Wd)

4.3.1 Stretching Correction

Our algorithm for stretching correction is similar to that found in [7], with the

addition of a weighting term ks, and a change in how we combine error correction

and stretching correction. We use the StretchingCorrection() function (Alg. 4) to

compute Ṗs and Ws based on a task-defined stretching threshold Ws ≥ 0. First we

compute the distance between every two points on the object and store the result

in E. We then compare E to D which contains the relaxed lengths between every

pair of points. If any two neighbouring points are stretched by more than a factor

27

of γmax, we attempt to move the points closer to each other. We use the same

strategy for setting the importance of this stretching correction Ws as we use for

error correction. When combining stretching correction and error correction terms

(Alg. 5) we prioritize stretching correction, accepting only the portion of the error

correction that is orthogonal to the stretching correction term for each point. ks is

used to define the relative scale of the importance factors We and Ws

Algorithm 4 StretchingCorrection(P)

1: E ← EuclidianDistanceMatrix(P)
2: Ṗs ← 03P×1

3: Ws ← 0P×1

4: for i ∈ {1, 2, . . . , P} do
5: for j ∈ Neighbours(i) do
6: if i < j and Eij > γmaxDij then
7: ∆ij ← Eij −Dij

8: v ← ∆ij(pj − pi)
9: ṗs,i ← ṗs,i + 1

2
v

10: ṗs,j ← ṗs,j − 1
2
v

11: Ws,i ← max(Ws,i,∆ij)
12: Ws,j ← max(Ws,j,∆ij)
13: end if
14: end for
15: end for
16: return Ṗs,Ws

Algorithm 5 CombineTerms(Ṗe,We, Ṗs,Ws)

1: for i ∈ {1, 2, . . . , P} do

2: ṗd,i ← ṗs,i +
(
ṗe,i − Projṗs,i ṗe,i

)
3: Wd,i ← ksWs,i +We,i

4: end for
5: return Ṗd,Wd

28

4.3.2 Finding the Best Robot Motion and Avoiding Collisions

Given a desired deformable object velocity Ṗd and relative importance weights

Wd, we want to find the robot motion that best achieves (Ṗd,Wd). I.e.

argmin
q̇

‖φ(q, q̇,P ,O)− Ṗd‖Wd

subject to ‖q̇‖ ≤ q̇max

(q + q̇) ∈ Qvalid .

(4.2)

In general, φ(. . .) is not known. For our stretching avoidance controller we use a

Jacobian based approximation (Chapter. III):

φ(q, q̇,P ,O) ≈ J(q, q̇,P ,O)q̇ (4.3)

Our method for ensuring the robot stays in Qvalid is different, depending on which

robot we are using.

4.3.2.1 Simulated experiments:

For the simulated experiments, we first solve Eq. (4.2) using our Jacobian approx-

imation while neglecting the collision constraints:

ψse(3)(Ṗ ,W) = argmin
q̇

‖Jq̇ − Ṗ‖W

subject to ‖q̇g‖se(3) ≤ q̇max,s
se(3) , g = 1, . . . , G

(4.4)

where q̇max,s
se(3) is the maximum velocity for each individual gripper.

In order to guarantee that the grippers do not collide with any obstacles, we

use the same strategy from [7], smoothly switching between collision avoidance and

other objectives (see Alg. 7). For every gripper g and an obstacle set O we find the

distance dg to the nearest obstacle, a unit vector ẋpg pointing from the obstacle to the

nearest point on the gripper, and a Jacobian Jpg between the gripper’s DoF and the

point on the gripper as shown in Alg. 8. We then project the servoing motion from

Eq. (4.4) into the null space of the avoidance motion using the null space projector(
I− J+

pgJpg
)
. β > 0 sets the rate at which we change between servoing and collision

avoidance objectives. q̇max,c
se(3) > 0 is an internal parameter that sets how quickly we

move the robot away from obstacles.

29

Algorithm 6 FindBestRobotMotionSim(q,P , Ṗd,Wd)

1: q̇s ← ψse(3)(Ṗd,Wd) Eq. (4.4)
2: q̇cmd ← ObstacleRepulsion(q̇s,O)
3: return q̇cmd

Algorithm 7 ObstacleRepulsion(q̇s,O)

1: for g ∈ {1, . . . , G} do
2: Jpg , ẋpg , dg ← Proximity(qg,O)
3: λ← e−βdg

4: v ← J+
pg ẋpg

5: q̇g,c ← q̇max,c
se(3)

v
‖v‖

6: q̇g ← λ
(
q̇g,c +

(
I− J+

pgJpg
)
q̇g,s
)

+ (1− λ)q̇g,s
7: end for
8: return q̇

Algorithm 8 Proximity(qg,O)

1: dg ←∞
2: for o ∈ {1, 2, . . . , |O|} do
3: pg, po ← ClosestPoints(qg, o)
4: v ← pg − po
5: if ‖v‖ < dg then
6: dg ← ‖v‖
7: ẋpg ← v

‖v‖
8: Jpg ← RobotPointJacobian(qg, p

g)
9: end if

10: end for
11: return Jpg , ẋpg , dg

30

4.3.2.2 Physical experiments:

For the physical robot, instead of handling collision avoidance in a post-processing

step, we build the collision constraints directly into the optimization function (Alg. 9).

To do so, we define a set of points C = {c1, c2, . . . } on the robot that must stay at

least dbuffer away from obstacles. In our implementation, this is the end-effectors,

wrists, and elbows of each arm of the robot. We then use a function equivalent to

Proximity() for collision checking for the points in C in order to maintain a minimum

distance from collision:

ψRN (Ṗ ,W) = argmin
q̇

‖JrJq̇ − Ṗ‖2
W

subject to q + q̇ ∈ Qvalid

‖q̇‖ ≤ q̇max
RN

‖Jr,g q̇‖ ≤ q̇max,s
se(3) , g = 1, . . . , G

ẋTciJci q̇ ≤ dci + dbuffer , i = 1, . . . , |C| .

(4.5)

In addition, we constrain the velocity of the robot both in joint configuration space

‖q̇‖ ≤ q̇max
RN

and the velocity of the end-effectors in SE(3)

‖Jr,g q̇‖ ≤ q̇max,s
se(3)

where Jr is the Jacobian between robot motion and end effector motion for gripper

all grippers, and Jr,g is the Jacobian for gripper g.

Algorithm 9 FindBestRobotMotionPhys(q,P , Ṗd,Wd)

1: for g ∈ {1, 2, . . . , |C|} do
2: Jpg , ẋpg , dg ← Proximity(O, g)
3: end for
4: q̇cmd ← ψRN (Ṗd,Wd) Eq. (4.5)

To solve Equations (4.4) and (4.5) we use the Gurobi optimizer [74].

31

4.4 Stretching Constraint Controller

While the controller in the previous section has had some success at preventing

excessive stretching [7], it is not able to prevent stretching when the grippers move

on opposite sides of an obstacle (see video at https://www.youtube.com/watch?v=

Y-wPsPdQVgg). To address this, we introduce a novel geometric constraint which is

able to directly address the cause of overstretch. This constraint is included directly

in the optimization problem solved at each time resulting in a straightforward control

algorithm (Alg. 10).

Algorithm 10 ConstrainedController(q,P , T)

1: PC ← CalculateCorrespondences(P , T)
2: Ṗe,We ← FollowNavigationFunction(P ,PC)
3: q̇cmd ← FindBestConstrainedRobotMotion(q,P , Ṗe,We)

4.4.1 Overstretch

The stretching avoidance of the deformable object is difficult to formulate due

to the compliant and underactuated nature of deformable objects. In the previous

section, a stretching correction term Ṗs ∈ R3P is applied when the object becomes

overstretched. However, this method cannot handle cases where the object is caught

on an obstacle.

We detect the overstretching (i.e. excessive strain) of the object by examining the

value of the stretching ratio γ, which denotes the maximum value among the ratio

between the Euclidean distance ‖vij‖ and the geodesic distance Dij for every pair of

points pi and pj:

γ = max
i,j∈1,...,P

j>i

‖vij‖
Dij

. (4.6)

Denote γmax as the maximum allowed stretching ratio; this controller initiates stretching-

avoidance when γ > γmax.

We assume that the object starts in an unstretched state, so the overstretch that

arises is due to the motion of the grippers. Thus if we can constrain gripper motions

to a set which does not overstretch the object further than a threshold, we can prevent

or reduce the overstretch at the next time step. We know that the force causing the

overstretch comes from the grippers, so if we reduce the length of geodesic paths

through the object between grippers, the strain on the object should decrease. When

32

overstretch is detected, we thus introduce a conical constraint for each gripper that

shrinks the allowable q̇g to reduce the length of the geodesics between the grippers.

A conical constraint is constructed for each gripper and points along the stretching

avoidance vector, which is an estimation of the direction to move to decrease the

strain. For a pair of grippers with index g and k, two stretching avoidance vectors are

defined, one for each gripper. Let Ig(qg, qk) be the index of the point grasped by the

gth gripper, which has the minimum geodesic distance to the set of points grasped

by qk. We define Ik(qg, qk) similarly. Let ∫gk be the geodesic on the object from

pIg(qg ,qk) to pIk(qg ,qk). We denote ukg and ugk as the pair of stretching avoidance vectors

on grippers g and k respectively. Then ukg is the tangent vector of ∫gk at pIg(qg ,qk) and

ukg is the tangent vector of ∫kg at the point pIk(qg ,qk) (as shown in Figure 4.2).

Figure 4.2: The arrows in gray show the direction of each stretching vector at the
corresponding gripper with respect to the gripper pair qg and qk. Left: stretching
vectors on the rope when the rope is at rest (above) or is deformed (below). Right:
stretching vectors on the cloth when the cloth is at rest (above) or is deformed (below).
The red lines denote the geodesic connecting the corresponding pIg(qg ,qk) and pIk(qg ,qk)

on the object.

To specify the stretching constraint, we first define the function s(q̇g, qg, qk,P),

which specifies the constraint on gripper g defined by the interaction of grippers g

and k. Correspondingly, ukg is the stretching avoidance vector for gripper g, which is

the tangent vector of ∫gk at pIg(qg ,qk). The larger the value of s, the more we expect

geodesic path length between grippers will be reduced. Thus, s should increase as

∠(q̇g, u
k
g) increases. Assume we wish to have a lower bound ss on s, then Cs is a set

of constraints Cs = {C1
s , . . . , C

G
s }, where each constraint is:

Cg
s = {q̇g ∈ se(3) | ∀k 6= g, s(q̇g, qg, qk,P) ≥ ss} (4.7)

Many functions can satisfy the requirements of s. In our work, we specify the function

33

as

s(q̇g, qg, qk,P) = cos∠(q̇g, u
k
g) = cos∠(vg, u

k
g) . (4.8)

4.4.2 Collision

Collision avoidance for the robot is addressed by the constraint Cc, which is the

set of motions that keeps the grippers away from obstacles:

Cc =

{
q̇g =

[
vTg ωTg

]T
∈ se(3) | dbuffer − l(qg)−

n(qg)
Tvg

‖vg‖
vg∆t < 0

}
(4.9)

where l(qg) is the function returning the distance from the gripper to its closest

obstacle. n(qg) returns the unit surface normal of the obstacle closest to the gth

gripper. The idea is to make each gripper keep at least the safe distance away from

the closest obstacle. While we consider free-flying grippers in this section, similar

constraints can be imposed on the entire geometry of a robot arm to avoid collisions

all along the arm as was done in Section 4.3.2.2.

4.4.3 Optimization Method

Given these constraints, we then formulate an optimization problem similar to

Eq. (4.4), replacing the approximate Jacobian model with the directional rigidity

model (Section 3.3), and adding the new stretching and collision constraints.

ψ(Ṗ ,W) = argmin q̇ ‖φ(q, q̇,P ,O)− Ṗe‖We

subject to q̇ ∈ Cs
q̇ ∈ Cc
‖q̇g‖se(3) ≤ q̇max,s

se(3) , g = 1, . . . , G

(4.10)

Because our objective function is not necessarily convex, we used a custom opti-

mization method to solve the problem specified in Eq. 4.10. Our method is a type of

numerical gradient descent with an additional projection step to enforce constraints.

This addresses the constraints, but we are still using a local optimization method to

solve a non-convex problem. In practice this has been a significant limitation for our

experiments.

Our method’s outer loop computes the numerical gradient of the objective func-

tion. An inner loop then performs backtracking line search to find the gradient step

size. However, the gradient step may cross a constraint boundary, thus after we

compute the step size, we check if any constraint has been violated after taking the

34

step. If it has, we project the step back to the feasible space. A simple projection to

the boundary of a violated constraint may satisfy that constraint but violate others.

Instead, to perform the projection, we solve a convex optimization problem (using

the Gurobi optimizer [74]) to find the nearest feasible point. This is possible because

all the constraints in our problem are convex. Once such a point is found, the outer

loop continues to iterate until convergence.

4.5 Results

Our goal for the stretching constraint controller is formulating a set of constraints

for the controller to mitigate collision and excessive stretching issues. As mentioned

in previous sections, our benchmark controller is based on [7] and described in Sec-

tion 4.3, using the diminishing rigidity model from Section 3.2. To evaluate our

method we perform experiments in simulation and on a physical robot. The sim-

ulator used is Bullet physics [71], however, we emphasize that our method has no

knowledge of the simulation parameters or simulation methods used therein. The

simulator is used as a “black-box,” mainly to stand in for a perception system and

to allow us to do repeatable experiments. The physical robot consists of two KUKA

iiwa 7DoF arms with Robotiq 3-finger hands.

We ran experiments with scenarios involving both cloth and rope, using the same

model parameters as Section 3.4. For the both controllers we set c = 0.0025, q̇max,s
se(3) =

0.2, γmax = 1.1 for rope, and γmax = 1.67 for cloth. For the benchmark controller we

additionally set q̇max,c
se(3) = 0.2, β = 200 for rope, β = 1000 for cloth. For the stretching

constraint controller we set lc = 0.023, and ss = 0.4. All experiments were run on a

i7-8700K 3.7 GHz CPU with 32 GB of RAM. A video showing the experiments can

be found at https://www.youtube.com/watch?v=Y-wPsPdQVgg.

4.5.1 Constraint Enforcement

Since the benchmark controller can already handle the collision constraint very

well, and the new controller addresses the collision constraint in the similar way as

the benchmark, there is not a significant difference in how the collision constraint is

enforced. However, the stretching constraint shows a very clear improvement.

The metrics of stretching avoidance is the stretching ratio γ defined in Sec-

tion 4.4.1. A controller with good stretching avoidance should prevent γ from in-

creasing beyond a certain threshold.

35

The two experiments we used for the stretching avoidance test are the rope-

wrapping-cylinder and the cloth-passing-single-pole, shown in Figure 4.3 (a-b). We

ran each controller separately for a fixed amount of time for each task and show γ vs.

time for both controllers in Figure 4.4. In both these two setups, the desired object

motion Ṗe generated by the Dijkstra field will tear the object unless overstretching is

prevented.

(a) (b) (c) (d)

Figure 4.3: Initial state of the four experiments, where the red points act as attractors
for the deformable object. (a) Rope wrapping cylinder. (b) Cloth passing single pole.
(c) Cloth covering two cylinders. (d) Rope matching zig-path

Figure 4.4 shows that the new controller is able to prevent further stretching

happening when the object is taut for both the rope and the cloth. In the rope test,

the new controller can prevent overstretching with ss = 0.4, as defined in Eq.4.8.

We can see the γ of the benchmark methods keeps growing beyond this threshold,

while the γ of the new method stays close to the threshold. In the cloth test, the

benchmark method’s γ (in purple) increases above the threshold γmax = 1.667 for

cloth, and a sudden drop in γ happens after running the test for 2 seconds. This drop

is the “tearing” point in the simulator. Though we still see overstretching happened

using the new method for some settings of ss, in all cases the γ converged before

tearing happened (instead of growing without bound).

36

(a) Rope wrapping cylinder (b) Cloth passing single pole

Figure 4.4: (a) The red line shows the γ of the benchmark and the blue line shows
the γ of the new controller with ss = 0.4 throughout the simulation. (b) The purple
line shows the γ of the benchmark, and the blue, red, and yellow lines each show the
γ of the new controller with ss = 0.4, ss = 0.6, and ss = 0.8, respectively.

4.5.2 Controller Task Performance

Besides the quantitative analysis of the model accuracy and stretching avoid-

ance, we ran another two experiments, rope-matching-zig-path and cloth-covering-

two-cylinder, one each with the rope or the cloth, as shown in Figure 4.3 to see how

the new method performed for some coverage tasks. Both the benchmark and the

new controllers are able to perform these tasks with comparable performance; reach-

ing approximately the same configurations when forward progress stops due to a local

minimum (Figure 4.5), and completing the task (Figure 4.6). This result suggests that

we have not lost functionality with respect to the benchmark despite changing the

model and control method used.

Figure 4.5: Cloth-covering-two-cylinder task start and end configurations. Both con-
trollers are unable to make progress due to a local minima.

37

Figure 4.6: Rope-matching-zig-path start and end configurations. Both controllers
are able to succeed at the task, bringing the rope into alignment with the desired
path.

4.5.3 Physical Robot Experiment

To evaluate our new model and controller on a physical system, we set up an

experiment with cloth-like objects manipulated by two 7DoF KUKA iiwa arms (Fig-

ure 4.7). To sense the position of the cloth, we use the AprilTags [72] and IAI

Kinect2 [73] libraries. The parameters are set as kdir = 4, kdist = 10, krot = 10 for the

new model, lc = 0.08, and ss = 0.6 for the new controller. We set up a task similar to

the cloth-passing-single-pole example using a paper towel. For this task, the baseline

controller tears the paper towel while the new controller avoids excessive overstretch,

instead wrapping around the pole to reach a local minimum.

Figure 4.7: Initial setup for the physical robot stretching avoidance test.

4.5.4 Computation Time

To verify the practicality of our method, we gathered data comparing its compu-

tation time to the benchmark’s and to using the Bullet simulator. Table 4.1 shows

the average computation time of a call to the controller for the new method vs. the

benchmark. As expected, the benchmark, which uses a linear model, is faster than the

38

new method. However, the computation times for the new method are still reasonable

to use in a control loop.

Table 4.1: Mean computation time (s) to compute the gripper motion for a given
state. BM: stretching avoidance controller; NM: stretching constraint controller.

rope-wrapping
-cylinder

rope-matching
-cylinder

cloth-passing
-single-pole

cloth-wrapping
-two-cylinder

BM 0.0055 0.0054 0.0153 0.0037
NM 0.0342 0.0834 0.2363 0.1008

39

CHAPTER V

Estimating Model Utility

In the previous chapters, we have been working with a single model and a single

controller for any given task. When given a new task however, a new choice needs to be

made for what model and controller is most suitable. Rather than assuming we have

a single high-fidelity model of a deformable object interacting with its environment,

our approach in this chapter is to have multiple models available for use, any one of

which may be useful at a given time. We do not assume these models are correct,

we simply treat the models as having some measurable utility for the task. The

utility of a given model is the expected reduction in task error when using this model

to generate robot motion. As the task proceeds, the utility of a given model may

change, making other models more suitable for the current part of the task. However,

without testing a model’s prediction, we do not know its true utility. Testing every

model in the set is impractical, as all models would need to be tested at every step,

and performing a test changes the state of the object and may drive it into a local

minimum. The key question is then which model should be selected for testing at a

given time.

The central contribution of this chapter is framing the model selection problem as

a Multi-armed Bandit (MAB) problem where the goal is to find the model that has the

highest utility for a given task. An arm represents a single model of the deformable

object; to “pull” an arm is to use the arm’s model to generate and execute a velocity

command for the robot. The reward received is the reduction in task error after

executing the command. In order to determine which model has the highest utility

we need to explore the model space, however we also want to exploit the information

we have gained by using models that we estimate to have high utility. One of the

primary challenges in performing this exploration versus exploitation trade-off is that

our models are inherently coupled and non-stationary; performing an action changes

the state of the system which can change the utility of every model, as well as the

40

reward of pulling each arm. While there is work that frames robust trajectory selection

as a MAB problem [75], we are not aware of any previous work which either 1) frames

model selection for deformable objects as a MAB problem; or 2) addresses the coupling

between arms for non-stationary MAB problems.

In our experiments, we show how to formulate a MAB problem with coupled

arms for Jacobian-based models. We perform our experiments on three synthetic

systems, and on three deformable object manipulation tasks in the Bullet Physics [71]

simulator. We demonstrate that formulating model selection as a MAB problem is

able to successfully perform all three manipulation tasks. We also show that our

proposed MAB algorithm outperforms previous MAB methods on synthetic trials,

and performs competitively on the manipulation tasks.

5.1 Problem Statement

Using similar notation as previous chapters, let a deformation model be defined

as a function

φ : se(3)G → R3P (5.1)

which maps a change in robot configuration q̇ to a change in object configuration Ṗ .

Let M be a set of M deformable models which satisfy this definition (Chapter III).

