
A Robot Path Planning Framework that Learns from Experience

Dmitry Berenson Pieter Abbeel Ken Goldberg

University of California, Berkeley, Berkeley, CA, USA
{berenson, pabbeel}@eecs.berkeley.edu, goldberg@berkeley.edu

Abstract— We propose a framework, called Lightning, for
planning paths in high-dimensional spaces that is able to learn
from experience, with the aim of reducing computation time.
This framework is intended for manipulation tasks that arise in
applications ranging from domestic assistance to robot-assisted
surgery. Our framework consists of two main modules, which
run in parallel: a planning-from-scratch module, and a module
that retrieves and repairs paths stored in a path library. After
a path is generated for a new query, a library manager decides
whether to store the path based on computation time and the
generated path’s similarity to the retrieved path. To retrieve
an appropriate path from the library we use two heuristics
that exploit two key aspects of the problem: (i) A correlation
between the amount a path violates constraints and the amount
of time needed to repair that path, and (ii) the implicit division
of constraints into those that vary across environments in which
the robot operates and those that do not.

We evaluated an implementation of the framework on several
tasks for the PR2 mobile manipulator and a minimally-invasive
surgery robot in simulation. We found that the retrieve-and-
repair module produced paths faster than planning-from-
scratch in over 90% of test cases for the PR2 and in 58%
of test cases for the minimally-invasive surgery robot.

I. INTRODUCTION

A long-standing goal of research in robotics is to create a
robot whose ability to perform a task improves with experi-
ence through performing similar tasks. For example, consider
a mobile manipulator operating in a domestic environment.
Such a robot may frequently be expected to retrieve an item
from a cupboard. The most common approaches to solving
such tasks is to construct a motion plan using no prior knowl-
edge of the task and the environment; a planning algorithm is
only given the robot and environment models along with the
start and goal configurations and asked to generate a path.
While this approach, which we term planning-from-scratch
(PFS), is general, it can produce unacceptably long planning
times for difficult problems. Even if the robot previously
generated a path for a very similar task, PFS affords no way
to take advantage of this previous computation.

We seek to create a framework for planning paths in high-
dimensional spaces that is able to improve with experience,
with the aim of reducing computation time. This framework
is intended to plan paths for manipulators, and it can be
applied to problems ranging from mobile manipulation to
robot-assisted surgery. Our framework, which we call Light-
ning for its ability to plan quickly, leverages the generality
of PFS to produce solutions in new situations and the
efficiency of re-using previous experience in situations sim-
ilar to previously-encountered ones. We integrate these two

Fig. 1. Diagram of the Lightning framework.

approaches to create a framework that is both general and
efficient. It is also straightforward to enhance the framework
with parallelization and cloud computing by parallelizing the
retrieval and repair algorithms and by storing the experience
of multiple robots in the cloud.

The Lightning framework (see Figure 1) consists of two
main modules, which are run in parallel: PFS, and a module
that retrieves and repairs paths stored in a path library,
which we call Retrieve-Repair (RR). Given a new query,
both modules are started simultaneously and the first path
produced by either module is executed on the robot while
the other module is stopped. After a path is generated, a
library manager decides whether to store the path based on
the computation times of the two modules and the generated
path’s similarity to the retrieved path.

The key part of the framework is the RR module, which
retrieves a path that is likely to be appropriate for a given
scene from the path library and repairs it. To retrieve an ap-
propriate path we exploit two key features of the problem: (i)
A correlation between the amount a path violates constraints
and the amount of time needed to repair that path, and (ii)
the implicit division of constraints into variant and invariant
constraints. These features allow us to formulate two heuris-
tics to retrieve a path from the library: the first quickly selects
n candidate paths from the library by measuring the distance
between the endpoints of the path and the query start and
goal, and the second retrieves the path from the n candidates
which has the least constraint violation. Once the RR module
retrieves an appropriate path, the path can be repaired using
a variety of methods. To guarantee feasibility, we use a path
repair method based on bidirectional RRTs.

The Lightning framework has several advantages. First,
we do not need to arbitrarily pre-generate some number of



paths before running the system. We can start with an empty
path library and build that library as the robot performs its
intended tasks. This is a significant advantage because it may
be difficult to envision the types of tasks and environments
the robot encounters before it actually encounters them.
The ability to learn without prior information about the
environment is key for a domestic robot because we may
not know what a user’s kitchen or living room looks like
and what objects will be present there a priori.

Also, comparing to a standard sampling-based motion
planner, there can be a significant benefit in terms of compu-
tation time for difficult problems. Consider the reaching-into-
the-cluttered-cupboard example described above. Solving
such problems with a sampling-based planner tends to be
time-consuming because of the narrowness of the space.
However, since the geometry of the kitchen cupboard does
not change between queries, previously-computed paths will
be very close to valid (we only need to avoid the changing
clutter in the cupboard, not navigate into the narrow space
of the cupboard). These paths will require little repair and
feasible paths will be produced much more quickly than
using a sampling-based planner to plan from scratch.

Finally, a major advantage of this system is that we can run
the system over the lifetime of the robot, even as the robot
transitions between different types of tasks. It may take many
queries for the RR module to become proficient at a new type
of task, but, in the worst case, we will always perform as
well as PFS, which is a state-of-the-art planner.

The contributions of this paper are the following:
1) A general and efficient framework for building and

using a path library.
2) A formal definition of the problem of retrieving and

repairing a path from the library.
3) A fast method for retrieving paths based on the above

definition.
4) Experiments showing a range of situations in which

the Lightning framework outperforms PFS.
In the remainder of this paper we describe related work,

formally define the path retrieval problem, present a fast
method for retrieving and repairing paths from a path library,
and give a detailed description of each module in the
Lightning framework. We then evaluate an implementation
of the framework on tasks for the PR2 mobile manipulator
and a minimally-invasive surgery robot. We conclude with a
discussion of possible extensions of our framework.

II. RELATED WORK

Reusing previous computation to aid in solving a new
query has been studied using several approaches in motion
planning and control. A major area of research focuses
on how to re-use computation in the presence of moving
obstacles to achieve fast replanning [1], [2], [3]. In these
scenarios, changes in the environment between successive
calls to the planner are assumed to be minor and the goal
is fixed, whereas environments in our scenarios can vary
dramatically and the start and goal vary as well.

In sampling-based planning, one approach biases sampling
during a planning query based on previous experience [4].
However, this approach requires identifying features that
capture the quality of a sample, which may be difficult to do
in a given problem domain.

Trajectory libraries have been studied extensively as a
method for constructing optimal control policies [5], [6], [7],
[8]. However, these methods either create a policy that drives
the robot toward a fixed goal or they do not account for
varying environment geometry. Stolle et al. [9] investigated
transferring a set of trajectories between different goals and
environments, but their method was highly-specialized for
planning footstep locations for a quadruped robot.

Using libraries of paths has been previously investigated
as an approach to local planning [10], [11], [12]. These
approaches iteratively select a short path from the library
that brings the robot closer to a goal or to a predefined path.
Similar approaches have also been developed in the graphics
literature [13], [14], where short recordings of motion-
capture data are stitched together to produce a complex
sequence of motions for an animated character. A related
approach uses a library of motion primitives to generate
transitions between humanoid hand and foot placements on
rough terrain [15]. Our approach differs in that we are
concerned with selecting a single path from the library to
bring the robot from the start to the goal.

Similar to our approach, Jetchev and Toussaint [16] use
a library of paths to aid in computing a new path in a
new environment. However, their paths are computed in end-
effector space, whereas ours reside in the higher-dimensional
C-space. Their approach also requires warping paths to have
common start and goal poses, and it is unclear how this trans-
formation affects the information stored by the paths. Their
path library is constructed beforehand and it is static, which
assumes that it is possible to envision the range of scenarios
the robot encounters a priori, whereas our approach builds
the library based on the robot’s experience. On the other
hand, their method for selecting paths based on environment
features could be incorporated into our framework.