Each model is associated with a robot command function

ψ : R3P × RP → se(3)G (5.2)

which maps a desired deformable object velocity Ṗ and weight W (Section 4.2) to a

robot velocity command q̇. The deformation model φ and robot command function ψ

also take the object and robot configuration (P , q) and environment O as additional

input, however these are frequently omitted for brevity. When a model m is selected

for testing, the model generates a gripper command

q̇m(t) = ψm(Ṗ(t),W (t)) (5.3)

which is then executed for one unit of time, moving the deformable object to config-

uration P(t+ 1).

The problem we address in this chapter is which model m ∈M to select in order

to move G grippers such that the points in P align as closely as possible with some

task-defined set of T target points T ⊂ R3, while avoiding gripper collision and

41

excessive stretching of the deformable object. Each task defines a function ρ which

measures the alignment error between P and T . The method we present is a local

method which picks a single model m∗ at each timestep to treat as the true model.

This model is then used to reduce error as much as possible while avoiding collision

and excessive stretching.

m∗ = argmin
m∈M

ρ(T ,P(t+ 1)) (5.4)

We show that this problem can be treated as an instance of the multi-arm non-

stationary dependent bandit problem.

5.2 Bandit-Based Model Selection

The primary difficulty with solving Eq. (5.4) directly is that the effectiveness of a

particular model in minimizing error is unknown. It may be the case that no model

in the set produces the optimal option, however, this does not prevent a model from

being useful. In particular the utility of a model may change from one task to another,

and from one configuration to another as the deformable object changes shape, and

moves in and out of contact with the environment. We start by defining the utility

um(t) ∈ R of a model as the expected improvement in task error ρ if model m is used

to generate a robot command at time t. If we know which model has the highest

utility then we can solve (5.4). This leads to a classic exploration versus exploitation

trade-off where we need to explore the space of models in order to learn which one

is the most useful, while also exploiting the knowledge we have already gained. The

multi-armed bandit framework is explicitly designed to handle this trade-off.

In the MAB framework, each arm represents a model in M; to pull arm m is to

command the grippers with velocity q̇m(t) (Eq. 5.3) for 1 unit of time. We then define

the reward rm(t+ 1) after taking action q̇m(t) as the improvement in error

rm(t+ 1) = ρ(t)− ρ(t+ 1) = um(t) + w (5.5)

where w is a zero-mean noise term. The goal is to pick a sequence of arm pulls to

minimize total expected regret R(Tf) over some (possibly infinite) horizon Tf

E[R(Tf)] =

Tf∑
t=1

(E[r∗(t)]− E[r(t)]) (5.6)

42

where r∗(t) is the reward of the best model at time t. The next section describes how

to use bandit-based model selection for deformable object manipulation.

5.3 MAB Formulation for Deformable Object Manipulation

Our algorithm (Alg. 11) can be broken down into four major sections and an

initialization block. In the initialization block we pre-compute the geodesic distance

(see Figure 3.1) between every pair of points in P when the deformable object is in

its “natural” or “relaxed” state and store the result in D. These distances are used

to construct the deformation models (Section 3.2), as well as to avoid overstretching

the object (Section 4.3.1). At each iteration we:

1. pick a model to use to achieve the desired direction (Section 5.4);

2. compute the task-defined desired direction to move the deformable object (Sec-

tion 4.2);

3. generate a velocity command using the chosen model (Section 4.3);

4. modify the command to avoid obstacles (Section 4.3);

5. update bandit algorithm parameters (Section 5.4).

5.4 Algorithms for MAB

Previous solutions [36, 41] to minimizing Eq. (5.6) assume that rewards for each

arm are normally and independently distributed and then estimate the mean and

variance of each Gaussian distribution. We test three algorithms in our experiments:

Upper Confidence Bound for normally distributed bandits UCB1-Normal, Kalman

Filter Based Solution to Non-Stationary Multi-arm Normal Bandits (KF-MANB),

and our extension of KF-MANB, Kalman Filter Based Solution to Non-Stationary

Multi-arm Normal Dependent Bandit (KF-MANDB).

5.4.1 UCB1-Normal

The UCB1-Normal algorithm [36] (Alg. 12) treats each arm (model) as indepen-

dent, estimating an optimistic Upper Confidence Bound (UCB) for the utility of each

model. The model with the highest UCB is used to command the robot at each

43

Algorithm 11 MainLoop(O, β, λ)

1: t← 0
2: D ← GeodesicDistanceMatrix(Prelaxed)
3: M← InitializeModels(D)
4: InitialzeBanditAlgorithm()
5: P(0)← SensePoints()
6: q(0)← SenseRobotConfig()
7: while true do
8: m← SelectArmUsingBanditAlgorithm()
9: T ← GetTargets()

10: PC ← CalculateCorrespondences(Pt, T)
11: Ṗe,We ← FollowNavigationFunction(Pn,PC)
12: Ṗs,Ws ← StretchingCorrection(D, γmax,P)
13: Ṗd,Wd ← CombineTerms(Ṗe,We, Ṗs,Ws, ks)
14: q̇d ← ψm(Ṗd,Wd)
15: q̇ ← ObstacleRepulsion(q̇d,O, β)
16: CommandConfiguration(q(t) + q̇)
17: P(t+ 1)← SensePoints()
18: q(t+ 1)← SenseRobotConfig()
19: UpdateBanditAlgorithm()
20: t← t+ 1
21: end while

timestep. This algorithm assumes that the utility of each model is stationary, grad-

ually shifting from exploration to exploitation as more information is gained. While

our problem is non-stationary and dependant, we use UCB1-Normal as a baseline

algorithm to compare against due to its prevalence in previous work.

5.4.2 KF-MANB

The Kalman Filter Based Solution to Non-Stationary Multi-arm Bandit (KF-

MANB) algorithm [41] (Alg. 13) uses independent Kalman filters to estimate the

utility distribution of each model, and then uses Thompson sampling [38] to chose

which model to use at each timestep. Because this algorithm explicitly allows for non-

stationary reward distributions, it is able to “switch” between models much faster

than UCB1-Normal.

5.4.3 KF-MANDB

We also propose a variant of KF-MANB, replacing the independent Kalman filters

with a single joint Kalman filter (Alg. 14). This enables us to capture the correlations

44

Algorithm 12 UCB1-Normal - reproduced from [36]

for t = 1, 2, . . . do

• If there is an arm which has been pulled less than d8 log te times then pull
this arm. If multiple arms qualify, we select the arm that has been pulled less,
selecting the arm with the lower index in the case of a tie.

• Otherwise pull arm j that maximizes

ūj +

√
16 ·

qj − njū2
j

nj − 1
· ln(t− 1)

nj

where ūj is the average reward obtained from arm j, qj is the sum of squared
rewards obtained from arm j, and nj is the number of times arm j has been
pulled so far.

• Update ūj and qj with the obtained reward rj.

end for

between models, allowing us to learn more from each pull. We start by defining utility

as a linear system with Gaussian noise with process model u(t + 1) = u(t) + v and

observation model r(t) = C(t)u(t) + w where u(t) is our current estimate of the

relative utility of each model, while v and w are zero-mean Gaussian noise terms.

C(t) is a row vector with a 1 in the column of the model we used and zeros elsewhere.

The variance on w is defined as σ2
obsη

2. η is a tuning parameter to scale the covariance

to match the reward scale of the specific task, while σobs controls how much we believe

each new observation.

To define the process noise v we want to leverage correlations between models; if

two model commands are similar at the current time, the utility of these models is

likely correlated. To measure the similarity between two models i and j we use the

angle between their gripper velocity commands q̇i and q̇j. This similarity is then used

to directly construct a covariance matrix for each arm pull:

v ∼ N (0,Σtr)

Σtr = σ2
trη

2(ξΣsim + (1− ξ) I)

Σsim,i,j =
〈q̇i, q̇j〉
‖q̇i‖‖q̇j‖

= cos θi,j .

(5.7)

σtr is the standard Kalman Filter transition noise factor tuning parameter. ξ ∈ [0, 1]

is the correlation strength factor; larger ξ gives more weight to the arm correlation,

while smaller ξ gives lower weight. When ξ is zero then KF-MANDB will have the

45

Algorithm 13 KF-MANB - reproduced from [41]

Input: Number of bandit arms M ; Observation noise σ2
obs; Transition noise σ2

trη
2.

Initialization: ū1(1) = ū2(1) = · · · = ūM(1) = A; σ1(1) = σ2(1) = · · · = σM(1) =
B; # Typically, A can be set to 0, with B being sufficiently large
for t = 1, 2, . . . do

1. For each arm j ∈ {1, . . . ,M}, draw a value xj randomly from the associated
normal distribution f(xj; ūj(t), σj(t)) with the parameters (ūj(t), σj(t)).

2. Pull the arm i whose drawn xi is the largest one:

i = argmax
j∈{1,...,M}

xj.

3. Receive reward r̃i from pulling arm i, and update parameters as follows:

• Arm i:

ūi(t+ 1) =
(σ2

i (t) + σ2
trη

2) · r̃i + σ2
obs · ūi(t)

σ2
i (t) + σ2

trη
2 + σ2

obs

σ2
i (t+ 1) =

(σ2
i (t) + σ2

trη
2)σ2

obs

σ2
i (t) + σ2

trη
2 + σ2

obs

• Arm j 6= i:

ūj(t+ 1) = ūj(t)

σ2
j (t+ 1) = σ2

j (t) + σ2
tr

end for

same update rule as KF-MANB, thus we can view KF-MANDB as a generalization

of KF-MANB, allowing for correlation between arms.

After estimating the utility of each model and the noise parameters at the current

timestep, these values are then passed into a Kalman filter which estimates a new joint

distribution. The next step is the same as KF-MANB; we draw a sample from the

resulting distribution, then use the model that yields the largest sample to generate

the next robot command. In this way we automatically switch between exploration

and exploitation as the system evolves; if we are uncertain of the utility of our models

then we are more likely to choose different models from one timestep to the next. If

we believe that we have accurate estimates of utility, then we are more likely to choose

the model with the highest utility.

46

Algorithm 14 KF-MANDB

Input: Number of bandit arms M ; Observation noise σ2
obs; Transition noise σ2

trη
2.

Initialization: ū(1) = A ∈ RM ; Σ(1) = B ∈ RM×M ; # Typically, A can be set to 0,
with B � 0 and sufficiently large
for t = 1, 2, . . . do

1. For each arm j ∈ {1, . . . ,M}, generate a gripper velocity command q̇j.

2. Draw a value x =
[
x1 . . . xM

]T
randomly from the joint normal distribution

f(x; ū(t),Σ(t)) with the parameters (ū(t),Σ(t)).

3. Pull the arm i whose drawn xi is the largest one:

i = argmax
j∈{1,...,M}

xj.

4. Receive reward r̃i from pulling arm i, and perform a standard Kalman filter
prediction and update step:

• Compute a priori covariance estimate and Kalman gain:

Σtr is calculated using Eq. 5.7

Σ̂ = Σ(t) + Σtr

S = C(t)Σ̂C(t)T + σ2
obs

K = Σ̂C(t)TS−1

• Compute a posteriori utility and covariance estimates:

ū(t+ 1) = ū(t)−K (C(t)ū(t)− r̃i)
Σ(t+ 1) = Σ̂−KC(t)Σ̂

end for

5.5 Experiments and Results

We test our method on three synthetic tests and three deformable object manip-

ulation tasks in simulation. The synthetic tasks show that the principles we use to

estimate the coupling between models are reasonable; while the simulated tasks show

that our method is effective at performing deformable object manipulation tasks.

Table 5.1 shows the parameters used by the Jacobian-based controller, while Ta-

ble 5.2 shows the parameters used by the the bandit algorithms for all experiments.

We chose these parameters by comparing performance across noise factors σ2
obs and

σ2
tr from {0.01, 0.1, 1, 10} and correlation strength factor ξ from {0.1, 0.5, 0.9, 0.99}.

While performance on individual experiments could be marginally improved by using

47

different values, we found that σ2
obs = 0.01, σ2

tr = 0.1, and ξ = 0.9 resulted in robust

performance for all of our manipulation tasks. η is set dynamically and discussed in

Section 5.5.1.

Table 5.1: Controller parameters

Synthetic
Trials

Rope
Winding

Table
Coverage

Two Stage
Coverage

se(3) inner
product constant

c - 0.0025 0.0025 0.0025

Servoing max
gripper velocity

q̇max,s
se(3) 0.1 0.2 0.2 0.2

Obstacle avoidance
max gripper velocity

q̇max,c
se(3) - 0.2 0.2 0.2

Obstacle avoidance
scale factor

β - 200 1000 1000

Stretching correction
scale factor

ks - 0.005 0.03 0.03

Table 5.2: KF-MANB and KF-MANDB parameters

Synthetic
Trials

Rope
Winding

Table
Coverage

Two Stage
Coverage

Correlation strength factor
(KF-MANDB only)

ξ 0.9 0.9 0.9 0.9

Transition noise factor σ2
tr 1 0.1 0.1 0.1

Observation noise factor σ2
obs 1 0.01 0.01 0.01

5.5.1 Synthetic Tests

For the synthetic tests, we set up an underactuated system that is representative

of manipulating a deformable object with configuration y ∈ Rn and control input

ẋ ∈ Rm such that m < n and ẏ = Jẋ. To construct the Jacobian of this system

we start with J =

[
Im×m

0(n−m)×m

]
and add uniform noise drawn from [−0.1, 0.1] to

each element of J . The system configuration starts at
[
10 . . . 10

]T
with the target

configuration set to the origin. Error is defined as ρ(t) = ‖y(t)‖, and the desired

direction to move the system at each timestep is ẏd(t) = −y(t). These tasks have

48

no obstacles or stretching, thus β, ks, and q̇max,c
se(3) are unused. Rather than setting the

utility noise scale η a priori, we use an annealing filter

η(t+ 1) = max(10−10, 0.9η(t) + 0.1|r(t+ 1)|) . (5.8)

This enables us to track the changing available reward as the system gets closer to

the target.

To generate a model for the model set we start with the true Jacobian J and add

uniform noise drawn from [−0.025, 0.025] to each element of J . For an individual

trial, each bandit algorithm uses the same J and the same model set. Each bandit

algorithm receives the same random number stream during a trial, ensuring that a

more favourable stream doesn’t bias results. We ran one small test using a 3 × 2

Jacobian with 10 arms in order to yield results that are easily visualised. The second

and third tests are representative of the scale of the simulation experiments, using

the same number of models and similar sizes of Jacobian as are used in simulation. A

single trial consists of 1000 pulls (1000 commanded actions); each test was performed

100 times to generate statistically significant results. Our results in Table 5.3 show

that KF-MANDB clearly performs the best for all three tests.

Table 5.3: Synthetic trial results showing total regret with standard deviation in
brackets for all bandit algorithms for 100 runs of each setup.

of
Models

of rows
in J

of cols
in J

UCB1-Normal KF-MANB KF-MANDB

10 3 2 4.41 [1.65] 3.62 [1.73] 2.99 [1.40]
60 147 6 5.57 [1.37] 4.89 [1.32] 4.53 [1.42]
60 6075 12 4.21 [0.64] 3.30 [0.56] 2.56 [0.54]

5.5.2 Simulation Trials

We now demonstrate the effectiveness of multi-arm bandit techniques on three

example tasks, show how to encode those tasks for use in our framework, and discuss

experimental results. The first task shows how our method can be applied to a rope,

with the goal of winding the rope around a cylinder in the environment. The second

and third tasks show the method applied to cloth. In the second task, two grippers

manipulate the cloth so that it covers a table. In the third task, we perform a two-

stage coverage task, covering portions of two different cylinders. In all three tasks,

the alignment error ρ(P , T) is measured as the sum of the distances between every

49

point in T and the closest point in P in meters. Figure 5.1 shows the target points

in red, and the deformable object in green. A video showing the experiments can be

found at https://www.youtube.com/watch?v=d6ma_Kg8QlQ.

1 2 3 4

1 2 3 4

1 2 3 4

Figure 5.1: Sequence of snapshots showing the execution of the simulated experiments
using the KF-MANDB algorithm. The rope and cloth are shown in green, the grippers
is shown in blue, and the target points are shown in red. The bottom row additionally
shows Ṗd as green rays with red tips.

All experiments were conducted in the open-source Bullet simulator [71], with

additional wrapper code developed at UC Berkeley. The rope is modeled as a series

of 49 small capsules linked together by springs and is 1.225m long. The cloth is

modeled as a triangle mesh of size 0.5m× 0.5m for the table coverage task, and size

0.5m× 0.625m for the two-stage coverage task. We emphasize that our method does

not have access to the model of the deformable object or the simulation parameters.

The simulator is used as a “black box” for testing.1

In addition to the diminishing rigidity model introduced in Section 3.2 we will

also use adaptive Jacobian models based on the work of Navarro-Alarcon et al. [26].

This formulation uses an online estimation method to approximate J(q,P). First we

with some estimate of the Jacobian J̃(0) at time t = 0 and then use the Broyden

1Our code is available at https://github.com/UM-ARM-Lab/mab_ms.

50

update rule [76] to update J̃(t) at each timestep t

J̃(t) = J̃(t− 1) + Γ

(
Ṗ(t)− J̃(t− 1)q̇(t)

)
q̇(t)T q̇(t)

q̇(t)T . (5.9)

This update rule depends on a update rate Γ ∈ (0, 1] which controls how quickly the

estimate shifts between timesteps.

We use models generated using the same parameters for all three tasks with a

total of 60 models: 49 diminishing rigidity models with rotation and translational

deformability values ktrans and krot ranging from 0 to 24 in steps of 4, as well as 11

adaptive Jacobian models with learning rates Γ ranging from 1 to 10−10 in multiples

of 10. All adaptive Jacobian models are initialized with the same starting values; we

use the diminishing rigidity Jacobian for this seed with ktrans = krot = 10 for the rope

experiment and ktrans = krot = 14 for the cloth experiments to match the best model

found in [7]. We use the same strategy for setting η as we use for the synthetic tests.

We evaluate results for the MAB algorithms as well as using each of the models

in the set for the entire task. To calculate regret for each MAB algorithm, we create

copies of the simulator at every timestep and simulate the gripper command, then

measure the resulting reward rm(t) for each model. The reward of the best model

r∗(t) is then the maximum of individual rewards. As KF-MANB and KF-MANDB

are not deterministic algorithms, each task is performed 10 times for these methods.

All tests are run on an Intel Xeon E5-2683 v4 processor with 64 GB of RAM. UCB1-

Normal and KF-MANB solve Eq. (4.4) once per timestep, while KF-MANDB solves it

for every model inM. Computation times for each test are shown in their respective

sections.

Winding a Rope Around a Cylinder : In the first example task, a single gripper

holds a rope that is lying on a table. The task is to wind the rope around a cylinder

which is also on the table (see Figure 5.1). Our results (Figure 5.2) show that at the

start of the task all the individual models perform nearly identically, starting to split

at 2 seconds (when the gripper first approaches the cylinder) and again at 6 seconds.

Despite our model set containing models that are unable to perform the task, our

formulation is able to successfully perform the task using all three bandit algorithms.

Interestingly, while KF-MANDB outperforms UCB1-Normal and KF-MANB in terms

of regret, all three algorithms produce very similar results. Solving Eq. (4.4) at each

iteration requires an average of 17.3 ms (std. dev. 5.5 ms) for a single model, and

239.5 ms (std. dev. 153.7 ms) for 60 models.

51

0 5 10 15

Time (s)

0

5

10

15

20

T
o
ta

l
R

e
g
re

t

UCB1-Normal

KF-MANB

KF-MANDB

Figure 5.2: Experimental results for the rope-winding task. Top left: alignment error
for 10 trials for each MAB algorithm, and each model in the model set when used
in isolation. UCB1-Normal, KF-MANB, KF-MANDB lines overlap in the figure for
all trials. Top right: Total regret averaged across 10 trials for each MAB algorithm
with the minimum and maximum drawn in dashed lines. Bottom row: histograms of
the number of times each model was selected by each MAB algorithm; UCB1-Normal
(bl), KF-MANB (bm), KF-MANDB (br).

Spreading a Cloth Across a Table: The second scenario we consider is spreading

a cloth across a table. In this scenario two grippers hold the rectangular cloth at two

corners and the task is to cover the top of the table with the cloth. All of the models

are able to perform the task (see Figure 5.3), however, many single-model runs are

slower than the bandit methods at completing the task, showing the advantage of the

bandit methods. When comparing between the bandit methods, both error and total

regret indicate no performance difference between the methods. Solving Eq. (4.4) at

each iteration requires an average of 89.5 ms (std. dev. 82.4 ms) for a single model,

and 605.1 ms (std. dev. 514.3 ms) for 60 models.

Two-Part Coverage Task : In this experiment, we consider a two-part task. The

first part of the task is to cover the top of a cylinder similar to our second scenario. The

second part of the task is to cover the far side of a second cylinder. For this task the

GetTargets function used previously pulls the cloth directly into the second cylinder.