Recently Dragan et al. [17] presented a method which
selects a goal from a set of possible goals that is likely
to yield a good path based on previous experience. While
this appears to be a promising approach, it has not yet been
extended to consider obstacles en route to the goal configu-
ration, which play a very prominent role in determining the
path. However, selecting goals based on previous experience
could also be incorporated in our method for retrieving paths
from the library.

III. RETRIEVING AND REPAIRING PATHS

To motivate our approach to using a library of paths, let
us consider the set of all continuous non-self-intersecting
configuration space paths P .1 Subsets of P discussed in this
section are shown in Figure 2.

1Note that P is infinite-dimensional



Fig. 2. Illustration of sets in path space for a given task t and environment
e. P (t) is the set of paths that accomplish the task t. P (T ) is the union of
P (t) for all t ∈ T . Pn(E) and Pa(e) are the sets of paths that violate the
invariant and variant constraints, respectively. Pf (t, e) is the set of valid
paths for t. The black points represent paths in the path library L(T ).

A. Definitions

We will refer to a path planning query consisting of a start
configuration and at least one goal configuration as t. Let T
represent the set of all t the robot is expected to solve. Let
P (t) ⊆ P represent all paths that satisfy a given t without
regard to any constraints and let P (T ) ⊆ P represent the
union of all such P (t) for all t ∈ T . We define the set of
environments the robot is expected to operate in as E.

Constraints imposed by the environment, task, robot geom-
etry, and kinematics may invalidate paths in P . For example
a path p ∈ P (t) may be invalid for an environment e ∈ E
because of collision with the environment or may be invalid
for all environments because of robot self-collision. We will
divide the constraints into two types: those which are present
for all e ∈ E , which we call invariant constraints, and
those which are present for a given e but not all e ∈ E,
which we call variant constraints. Examples of invariant
constraints are robot self-collision, joint limits, and areas
in the environment that are occupied in all E. Examples
of variant constraints are areas of the environment that are
sometimes, but not always, occupied. Note that environments
are considered in the robot’s frame, so environments with
similar geometry relative to the robot will produce similar
constraints, independent of the robot’s location in the world.

Our approach does not require that we specify the variant
and invariant constraints explicitly. Rather, these constraint
types emerge implicitly when building a path library. We will
use this fact to create a heuristic for selecting paths from the
path library in Section III-B.

Let the set of paths which violate the invariant constraints
be Pn(E) ⊆ P and let the set of paths that violate the variant
constraints for a given e be Pa(e) ⊆ P .

A given t may induce a P (t) that intersects one or both
of Pn(E) and Pa(e). Let us define the set of valid paths for
a given task t in a given environment e as

Pf (t, e) = {p ∈ P (t) | p /∈ Pn(E), p /∈ Pa(e)} . (1)

The standard path planning problem is to find any path
p ∈ Pf (t, e). The most common approach to this problem is
to use a planner that iteratively builds the path p from only
the start and goal configurations. Depending on the task and
environment, building such a path can be computationally ex-
pensive. In this paper we evaluate a different approach to the

Fig. 3. Illustration of the distance, projection, and repair functions dt, j,
and f , respectively. A path p is projected to P (t) using j and then repaired
using f . This process produces a path pf that accomplishes the task without
violating constraints.

path planning problem, which uses a library of previously-
computed paths, with the aim of reducing computation time.

Let us assume that we have a library of paths for a given
set of tasks T . We will represent this library as the set
L(T ) ⊆ P . Let us further assume that L(T ) ∩ Pn(E) = ∅,
i.e., no paths in L(T ) violate the invariant constraints (the
Lightning framework implicitly constructs such a library).

We will now define functions which allow us to retrieve a
path from the library and repair it. Let v be a function which
quantifies the degree of violation of the constraints:

v : P × E → R≥0. (2)
Let vn(p,E) be the violation of the invariant constraints and
let va(p, e) be the violation of the variant constraints. Further,
let v(p, e) ≥ min(vn(p,E), va(p, e)). We will use v to help
retrieve a path from the library in Section III-B.