The collision avoidance term then negates any motion in that direction causing the

grippers to stop moving. To deal with this, we discretize the free space using a voxel

grid, and then use Dijkstra’s algorithm to find a collision free path between each cover

point and every point in free space. We use the result from Dijkstra’s algorithm to

52

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

0

10

20

30

40

50

60

E
rr

o
r

Diminishing Rigidity

Adaptive Jacobian

UCB1-Normal

KF-MANB

KF-MANDB

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

0

0.5

1

1.5

2

T
o
ta

l
R

e
g
re

t

UCB1-Normal

KF-MANB

KF-MANDB

Figure 5.3: Experimental results for the table coverage task. See Figure 5.2 for
description.

define a vector field that pulls the nearest (as defined by Dijkstra’s) deformable object

point pk along the shortest collision free path to the target point. This task is the

most complex of the three (see Figure 5.4); many models are unable to perform the

task at all, becoming stuck early in the task. We also observe that both KF-MANB

and KF-MANDB show a preference for some models over others. Two interesting

trials using KF-MANDB stand out; in the first the grippers end up on opposite sides

of the second cylinder, in this configuration the physics engine has difficulty resolving

the scene and allows the cloth to be pulled straight through the second cylinder. In

the other trial the cloth is pulled off of the first cylinder, however KF-MANDB is able

to recover, moving the cloth back onto the first cylinder. KF-MANDB and UCB1-

Normal are able to perform the task significantly faster than KF-MANB, though all

MAB methods complete the task using our formulation. Solving Eq. (4.4) at each

iteration requires an average of 102.6 ms (std. dev. 30.6 ms) for a single model, and

565.5 ms (std. dev. 389.8 ms) for 60 models.

5.6 Discussion

One notable result we observe is that finding and exploiting the best model is

less important than avoiding poor models for extended periods of time; in all of

the experiments UCB1-Normal never leaves its initial exploration phase, however it

is able to successfully perform each task and remains competitive with the other

53

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

10

20

30

40

50

60

T
o

ta
l
R

e
g

re
t

UCB1-Normal

KF-MANB

KF-MANDB

Figure 5.4: Experimental results for the two-part coverage task. See Figure 5.2 for
description.

bandit-based methods. We believe this is due to many models being able to provide

commands that have a positive dot-product with the correct direction of motion.

Intuitively, this means that even inaccurate models can be used to generate useful

motion. Indeed, in our experience, models do not need to be particularly accurate

to be able to succeed at straightforward tasks; for example using a set of Jacobian

models with randomly generated elements, we were still able to successfully cover the

table with the cloth, albeit requiring much longer to complete the task.

While avoiding bad models is important for being able to succeed at the task, we

can see the effect of choosing good models in the two-part coverage task (Figure 5.4).

In this task, the grippers can become stuck for a significant period of time. By taking

advantage of model coupling, KF-MANDB is able to explore the model space much

more efficiently, quickly finding a model that is able to complete the task. In contrast,

the table coverage task (Figure 5.3) does not benefit from significant model switching,

and thus all bandit algorithms show very similar performance.

Another benefit of our approach is the ability to escape local minima of individual

models, without any explicit detection of local minima. If a given model is unable

to improve task error then our estimate of its utility will decrease, leading to other

models being more likely to be selected for testing, which will in turn generate different

gripper commands which may be able to escape the local minima.

54

CHAPTER VI

Interleaving Planning and Control

The previous chapters have focused on local methods for solving tasks. While

we’ve shown that these methods are capable of performing interesting tasks, they are

unable to escape from local minima due to their very design. This chapter is focused

on a method to overcome this limitation by adding planning to the set of tools that

we can apply to a given task.

One of the challenges in planning for deformable object manipulation is the high

number of degrees of freedom involved; even approximating the configuration of a

piece of cloth in 3D with a 4 × 4 grid results in a 48 degree of freedom configuration

space. In addition, the dynamics of the deformable object are difficult to model [5];

even with high-fidelity modeling and simulation, planning for an individual task can

take hours [6]. Local controllers on the other hand are able to very efficiently generate

motion, however, they are only able to successfully complete a task when the initial

configuration is in the “attraction basin” of the goal as seen in Chapter IV.

The central question we address in this chapter is how can we combine the

strengths of global planning with the strengths of local control while mitigating the

weakness of each? We propose a framework for interleaving planning and control

which uses global planning to generate gross motion of the deformable object, and a

local controller to refine the configuration of the deformable object within the local

neighborhood. By separating planning from control we are able to use different rep-

resentations of the deformable object, each suited to efficient computation for their

respective roles. In order to determine when to use each component, we introduce

a novel deadlock prediction algorithm that is inspired by topologically-based motion

planning methods [54, 55]. By answering the question “Will the local controller get

stuck?” we can predict if the local controller will be unable to achieve the task from

the current configuration. If we predict that the controller will get stuck we can then

invoke the global planner, moving the deformable object into a new neighbourhood

55

from which the local controller may be able to succeed. The key to our efficient

prediction is forward-propagating only the stretching constraint, assuming the object

will otherwise comply to contact.

We seek to solve problems for one-dimensional and two-dimensional deformable

objects (i.e. rope and cloth) where we need to arrange the object in a particular way

(e.g. covering a table with a tablecloth) but where there is also complex environment

geometry preventing us from directly completing the task. While we cannot claim to

solve all problems in this class (in particular in environments where the deformable

object can be snagged), we can still solve practical problems where the path of the

deformable object is obstructed by obstacles. In this work we restrict our focus to

controllers of the form described in Section 6.2.1, and tasks suited to these controllers.

Examples of these types of tasks are shown in Figure 6.1. In our experiments we show

that this iterative method of interleaving planning and control is able to successfully

perform several interesting tasks where our planner or controller alone are unable to

succeed.

Figure 6.1: Four example manipulation tasks for our framework. In the first two tasks,
the objective is to cover the surface of the table (indicated by the red lines) with the
cloth (shown in green). In the first task, the grippers (shown in blue) can freely move
however the cloth is obstructed by a pillar. In the second task, the grippers must
pass through a narrow passage before the table can be covered. In the third task,
the robot must navigate a rope (shown in green in the top left corner) through a
three-dimensional maze before covering the red points in the top right corner. The
maze consists of top and bottom layers (purple and green, respectively). The rope
starts in the bottom layer and must move to the target on the top layer through an
opening (bottom left or bottom right). For the fourth task, the physical robot must
move the cloth from the far side of an obstacle to the region marked in pink near the
base of the robot.

Our contributions are: (1) A novel deadlock prediction algorithm to determine

when a global planner is needed; (2) An efficient and probabilistically-complete global

planner for rope and cloth manipulation tasks; and (3) A framework to combine local

control and global motion planning to leverage the strengths of each while mitigating

their weaknesses. We present experiments in both a simulated environment and on a

56

physical robot. Our results suggest that our planner can efficiently find paths, taking

under a second on average to generate a feasible path in three out of four simulated

scenarios. The physical experiment shows that our framework is able to effectively

perform tasks in the real world, where reachability and dual-arm constraints make

the planning more difficult.

6.1 Problem Statement

Define the robot configuration space to be Q. We assume that the robot configu-

ration can be measured exactly. Denote an individual robot configuration as q ∈ Q.

This set can be partitioned into a valid and invalid set. The valid set is referred to

as Qvalid, and is the set of configurations where the robot is not in collision with the

static geometry of the world. The invalid set is referred to as Qinvalid = Q \ Qvalid.

We assume that our model of the robot is purely kinematic, with no higher order

dynamics. Previous chapters assumed an arbitrary number of grippers; in this chapter

we restrict the problem to cases where two end-effectors are rigidly attached to the

object. We assume that the robot moves slowly enough that we can treat the combined

robot and deformable object as quasi-static. Let the function φ(q,P , q̇) map the

system configuration (q,P) and robot movement q̇ to the corresponding deformable

object movement Ṗ .

Similar to the previous chapter, we define a task based on a set of T target points

T ⊂ R3, a function ρ(T ,P) → R≥0, which measures the alignment error between P
and T , and a termination function Ω(T ,P) which indicates if the task is finished.

Let a robot controller be a function C(T , q,P)1 which maps the system state (q,P)

and alignment targets T to a desired robot motion q̇cmd. In this work we restrict

our discussion to tasks and controllers of the form introduced in Chapter IV; these

controllers are local, i.e. at each time t they choose an incremental movement q̇cmd

which reduces the alignment error as much as possible at time t+ 1.

The problem we address in this chapter is how to find a sequence of Ne robot

commands
{
q̇cmd

0 , . . . , q̇cmd
Ne−1

}
= Q̇cmd such that each motion is feasible, i.e. it should

not bring the grippers into collision with obstacles, should not cause the object to

stretch excessively, and should not exceed the robot’s maximum velocity q̇max. Let

these feasibility constraints be represented by A(Q̇cmd) = 0. Then the problem we

1A specific controller may have additional parameters (such as gains in a PID controller), but we
do not include such parameters here to keep C(. . .) in a more general form.

57

seek to solve is:
find Ne, Q̇

cmd

s.t. Ω(T ,PNe) = true

A(Q̇cmd) = 0

(6.1)

where PNe is the configuration of the deformable object after executing Q̇cmd.

Solving this problem directly is impractical in the general case for two major rea-

sons. First, modeling a deformable object accurately is very difficult in the general

case, especially if it contacts other objects or itself. Second, even given a perfect

model, computing precise motion of the deformable object requires physical simu-

lation, which can be very time consuming inside a planner/controller where many

potential movements need to be evaluated. We seek a method which does not rely

on high-fidelity modelling and simulation; instead we present a framework combining

both global planning and local control to leverage the strengths of each in order to

efficiently perform the task.

6.2 Interleaving Planning and Control

Global planners are effective at finding paths through complex configuration spaces,

but for highly underactuated systems such as deformable objects achieving a specific

configuration is very difficult even with high-fidelity models; this means that we can-

not rely on them to complete a task independent of a local controller. In order for

the local controller to complete the task, the system must be in the correct basin of

attraction. From this point of view it is not the planner’s responsibility to complete

a task but rather to move the system into the right basin for the local controller to

finish the task. By explicitly separating planning from control we can use different

representations of the deformable object for each component; this allows us to use a

highly-simplified model of the deformable object for global planning to generate gross

motion of the deformable object, while using an independent local approximation for

the controller. The key question then is when should we use global planning versus

local control?

Our framework can be broken down into three major components: (1) A global

motion planner to generate gross motion of the deformable object; (2) A local con-

troller for refinement of the configuration of the deformable object; and (3) A novel

deadlock prediction algorithm to determine when to use planning versus control.

Figure 6.2 shows how these components are connected, switching between a local

controller loop and planned path execution loop as needed. In the following sections

58

we describe each component in turn, starting with the local controller.

No

Local
Controller

Deadlock
Predicted?

Global
Planner

Command
Motion

Task
Done?

Path
Finished?

Follow
Path

Yes

Yes

Yes

No

No

Figure 6.2: Block diagram showing the major components of our framework. On
each cycle we use either the local controller (dotted purple arrows) or a planned path
(dashed red arrows) to predict if the system will be deadlocked in the future, planning
a new path is needed to avoid deadlock.

6.2.1 Local Control

The role of the local controller is not to perform the whole task, but rather to refine

the configuration of the deformable object locally. For our local controller we use a

controller of the form introduced in Section 4.3. These controllers locally minimize

error ρ while avoiding robot collision and excessive stretching of the deformable object.

An important limitation of this approach is that the individual navigation func-

tions used by these controllers are defined and applied independently of each other;

this means that the navigation functions that are combined to define the direction

to move the deformable object can cause the controller to move the end effectors

on opposite sides of an obstacle, leading to poor local minima, i.e. becoming stuck.

Figure 6.3 shows our motivating example of this type of situation. Other examples of

this kind of situation are shown in Section 6.5. In addition, while this local controller

prevents collision between the robot and obstacles, it does not explicitly have any

ability to go around obstacles.

In order to address these limitations we introduce a novel deadlock prediction

algorithm to detect when the system (qt,Pt) is in a state that will lead to deadlock

(i.e. becoming stuck) if we continue to use the local controller.

59

Figure 6.3: Motivating example for deadlock prediction. The local controller moves
the grippers on opposite sides of an obstacle, while the geodesic between the grippers
(red line) cannot move past the pole, eventually leading to overstretch or tearing of
the deformable object if the robot does not stop moving towards the goal.

6.2.2 Predicting Deadlock

Predicting deadlock is important for two reasons; first we do not want to waste

time executing motions that will not achieve the task. Second, we want to avoid the

computational expense of planning our way out of a cul-de-sac after reaching a stuck

state. By predicting deadlock before it happens we address both of these concerns.

The key idea is to detect situations similar to Figure 6.3 where the local controller will

wrap the deformable object around an obstacle without completing the task. We also

need to detect situations where no progress can be made due to an obstacle directly

in the path of the desired motion of the robot.

Let E(q,P , q̇cmd) = q̇act be the true motion of the robot when q̇cmd is executed

for unit time; in this section we will be predicting the future state of the system,

thus it is not sufficient to consider only q̇cmd, we must also consider q̇act. Modelling

inaccuracies as well as the deformable object being in contact can lead to meaningful

differences between q̇cmd and q̇act. Specifically, when a deformable object is in contact

with the environment, tracking q̇cmd perfectly may lead to a constraint violation (i.e.

overstretch or tearing of the deformable object).

60

We consider a controller to be deadlocked if the commanded motion produces

(nearly) no actual motion, and the task termination condition is not met:

‖q̇act
t ‖ ≈ 0

Ω(T ,Pt) = false.
(6.2)

In general we cannot predict if the system will get stuck in the limit; to do so would

require a very accurate simulation of the deformable object. Instead we predict if

the system will get stuck within a prediction horizon Np timesteps. We divide our

deadlock prediction algorithm into three parts and discuss each in turn: 1) estimating

gross motion; 2) predicting overstretch; and 3) progress detection.

6.2.2.1 Estimating Gross Motion

The idea central to our prediction (Alg. 15) is that while we may not be able

to determine precisely how a given controller will steer the system, we can capture

the gross motion of the system and estimate if the controller will be deadlocked.

We split the prediction into two parts; first we assume that controller C is able to

manipulate the deformable object with a reasonable degree of accuracy within a local

neighborhood of the current state. This allows us to approximate the motion of the

deformable object by following the task-defined navigation functions for each pi ∈ P .

Examples of this approximation are shown in Figure 6.4.

Next we use a simplified version of LocalController() which omits the stretching

avoidance terms (Alg. 3 lines 3 and 4) to predict the commands sent to the robot.

These terms are omitted as they can be sensitive to the exact configuration of the

deformable object, which is not considered in this approximation. If we are executing

a path then we can use the planned path directly to predict overstretch.

6.2.2.2 Predicting Overstretch

Next we introduce the notion of a virtual elastic band (VEB) between the robot’s

end-effectors. This VEB represents the shortest path through the deformable object

between the end-effectors. The band approximates the constraint imposed by the

deformable object on the motion of the robot; if the end-effectors move too far apart,

then the VEB will be too long, and thus the deformable object is stretched beyond a

task-specified maximum stretching factor γmax. Similarly, if the VEB gets caught on

an obstacle and becomes too long, then the deformable object is also overstretched.

By considering only the geodesic between the end-effectors, we are assuming that the

61

Algorithm 15 PredictDeadlock(ρ, qt,Pt, vt, T , Np,Path)

1: ConfigHistory ← [ConfigHistory, qt]
2: ErrorHistory ← [ErrorHistory, ρ(Pt)]
3: BandPredictions ← []
4: PC ← CalculateCorrespondences(Pt, T)
5: for n = t, . . . , t+Np − 1 do
6: if Path 6= ∅ then

7: Ṗe,We ← FollowNavigationFunction(Pn,PC)
8: Pn+1 ← Pn + Ṗe
9: q̇cmd

n ← FindBestRobotMotion(qn,Pn, Ṗe,We)
10: qn+1 ← qn + q̇cmd

n

11: else
12: qn+1 ← qn+ FollowPath(Path)
13: end if
14: vn+1 ← ForwardPropagateBand(vn, qn+1)
15: BandPredictions ← [BandPredictions, vn+1]
16: end for
17: if PredictOverstretch(BandPredictions) or

NoProgress(ConfigHistory, ErrorHistory) then
18: return true

19: else
20: return false

21: end if

rest of deformable object will comply to the environment, and does not need to be

considered when predicting overstretch. The VEB representation allows us to use a

fast prediction method, but does not account for the part of the material that is slack.

We discuss this trade-off further in Chapter VII. This VEB is based on Quinlan’s

path deformation algorithm [77] and is used both in deadlock prediction as well as

global planning (Section 6.2.3 and Section 6.3)

Denote the configuration of an VEB at time t as a sequence of Nv,t points vt ⊂ R3.

The number of points used to represent an VEB can change over time, but for any

given environment and deformable object there is an upper limit Nmax
v on the number

of points used. Define Path(v) to be the straight line interpolation of all points in v.

Define the length of a band to be the length of this straight line interpolation. At

each timestep the VEB is initialized with the shortest path between the end effectors

through the deformable object, and then “pulled” tight using the internal contraction

force described in [77] Section 5, and a hard constraint for collision avoidance. The

endpoints of the band track the predicted translation of the end effectors (Alg. 16).

This band represents the constraint that must be satisfied for the object not to tear.

62

By considering only this constraint on the object in prediction, we are implicitly

relying on the object to comply to contact as it is moved by the robot. We discuss

the limitations of this assumption in the discussion (Section 6.7).

Algorithm 16 ForwardPropagateBand(v, q)

1: (p0, p1)← ForwardKinematics(q)
2: v ← [p0, v, p1]
3: v ← InterpolateBandPoints(v)
4: v ← RemoveExtraBandPoints(v)
5: v ← PullTight(v)
6: return v

Let Lt+n be the length of the path defined by the VEB vt+n at timestep n in the

future, and Lmax be the longest allowable band length. To use this length sequence

to predict if the controller will overstretch the deformable object, we perform three

filtering steps: an annealing low-pass filter, a filter to eliminate cases where the band

is in freespace, and the detector itself which predicts overstretch. We use a low-pass

annealing filter with annealing constant α ∈ [0, 1) to mitigate the effect of numerical

and approximation errors which could otherwise lead to unnecessary planning:

L̃t+1 = Lt+1

L̃t+n = αL̃t+n−1 + (1− α)Lt+n , n = 2, . . . , Np .
(6.3)

Second, we discard from consideration any bands which are not in contact with an

obstacle; we can eliminate these cases because our local controller includes an over-

stretch avoidance term which will prevent overstretch in this case in general. Last we

compare the filtered length of any remaining band predictions to Lmax; if after filter-

ing, there is an estimated band length L̃ that is larger than Lmax then we predict that

the local controller will be stuck. An example of this type of detection is shown in

Figure 6.5, where the local controller will wrap the cloth around the pole, eventually

becoming deadlocked in the process.

6.2.2.3 Progress Detection

Last, we track the progress of the robot and task error to estimate if the controller

C is making progress towards the task goal. This is designed to detect cases when

the robot is trapped against an obstacle. Naively we could look for instances when

q̇act = 0 however due to sensor noise, actuation error, and using discrete math in a

computer, we need to use a threshold instead. At the same time we want to avoid false

63

Figure 6.4: Example of estimating the gross motion of the deformable object for a
prediction horizon Np = 10. The magenta lines start from the points of the de-
formable object that are closest to the target points (according to the navigation
function). These lines show the paths those points would follow to reach the target
when following the navigation function.

positives, where the robot is moving slowly but task error is decreasing. To address

these concerns we record the configuration of the robot (stored in ConfigHistory)

and the task error (stored in ErrorrHistory) every time we check for deadlock, and

introduce three parameters to control what it means to be making progress: history

window Nh, error improvement threshold βe, and configuration distance threshold

βm. If over the last Nh timesteps, the improvement in error is less than βe, and the

robot has moved less than βm, then we predict that the controller will not be able to

reach the goal from the current state and trigger global planning.

6.2.3 Setting the Global Planning Goal

In order to enable efficient planning, we need to approximate the configuration

of the deformable object in a way that captures the gross motion of the deformable

object without being prohibitively expensive to use. We use the same approach from

Section 6.2.2.2, but the interpretation in this use is slightly different; the VEB is

a proxy for the leading edge of the deformable object. In this way we can plan to

move the deformable object to a different part of the workspace without needing to

simulate the entire deformable object, instead the deformable object conforms to the

environment naturally.

64

Figure 6.5: Estimated gross motion of the deformable object (magenta lines) and end
effectors (blue spheres). The VEB (black lines) is forward propagated by tracking the
end effector positions, changing to cyan lines when overstretch is predicted.