Let f be the repair function, which has the form
f : P (t)× E → Pf (t, e). (3)

Let this function return ∅ if it is not able to repair the path.
We will discuss the implementation of f in Section IV.

In general, a library L(T ) may not contain a p ∈ P (t)
for a given t, i.e., we may not have an example path that
accomplishes the task, regardless of the constraints. This
implies that we cannot apply the repair function f , whose
domain is restricted to P (t). In this case, we must first
generate a path in P (t) before applying f . One way to
generate such a path is to project a p ∈ L(T ) onto P (t)
(see Figure 3). To do this, we first define a function which
evaluates the distance between a path p and the set P (t).

Let us denote the start and goal of p as p(0) and p(1),
respectively. By definition, P (t) contains all paths that go
between the start and goal of t (denoted ts and tg , respec-
tively). Thus P (t) must contain the path

pt = {l(ts, p(0)), p, l(p(1), tg)} , (4)
where l is a line segment between the two input configura-
tions. The sum of the lengths of the line segments that need
to be added to p to achieve the task can be used as a distance
function between p and t:

dt(p, t) =‖ ts − p(0) ‖ + ‖ tg − p(1) ‖ . (5)
dt(p, t) is 0 if p ∈ P (t) and increases as the endpoints move
farther from those required by t. We can then define a path-
space projection function

j : P × T → P (t), (6)



Algorithm 1: NaiveRetrieveRepair(t,e,L(T ))

1 for all p ∈ L(T ) do
2 pt ← j(p, t);
3 pf ← f(pt, e);
4 if pf 6= ∅ then
5 return pf ;
6 end
7 end
8 return Failure;

which produces the pt ∈ P (t) in Equation 4 from any input
path p and t (see Figure 3).

Given the above functions, a naive algorithm (Alg. 1) to
generate a p ∈ Pf (t, e) using a p ∈ L(T ) is readily apparent.

B. Considering Computation Time

Algorithm 1 is straightforward but highly impractical
when we consider the computation time necessary to per-
form each step. Let the computation time necessary to
perform j(p, t), f(p, e), and v(p, e) be τj(p, t), τf (p, e), and
τv(p, e), respectively. Since computing j(p, t) only requires
appending two line segments to p, τj(p, t) ≈ 0. τf (p, e) is
difficult to characterize, since it depends strongly on how it
is implemented. f can be a global path planner that searches
the entire configuration space, or it can deform a path locally.
The global planner will likely take more time but return
∅ less often, while the local planner will likely take less
time but return ∅ more often. Regardless of which approach
is used, we assume that repairing a path is much more
time-consuming than evaluating the violation of a path (i.e.
τf (p, e) � τv(p, e)), which is true for both of the above
approaches on practical path planning problems.

Thus to reduce computation time, we would like to min-
imize τf (p, e). Our approach will be to use v as a heuristic
for τf (p, e). This heuristic assumes that for p1, p2 ∈ P (t)

v(p1, e) ≥ v(p2, e)⇒ τf (p1, e) ≥ τf (p2, e). (7)

The motivation behind this heuristic is that paths which
violate fewer constraints take less time to repair.

If Equation 7 holds, we can produce a pf ∈ Pf (t, e) in
minimal time using only one evaluation of f . We do this by
computing pf = f(p∗t , e), where

p∗t = argmin
pt

v(pt, e). (8)

Thus, taking into account the high computation time neces-
sary to compute f , we can propose another algorithm (Alg. 2)
to find a path in Pf (t, e) using a path from L(T ).