In order to make progress towards achieving the task, we want to set the goal

for the global planner to be a configuration that we have not explored with the local

controller. We do so in two parts; we find the set of all target points TU which are

contributing to task error, split these points into two clusters, and use the cluster

centers to define the goal region of the end effectors, qgoal
xyz ; any end-effector position

within a task-specified distance δgoal is considered to have reached the end-effector

goal (Alg. 17 lines 1-3). Second, we set the goal configuration of the VEB to be any

configuration that is not similar to a blacklist of VEBs. This blacklist is the set of

all band configurations from which we predicted that the local controller would be

deadlocked in the future (Section 6.2.2).

Algorithm 17 PlanPath(qt,Pt, vt, T ,Blacklist)

1: TU ← UncoveredTargetPoints(T ,Pt)
2: qgoal

xyz ← ClusterCenters(TU)
3: qgoal

xyz ← ProjectOutOfCollision(qgoal
xyz)

4: Vgoal ← {v | VisCheck(v,Blacklist) = 0}
5: Path ← RRT-EB(qt, vt, q

goal
xyz)

6: if Path 6= Failure then
7: return ShortcutSmooth(Path, Vgoal)
8: else
9: return Failure

10: end if

To define similarity we use Jaillet and Siméon’s visibility deformation definition to

compare two VEBs ([54]). Intuitively two VEBs are similar if you can sweep a straight

65

line connecting the two bands from the start points to the end points of the two bands

without intersecting an obstacle. Unlike the original use, we do not constrain the start

and end points of each path to match, but the algorithm is identical. We use this as a

heuristic to find states that are dissimilar from states where we have already predicted

that the local controller would be deadlocked. Let VisCheck(v,Blacklist) → {0, 1}
denote this visibility deformation check, returning 1 if v is similar to a band in the

blacklist and 0 otherwise. Then

Vgoal = {v | VisCheck(v,Blacklist) = 0} (6.4)

is the set of all VEBs that are dissimilar to the Blacklist.

Combined, qgoal
xyz , δ

goal, and Vgoal define what it means for the planner to have found

a path to the goal (Alg. 18); the end-effectors must be in the right region, and the

VEB must be dissimilar to any band in the Blacklist.

Algorithm 18 GoalCheck(N , qgoal
xyz ,Vgoal)

1: for b = (q, v) ∈ N do
2: qxyz ← ForwardKinematics(q)

3: if ‖qxyz,0 − qgoal
xyz,0‖ ≤ δgoal and ‖qxyz,1 − qgoal

xyz,1‖ ≤ δgoal and v ∈ Vgoal then
4: return true

5: end if
6: end for
7: return false

The combination of local control, deadlock prediction, and global planning are

shown in the MainLoop function (Alg. 19). Because the VEB is an approximation

we need to predict deadlock while executing the planned path. We use the same

prediction method for path execution as for the local controller. To set the maximum

band length Lmax used by the global planner and the deadlock prediction algorithms,

we calculate the geodesic distance between the grippers through the deformable object

in its “laid-flat” state and scale it by the task specified maximum stretching factor

γmax.

66

Algorithm 19 MainLoop(T ,Ω, ρ,Prelaxed, γ
max)

1: D ← GeodesicDistanceBetweenEndEffectors(Prelaxed)
2: Lmax ← γmaxD
3: Blacklist ← ∅
4: Path ← ∅
5: t← 0
6: q0 ← SenseRobotConfig()
7: P0 ← SensePoints()
8: while ¬Ω(T ,Pt) do
9: vt ← InitializeBand(Pt)

10: if PredictDeadlock(ρ, qt,Pt, vt, T ,Path) then
11: Blacklist ← Blacklist ∪{vt}
12: Path ← PlanPath(qt,Pt, vt, T ,Blacklist)
13: if Path = Failure then
14: return Failure
15: end if
16: end if
17: if Path 6= ∅ then
18: q̇cmd ← FollowPath(Path)
19: if PathFinished(Path) then
20: Path ← ∅
21: end if
22: else
23: q̇cmd ← LocalController(qt,Pt, T , D, γmax)
24: end if
25: CommandConfiguration(qt + q̇cmd)
26: qt+1 ← SenseRobotConfig()
27: Pt+1 ← SensePoints()
28: t← t+ 1
29: end while
30: return Success

67

6.3 Global Planning

The purpose of the global planner is not to find a path to a configuration where

the task is complete, but rather to move the system into a state from which the

local controller can complete the task. Planning directly in configuration space of the

full system Q × R3P is not practical for two important reasons. First, this space is

very high-dimensional and the system is highly underactuated. More importantly, to

accurately know the state of the deformable object after a series of robot motions one

would need a high-fidelity simulation that has been tuned to represent a particular

task. We seek to plan paths very quickly without knowing the physical properties of

a deformable object a priori. The key idea that allows us to plan paths quickly is to

consider only the constraint on robot motion that is imposed by the deformable object;

i.e. the robot motion shall not tear or cause excessive stretching of the deformable

object. We represent this constraint using a virtual elastic band and enforce the

constraint that the band’s length cannot exceed Lmax.

6.3.1 Planning Setup

Denote the planning configuration space as B = Q × V. In order to split B into

valid and invalid sets, we first define what it means for a band v ∈ V to be valid. A

band v ∈ V is considered valid if the band is not overstretched and the path defined

by v does not penetrate an obstacle:

Vvalid = {v | Length(v) ≤ Lmax and Path(v) ∩ Interior(O) = ∅} . (6.5)

Then the invalid set is Vinv = V \ Vvalid. Similarly define Bvalid = Qvalid × Vvalid and

Binv = B \ Bvalid. An individual element is then b = (bq, bv) = (q, v) ∈ B.

Q and B are imbued with distance metrics dq(·, ·) : Q × Q → R≥0 and db(·, ·) :

(Q× V) × (Q× V) → R≥0, respectively. We define distances in robot configuration

space and band space to be additive; i.e.,

db(·, ·)2 = dq(·, ·)2 + λvdv(·, ·)2 (6.6)

for some scaling factor λv > 0. To measure distances in V, we first upsample each

band using linear interpolation to use the maximum number of points Nmax
v for the

given task, then measure the Euclidean distance between the upsampled points when

considered as a single vector (Alg. 20).

For a given planning problem, we are given a query (binit,Bgoal) which describes

68

Algorithm 20 BandDistance: dv(v1, v2)

1: ṽ1 ← UpsamplePoints(v1, N
max
v)

2: ṽ2 ← UpsamplePoints(v2, N
max
v)

3: return ‖ṽ1 − ṽ2‖

the initial configuration of the robot and band, as well as a goal region for the system

to reach. Note that Bgoal is defined implicitly via the GoalCheck() function and the

parameters (qgoal
xyz , δ

goal, Blacklist) rather than any explicit enumeration.

We now establish a relationship between a path in robot configuration space πq

and one in the full configuration space πb by making the following assumption.

Assumption VI.1 (Deterministic Propagation). Given an initial configuration in

full space binit ∈ Bvalid and the corresponding robot configuration binitq ∈ Qvalid, a path

πq : [0, 1] → Qvalid in robot configuration space with πq(0) = binitq uniquely defines a

single path in full space πb, where πb(0) = binit. Specifically, define

πb(t) =

[
πq(t)

limh→0− ForwardPropogateBand(v(t− h), πq(t))

]
. (6.7)

Eq. (6.7) implicitly defines an underactuated system where the only way we can

change the state of the band is by moving the robot; for a path in the full configuration

space πb to be achievable there must be a robot configuration space path πq, which

when propagated using Eq. (6.7), produces πb. Let FullSpace(πq, b
init) be the function

that maps a given robot configuration space path πq and full space initial configuration

binit to the full space path defined by Eq. (6.7).

6.3.2 Planning Problem Statement

For a given planning instance, the task is to find a path starting from binit through

Bvalid to any point in Bgoal, while obeying the constraints implied by Eq. (6.7).

For a sequence of robot configurations binit
q , b1,q, . . . , bM,q ∈ Q, let

πq = Path(binit
q , b1,q, . . . , bM,q) (6.8)

be the path defined by linearly interpolating between each point in order. Then,

69

formally, the problem our planner addresses is the following:

find M, {b1,q, . . . , bM,q}

s.t. πq = Path(binit
q , b1,q, . . . , bM,q)

πb = FullSpace(πq, b
init)

πb(s) ∈ Bvalid, ∀s ∈ [0, 1]

πb(1) ∈ Bgoal .

(6.9)

6.3.3 RRT-EB

Our planner, RRT for Elastic Bands (RRT-EB), (Alg. 21) is based on an RRT with

changes to account for a virtual elastic band in addition to the robot configuration.

Lines 5-12 perform random exploration with lines 13-23 biasing the tree expansion

towards the goal region. The key variations are the BestNearest function (Alg. 22)

and the goal bias method.

BestNearest is based on the selection method used by [1], selecting the node of

smallest cost within a radius δBN if one exists, falling back to standard nearest neigh-

bour behaviour if no node in the tree is within δBN of the random sample. We use

path length in robot configuration space Q as a cost function in our implementa-

tion. This helps reduce path length and ensures that we can specify lower bounds in

Section 6.4.3. In order to avoid calculating distances in the full configuration space

when it is not necessary, our method for finding the nearest neighbor is split into two

parts, first searching in robot space, then searching in the full configuration space

(see Figure 6.6). Section 6.4.2 shows that this method is equivalent to searching in

the full configuration space directly. δBN is an additional parameter compared to a

standard RRT; it controls how much focus is placed on path cost versus exploration.

The smaller δBN , the less impact it has as compared to a standard RRT. The larger

δBN is, the harder it is to find narrow passages. We discuss further constraints on

δBN in Section 6.4.3.1.

To sample brand = (qrand, vrand), we sample the robot and band configurations in-

dependently, then combine the samples. For typical robot arms qrand is generated by

sampling each joint independently and uniformly from the joint limits. To sample

from V, we draw a sequence of Nmax
v points from the bounded workspace. For our ex-

ample tasks, workspace is a rectangular prism, and we sample each axis independently

and uniformly.

Due to the fact that our system is highly underactuated, and the goal region

70

Algorithm 21 RRT-EB(qt, vt, q
goal
xyz , δ

goal,Vgoal)

1: N ← {(qt, vt)}
2: E ← ∅
3: Qgoal ← GetGoalConfigs(qgoal

xyz)

4: while ¬MaxTimeEllapsed() do
5: brand = (qrand, vrand)← SampleUniformConfig()
6: bnear ← BestNearest(N , E , δBN , brand)
7: N new, Enew ← Connect(bnear, qrand, Lmax)
8: N ← N ∪N new

9: E ← E ∪ Enew

10: if GoalCheck(N new, qgoal
xyz , δ

goal,Vgoal) = 1 then
11: return ExtractPath(N , E)
12: end if
13: γ ∼ Uniform[0, 1]
14: if γ ≤ γgb then
15: blast = (qlast, vlast)← LastConfig(bnear,N new)
16: qbias ← argminq∈Qgoal dq(q

last, q)
17: N new, Enew ← Connect(blast, qbias, Lmax)
18: N ← N ∪N new

19: E ← E ∪ Enew

20: if GoalCheck(N new, qgoal
xyz , δ

goal,Vgoal) then
21: return ExtractPath(N , E)
22: end if
23: end if
24: end while
25: Return Failure

is defined implicitly by a function call rather than an explicit set of configurations,

we cannot sample from the goal set directly as is typically done for a goal bias.

Instead we pre-compute a finite set of robot configurations Qgoal such that the end-

effectors of the robot are at qgoal
xyz . Then, as a goal bias mechanism, γgb percent of

the time, we attempt to connect to a potential goal configuration starting from the

last configuration created by a call to the Connect function (or the last node selected

by BestNearest if N new = ∅). A connection is then attempted between blast and the

nearest configuration in Qgoal. This allows us to bias exploration toward the robot

component of the goal region, which we are able to define explicitly.

71

Algorithm 22 BestNearest(N , E , δBN , brand)

1: V near ← {b | b ∈ N , db(b, brand) ≤ δBN}
2: if V near 6= ∅ then
3: return argminb∈N Cost(b,N , E)
4: else
5: D2

near,q ← min(q,v)∈N dq(q
rand, q)2

6: D2
max,b ← D2

near,q + λvD
2
max,v

7: V near ← {b | b ∈ N , dq(q, qrand)2 ≤ D2
max,b}

8: return argminb∈V near db(b, b
rand)

9: end if

6.4 Probabilistic Completeness of Global Planning

Proving probabilistic completeness in B is challenging due to the multi-modal

nature of the problem. Specifically, as the virtual elastic band moves in and out of

contact the dimensionality of the manifold that the system is operating in can change.

In addition, the virtual elastic band forward propagation function (Alg. 16) can allow

the band to “snap tight” as the grippers move past the edge of an obstacle, changing

the number of points in the band representation as it does so. By leveraging the

assumptions from Section 6.4.1, we are able to bypass most of these challenges by

focusing on the portion of B that can be analyzed; i.e. Q.

This section proves the probabilistic completeness of the planning approach in

two major steps. First, it will show that the approach for selecting the nearest node

in the tree for expansion is equivalent to performing a nearest-neighbor query in the

full space. Second, it proves that our algorithm will eventually return a path that is

δq-similar to an optimal δ-robust solution to the planning problem with probability

1 (if it exists), or it will terminate early having found an alternate path to the goal

region. Recall that we do not require an optimal path, only a feasible one.

6.4.1 Assumptions and Definitions:

Our problem allows for the virtual elastic band to be in contact with the surface

of an obstacle, both during execution and as part of the goal set; this means that

common assumptions regarding the expansiveness [78] of the planning problem may

not hold. Instead of relying on expansiveness, we will define a series of alternate

definitions and assumptions which are sufficient to ensure the completeness of our

method.

First, in line with prior work, we will be assuming properties of the problem

72

instance in regards to robustness. In particular, we will be assuming the existence

of a solution to a given query πrefb : [0, 1] → Bvalid which has several robustness

properties. This solution is called a reference path.

To begin describing the properties of the reference path, we assume πrefb has

robustness properties in the robot configuration space. That is, the corresponding

path in robot configuration space πrefq has strong δq-clearance under distance metric

dq(·, ·) for some δq > 0.

Definition VI.2 (Strong δ-clearance). A path π : [0, 1] → Bvalid has strong δ-

clearance under distance metric d(·, ·) if ∀s ∈ [0, 1], d(π(s),Binv) ≥ δ, for δ > 0.

Given our assumption about the δq-clearance of the reference path in robot space,

there exists a set Tq of δq-similar paths to the reference path which are also collision-

free.

Definition VI.3 (δ-similar path). Two paths πa and πb are δ-similar if the Fréchet

distance between the paths is less than or equal to δ.

Informally the Fréchet distance is described as follows [79]: Suppose a man is

walking a dog. The man is walking on one curve while the dog on another curve.

Both walk at any speed but are not allowed to move backwards. The Fréchet distance

of the two curves is then the minimum length of leash necessary to connect the man

and the dog.

Given the relationship between robot-space and full-space paths, we can define a

full-space equivalent to Tq as

Tb = {πb | πq ∈ Tq and πb = FullSpace(πq, b
init)} . (6.10)

Given these assumptions and definitions, we are ready to define an acceptable

δ-robust path:

Definition VI.4 (Acceptable δ-Robust Path). A path πrefb is acceptable δ-robust if

the following hold:

1. The robot-space reference path πrefq has strong δq-clearance for some δq > 0;

2. The final state for every path πb ∈ Tb is in Bgoal.

We assume there exists a reference path which satisfies this property and answers our

given planning query:

73

Assumption VI.5 (Solvable Problem). There exists some δq > 0 such that the

planning problem admits an acceptable δ-robust path.

If a planning problem does not yield a reference path with this property, then

it would be practically impossible for a sampling-based approach to solve it, as this

would require sampling on a lower-dimensional manifold in robot space. Given that

our planner is able to find paths, we believe this assumption is true except in special

cases where the band must achieve a singular configuration to reach the goal.

While the focus of this paper is not on asymptotic optimality, we will make use of

a cost function Cost(π) of a path in Section 6.4.3.1. Our cost function is path length

in robot configuration space. With a cost function of this form we then assume

from here onward that the reference path in question is optimal under the following

definition.

Definition VI.6 (Optimal δ-Robust Path). Let Tb,δ be the set of all acceptable δ-

robust paths. A path πrefb is optimal δ-robust if

Cost(πrefb) = inf
πb∈Tb,δ

Cost(πb) . (6.11)

Finally, we also assume that workspace is bounded. This will be true for any

practical task and is rarely mentioned in the literature, but we will use this assumption

in our analysis in Section 6.4.2.

6.4.2 Proof of Nearest-Neighbors Equivalence

Lemma VI.7. If the maximum distance between any two points in workspace is

bounded by Dmax,w > 0, then under distance metric dv(·, ·), the maximum distance

between any two points in virtual elastic band space is bounded. I.e. ∃Dmax,v > 0 such

that dv(v1, v2) ≤ Dmax,v ∀v1, v2 ∈ V.

Proof. From the definition of V in Section 6.2.2.2, the number of points used to

represent a virtual elastic band is bounded by Nmax
v . Let v1, v2 ∈ V be two virtual

elastic band configurations, and let ṽ1 = (b̃1,1, . . . , b1,Nmax
v

) and ṽ2 = (b̃2,1, . . . , b2,Nmax
v

)

be their upsampled versions as described in Alg. 20. Then

dv(v1, v2)2 =

Nmax
v∑
i=1

∥∥∥b̃1,i − b̃2,i

∥∥∥2

≤
Nmax
v∑
i=1

D2
max,w = Nmax

v D2
max,w = D2

max,v

(6.12)

74

Lemma VI.8. If workspace is bounded, then lines 5-8 in Alg. 22 are equivalent to a

nearest neighbor search in the full configuration space directly.

Proof. The upper bound of Dmax,v and our additive distance metric (Eq. (6.6))

ensures that the distance between any two configurations in full space B can be

bounded using only the distance in robot configuration space:

db(·, ·)2 ≤ dq(·, ·)2 + λv ·D2
max,v . (6.13)

Next, consider that in Line 5 of the algorithm, the nearest neighbor to qrand under

distance metric dq is found. Let this nearest neighbor be denoted q̃near, keeping in

mind that it belongs to a vertex in the tree b̃near = (q̃near, ṽnear). Let the (squared)

distance between these points under dq be D2
near,q. From Eq. (6.13), we can bound

the distance between the random sample and b̃near under db as D2
max,b ≤ D2

near,q +

λvD
2
max,v = D2

max,b.

In Line 7 of the algorithm, a radius nearest-neighbors query of radius Dmax,b is

performed, returning a set V near. By construction if there is a node b ∈ N that is

closer to brand than b̃near, then b ∈ V near (Figure 6.6). Then, the method selects as

the true nearest neighbor in full space bselect = argminb∈V near db(b, b
rand).

𝑞𝑟
(1)

𝑞𝑟
rand

𝑞𝑟
(2)

𝑞𝑟
(3)

𝐷near,𝑟

𝐷max,𝑓

𝑞𝑓
(1)

𝑞𝑓
(2)

𝑞𝑓
(3)

𝑞𝑓
rand

𝐷near,𝑟

𝐷max,𝑓𝑞𝑟
(4)

Figure 6.6: Left: q(2) is the nearest node to the brand in robot space, but it my be as
far as Dmax,b away in the full configuration space. By considering all nodes within
Dmax,b in robot space, we ensure that any node (such as b(1)) that is closer to brand

than b(2) is selected as part of V near, while nodes such as b(4) are excluded in order to
avoid the expense of calculating the full configuration space distance. Right: we then
measure the distance in the full configuration space to all nodes that could possibly
be the nearest to brand, returning b(1) as the nearest node in the tree.

75

6.4.3 Construction of a δq-similar Path

The objective here is to show with probability approaching 1, the planner generates

a δq-similar path to some robustly-feasible solution given enough time. If an alternate

path is found and the algorithm terminates before generating a δq-similar path then

this is still sufficient for probabilistic completeness. This analysis is similar to [1], and

is based on a covering ball sequence of the optimal δ-robust path πrefq .

Definition VI.9 (Covering Ball Sequence). Given a path πq : [0, 1] → Qvalid, ro-

bust clearance δq > 0, a BestNearest distance δBN > 0, and a distance value 0 <

δs < δBN < δq; the covering ball sequence is defined as a set of K + 1 hyper-balls

{Bδq(q0), . . . ,Bδq(qK)} of radius δq, where qk are defined such that:

• q0 = πq(0);

• qK = πq(1);

• PathLength(qk−1, qk) = δs for k = 1, . . . , K.

Denote q∗k to be the center of the kth covering hyper-ball for the reference path πrefq .

Figure 6.7 shows an example of a covering ball sequence.

𝛿𝑟

ℬ0

ℬ1
ℬ2

ℬ𝐾
ℬ𝑘−1

ℬ𝑘−1 ℬ𝑘

𝛿𝑐
𝑞𝑘
∗

𝑞𝑘−1
∗

Figure 6.7: Example covering ball sequence for an example reference path with a
distance along the path of δs between each ball. Given that the path is δq-robust,
each ball is a subset of Qvalid.