While effective, this algorithm requires evaluating v(pt, e)
for every path in L(T ). While we can reasonably assume that
τf (p, e) � τv(p, e), it would not be appropriate to assume
that τv(p, e) is negligible for practical path planning prob-
lems. Thus this algorithm may also be impractical depending
on the number of paths in L(T ) and the computational
resources available. Let us assume that our computational
resources allow us to perform n evaluations of v in parallel.
To minimize computation time, we would like to select the

Algorithm 2: NaiveRetrieveRepair2(t,e,L(T ))

1 Pt ← ∅;
2 for all p ∈ L(T ) do
3 Pt ← Pt ∪ j(p, t);
4 end
5 p∗t ← argmin

pt∈Pt

v(pt, e);

6 pf = f(p∗t , e);
7 if pf 6= ∅ then
8 return pf ;
9 return Failure;

n paths for evaluation which are most likely to yield fast
evaluations of f . However, without evaluating v, we do not
know which path will be likely to yield a low τf (p, e).

We can create another heuristic to decide which paths
will likely have less violation. This heuristic is based on the
violation of the invariant constraints vn(p,E) as a result of
the projection: A p ∈ L(T ) which yields a smaller dt(p, t)
will likely produce a smaller vn(p,E) when projected to t.
I.e. for p1, p2 ∈ L(T )
dt(p1, t) ≥ dt(p2, t)⇒ vn(j(p1, t), e) ≥ vn(j(p2, t), e). (9)

This heuristic is most appropriate when the constraints are
evaluated as a function of configuration. In such cases,
the projection, which only adds configurations to a path,
can only increase the violation of constraints; the more
configurations added, the more potential for violation of
the constraints. Since all paths in L(T ) do not violate the
invariant constraints, the shorter the projection, the less likely
the resulting path is to violate the invariant constraints.
Since this heuristic does not consider violation of the variant
constraints (there are no guarantees on variant constraint
violation for paths in L(T )), we will only use it to narrow the
number of candidates for violation evaluation, not to select
a path directly.

Given the above heuristic, we arrive at Algorithm 3, which
only evaluates v on n paths chosen from L(T ).

This algorithm selects n paths to project to t based on
their distance to t. It then evaluates the violation of these n
paths and applies the function f to the path with minimal
violation. The f function then produces a path pf ∈ Pf (t, e),
which solves the task t without violating constraints.

This algorithm is built on two heuristics, which may not
hold for a given set of tasks. For instance, even though a
path has little violation, the violation may occur in a very
cluttered area of the environment and it will require more
time to repair this path than one which has more violation
in an open area of the environment. Likewise, a projection to
P (t) may be short but induce more collisions than a longer
projection which happens to avoid obstacles. However, we
show that the algorithm built on these heuristics is effective
on several real-world planning problems, suggesting that the
heuristics do indeed capture the structure of some practical
path planning problems.

It is straightforward to extend this algorithm to consider
tasks that afford multiple goals, which are common in



Algorithm 3: RetrieveRepair(t,e,n,L(T ))

1 Retrieve:
2 for all pi ∈ L(T ) do
3 di ← dt(pi, t)
4 end
5 Pn ← Set of n paths from L(T ) with n smallest di;
6 Pt ← ∅;
7 for all p ∈ Pn do
8 Pt ← Pt ∪ j(p, t)
9 end

10 p∗t ← argmin
pt∈Pt

v(pt, e);

11 Repair:
12 pf = f(p∗t , e);
13 if pf 6= ∅ then
14 return pf ;
15 return Failure;

planning for manipulators. To consider multiple goals, we
generalize dt(p, t) to compute the distance between a path
and all goals allowed by t paired with the start configuration.
dt(p, t) then returns the lowest distance for any pair. j(p, t)
is generalized in the same way.

In the following section we provide a description of our
implementation of the modules of the Lightning framework.
We emphasize that this is only one embodiment of the
framework and that there are many ways to implement
these modules. We chose these implementations because they
performed well in terms of computation time.

IV. THE LIGHTNING FRAMEWORK

An overview of the Lightning framework is shown in
Figure 1. Given a path planning query, we run two modules
in parallel: planning-from-scratch (PFS) and retrieve-repair
(RR). The PFS module attempts to use a planner to find a
path from start to goal, while the RR module attempts to
find a path by retrieving an appropriate path from a path
library and repairing that path so that it does not violate
any constraints. PFS and RR run simultaneously, and the
first module to finish sends a stop signal to the other, which
terminates the other module. The path produced by the first
module to finish is then sent to a smoother/optimizer. After
smoothing/optimization, the path is executed and sent to the
library manager within the RR module. We describe the
implementation of each module below.

A. Library Manager

The library manager decides whether to insert a path
into the path library. It uses the following rules to make
this decision: If PFS was the first to produce a path, this
means that RR did not have a path sufficiently appropriate
for the given query (the ideal path would require no repair,
and thus the repair path sub-module would not require any
time). Thus, to improve the RR module’s performance on
similar queries, we add the path produced by PFS to RR’s
path library. If RR produces a path before PFS, then RR
has already surpassed PFS’s ability on the given query, so

Fig. 4. Repairing an infeasible path using BiRRTs. Blue: Forward-searching
trees. Orange: Backward-searching trees.

there is no need to add RR’s path into the library if we are
only interested in surpassing PFS. However, there may be
some situations where PFS’s performance is poor, and simply
surpassing PFS is not sufficient in terms of computation time.
Thus, if RR was the first to produce a path and that path was
significantly different2 from the path it chose to re-use, we
add that path to RR’s path library. In this way, RR is able to
surpass PFS’s performance on difficult problems while not
cluttering the path library with redundant paths.

B. Planning from Scratch

We implement the planning-from-scratch module as a
BiDirectional RRT (BiRRT) [19]. We selected RRTs for
their ability to explore C-space while retaining an element
of “greediness” in the search for a solution. The greedy
element is most evident in this bidirectional version of the
RRT algorithm, where two trees, one grown from the start
and one grown from the goal, take turns exploring the space
and attempting to connect to each other.

C. Retrieving and Repairing a Path

To retrieve a path from the library, we perform the
“Retrieve” section of Algorithm 3. The v function, which
computes constraint violation of a path, is implemented
by checking environment collision, joint-limits, and self-
collision for the discretized path. v returns the number of
configurations which violate any of these constraints.

After retrieving the path with minimum v (from the n
paths we evaluate), we apply an implementation of the f
function described above to repair the retrieved path, thus
generating a path that does not violate constraints. There
are several methods in motion planning [3] and trajectory
optimization [20] [21] that are capable of this task. Since our
aim is to reduce computation time, we use what we believe
to be the fastest approach: repairing the path using multiple
BiRRTs. This method is also guaranteed to find a solution if
one exists. The implementation of this method is as follows:

First we check each point in the discretized path for
constraint violation. Any segments of the path that do not
violate constraints are preserved. To get from one valid
segment to another, we run a BiRRT, whose start tree is
rooted at the end of one valid segment and whose goal tree

2We evaluate path similarity by treating the paths as time-series and
computing the similarity score using Dynamic Time Warping [18].



is rooted at the beginning of the next valid segment (see
Figure 4). The composite path consisting of originally-valid
path segments and path segments produced by the BiRRT is
then returned as the path.

D. Smoother/Optimizer

The smoother/optimizer is implemented using path short-
cutting. We make one improvement to the standard path-
short-cutting algorithm: We don’t attempt a short-cut if the
segment of the path between the selected nodes is already
straight or nearly straight. Implementing this simple check
allowed us to save a great deal of time in smoothing.

V. RESULTS

We are interested in applying the Lightning framework
to problems that involve path planning for manipulators. To
that end, we evaluate the framework’s performance in two
domains: reaching tasks for the PR2 in a kitchen scenario
and handover tasks for a minimally-invasive surgery robot
in a heart-surgery scenario, both in simulation. Since PFS is
currently the most common and accepted method for path
planning, the key question we wish to answer is: Does using
the RR module outperform PFS as more paths are added to
the library? And if so, by how much? Thus, in both scenarios,
we compare the performance of the PFS and RR modules
(for varying library sizes) in terms of computation time.