The objective is to show that the vertex set of the planning tree after n iterations

Nn probabilistically contains a node within the goal set, i.e.

lim inf
n→∞

P(Nn ∩ Bgoal 6= ∅) = 1 . (6.14)

To do this, the analysis examines K subsegments of the reference path πrefq , based

on the covering ball sequence for the reference path. If we can generate a robot

76

path that is δq similar to πrefq , then given Assumption VI.5 and the properties of

the reference path, the corresponding full space path will be a solution to the given

planning problem.

Let A
(n)
k be the event that on the nth iteration of the algorithm, it generates a

δq-similar path to the kth subsegment of πrefq . This of course requires two events to

occur: the node generated from the prior propagation covering segment k − 1 must

be selected for expansion, and the expansion must then produce a δq-similar path

to the current segment. Then, let E
(n)
k be the event that for segment k, A

(n)
k has

occurred for some i ∈ [1, n], i.e. E
(n)
k indicates whether the algorithm has constructed

the δq-similar edge for subsegment k. From these definitions, the goal then is to show

that

lim
n→∞

P(Success) = lim
n→∞

P
(
E

(n)
K

)
= 1 . (6.15)

We start by considering the probability of failing to generate an arbitrary segment

1 ≤ k ≤ K. Then

P
(
¬E(n)

k

)
= P

(
¬A(1)

k ∩ · · · ∩ ¬A
(n)
k

)
= P

(
¬A(1)

k

)
P
(
¬A(2)

k | ¬A
(1)
k

)
· . . .

· P
(
¬A(n)

k | ¬A
(1)
k ∩ · · · ∩ ¬A

(n−1)
k

)
=

n∏
i=1

P
(
¬A(i)

k | ¬E
(i−1)
k

)
.

(6.16)

Note the definition of ¬E(i−1)
k is what allows us to collapse the product into a concise

form.

The probability that ¬A(i)
k happens given ¬E(i−1)

k is equivalent to the probability

that we have not yet generated a δq-similar path for segment k − 1 (i.e. P(¬E(i−1)
k−1))

plus the probability that the previous segment has been generated, but we fail to

generate the current segment:

P
(
¬A(i)

k | ¬E
(i−1)
k

)
= P

(
¬E(i−1)

k−1

)
+ P

(
E

(i−1)
k−1

)
· P
(
¬A(i)

k | E
(i−1)
k−1 ∩ ¬E

(i−1)
k

)
,

(6.17)

77

which we can rewrite in terms of A
(i)
k instead of ¬A(i)

k :

P
(
¬A(i)

k | ¬E
(i−1)
k

)
= P

(
¬E(i−1)

k−1

)
+ P

(
E

(i−1)
k−1

)
·
(

1− P
(
A

(i)
k | E

(i−1)
k−1 ∩ ¬E

(i−1)
k

))
.

(6.18)

Then multiplying out the last term we get

P
(
¬A(i)

k | ¬E
(i−1)
k

)
= P

(
¬E(i−1)

k−1

)
+ P

(
E

(i−1)
k−1

)
− P

(
E

(i−1)
k−1

)
P
(
A

(i)
k | E

(i−1)
k−1 ∩ ¬E

(i−1)
k

)
.

(6.19)

Finally, summing the first two terms, we arrive at

P
(
¬A(i)

k | ¬E
(i−1)
k

)
= 1− P

(
E

(i−1)
k−1

)
P
(
A

(i)
k | E

(i−1)
k−1 ∩ ¬E

(i−1)
k

)
.

(6.20)

Two events need to happen in order to generate a path to the next hyperball; an

appropriate node must be selected for expansion, and Connect(. . .) must generate

a δq-similar path segment, assuming that the appropriate node has already been se-

lected. Denote the probability of these events at iteration i as γ
(i)
k and ρ

(i)
k respectively.

Then

P
(
¬A(i)

k | ¬E
(i−1)
k

)
= 1− P

(
E

(i−1)
k−1

)
γ

(i)
k ρ

(i)
k . (6.21)

As we are examining this probability in the limit, we will instead draw a bound on

this probability to put it in a form we can easily examine the limit for. To do so, we

must carefully consider the values of γ
(i)
k and ρ

(i)
k . In Section 6.4.3.1, it will be shown

that γ
(i)
k is a generally decreasing function, but converges to a finite value γ

(∞)
k > 0 in

the limit. Therefore we let γ
(∞)
k be a lower bound of γ

(i)
k . Then in Section 6.4.3.2, ρ

(i)
k

will similarly be shown to be positive and lower-bounded; in particular γ
(i)
k ρ

(i)
k ≤ γ

(∞)
k .

Taking γ
(∞)
k as constant, we can bound Eq. (6.21) as

P
(
¬A(i)

k | ¬E
(i−1)
k

)
≤ 1− P

(
E

(i−1)
k−1

)
γ

(∞)
k . (6.22)

78

Combining equations (6.22) and (6.16) we have

P
(
¬E(n)

k

)
≤

n∏
i=1

(
1− P

(
E

(i−1)
k−1

)
γ

(∞)
k

)
. (6.23)

Denote y
(n)
k =

∏n
i=1

(
1− P

(
E

(i−1)
k−1

)
γ

(∞)
k

)
. Then

P
(
¬E(n)

k

)
≤ y

(n)
k . (6.24)

We will show using induction over k, that Eq. (6.24) tends to 0 as n→∞, and thus

limn→∞ P(Success) = 1

Base case (k = 1):

Note that P(E
(i)
0) = 1 because the start node always exists. Then

lim
n→∞

P
(
¬E(n)

1

)
≤ lim

n→∞

n∏
i=1

(
1− P

(
E

(i−1)
0

)
γ

(∞)
k

)
= lim

n→∞

n∏
i=1

(
1− γ(∞)

k

)
= lim

n→∞

(
1− γ(∞)

k

)n
= 0 .

(6.25)

Induction hypothesis:

lim
n→∞

P
(
¬E(n)

m

)
= 0 for m = 1, 2, . . . , k − 1 . (6.26)

Note that this implies limn→∞ P(E
(n)
m) = 1 for m = 1, 2, . . . , k − 1.

Induction step (2 ≤ k ≤ K):

Consider the log of the bound on P
(
¬E(n)

k

)
:

log y
(n)
k =

n∑
i=1

log
(

1− P
(
E

(i−1)
k−1

)
γ

(∞)
k

)
. (6.27)

Denote x = P
(
E

(i−1)
k−1

)
γ

(∞)
k . Given that 0 ≤ x < 1, and writing the Taylor series

79

expansion of log (1− x) centered at x = 0 we have

log (1− x) = −
∞∑
m=1

xm

m
. (6.28)

Substituting Eq. (6.28) back into Eq. (6.27) we get

log y
(n)
k = −

n∑
i=1

∞∑
m=1

(
P
(
E

(i−1)
k−1

)
γ

(∞)
k

)m
m

. (6.29)

Dropping all but the first term in the infinite sum we get the bound

log y
(n)
k ≤ −

n∑
i=1

P
(
E

(i−1)
k−1

)
γ

(∞)
k . (6.30)

Rearranging terms yields

log y
(n)
k ≤ −γ

(∞)
k

n∑
i=1

P
(
E

(i−1)
k−1

)
. (6.31)

We now use the induction hypothesis. We know that P(E
(n)
k−1) → 1 as n → ∞, thus∑n

i=1 P(E
(i−1)
k−1)→∞. Then

lim
n→∞

log y
(n)
k ≤ −γ

(∞)
k

n∑
i=1

lim
n→∞

P
(
E

(i−1)
k−1

)
= −∞ . (6.32)

Taking the log of Eq. (6.24) and combining with Eq. (6.32) we get

lim
n→∞

logP
(
¬E(n)

k

)
≤ lim

n→∞
log y

(n)
k = −∞ (6.33)

and therefore

lim
n→∞

P
(
¬E(n)

k

)
= 0, (6.34)

which completes the induction step.

Thus, given that P(¬E(n)
k)→ 0 as n→∞ for any 1 ≤ k ≤ K

lim
n→∞

P(Success) = lim
n→∞

(
1− P

(
¬E(n)

K

))
= 1 . (6.35)

80

6.4.3.1 Selection of an appropriate node (γ
(∞)
k):

First, we define the following restriction on the definition of δBN :

Definition VI.10 (δBN Restriction). For a reference path πrefq with robustness δq,

δBN is defined such that δθ = δq − δBN > 0.

The proof that γ
(∞)
k > 0 follows directly from the related work of [1] (proof of

Lemma 23). To summarize, due to best-nearest neighbors selection, there exists a

positive-measure region around the minimum cost vertex bnear which observes the op-

timal reference path in which its cost dominates all other nearby nodes, and therefore,

when brand is drawn in this volume, bnear = (qnear, vnear) is guaranteed to be selected

(Figure 6.8). Since our approach follows an equivalent sampling and nearest neighbor

method to [1] (as shown in Section 6.4.2),

γ
(∞)
k =

µ
(
Bδθ
(
b∗k
)
∩ BδBN

(
bnear

))
µ (B)

> 0 (6.36)

follows directly.

Figure 6.8: Minimum domination region for a node bi, adapted from Li et al. [1]
Lemma 23. Sampling brand in the shaded region guarantees that a node bnear ∈ Bδq(b∗k)
is selected for propagation so that either bnear = bi or Cost(bnear) < Cost(bi).

To show that γ
(∞)
k < 1, we need only consider the case when there are at least 2

nodes in N .

6.4.3.2 δq-similar Propagation (ρ
(i)
k):

Given that our nearest neighbor method is non-standard, and operating in the full

configuration space B, we need to carefully consider how this affects the propagation

probability ρ
(i)
k . Given the kinematic model of our robot system, it is straightforward

to show that the system in robot space is Small-Time Locally Controllable (STLC),

81

i.e. q can be instantaneously moved in any direction, barring the presence of obstacles

or configuration space limits.

Then, based on the construction of the covering ball sequence and the δBN restric-

tion, the following lemma holds.

Lemma VI.11. If brand is within the minimum domination region as described in [1]

Lemma 23 (Figure 6.8), then qrand ∈ Bδq(q∗k) and Connect() will generate a segment

that is δq-similar to segment k of the reference path.

Proof. Assume that brand ∈ Bδθ(b∗k−1). Then we have

dq(q
rand, q∗k) ≤ db(b

rand, b∗k)

≤ db(b
rand, b∗k−1) + db(b

∗
k−1, b

∗
k)

≤ δθ + δs = δq − δBN + δs .

Then by construction of the covering ball sequence, we have that δs − δBN < 0 and

thus dq(q
rand, q∗k) < δq. In addition, we have that the straight line between qnear as

selected by qrand is entirely contained in Bδq(q∗k−1), and thus is also in Qvalid as the

reference path is optimal δ-robust. We then have that the path generated by Connect

is δq-similar to the kth segment of the reference path.

Lemma VI.12. The probability of covering segment k at iteration i, given that we

have not yet covered segment k but we have covered segment k − 1

P
(
A

(i)
k | E

(i−1)
k−1 ∩ ¬E

(i−1)
k

)
= γ

(i)
k ρ

(i)
k

is lower-bounded by γ
(∞)
k .

Proof. Consider two possible events. First, that brand is within the minimum domi-

nation region (Figure 6.8) of V near. If brand is within the minimum domination region

of V near, then by Lemma VI.11, Connect() will generate a δq-similar segment with

probability 1. Denote this event as B. Second, the event that brand is somewhere else.

Denote this event as C. Then we can bound P(A
(i)
k | E

(i−1)
k−1 ∩¬E

(i−1)
k) by considering

only B:

P
(
A

(i)
k | E

(i−1)
k−1 ∩ ¬E

(i−1)
k

)
= P(B) + P(C)

≥ P(B) ≥ γ
(∞)
k .

82

6.5 Simulation Experiments and Results

We now present four example tasks to demonstrate our algorithm, two with cloth,

and two with rope. These tasks are designed to show that our framework is able

to handle non-trivial tasks which cannot be performed using either our controller or

planner alone. In Section 6.6 we demonstrate that our method can also be applied to

a physical robot.

For these simulation tasks Q = SE(3)G – i.e. there are two free flying grippers. In

the first and second tasks, two grippers manipulate the cloth so that it covers a table.

In the first task the cloth is obstructed by a pillar while in the second task the grippers

must pass through a narrow passage before the table can be covered. The third and

fourth scenarios require the robot to navigate a rope through a three-dimensional

maze before aligning the rope with a line traced on the floor (see Figure 6.1). A

video showing the experiments can be found at https://www.youtube.com/watch?

v=O9wOqpbev6U.

All experiments were conducted in the open-source Bullet simulator [71], with

additional wrapper code developed at UC Berkeley [80]. The cloth is modeled as

a triangle mesh using 1500 vertices with a total size of 0.3m × 0.5m. The rope is

modeled as a series of small capsules linked together by springs. In the first rope

experiment we use 39 capsules for a 0.78m long rope, and 47 capsules for a 0.94m

rope in the last experiment. We emphasize that our method does not have access to

the model of the deformable object or the simulation parameters. The simulator is

used as a “black box” for testing. We set the maximum stretching factor γmax to 1.17

for the cloth and 1.15 for the rope. All tests are performed using an i7-8700K 3.7

GHz CPU with 32 GB of RAM. We use the same deadlock prediction and planner

parameters for all tasks, shown in Tables 6.1 and 6.2. For the purpose of the planner

we treat the grippers as spheres, reducing the planning space from SE(3)G × V to

R6 × V.

Table 6.1: Deadlock prediction parameters

Prediction Horizon Np 10
Band Annealing Factor α 0.3
History Window Nh 100
Error Improvement Threshold βe 1
Configuration Distance Threshold βm 0.03

To smooth the path returned by the planner, at each iteration we randomly select

83

Table 6.2: Distance and planner parameters

Goal Bias γgb 0.1
Workspace Goal Radius δgoal 0.02
Best Nearest Radius δBN 0.001
Band Distance Scaling Factor λv 10−6

Maximum Band Points Nmax
v 500

either a single gripper or both grippers and two configurations in the path. To smooth

between the configurations we use the same forward-propagation method for the VEB

as used in the planning process. If we have selected only one gripper for smoothing,

we do not change the configuration of the second gripper during that smoothing

iteration. We also forward-propagate the VEB to the end of the path to ensure that

the band at the end of the smoothed path is dissimilar from the blacklist. We perform

500 smoothing iterations for experiments 1, 2, and 4; and 1500 for experiment 3 due

to the larger environment.

6.5.1 Single Pillar

In the first example task, the objective is to spread the cloth across a table that is

on the far side of a pillar (see Figure 6.9). We uniformly discretize the surface of the

table to create the target points T , with each discretized point creating a navigation

function that pulls the closest point on the deformable object towards the target.

These target points are set slightly above the surface to allow for collision margins

within the simulator. A single point on the cloth can have multiple “pulls” or none.

Task error ρ is defined as the sum of the Dijkstra’s distances from each target point to

the closest point on the cloth. If a target point in T is within a small-enough threshold

of their nearest neighbors in P , then these points are considered “covered” and do

not influence task error or any other calculation. Our results show that even though

the global planner is only planning using the gripper positions and a VEB between

them, it is able to find the correct neighbourhood for the local controller to complete

the task. On average we are able to find and smooth a path in 3.0 seconds (Table 6.3,

Table 6.4), with the majority of the planning time spent on forward propagation of

the VEB as part of the validity check for a potential movement of the grippers. In all

100 trials the global planner is only invoked once, with the local controller completing

the task after the plan finishes.

84

1: Initial state

4: Path execution

2: Deadlock prediction

5: Path finished

3: Planned path

6: State reached by controller

Figure 6.9: Sequence of snapshots showing the execution of the first experiment. The
cloth is shown in green, the grippers are shown in blue, and the target points are
shown as red lines. (1) The approximate integration of the navigation functions from
error reduction over Np timesteps, shown in magenta, pull the cloth to opposite sides
of the pillar. (2) A sequence of VEBs between the grippers is shown in black and
teal, indicating the predicted gripper configuration over the prediction horizon as the
local controller follows the navigation functions. The elastic band changes to teal as
the predicted motion of the grippers moves the cloth into an infeasible configuration.
(3 - 5) The resulting plan by the RRT, shown in magenta and red, moves the system
into a new neighbourhood. (6) Final system state when the task is finished by the
local controller.

85

6.5.2 Double Slit

The second experiment uses the same setup as the first, with the only change

being that the single pillar obstacle is replaced by a wide wall with two narrow

slits (Figure 6.10). This adds a narrow passage problem and also demonstrates the

utility of the progress detection filter. In this example the local controller is trying

to move the deformable object straight forward, but with the wall in the way it is

unable to make progress; the local controller cannot explicitly go around obstacles.

This experiment shows comparable planning time, but it takes longer to smooth the

resulting path (as expected given that the VEB forward propagation takes longer

near obstacles). The local controller is again able to complete the task after invoking

the planer a single time on all 100 trials.

1: Initial state

4: Path execution

2: Deadlock prediction

5: Path finished

3: Planned path

6: State reached by controller

Figure 6.10: Sequence of snapshots showing the execution of the second experiment.
We use the same colors as the previous experiment (Figure 6.9), but in this example
instead of detecting future overstretch in panel (2), we detect that the system is stuck
in a bad local minimum and unable to make progress.

86

6.5.3 Moving a Rope Through a Maze

In the third task, the robot must navigate a rope through a three-dimensional

maze before aligning the rope with a line traced on the floor (Figure 6.11). This

scenario is meant to represent tasks such as moving a heavy cable through a con-

struction zone without crane access. In this task, the correspondences between the

target points T and the deformable object points P are fixed in advance, thus the

CalculateCorrespondences() function does not have to do any work, as shown in Ta-

ble 6.5. Task error ρ is defined in the same way as in the first two experiments. Again

the planner is invoked a single time per trial, but planning and smoothing times are

longer than the previous tasks. This is a function of the size of the environment

rather than any particular difference in the difficulty of performing the planning or

smoothing. The planner finds a feasible path in 4.2s on average, suggesting that our

method can maintain fast planning times, even in larger environments with many

more obstacles.

87

1: Initial state

7: Path execution

2: Deadlock prediction

8: Path finished

3: Planned path

9: State reached by controller

4: Path execution 5: Path execution 6: Path execution

Figure 6.11: Sequence of snapshots showing the execution of the third experiment.
The rope is shown in green starting in the top left corner, the grippers are shown
in blue, and the target points are shown in red in the top right corner. The maze
consists of top and bottom layers (green and purple, respectively). The rope starts in
the bottom layer and must move to the target on the top layer through an opening
(bottom left or bottom right).

6.5.4 Repeated Planning

The fourth task is a variant of the third, with the start configuration of the rope

moved near the goal region on the top layer of the maze and a longer rope. This

task has the most potential for a planned path to move the deformable object into

a configuration from which the local controller cannot finish the task by wrapping

the rope around an obstacle near the goal. For this experiment we reduce the size

of the planning arena to only the goal area, and the immediate surroundings on the

top layer (Figure 6.12). From this starting position, the planner is more likely to

find the incorrect neighborhood for the local controller, which corresponds to placing

88

the rope into the wrong homotopy class, on the first attempt. We emphasize that

the correct homotopy class is unknown, as we assume no information is given about

the connectivity of the target points. Thus our method must discover the correct

homotopy class by trail-and-error, invoking the planner when the deadlock prediction

determines the controller will be stuck.

In 71 of the 100 trials, the planner was invoked twice, in 13 other trials it was

invoked three times, and in 2 trials it was invoked four times. These additional

planning and smoothing stages took on average an additional 6.6 seconds, but the

task was completed successfully in all 100 trials. This experiment suggests that our

framework is able to effectively explore different band neighborhoods until the correct

one is found, enabling the local controller to finish the task, even when the initial

configuration is adversarial.

2: Potential fields1: Initial state 3: Deadlock prediction 4: Planned path 5: Path finished

7: Planned path6: Deadlock prediction 8: Path execution 9: Path finished 10: Task finished

Figure 6.12: Sequence of snapshots for the fourth experiment. We use the same colors
as the previous experiment (Figure 6.11), but in this example the local controller gets
stuck twice, in panels 3 and 6. In panel 7 the global planner finds a new neighbourhood
that is distinct from previously-tried neighbourhoods.

89

Table 6.3: Planning statistics for the first plan for each example task in simulation,
averaged across 100 trials. Standard deviation is shown in brackets.

Samples States
NN

Time
(s)

Validity
Checking
Time (s)

Total
Time
(s)

Single Pillar
158
[121]

1182
[804]

∼0.0
[∼0.0]

0.6
[0.5]

0.6
[0.5]

Double Slit
478
[353]

2124
[1428]

∼0.0
[∼0.0]

0.7
[0.8]

0.7
[0.8]

Rope Maze
4796

[1613]
9926

[3760]
0.1

[∼0.0]
4.0

[1.7]
4.2

[1.8]

Repeated
Planning

54
[46]

153
[147]

∼0.0
[∼0.0]

0.1
[0.1]

0.1
[0.1]

Table 6.4: Smoothing statistics for the first plan for each example task in simulation,
averaged across 100 trials. Standard deviation is shown in brackets.