We used n = 10, a BiRRT step size of 0.05rad, and a
dynamic time warping threshold of 5 in all experiments. All
tests were performed using a computer with 4 3.4GHz cores
and 16GB of RAM. We describe our test scenarios below.

A. PR2 in a Kitchen Scenario

The Willow Garage PR2 robot is a two-arm mobile ma-
nipulator intended for use in domestic environments. In our
scenario, the PR2 is placed in a kitchen, where its task is to
reach and grasp a bottle in cluttered scenes using the 7DOF
right arm. The poses of the bottle, several box obstacles, and
the PR2’s base are randomly determined for each problem
instance. The bottles and boxes were placed randomly on
the counter/cupboard shelf, while the PR2’s base was placed
randomly within several centimeters of a nominal pose in
front of the counter/cupboard. C-space goals are generated
by sampling over grasping poses around the top of the bottle
and performing inverse kinematics (IK). The collision-free
IK solutions are passed to the RR module as goals.

We consider two types of scenes in the kitchen: grasping
a bottle on a counter with three box obstacles and grasping
a bottle in a cupboard with two box obstacles (Figure 5),
which we consider to be a more difficult planning problem
because of the narrowness of the cupboard.

B. Minimally-invasive Heart Surgery Scenario

We also consider a minimally-invasive surgical procedure
where two small manipulators and a camera are tele-operated
by a surgeon to perform an operation on the heart. A common
procedure of this type is Coronary Artery Bypass Graft
(CABG) surgery. In this procedure, the left lung is deflated,

Fig. 5. Examples where PR2 is reaching for a bottle on a kitchen counter
(above) and in a cupboard (below). Smoothed paths generated by the RR
and PFS modules for two tasks are displayed above and two views of the
same task are displayed below (only the path of the end-effector is shown).
Red: Path chosen from the path library. Green: Path produced by the RR.
Light Blue: Path produced by the PFS.

Fig. 6. Example of the minimally-invasive surgery needle-handover task.
The left lung is deflated before the procedure. Left: Starting configuration.
Right: Paths and end configuration. Red: Path chosen from path library.
Green: Path produced by the RR. Light Blue: Path produced by the PFS.

the manipulators are inserted between the ribs into the chest
cavity, and the surgeon’s task is to graft an artery onto the
heart. We seek to automate some of the sub-tasks of this
surgery, and here we concentrate on the sub-task of handing-
over a suturing needle between manipulators (see Figure 6).

We consider the following instance of the hand-over
task: The right manipulator is holding a suturing needle.
Both manipulators are placed in a random collision-free
configurations near the heart. The task is then to construct a
path for the left manipulator that moves it to a configuration
where it can grasp the needle (this configuration is generated
using IK). The path must avoid collisions with the complex
geometry of the heart and ribs while also avoiding the other
manipulator. Each manipulator is rooted at its entry port and
has 7DOF: 3 rotational joints at the entry port, 1 prismatic
joint that allows sliding in and out of the entry port, and the



3 rotational joints at the wrist.

C. Test Results

To evaluate the performance of our framework on the
above scenarios, we first populate a path library for each
scenario using the Lightning framework. To do this, we run
Lightning over thousands of randomly-generated instances
of each scenario. We then compare RR and PFS in terms of
planning time on each scenario for varying library sizes.

We found that, although instances of each scenario were
visually similar, the planning times for the different instances
varied widely. This is because it is possible to create situa-
tions where the manipulator is fairly unrestricted at the goal
and instances where the manipulator must fit into a very tight
space to reach the goal in each scenario (see Figure 5). The
randomized nature of the path repair and PFS modules also
contributed to this high variance. Thus, we find it informative
to present the statistics in terms of which module (RR or
PFS) performed best in a given instance. Figures 9 and 7
display the percent of instances where RR outperformed PFS
for different library sizes.