Iterations
Validity

Checking
Time (s)

Visibility
Deformation

Time (s)

Total
Time
(s)

Single Pillar 500
0.8

[1.2]
1.6

[0.2]
2.4

[1.2]

Double Slit 500
2.5

[2.6]
∼ 0.0
[∼0.0]

2.5
[2.6]

Rope Maze 1500
6.4

[3.9]
∼ 0.0
[∼0.0]

6.5
[3.9]

Repeated
Planning

500
1.4

[0.9]
∼ 0.0
[∼0.0]

1.4
[0.9]

90

6.5.5 Computation Time

To verify the practicality of our deadlock prediction algorithm and VEB approxi-

mation, we gathered data comparing computation time for these components to the

local controller by itself, and to using the Bullet simulator. Table 6.5 shows the av-

erage times per iteration for the local controller and deadlock prediction algorithms,

averaged across all trials of all experiments. As expected, adding in the deadlock

prediction step does increase computation time, but the overall control loop is still

fast enough for practical use.

Table 6.5: Local controller and deadlock prediction avg. computation time per iter-
ation for each type of deformable object, averaged across all trials.

Calculate
Correspondences()

Time (s)

Predict
Deadlock()
Time (s)

Local
Controller
Time (s)

Cloth 0.0114 0.0077 0.0126
Rope 0 0.0119 0.0023

Table 6.6: Average computation time to compute the effect of a gripper motion.

Bullet Simulation
Time (ms)

VEB Propagation
Time (ms)

Cloth 36.12 0.19
Rope 3.19 0.58

Table 6.6 shows a comparison between the average time needed to compute the

VEB propagation for a gripper motion and the time needed to reliably simulate a

gripper motion with the Bullet simulator. Note that the amount of time required for

the simulator to converge to a stable estimate depends on many conditions, including

what object is being simulated. Through experimentation we determined that 4

simulation steps were adequate for rope and 10 for cloth. Comparing the time needed

to do this simulation to the time needed to forward propagate a VEB, we see that our

approximation is indeed faster by an order of magnitude for rope, and by two orders

of magnitude for cloth. This result reinforces the importance of using a simplified

model, such as the VEB, within the planner—this model, while not as accurate as a

simulation, allows us to evaluate motions much faster.

91

6.6 Physical Robot Experiment and Results

In order to show that our method is practical for a physical robotic system, not

only free floating end-effectors, we set up a task similar to the single pillar task

(Section 6.5.1) with a dual-arm robot. It also shows that while our methods strong

assumptions about the ability to perceive the deformable object in Section 6.1 (in

particular no occlusions and no sensor noise), our framework is still able to perform

meaningful tasks when those assumptions are violated. In this task the robot must

align a cloth placemat inside of the pink rectangle, going around an obstacle in the

process (Figure 6.13).

1: Initial state

4: Path execution

2: Deadlock prediction

5: Path finished

3: Planned path

6: State reached by controller

Figure 6.13: Cloth placemat task. The placemat starts on the far side of an obstacle
and must be aligned with the pink rectangle near the robot.

6.6.1 Experiment Setup

6.6.1.1 Robotic Platform:

Val is a stationary robotic platform with a 2-DoF torso, two 7-DoF arms, and a

rotary pincer per arm. As in the simulated environments it is assumed that Val is

already holding the cloth, leaving 16 DoF to be controlled and planned for (Q = R16).

6.6.1.2 Cloth Perception:

The placemat is 0.33m× 0.46m which we discretize into a 3× 3 grid. As tracking

of deformable objects is a difficult problem, and out of scope of this paper, we instead

92

use fiducials to track the configuration of the cloth. Two of the points are tracked

using the position of the grippers; the other 7 points are tracked with AprilTags [72]

and a Kinect V2 RGB-D sensor [73].

In order to address occlusions and noisy data, we filter the raw observations using

a set of objective terms, and a set of constraints (see Figure 6.14). Denote zi as the

last observed position of point i, and denote ti as the last time point i was observed.

Then we add objective terms to pull the cloth estimate towards the observations,

combined with constraints between each pair of points to ensure that the estimate is

plausible:

P(t) = argmin
{pi}

∑
i

e−KT (t−ti)‖pi − zi‖2

subject to ‖pi − pj‖2 ≤ KLd
2
ij ∀i, j s.t. i 6= j .

(6.37)

KT and KL are task defined scale factors which we set to 1.5 and 1.0001 respectively

for this task.

𝑝𝑖

𝑧𝑖 , 𝑡𝑖

Observation (𝑧𝑖 , 𝑡𝑖)
Estimated Position (𝑝𝑖)
Constraint Term
Objective Term

Legend:

Figure 6.14: Constraint and objective graph for Eq. (6.37). Note that not all con-
straints are shown to avoid clutter; every estimated position has a constraint between
itself and every other estimated position.

6.6.2 Experiment Results

We use the same deadlock, distance, and planner parameters as used in the sim-

ulation experiments, performing 500 smoothing iterations once a path is found. We

93

constrain the rotation of the end-effectors to stay within 1.6 radians of their start-

ing orientation during the planning process as well as constrain the grippers to stay

close to the table. This forces the planner to move the placemat around the obstacle

rather than over the obstacle. Last, we also introduce planning restarts [81] into the

planning process in order to address the greater complexity added by using a 16-DoF

robot and the relatively strict workspace constraints; the restart timeout we set is 60

seconds.

Tables 6.7 and 6.8 show the planning and smoothing statistics across 100 planning

trials with identical starting configurations, but different random seeds. On average

planning and smoothing takes less than 60 seconds, with forward kinematics and

collision checking dominating the planning time. The restart timeout was unused in

68 out of 100 trials, with the other 32 trials requiring a total of 50 restarts between

them. Figure 6.15 shows that the planning time follows a “heavy tail” distribution

typical of sampling-based planners.

Table 6.7: Planning statistics for the cloth placemat example, averaged across 100
trials. Standard deviation is shown in brackets.

Samples States
NN

Time
(s)

Validity
Checking
Time (s)

Random
Restarts

Total
Time
(s)

83041
[83677]

8438
[6182]

4.5
[4.9]

44.1
[44.5]

0.5
[0.9]

50.0
[50.9]

Table 6.8: Smoothing statistics for the cloth placemat example, averaged across 100
trials. Standard deviation is shown in brackets.

Iterations
Validity

Checking
Time (s)

Visibility
Deformation

Time (s)

Total
Time
(s)

500
3.6

[1.1]
0.1

[∼0.0]
3.6

[1.1]

Our overall framework is able to complete this task as shown in Figure 6.13. As

in the simulated version of this task, we are able to predict deadlock before the robot

gets stuck, plan and execute a path to a new neighbourhood, and then use the local

controller to finish the task.

94

Figure 6.15: Histogram of planning times across 100 trials for the cloth placemat
experiment.

6.7 Discussion

We have presented a method to interleave global planning and local control for

deformable object manipulation that does not rely on high-fidelity modeling or simula-

tion of the object. Our method combines techniques from topologically-based motion

planning with a sampling-based planner to generate gross motion of the deformable

object. The purpose of this gross motion is not to achieve the task alone, but rather

to move the object into a position from which the local controller is able to complete

the task. This division of labor enables each component to focus on their strengths

rather than attempt to solve the entire problem directly. We also presented a prob-

abilistic completeness proof for our planner which does not rely on either a steering

function or choosing controls at random, and addresses our underactuated system.

As part of our framework, we introduced a novel deadlock prediction algorithm to

determine when to use the local controller and when to use the global planner.

Our experiments demonstrate that our framework is able to be applied to several

interesting tasks for rope and cloth, including an adversarial case where we set up

the planner to fail on the first attempt. For the simulated tasks, our framework is

able to succeed at each task 100/100 times, with average planning and smoothing

time under 4 seconds for 3 tasks, and under 11 seconds for the larger environment.

The physical robot experiment shows that our framework can be used for practical

tasks in the real world, with planning and smoothing taking less than 60 seconds on

average. This experiment also shows that our methods can function despite noisy

and occluded perception of the deformable object.

95

6.7.1 Parameter Selection

There are several parameters in both the local controller and the global planner

that can have a large impact on the performance of our method. In particular, if

the local controller is prone to oscillations, this can cause the deadlock prediction

algorithm to incorrectly predict that the local controller will get stuck, leading to an

unnecessary planning phase. In the worse case, this can cause the global planner to be

unable to find an acceptable path due to the blacklisting procedure. One interesting

direction of future research is how to perform reachability analysis for deformable

objects in general, in particular when a high-fidelity model of the deformable object

is not available. In practice we found that increasing the prediction horizon Np and

prediction annealing factor α was not useful as the prediction accuracy degrades

quickly. We did have to tune the history window Nh and thresholds βe, βm against

each other. Error improvement threshold βe needs to be set relative to the definition

of task error ρ, while βm is more sensitive to oscillations. If βm is too small, then the

system will fail to detect that the controller is stuck in a poor local minima. If these

thresholds are too high or Nh is too low, then false positives were common near the

end of the table coverage tasks.

For the global planner, we found that the goal bias γgb has a similar effect on

planning time as a standard RRT; values in the range [0.05, 0.15] produced similar

planning times for our experiments. In addition, if λv is not small, then nearest

neighbour checks can become very expensive. In practice distances in band space

are used to disambiguate between nodes that are at nearly identical configurations in

robot configuration space. This happens when multiple nodes connect to the position

goal qgoal
xyz , but their bands are similar to a blacklisted band. One potential way to

make distances in band space more informative would be to develop a way to sample

interesting band configurations.

6.7.2 Limitations

We made a choice to favor speed over model accuracy. As a consequence, there

are several issues that our method does not address. In particular environments

with “hooks” can cause problems due to our approximation methods; the virtual

elastic band we use for constraint checking and planning assumes (1) that there is no

minimum length of the deformable object and (2) there are no holes in the deformable

object. These assumptions mean that our planner cannot detect cases where the slack

material or a hole can get snagged on corners or hooks, preventing the motion plan

96

from being executed. One way this can be mitigated is by using a more accurate model

(at the cost of speed and task-specific tuning). Other potential solutions include online

modeling methods such as [28], or learning which features of the workspace can lead

to highly inaccurate approximations and planning paths that avoid those areas. In

addition we have no explicit method to avoid twisting or knot-tying behavior. While

shortcut smoothing can potentially mitigate the worst effects, avoiding such cases

is not something that is within the scope of this work. Similarly, we don’t have

any explicit consideration for achieving a task that requires knot-tying or twisting;

while some other local controller may be able to perform these tasks from a suitable

starting state, we have not investigated this option. Last, we cannot guarantee that

we can achieve any given task in general; while our blacklisting method is designed

to encourage exploration of the state space, it also has the potential to block regions

of the state space from which the local controller can achieve the task. Defining a

set of tasks which our framework can successfully perform is not practical given the

limited set of assumptions we are making about the deformable object. Despite these

limitations we find that our framework is able to reliably perform complex tasks where

neither planning nor control alone are sufficient.

97

CHAPTER VII

Learning When To Trust Your Model

7.1 Introduction

Robot motion planning algorithms have been extremely successful for systems

where the dynamics can be easily specified and efficiently evaluated. However, for

tasks such as manipulation of deformable objects, the dynamics are very difficult to

model [5] and usually require numerical simulation to evaluate. This simulation can

be time-consuming and/or inaccurate. Including such simulations inside a planner

can result in plans that take hours to compute [6].

Motivated by tasks where dynamics are difficult to specify and evaluate, we present

a framework to plan in a reduced state space with simplified dynamics while biasing

the planner to find plans that are likely to be feasible under the true dynamics. To do

this, we define a function that maps from the true state space to a reduced state space

as well as a dynamics model in the reduced space. We can then generate plans in

the reduced space and roll them out on the true system offline to gather data on how

the reduced and true dynamics correspond. Specifically, we find which transitions

(i.e. state-action pairs) in the reduced state space produce reliable predictions as

compared to rolling out the given action with the true dynamics.

After gathering a dataset where transitions are labeled as reliable or unreliable, we

train a classifier to predict the reliability of a given transition. We then incorporate

this classifier into an RRT-based planner by biasing the planner to reject transitions

that are classified as unreliable. The resulting planner tends to find sequences of

transitions that are likely to produce the desired outcome when the true dynamics of

the system are applied, even though the planner plans with no explicit knowledge of

the true dynamics.

This chapter presents both an abstract formulation of the problem of planning

in a reduced state space with a classifier and how to apply this formulation to two

98

Figure 7.1: Top: a plan generated without using a classifier moves the rope under a
hook and gets caught. Bottom: a plan generated with a classifier avoids this mistake,
and reaches the goal.

systems. First, to illustrate our framework on a straightforward example, we consider

a planar three-link arm with limited joint torque. Using a learned classifier for this

system allows us to plan in configuration space (not considering dynamics) while

avoiding transitions that cannot be accomplished with the limited torque. The second

system focuses on rope manipulation tasks; we use a Virtual Elastic Band (VEB)

(Section. 6.2.2.2 as the reduced dynamics model of the rope, as this has been shown

to allow fast planning in difficult scenarios. However, this model assumes that there

is no minimum length of the rope, which entails that the planner cannot detect cases

where the slack material is caught on corners or hooks, preventing the motion plan

from being completed because the caught object can overstretch (see Figure 7.1).

Thus, we learn a classifier to bias the planner away from states where the object can

be caught on an obstacle. The contributions of this chapter are:

1. A novel formulation of planning in reduced state spaces

2. A method to generate and label data for classification of transition reliability

3. Experiments demonstrating the efficacy of our framework for both the planar

arm reaching and rope manipulation tasks

99

Our experiments suggest that we can learn a classification function for the reli-

ability of transitions which improves the success rate of planning with the reduced

model for both the planar arm and rope manipulation. Our simulation experiments

considering rope manipulation in several challenging environments containing hooks

demonstrate the classifier’s ability to bias the planner away from unreliable transitions

and to generalize over environments and rope lengths. Finally, to show a practical

application of our work, we demonstrate our method running on a 16 DoF robot

manipulating a rope near an engine assembly.

7.2 General Problem Formulation

We begin by formulating our problem in a system-agnostic way and then describe

how to apply this formulation to planning for rope manipulation. Let the true system

operate in a state space X with dynamics xt+1 = f(xt, u
x,O), where ux is a command

given to the system and O is the environment. We assume that the true state space

has Markovian dynamics.

The problem we address in this work is how to find a sequence of Ne commands

{ux1 , . . . , uxNe} to move from a start state x0 to a goal state. The goal set is specified by

the function Goalx : X → {0, 1}, which returns 1 if a state is a goal and 0 otherwise.

We thus to seek to solve the following:

find Ne, {ux1 , . . . , uxNe}

s.t. Goalx(xNe) = 1

xt = f(xt−1, u
x
t ,O), t = 1, . . . , Ne .

(7.1)

However, f may not be known in closed-form or it may be expensive to evaluate

within a planner. Thus we cannot solve this problem by planning in X with the true

dynamics.

To create a more tractable planning problem we define B to be a reduced state

space and define a reduction function: b = r(x,O). We do not assume that r is

invertible. Dynamics in B are defined as bt+1 = g(bt, u
b,O) (note that ub and ux

may be in different spaces). We treat the dynamics in this reduced state space as

Markovian. B, r, and g are user-defined. There is then an analogous goal function

100

for reduced states Goalb : B→ {0, 1}. The planning problem then becomes:

find Ne, {ub1, . . . , ubNe}

s.t. b0 = r(x0,O)

Goalb(bNe) = 1

bt = g(bt−1, u
b
t ,O), t = 1, . . . , Ne .

(7.2)

Rather than making explicit guarantees on the relationship between f and g, we

assume we have access to a rollout function xt+1 = Γ(xt, u
b,O), which outputs the

next state when attempting to perform an action ub given some controller for the

system. We assume that Γ has built-in safety limits, so it will stop before violating a

constraint (e.g. stopping before colliding with an obstacle). If Γ reaches a constraint

boundary it will output the state on the boundary and will not violate the constraint.

Γ is treated as a black box. The form of Γ may be known but even if it is, we assume

it is too expensive to evaluate within the planner, otherwise there would likely be no

need for the reduction. We assume we are able to gather data by executing Γ.

We will solve the problem in Eq. (7.2) using a motion planner that plans in B.

However, the plan we generate may not lead to the goal in execution because we may

have lost information in r and/or g. Our approach is thus to bias our planner so

that it avoids taking actions for which r and g are not reliable approximations of the

behavior of the system. See Figure 7.2 for an overview of our framework.

Figure 7.2: An outline of our framework. First, we plan and execute many control
sequences to gather a dataset of transitions. These transitions are labeled according
to a function l and used to train a classifier which predicts whether a transition is
reliable given the model reduction. This classifier is used to bias the planner away
from unreliable transitions.

101

7.3 Learning Transition Reliability

To bias the planner that plans in B we will learn a classifier that attempts to

predict if a given transition T b =
〈
bt, u

b,O
〉

will reliably succeed (e.g. not be stopped

by a constraint boundary) when executed in environment O. We thus wish to learn

a function Classify : {T b} → {Reliable, Unreliable}, which outputs Reliable

when performing this transition reliably succeeds under various starting x0s and pre-

vious command sequences ub0:t−1, and Unreliable otherwise, in which case the planner

should be biased not to use T b.

Ideally, we would include x0 and ub0:t−1 as input to the classifier. However, X may

be arbitrarily high-dimensional (e.g. for a deformable object) and there may be an

arbitrary number of previous commands before T b, thus making the classifier very

difficult to learn with a realistically-sized dataset. Instead we only consider T b as

input.

7.3.1 Data Generation and Labeling

To train our classifier, we need to gather a dataset of transitions and label them

by whether the model reduction produces a reliable prediction. We would like to

generate a training dataset of transitions in a similar way to how a planner would

generate transitions, since this avoids distribution mismatch problems when planning.

We therefore collect and label data from executed plans which we generate without

a classifier. To do this, we run the planner without using Classify starting from

some x0. Planning generates a transition sequence Tb = {T bt | t = 1, 2, ...}. We

then execute the plan, which gives a ground-truth sequence of states τx = {x0, xt =

Γ(xt−1,Tbt .ub,O) | t = 1, 2, 3, ..., |Tb|}. We then reduce τx to the reduced state space

producing τ b = {b̃t = r(τxt ,O) | t = 1, 2, ...|τx|}. For time t, let the reduced dynamics

prediction be b̂t = Tbt .b and the rollout result be b̃t = τ bt . Figure 7.3 summarizes the

computation required to produce these variables.

To label the data we require a function that evaluates if the two predictions are

meaningfully similar for the given system. Let the function Close : B × B → {0, 1}
return 1 when two reduced states are meaningfully similar and 0 otherwise. The

environment O is also an input to Close but we omit it for brevity. We label the tth

102

Figure 7.3: Circles represent variables and boxes represent functions. Orange: vari-
ables defining the tth transition. Red path: reduced dynamics prediction; Blue path:
rollout result.

transition in Tb using the function l:

l(t,Tb, τ b) =


Reliable

if Close(b̂t, b̃t) and

Close(b̂t+1, b̃t+1)

Unreliable otherwise

(7.3)

Intuitively, this function first checks if b̂t b̃t are close. If they are, and b̂t+1 and

b̃t+1 are not close, then the transition is labeled Unreliable because the reduced

dynamics prediction was inaccurate. If the starting states b̂t and b̃t are not similar,

then the rollout and reduced dynamics predictions have already diverged and we do

not have a meaningful ground-truth label for this transition. To be conservative in

our prediction, we label this transition Unreliable. If both b̂t, b̃t are close and b̂t+1,

b̃t+1 are close then r and g have performed well and we label the transition Reliable.

7.3.2 An Illustrative Navigation Example

To clarify the above framework and learning problem formulation, we describe

an example system where the various functions and spaces can be easily visualized.

Consider a car with state x = [q, q̇], where q = [qx, qy, qθ] and control inputs ux =

[uxa, u
x
φ], which correspond to the acceleration and steering angle. f(xt, u

x,O) is the

standard second-order car dynamics.

We define a reduced state using the function b = r(x,O) = xq (i.e. we only con-

sider position variables in the reduced space) and the controls to be ub = [∆x,∆y,∆θ].

The reduced dynamics are bt+1 = g(bt, u
b,O) = bt + ub.

Let the rollout function xt+1 = Γ(xt, u
b,O) be a method that uses a controller to

103

drive the car toward r(xt, E) + ub. Γ also checks if the car reaches the boundary of

an obstacle in O and will return the state on the boundary if it does. Close(b̂1, b̃1)

outputs 1 if the two reduced states are within a small Euclidean distance and 0

otherwise.

The task for the car is to drive to a given location while maintaining low speed and

not colliding with obstacles. If we gather training data from this task domain we will

find that when ub drives the car toward an obstacle that is nearby, depending on the

velocity at x0, the car can hit the obstacle even though the lines between the planned

bt and bt+1 are collision-free for all t. Using only the planner, we would accept all

transitions where the line from bt to bt+1 is collision-free. However, the classifier will

learn that it is better to avoid transitions that entail driving past nearby obstacles.

Using the classifier’s output to further prune transitions will restrict the planner to

transitions that are more likely to succeed when executing Γ (see Figure 7.4).

Figure 7.4: Illustration of desired prediction from a classifier. Dotted triangles in-
dicate b̂1s from different ub0 inputs. Green: Classifier predicts these transitions are
Reliable. Red: Classifier predicts these transitions are Unreliable. Note that the
line between b0 and b̂1 is collision-free for all examples shown.

7.3.3 What can be learned

While we may produce a useful classifier for planning, it is important to know

that there is a fundamental limitation on what can be learned by this approach

because of the loss of information that may happen in r and/or g. Consider the

following scenario: Let b0 = r(xa0,O) = r(xb0,O) = r(xc0,O), e.g. there are multi-

ple states where the car is at a certain position but with a different velocity. If we

apply reduced dynamics prediction for some ub, we obtain b̂1 = g(b0, u
b,O). How-

ever, we if do rollouts we obtain three resulting states: xa1 = Γ(xa0, u
b,O), xb1 =

Γ(xb0, u
b,O), xc1 = Γ(xc0, u

b,O), and then three reduced states: b̃a1 = r(xa1,O), b̃b1 =

r(xb1,O), b̃c1 = r(xc1,O). It may be the case that Close(b̂1, b̃
k
1) does not produce the

104

same result for k = a, b, c (an example for the car system is shown in Figure 7.5). In

terms of classification, this is a case of noisy labeling, and many methods have been

devised to address this problem (e.g. SVM with slack variables).

Figure 7.5: Illustration of the effect of information loss on the predictability of a
transition. In both scenarios states with different velocities reduce to the same b0.
Left: A case where rolling out the same ub from different initial velocities (blue)
produces the same b̃1 values, since the controller is robust to initial velocity in this
case. Right: A case where rolling out the same ub with different initial velocities
produces different b̃1 values. At high initial velocity (c) the controller cannot turn
before reaching the obstacle.

However, if there are many noisy labels in the data, it means that r and g are

not useful for this task domain. As a result the classifier will not make meaningful

predictions and we would expect that it would provide no benefit over simply planning

in B. However, in our experiments with a planar arm and with rope manipulation we

found that we do indeed see a benefit when using the classifier.

7.3.4 Using the Classifier in Planning

While it is possible to query every transition considered by the planner and reject

all those that are classified as Unreliable, such a strategy would likely be overly

optimistic about what the classifier has learned. In difficult scenarios the classifier may

erroneously reject a set of transitions which is necessary to reach the goal, thus causing

the planner to fail. Thus we accept transitions that are classified as Unreliable

with a small probability determined by parameters k, a manually-specified constant,

and pacc, the validation accuracy of the classifier (see Algorithm 23). pacc is included

because we wish to be more permissive about accepting transitions when the classifier

performs more poorly in terms of generalization.

While the above approach of incorporating classification can be applied to a wide

range of planners, in this paper we focus on using RRT-based planners. An advan-

tage of this approach for RRT-based planners is that we maintain the probabilistic

105

Algorithm 23 CheckTransition(T b)

1: b′ ← g(T b.b, T b.ub,O)
2: if Classify(T b) == Reliable then
3: return b′

4: a ∼ U [0, 1]
5: if a < e−kpacc then
6: return b′

7: return ∅

completeness properties of the planner by guaranteeing that any transition will be

accepted with a non-zero probability (although the probability is small for transitions

classified as Unreliable).

7.4 Application to a Torque-Limited Planar Arm

First, we demonstrate our framework on a 3-link arm that moves in the X-Z plane

with gravity in the −z direction. For this system we focus on the effects of including

a classifier in the planner without using a reduction function. This allows us to

disentangle the effects of model reduction and inaccurate dynamics.

For this experiment we use the MuJoCo simulator [82] as the ground truth dy-

namics. Each joint is controlled using the default position servo actuator available in

MuJoCo. We convert the MuJoCo simulation to a quasistatic system by waiting for

the arm to settle after a configuration is commanded (this is f). These experiments

do not have any obstacles, so we omit O for brevity.

7.4.1 Problem Statement

Let x ∈ R3 be the true state of the system. Let ux = xdes ∈ R3 be the commanded

position of the arm at each timestep. Let f(xt, ut) be the quasistatic dynamics defined

by MuJoCo. We set torque limits τ1, τ2, τ3 so that τ1 � τ2 = τ3. This means the first

joint cannot support the weight of the arm when extended horizontally. As we are

not doing a model reduction, b = r(x) = x. Commands in both spaces are also the

same: ub = ux. The dynamics in B are purely kinematic: bt+1 = g(bt, u
b
t) = ubt . These

dynamics are fast to evaluate and therefore efficient for planning, but can result in

plans which do not reach the goal configuration when executed (Figure 7.6). As there

are no obstacles and ub = ux, the rollout function Γ(xt, u
b
t ,O) = f(xt, u

x
t).

The planning problem is for the arm to reach a goal end-effector position. Using

the true dynamics, this corresponds to Problem (7.1). However, since we assume the

106

true dynamics are not available, we seek to solve Problem (7.2) given the definitions

of r and g above.

7.4.2 Data Collection, Labelling, and Training

To collect training data we initialized the system from random start configurations,

planning to random goal configurations using RRT-Connect [83]. In practice these are

straight lines in configuration space after smoothing the path. This generated a total

of 231,815 transitions to use in training and validation. A randomly selected 20% of

the data is held out for validation. We define Close(b̂t, b̃t) based on the Euclidean

distance between configurations:

Close(b̂t, b̃t) = ‖b̂t − b̃t‖ < α (7.4)

with α = 0.075.

For this planar arm, our classifier is a neural network that takes b and b′ as input.

The network has three hidden layers with 256, 128, and 64 hidden units respectively

and a single output neuron. The hidden units use a Leaky ReLu activation [84], and

the output uses a sigmoid activation. With this network we achieve 99% training

accuracy and 99% validation accuracy within 4 epochs.

7.4.3 Planning and Results

To test the effect of using the learned classifier, we randomly generate 100 plan-

ning queries and evaluate how well generated plans perform when executed. Each

planning query consists of a random start configuration in R3 and goal IK solutions

for a random target point in R2. We only consider queries for which there is at least

one IK solution where the controller can maintain the configuration of the arm within

α = 0.075 of the IK solution. For planning we use the OMPL [85] implementation

of RRT-Connect, setting the probability scale factor k to 1, and pacc to 0.99. The

resulting path is post-processed using the default simplifyMax options. A plan is

considered successful if the distance between the final configuration and any IK so-

lution is less than a threshold β (Figure 7.6). Tests are performed on an i5-3570K @

4.3 GHz. Planning and simplification takes approximately 2 ms without a classifier,

and approximately 7 seconds with our classifier. For small β, using the classifier does

not improve performance due to the steady state error inherent in the system. As

β increases, we see that the planner that uses a classifier is able to successfully find

107

paths to all queries while the baseline is unable to succeed at some queries (see video

at https://www.youtube.com/watch?v=esgWD8Iqi34).

Figure 7.6: Left: Plan generated using the learned classifier to go from [−pi
2
, 0, 0] to

[pi
2
, 0, 0]. The plan avoids transitions which move the arm toward a horizontal position

and successfully completes the task. Center: Plan generated without the classifier.
The plan takes the arm to the horizontal position where it fails due to the torque
limit. Right: Number of successes as success threshold β varies

7.5 Application to Rope Manipulation

We now present the application of our framework to rope manipulation, where we

use both a reduction of the state space and an approximate dynamics model.

7.5.1 Problem Statement

Let the robot be represented by a pair of grippers with configuration q ∈ SE(3)G.

We assume that the robot configuration can be measured exactly. In this work we

assume the robot to be a set of free floating grippers; in practice we can track the

motion of these with inverse kinematics.

We assume that our model of the robot is purely kinematic, with no higher order

dynamics. We assume that the robot has two end-effectors that are rigidly attached

to the rope. The configuration of a rope is a set P ⊂ R3 of P = |P| points. We assume

that we have a method of sensing P . The rest of the environment O is assumed to

be both static, and known exactly. We assume that the robot moves slowly enough

that we can treat the combined robot and rope as quasi-static. The true state of the

system is then x = [q,P] and ux = ∆q. Let f be a joint-space controller for the robot

that stops when any of the following occur: 1) the grippers contact an object; or 2)

the object stretches by more than a factor λ. Due to the difficulty of simulating rope

physics, we do not assume we can execute f within a motion planner.

108

We wish to find a sequence of Ne commands {ux1 , . . . , uxNe} to move from a start

state x0 to a goal gripper configuration q[g] such that each motion is feasible (this

corresponds to Problem (7.1)). Note that this planning problem does not require

bringing the rope to a specific configuration, which can often be done using local con-

trol after bringing the object to a desired area (as in the previous chapter). Because

we do not have access to f , we cannot solve this problem by planning in X directly.

To make planning tractable we will perform a reduction and learn a classifier from

data to predict when the reduction can be trusted. That classifier will then be used

in a motion planner to bias it away from transitions that are not likely to be feasible

under Γ.

7.5.2 Reduction

Chapter VI introduced the idea of a virtual elastic band (VEB) between the robot’s

end-effectors. This VEB represents the shortest path through the rope between the

end-effectors. The band approximates the constraint imposed by the rope on the

motion of the robot; if the end-effectors move too far apart, then the VEB will be too

long, and thus the rope is stretched beyond a task-specified maximum stretching fac-

tor. Similarly, if the VEB gets caught on an obstacle and becomes too long, then the

rope is also overstretched. By considering only the geodesic between the end-effectors,

we are assuming that the rest of the rope will comply to the environment, and does

not need to be considered when predicting overstretch. The VEB representation al-

lows us to use a fast prediction method when planning, but does not account for the

part of the material that is slack. Denote the configuration of a VEB (i.e. a sequence

of points) as v. Then b = [q, v] and can be generated by b = r(x,O) for the reduction

function defined in Chapter VI. The dynamics of a VEB, g(b, ub,O), are based on

Quinlan’s path deformation algorithm as presented in [77] (see Section 6.2.2.2). We

also augment g to return ∅ when ub causes the object to become overstretched. b is

then propagated using g and ub = ux. Since the commands are the same, our rollout

function Γ, which uses ub, is equivalent to f . To find a path in B we must solve

Problem (7.2).

We use the planner described in Chapter VI to solve this problem; this is an

RRT-based planner designed for use with virtual elastic bands as part of the planning

configuration space. This planner searches for a feasible path for the robot between

a given start and goal configuration, while ensuring the VEB is never overstretched.

The VEB approximation choice favors speed over model accuracy; as a conse-

quence, there are several issues that it does not address. Specifically, environments

109

with “hooks” can cause problems due to the approximation methods: The virtual

elastic band assumes that there is no minimum length of the rope. This assumption

means that the planner cannot detect cases where the slack material can get caught

on corners or hooks, preventing the motion plan from being completed because the

caught object can overstretch. To reduce the chances of this occurring we learn a

classifier for T b to predict if a given transition is either Reliable or Unreliable and

bias the planner away from Unreliable transitions. We bias the planner using the

CheckTransition function shown in Algorithm 23, which is used as an edge validity

check in addition to the collision and overstretching checks described in Chapter VI.

7.5.3 Learning the Classifier

To learn the classifier we define the Close function for our domain to be:

Close(b̂t, b̃t) =
(
D(b̂t.v, b̃t.v) < α

)
∧ FOH(b̂t.v, b̃t.v,O)

Where D computes the sum of the point-wise distances between the two virtual elastic

bands, α is a constant, and FOH evaluates if the two bands are in the same first-order

homotopy class [54]. We then apply labeling function l shown in Eq. (7.3) for each

transition. We generate many plans using our planner (without the classifier) to

produce the dataset (see Section 7.6.2).

For our classifier we use a neural network based on VoxNet [86], a network for

classifying objects from a voxel grid. The network consists of two 3D convolutional

layers (filter size 5, 3 and stride 2, 1 respectively) with max pooling followed by two

fully-connected layers. All layers have ReLU activations except the output layer,

which has a sigmoid activation.

The input for our classifier consists is a three-channel binary voxel grid, with

channels 〈O, b, b′〉, where b′ = g(b, ub, E). Each voxel grid is 32 × 32 × 32, and

is constructed by checking for occupancy at every cell center. An example of the

voxelized representation is shown in Figure 7.7.

7.6 Rope Manipulation Experiments

To characterize the planner performance with the classifier, we designed seven

simulation scenarios where the rope must be moved from one side of the scene to the

other, along with one physical experiment for real-world validation. All simulation

experiments were conducted in the open-source Bullet simulator [71], with additional

110

Figure 7.7: Input to the VoxNet classifier is a 3-channel voxel grid, where white is
the local environment, red is the pre-transition band, and blue is the post transition
band. Positions outside the bounds of the environment are marked as occupied in
the local environment channel.

wrapper code developed at UC Berkeley [80]. The rope is modeled as a series of small

capsules linked together by springs. We emphasize that our method does not have

access to the model of the rope or the simulation parameters. The simulator is used

as a “black box” for testing. All tests are performed using an i7-7700K 4.2 GHz CPU

with 32 GB of RAM. For all experiments we set γmax to 1.15, and α to 0.5.

7.6.1 Scenarios

Each scenario involves moving the rope past one (or more) hooks, while the grip-

pers traverse a narrow slit (Figure 7.8).

Figure 7.8: The rope is shown in green, with the grippers shown in blue. The target
area for the grippers is shown in red. Walls with narrow slits for the grippers are shown
in purple. Hooks and other obstacles are shown in dark cyan. Left: Simple Hook;
Center Left: Multi Hook; Center Right: Complex Hook; Right: Engine Assembly

Simple Hook: In the Simple Hook environment, the end of the hook is not near

111

any obstacles, thus the planner does not need to deal with the end of the hook and the

narrow slit at the same time. We test four variants of the simple hook environment:

Short, Regular, Long, Very Long corresponding to the lengths of the rope which are

0.55m, 0.87m, 1.13m, and 1.59m respectively.

Multi Hook: In the Multi Hook environment, the rope must pass through three

series of hooks, and two narrow slots before reaching the red region on the far side of

a solid wall. The rope has length 0.87m.

Complex Hook: In the Complex Hook environment, the grippers are forced to pass

on opposite sides of a small hook, while also passing through a narrow slit. The rope

has length 0.87m.

Engine Assembly: In the Engine Assembly environment, we seek to move the

grippers from one side of an engine model [87] to the others avoiding two hooks on

the front and back of the engine. The rope has length 0.87m. The engine assembly

environment is shown in Figure 7.8.

Physical Robot: In the Physical Robot environment, we attempt the engine as-

sembly task on a physical 16 DoF robot shown in Figure 7.1 with a 3D printed model

of the engine and a rope of length 0.46m.

7.6.2 Data Collection

To collect training data, we ran the planner without any classifier on the Simple

Hook Regular scene repeatedly, generating a total of 4190 plans from many different

starting locations. This generated a total of 562,177 transitions to use in training and

validation. This training set is generated only from the Simple Hook environment

using the Regular length rope. We emphasize that we use the classifier trained on

this data for planning in all test environments.

7.6.3 Training the Classifier

VoxNet is trained using the Adam optimizer [88] with initial learning rate of

5 × 10−4. We use a learning rate decay of 0.8 every 4 epochs. Since the dataset set

is imbalanced, with 32% of the examples labelled as unreliable, and 68% labelled as

reliable, we use a weighted random sampler to make all minibatches balanced. A

randomly selected 10% of the data is held out for validation. Our minibatch size is

32, and we train for 100 epochs. We use the binary cross-entropy loss function during

training. Training took approximately 16 hours on a Tesla V100-SMX2 GPU. The

VoxNet classifier achieved 99% accuracy on the training set and 91% accuracy on the

112

validation set.

7.6.4 Planning Results

To evaluate the planning performance when using the classifier, we generated 30

plans using the classifier on each test environment and compare the success rate and

planning time to planning without a classifier. A success is when executing the plan

results in a final gripper configuration which is within a small tolerance of the goal

gripper configuration. If, for example, the rope gets caught on a hook and prevents

the grippers from reaching the goal, the trial is marked as a failure. Results are

shown in Table 7.1. We set k to 10 and pacc to 0.91. Our results show that using

a classifier improves the success rate of the planner over not using a classifier in all

tested scenarios, but the effect is less prominent on the Multi Hook environment. The

use of a classifier does lead to longer planning time, partially due to extra computation

when checking each edge, as well as making the planning problem harder to solve.

Section 7.7 discusses this in more detail. Example results can be found in the video

at https://www.youtube.com/watch?v=esgWD8Iqi34.

7.7 Discussion

We found that the use of a neural network classifier to evaluate the reliability

of a model approximation can be an effective way to improve the success rate of a

planner for rope manipulation. When using the classifier in the planner as a hard

constraint (k = ∞), some starting configurations would cause the classifier to reject

all transitions from that state, leading to planning failure. An interesting approach to

setting k would be to treat it similar to temperature as done in T-RRT [89]. Despite

training the rope manipulation classifier on only a single rope and environment (the

Simple Hook with Regular length rope), we found that the classifier was able to

generalize and lead to improved planning performance with both different lengths of

rope and more complex environments.

It is important to note that while our method can find more feasible plans than

not using a classifier, we may be making the planning problem more difficult. In

the planar arm example, a straight line in configuration space between start and goal

solves the planning problem under g but may not be a feasible plan under Γ. To avoid

this mismatch, the classifier restricts the set of transitions that can be used, but doing

so may induce a narrow passage effect, which leads to longer planning times.

A major challenge in this work is determining how to label the data in a way

113

Table 7.1: Planning statistics, averaged over 30 trials

Environment Metric
Classifier

None VoxNet

Simple Hook - Short
Success rate 18/30 30/30
Planning time (s) 0.6 14.6
Smoothing time (s) 1.0 5.4

Simple Hook - Regular
Success rate 20/30 29/30
Planning time (s) 3.7 17.3
Smoothing time (s) 4.0 6.5

Simple Hook - Long
Success rate 23/30 29/30
Planning time (s) 6.8 51.9
Smoothing time (s) 6.4 8.0

Simple Hook - Very Long
Success rate 18/30 27/30
Planning time (s) 12.4 15.4
Smoothing time (s) 15.6 11.4

Multi Hook
Success rate 9/30 13/30
Planning time (s) 11.5 44.1
Smoothing time (s) 22.0 30.0

Complex Hook
Success rate 0/30 20/30
Planning time (s) 3.7 28.7
Smoothing time (s) 27.0 23.4

Engine
Success rate 1/30 10/30
Planning time (s) 4.8 2.0
Smoothing time (s) 0.3 4.1

that will lead to good performance. In particular, by including transitions where

the reduced dynamics predictions have already diverged in our dataset and labelling

these transitions as Unreliable, the classifier learns that interaction with objects

is frequently poorly modelled by the VEB. This leads the planner to avoid contact

with the environment when possible, but many interesting tasks involving deformable

objects will explicitly require interaction with other objects.

One interesting point is that increased classification accuracy does not necessarily

lead to better planning performance. We experimented with different classifiers dur-

ing development, and although VoxNet had the best classification accuracy on the

validation set and usually the best performance, other classifiers performed equiva-

lently or better for planning in some environments.

114

CHAPTER VIII

Discussion and Future Work

This dissertation presented a framework for autonomously manipulating deformable

objects, focusing on methods that can be used without a time-consuming modelling

phase, and without high-fidelity simulation. We have focused on techniques and algo-

rithmic choices that enable the robot to learn from performing tasks, improving the

robot’s ability to manipulate deformable objects and perform interesting tasks. Our

contributions in modelling and control do not involve learning directly, but they form

part of the basis from which the robot is able to acquire experience from which to

learn. These methods could also be combined with other techniques such as residual

physics [90] to integrate analytical methods with learning based approaches.

Our initial goal for integrating learning into the planning process was to do so in

an online fashion; i.e., after making a plan that leads to getting caught on a hook we

would like to avoid repeating a similar mistake when generating the next plan. The

key challenge here is how to evaluate similarity; what does it mean for two transitions

to be similar, particularly when accounting for the local environment? By using a

classifier directly in state transition space we were able to avoid making the same

mistake on a given hook, but this approach does not generalize to different obstacle

configurations. Being able to learn quickly from a small number of mistakes and to

generalize that experience to new scenarios is a skill that will enable robots to move

from the lab to unstructured environments like the home.

Chapter V introduced the idea of using multiple models for control, switching

between them as the task progressed; we experimented with a similar idea during

the planning process. There are three key challenges that need to be overcome to

make this approach workable. First, we need a way to acquire multiple models that

might be useful in various situations. The representations used by these models

would need to be interchangeable, i.e. in order to switch to a different model at a

later timestep we need to be able to convert between the representations used by

115

each model. Second, we need a way to evaluate the performance of a model in a way

that allows us to make decisions during planning about which model to use. If we

are using multiple models during the planning processes, disentangling the effects of

choices made early in the planning process from their long term effects later in the plan

is difficult. In Chapter VII we addressed this credit assignment problem for a single

model by introducing a conservative model-accuracy based supervised classification

problem; this approach has the potential to apply to a multi-model approach, but

the effects of switching between models while planning needs investigating. Third,

it’s not clear how and when to use predictions from multiple models during planning;

Phillips-Grafflin and Berenson [91] introduced a clustering approach to managing the

exponential growth of the planning tree if multiple predictions are considered at each

timestep which, could be a promising direction of research.

One of the limiting assumptions of this dissertation is the representation of the

deformable object as a set of points, accurately and directly sensed. By making these

assumptions we are requiring far more from our perception systems than they are

generally capable of. For example if we consider a pile of clothes, being able to dis-

ambiguate between each clothing item that the robot can see, as well as estimating

the configuration of every item is prohibitive. Instead, we may want to consider task

specific representations that enable a higher level of reasoning over actions rather

than a point-wise representation. It is an open question how to come by these repre-

sentations, or how to know when to use a given representation for the task at hand.

In this work, we used two representations, one for local control purposes and another

for global planning. By using these different representations we were able to write

algorithms focused on different parts of an overall task, and then combine these al-

gorithms together into a single framework. Other representations may allow for a

different way of thinking about deformable object manipulation that may be better

suited to other tasks.

In this dissertation we hand-designed the decisions of when to use each represen-

tation and the associated method for manipulating the deformable object. Extending

this framework to a broader set of abilities and representations naturally leads to

approaches such as task and motion planning techniques which reason over discrete

choices (for example, which representation/algorithm to use) along with continuous

variables (for example, where to grasp). A great deal more work is needed in this area

as we work towards integrating deformable object manipulation tools into a general

robotics solution.

Some of the limitations imposed by our interleaving framework may be addressed

116

by closing the loop on the execution of plans generated by RRT-EB. By monitoring

the deformable object while a plan is executed we can quickly determine when the

deformable object has diverged from the planned path, but it is an open question

how to recover from a divergence. Can we define a local controller that reasons about

how close our VEB model reduction is representing the true configuration of the

deformable object and close the loop at this level? While this may be possible in some

circumstances, in general we believe that something like our interleaving framework

will always be needed in order to respond to unmodelled aspects of problems and

continue with a given task.

One of the key differences between rigid objects verses deformable object manip-

ulation is that deformable objects are pliable; we explicitly took advantage of this

when designing our VEB model reduction and planner. That said, we have not taken

advantage of that compliance as an explicit manipulation tool; the directional rigidity

model in Section 3.3 can enable a controller to take advantage of interactions with

the environment, but it does so without explicitly reasoning about it. It’s not clear

how to take advantage of such contact in a principled fashion; is including contact in

the modelling process enough? Is it better to use contact as a way of creating funnels

for chaining actions or controllers? Can we exploit contact in a way that helps reduce

the scope of the problem that a task and motion planning framework needs to solve?

In this dissertation, we have presented a framework and series of algorithms, sup-

ported by successful simulations and lab robot performance, that successfully answers

two primary questions that motivated this research. Firstly, our robot successfully

reduced the amount of time-consuming modelling and data collection necessary to

perform tasks with rope and cloth by interleaving planning and control. By using

different representations for each component, we are able to perform these tasks with-

out high-fidelity modelling or simulation. Secondly, we integrated ideas from decision

theory and machine learning into classical motion planning and control approaches in

order to overcome the limitations of using low-fidelity modelling and approximation

methods by learning from the robot’s experience gained while using these approxi-

mations to perform manipulation tasks.

However, some questions remain arising from the inherent difference between rigid

body manipulation and deformable object manipulation, generating a number of

worthwhile future research endeavors, as presented above. Loosely grouped as re-

lated to planning and online learning, they include topics such as learning to avoid

repeating similar mistakes, evaluating and defining “similar”, integrated task plan-

ning and motion planning, and how to achieve a modicum of intuition such that the

117

robot is able to understand what success looks like when encountering new tasks or

environments. Topics grouped around the idea of modelling include improved use of

a wider variety of types of models, real-world sensing of the deformable object and

how it is represented, and how to take better advantage of the compliant nature of

the object. Control-related questions include how to better incorporate interleav-

ing, quicker discovery of divergence from the desired path, and of course the ongoing

challenges of dexterous manipulation.

118

BIBLIOGRAPHY

119

BIBLIOGRAPHY

[1] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-based
kinodynamic planning,” International Journal of Robotics Research (IJRR),
vol. 35, pp. 528–564, Apr 2016.

[2] M. Brady, “Artificial intelligence and robotics,” Artificial Intelligence, vol. 26,
no. 1, pp. 79 – 121, 1985.

[3] Z. Wang, X. Li, D. Navarro-Alarcon, and Y.-h. Liu, “A Unified Controller
for Region-reaching and Deforming of Soft Objects,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 472–478.

[4] S. H. Huang, J. Pan, G. Mulcaire, and P. Abbeel, “Leveraging appearance priors
in non-rigid registration, with application to manipulation of deformable ob-
jects,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015, pp. 878–885.

[5] N. Essahbi, B. C. Bouzgarrou, and G. Gogu, “Soft Material Modeling for Robotic
Manipulation,” in Applied Mechanics and Materials, vol. 162, April 2012, pp.
184–193.

[6] Y. Bai, W. Yu, and C. K. Liu, “Dexterous Manipulation of Cloth,” Computer
Graphics Forum, vol. 35, no. 2, pp. 523–532, 2016.

[7] D. Berenson, “Manipulation of deformable objects without modeling and simu-
lating deformation,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2013, pp. 4525–4532.

[8] D. McConachie and D. Berenson, “Estimating model utility for deformable ob-
ject manipulation using multiarmed bandit methods,” IEEE Transactions on
Automation Science and Engineering (T-ASE), vol. 15, no. 3, pp. 967–979, July
2018.

[9] F. Khalil and P. Payeur, “Dexterous robotic manipulation of deformable objects
with multi-sensory feedback – a review,” in Robot Manipulators, Trends and
Development. InTech, 2010, ch. 28, pp. 587–621.

[10] P. Jiménez, “Survey on model-based manipulation planning of deformable ob-
jects,” Robotics and Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 154–
163, Apr. 2012.

120

[11] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic manip-
ulation and sensing of deformable objects in domestic and industrial applications:
a survey,” International Journal of Robotics Research (IJRR), vol. 37, no. 7, pp.
688–716, 2018.

[12] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun, “Dis-
crete elastic rods,” ACM Transactions on Graphics (Proceedings of SIGGRAPH),
vol. 27, no. 3, p. 1, Aug. 2008.

[13] W. Rungjiratananon, Y. Kanamori, N. Metaaphanon, Y. Bando, B.-Y. Chen,
and T. Nishita, “Twisting, Tearing and Flicking Effects in String Animations,”
in Motion in Games, ser. Lecture Notes in Computer Science, J. M. Allbeck and
P. Faloutsos, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, vol.
7060, pp. 192–203.

[14] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in Proceedings of
SIGGRAPH. ACM Press, Jul. 1998, pp. 43–54.

[15] R. Goldenthal, D. Harmon, R. Fattal, M. Bercovier, and E. Grinspun, “Efficient
Simulation of Inextensible Cloth,” ACM Transactions on Graphics (Proceedings
of SIGGRAPH), vol. 26, no. 3, 2007.

[16] S. F. F. Gibson and B. Mirtich, “A survey of deformable modeling in computer
graphics,” Mitsubishi Electric Research Laboratories, Tech. Rep., 1997.

[17] B. Maris, D. Botturi, and P. Fiorini, “Trajectory planning with task constraints
in densely filled environments,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2010, pp. 2333–2338.

[18] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler, “Stable real-time
deformations,” ACM Transactions on Graphics (Proceedings of SIGGRAPH),
pp. 49–54, 2002.

[19] G. Irving, J. Teran, and R. Fedkiw, “Invertible finite elements for robust sim-
ulation of large deformation,” ACM Transactions on Graphics (Proceedings of
SIGGRAPH), pp. 131–140, 2004.

[20] P. Kaufmann, S. Martin, M. Botsch, and M. Gross, “Flexible simulation of de-
formable models using discontinuous Galerkin FEM,” in ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 2008.

[21] A. Petit, V. Lippiello, G. A. Fontanelli, and B. Siciliano, “Tracking elastic de-
formable objects with an rgb-d sensor for a pizza chef robot,” Robotics and
Autonomous Systems, vol. 88, no. C, pp. 187–201, Feb. 2017.

[22] A. Borum, D. Matthews, and T. Bretl, “State estimation and tracking of deform-
ing planar elastic rods,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), May 2014, pp. 4127–4132.

121

[23] T. Bretl and Z. McCarthy, “Quasi-static manipulation of a kirchhoff elastic rod
based on a geometric analysis of equilibrium configurations,” International Jour-
nal of Robotics Research (IJRR), vol. 33, no. 1, pp. 48–68, 2014.

[24] J. Lang, D. Pai, and R. Woodham, “Acquisition of elastic models for interactive
simulation,” International Journal of Robotics Research (IJRR), vol. 21, no. 8,
pp. 713–733, 2002.

[25] A. M. Cretu, P. Payeur, and E. M. Petriu, “Neural network mapping and clus-
tering of elastic behavior from tactile and range imaging for virtualized reality
applications,” IEEE Transactions on Instrumentation and Measurement, vol. 57,
no. 9, pp. 1918–1928, Sept 2008.

[26] D. Navarro-Alarcon, Y.-h. Liu, J. G. Romero, and P. Li, “On the visual defor-
mation servoing of compliant objects: Uncalibrated control methods and exper-
iments,” International Journal of Robotics Research (IJRR), vol. 33, no. 11, pp.
1462–1480, jun 2014.

[27] D. Navarro-Alarcon and Y. Liu, “Fourier-based shape servoing: A new feedback
method to actively deform soft objects into desired 2-d image contours,” IEEE
Transactions on Robotics (T-RO), vol. 34, no. 1, pp. 272–279, Feb 2018.

[28] Z. Hu, P. Sun, and J. Pan, “Three-dimensional deformable object manipulation
using fast online gaussian process regression,” IEEE Robotics and Automation
Letters (RA-L), vol. 3, no. 2, pp. 979–986, April 2018.

[29] S. Hirai and T. Wada, “Indirect simultaneous positioning of deformable objects
with multi-pinching fingers based on an uncertain model,” Robotica, vol. 18,
no. 1, pp. 3–11, Jan. 2000.

[30] T. Wada, S. Hirai, S. Kawarnura, and N. Karniji, “Robust manipulation of
deformable objects by a simple PID feedback,” in Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2001, pp. 85–90.

[31] J. Smolen and A. Patriciu, “Deformation Planning for Robotic Soft Tis-
sue Manipulation,” in 2009 Second International Conferences on Advances in
Computer-Human Interactions, Feb. 2009, pp. 199–204.

[32] D. Navarro-Alarcon, H. M. Yip, Z. Wang, Y. Liu, F. Zhong, T. Zhang, and P. Li,
“Automatic 3-d manipulation of soft objects by robotic arms with an adaptive
deformation model,” IEEE Transactions on Robotics (T-RO), vol. 32, no. 2, pp.
429–441, April 2016.

[33] O. Maron and A. W. Moore, “Hoeffding Races: Accelerating Model Selection
Search for Classification and Function Approximation,” in Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS), 1994.

122

[34] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, and T. Kraska,
“Automating model search for large scale machine learning,” in Proceedings of
the ACM Symposium on Cloud Computing (SoCC), 2015.

[35] P. Whittle, “Restless Bandits: Activity Allocation in a Changing World,” Jour-
nal of Applied Probability, vol. 25, p. 287, 1988.

[36] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the Multi-
armed Bandit Problem,” Machine Learning, vol. 47, no. 2/3, pp. 235–256, 2002.

[37] J. Gittins, K. Glazebrook, and R. Weber, Multi-armed Bandit Allocation Indices.
John Wiley & Sons, 2011.

[38] S. Agrawal and N. Goyal, “Analysis of Thompson Sampling for the multi-armed
bandit problem,” Conference on Learning Theory, 2012.

[39] J. Langford and T. Zhang, “The Epoch-Greedy Algorithm for Multi-armed Ban-
dits with Side Information,” in Proceedings of the Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2008.

[40] A. Slivkins, “Contextual bandits with similarity information,” Journal of Ma-
chine Learning Research (JMLR), vol. 15, no. 1, pp. 2533–2568, Jan. 2014.

[41] O.-C. Granmo and S. Berg, “Solving Non-Stationary Bandit Problems by Ran-
dom Sampling from Sibling Kalman Filters,” in Trends in Applied Intelligent
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 199–208.

[42] S. Pandey, D. Chakrabarti, and D. Agarwal, “Multi-armed bandit problems with
dependent arms,” in International Conference on Machine Learning (ICML).
New York, NY, USA: ACM, 2007, pp. 721–728.

[43] M. Saha, P. Isto, and J.-C. Latombe, “Motion planning for robotic manipulation
of deformable linear objects,” in Proceedings of the International Symposium on
Experimental Robotics (ISER). Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 23–32.

[44] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[45] S. Rodriguez and N. Amato, “An obstacle-based rapidly-exploring random tree,”
in Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2006, pp. 895–900.

[46] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University
Press, 2006.

123

[47] B. Frank, C. Stachniss, N. Abdo, and W. Burgard, “Efficient motion planning for
manipulation robots in environments with deformable objects,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2011, pp. 2180–2185.

[48] E. Anshelevich, S. Owens, F. Lamiraux, and L. Kavraki, “Deformable volumes in
path planning applications,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2000, pp. 2290–2295.

[49] F. Lamiraux and L. E. Kavraki, “Planning Paths for Elastic Objects under
Manipulation Constraints,” International Journal of Robotics Research (IJRR),
vol. 20, no. 3, pp. 188–208, Mar. 2001.

[50] O. Burchan Bayazit, Jyh-Ming Lien, and N. Amato, “Probabilistic roadmap mo-
tion planning for deformable objects,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), vol. 2, 2002, pp. 2126–2133.

[51] R. Gayle, M. Lin, and D. Manocha, “Constraint-Based Motion Planning of
Deformable Robots,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2005, pp. 1046–1053.

[52] M. Moll and L. E. Kavraki, “Path Planning for Deformable Linear Objects,”
IEEE Transactions on Robotics (T-RO), vol. 22, no. 4, pp. 625–636, 2006.

[53] O. Roussel, A. Borum, M. Täıx, and T. Bretl, “Manipulation planning with
contacts for an extensible elastic rod by sampling on the submanifold of static
equilibrium configurations,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), May 2015, pp. 3116–3121.

[54] L. Jaillet and T. Siméon, “Path deformation roadmaps: Compact graphs with
useful cycles for motion planning,” International Journal of Robotics Research
(IJRR), vol. 27, no. 11-12, pp. 1175–1188, 2008.

[55] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints in
search-based robot path planning,” Autonomous Robots, vol. 33, no. 3, pp. 273–
290, Jun. 2012.

[56] P. Brass, I. Vigan, and N. Xu, “Shortest path planning for a tethered robot,”
Computational Geometry, vol. 48, no. 9, pp. 732–742, 2015.

[57] S. Kim and M. Likhachev, “Path planning for a tethered robot using Multi-
Heuristic A* with topology-based heuristics,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), sep 2015,
pp. 4656–4663.

[58] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” International
Journal of Robotics Research (IJRR), vol. 20, May 2001.

124

[59] S. Karaman and E. Frazzoli, “Sampling-based optimal motion planning for non-
holonomic dynamical systems,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), May 2013, pp. 5041–5047.

[60] T. Kunz and M. Stilman, “Kinodynamic RRTs with Fixed Time Step and Best-
Input Extension Are Not Probabilistically Complete,” in Algorithmic foundations
of robotics XI. Springer, Cham, 2015, pp. 233–244.

[61] D. Park, A. Kapusta, J. Hawke, and C. C. Kemp, “Interleaving planning and con-
trol for efficient haptically-guided reaching in unknown environments,” Proceed-
ings of IEEE/RAS International Conference on Humanoid Robots (Humanoids),
pp. 809–816, 2014.

[62] J. Schulman, J. Ho, C. Lee, and P. Abbeel, “Learning from demonstrations
through the use of non-rigid registration,” in Springer Tracts in Advanced
Robotics, vol. 114. Springer International Publishing, 2016, pp. 339–354.

[63] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,” in
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2017.

[64] E. Banijamali, R. Shu, M. Ghavamzadeh, H. Bui, and A. Ghodsi, “Robust
Locally-Linear Controllable Embedding,” Proceedings of the International Con-
ference on Artificial Intelligence and Statistics (AISTATS), Oct 2017.

[65] B. Jia, Z. Hu, J. Pan, and D. Manocha, “Manipulating highly deformable materi-
als using a visual feedback dictionary,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2018.

[66] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and S. Levine, “SO-
LAR: Deep Structured Representations for Model-Based Reinforcement Learn-
ing,” International Conference on Machine Learning (ICML), pp. 7444–7453,
2019.

[67] G. Sutanto, N. Ratliff, B. Sundaralingam, Y. Chebotar, Z. Su, A. Handa, and
D. Fox, “Learning Latent Space Dynamics for Tactile Servoing,” Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), 2019.

[68] B. Ichter and M. Pavone, “Robot motion planning in learned latent spaces,”
IEEE Robotics and Automation Letters (RA-L), vol. 4, no. 3, pp. 2407–2414,
2019.

[69] A. Wang, T. Kurutach, K. Liu, P. Abbeel, and A. Tamar, “Learning robotic
manipulation through visual planning and acting,” in Proceedings of Robotics:
Science and Systems (RSS), 2019.

[70] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994, vol. 29.

125

[71] E. Coumans, “Bullet physics library,” Open source: bulletphysics.org, 2010.

[72] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), May
2011, pp. 3400–3407.

[73] T. Wiedemeyer, “IAI Kinect2,” https://github.com/code-iai/iai kinect2, Insti-
tute for Artificial Intelligence, University Bremen, 2014 – 2015, accessed July 1,
2018.

[74] Gurobi, “Gurobi optimization library,” Proprietary: gurobi.com, 2016.

[75] M. C. Koval, J. E. King, N. S. Pollard, and S. S. Srinivasa, “Robust trajectory
selection for rearrangement planning as a multi-armed bandit problem,” in Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015.

[76] C. G. Broyden, “A class of methods for solving nonlinear simultaneous equa-
tions,” Mathematics of Computation, vol. 19, no. 92, pp. 577–593, 1965.

[77] S. Quinlan, “Real-time modification of collision-free paths,” Ph.D. dissertation,
Department of Computer Science, Stanford University, 1994.

[78] D. Hsu, J. Latombe, and R. Motwani, “Path planning in expansive configura-
tion spaces,” International Journal of Computational Geometry & Applications,
vol. 09, no. 04n05, pp. 495–512, August 1999.

[79] H. Alt and M. Godau, “Computing the Fréchet distance between two polygo-
nal curves,” International Journal of Computational Geometry & Applications,
vol. 05, no. 01-02, pp. 75–91, mar 1995.

[80] Robot Learning Lab, “Simulation environment with Bullet physics,” https://
github.com/rll/bulletsim, University of California, Berkeley, 2012, accessed July
2, 2012.

[81] N. A. Wedge and M. S. Branicky, “On heavy-tailed runtimes and restarts in
rapidly-exploring random trees,” in Proceedings of the National Conference on
Artificial Intelligence (AAAI), 2008, pp. 127–133.

[82] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based
control,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2012, pp. 5026–5033.

[83] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2000, pp. 995–1001.

[84] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neu-
ral network acoustic models,” in International Conference on Machine Learning
(ICML), 2013.

126

[85] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,”
IEEE Robotics and Automation Magazine, vol. 19, no. 4, pp. 72–82, December
2012, http://ompl.kavrakilab.org.

[86] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for
real-time object recognition,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 922–928.

[87] J. Tumber, “Engine assembly,” https://grabcad.com/library/
engine-assembly-11, 2016, accessed August 28, 2019.

[88] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Pro-
ceedings of the International Conference on Learning Representations (ICLR),
2015.

[89] L. Jaillet, J. Cortés, and T. Siméon, “Transition-based rrt for path planning in
continuous cost spaces,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2008, pp. 2145–2150.

[90] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossingbot: Learn-
ing to throw arbitrary objects with residual physics,” in Proceedings of Robotics:
Science and Systems (RSS), 2019.

[91] C. Phillips-Grafflin and D. Berenson, “Planning and resilient execution of policies
for manipulation in contact with actuation uncertainty,” in Proceedings of the
International Workshop on the Algorithmic Foundations of Robotics (WAFR),
2016.

127