It may be surprising that, even with a small library, RR was
able to achieve a large improvement over PFS (see Figure
7). The reason for this result is that even paths that are far
from accomplishing the task still avoid invariant constraints.
For instance, paths for the cupboard scenario will bring the
end-effector into the cupboard while either colliding slightly
with the cupboard (because the base position varies when
generating the paths) or avoiding it entirely. Thus, while PFS
must find a way to bring the end-effector from the robot’s
side into the narrow space of the cupboard, RR only needs
to repair a fraction of the path where the end-effector is
already inside the cupboard. As RR gains more experience,
the amount of path needed to repair usually decreases, and
for the larger library sizes, RR outperforms PFS in over 90%
of instances for both PR2 scenarios.

Figure 8 shows histograms of PFS runtime minus RR
runtime for 200 problem instances corresponding to several
library sizes for the PR2 scenarios. We used a timeout value
of 60 seconds for both modules. 60s was used as the value
for a test which timed out when computing the histograms.

As the histograms show, the RR module outperformed PFS
by 6.8s and 16.4s on average when using the largest library
sizes for the counter and cupboard scenarios, respectively.
There were also a significant number of cases where RR
outperformed PFS by a very large amount: by over 10s
in 18% of cases, and by over 20s in 25% of cases using
the largest libraries for the counter and cupboard scenarios,
respectively. Average planning times for PFS were 6.80s,
12.2s, and 0.220s for the counter, cupboard, and surgery
scenarios, respectively. Average planning times for RR were
1.46s, 0.93s, and 0.084s (using the largest library sizes).

The performance difference was not as prominent for the
minimally-invasive surgery scenario, although RR did signif-
icantly outperform PFS (see Figure 9). The reason for this
small performance difference is that many of the randomly-
generated instances were quite easy and required very little

Fig. 7. Percent of instances for the two PR2 scenarios where RR
outperformed PFS (y-axis) for varying path library size (x-axis). Left:
Kitchen counter scenario. Right: Kitchen cupboard scenario.

Fig. 8. Histograms of PFS runtime minus RR runtime for PR2 in the
kitchen (top row: counter, bottom row: cupboard). The y-axis shows the
number of instances (out of 200) that had the computation time difference
(in seconds) shown on the x-axis. The red dashed line is the mean.

Fig. 9. Left: Percent of instances for needle-handover scenario where
RR outperformed PFS for varying path library size. Center and Right:
Histograms of PFS runtime minus RR runtime (in seconds) for 200 instances
of this scenario.

planning to solve. In these cases, the time necessary to check
dt for all paths in the library and compute v for n paths
exceeded the runtime of the PFS module (even though path
repair was often not required because a path with no violation
was retrieved). If we eliminate the time it took to retrieve a
path (which totaled to about 0.046s on average) then the RR
module outperformed PFS in 94% of instances for a library



size of 1000 paths for the surgical handover scenario.
These results confirm our hypothesis that the RR module

improves with experience and outperforms using PFS alone.
In some cases the improvement over PFS is more pronounced
than in others, however RR was able to outperform PFS in
the majority of instances for each scenario.

VI. DISCUSSION

A. Multiple PFS Modules

It is straightforward to extend this framework to include
multiple PFS modules, as long we have the computational
resources to run them all in parallel. Having multiple PFS
modules would allow us to take advantage of the strengths of
many different planning algorithms. We could also vary pa-
rameter values over multiple instances of the same algorithm.
To accommodate these modules, we can easily generalize the
rule for adding a new path to the library: If any PFS module
generates a path before RR, all modules are stopped and the
path is added to the path library.

B. Parallel/Cloud Computing

Our framework can also benefit greatly from more paral-
lelization and cloud computing. One application would be
storing the path library in the cloud and allowing multiple
robots of the same type operating in similar environments
(for example multiple PR2s in kitchen environments) to
upload paths to the library. Violation checking could also
be performed in the cloud, which would allow us to pick
the path with the least violation among all the paths in the
library, instead of testing violation on only a subset of paths.
Finally, multiple PFS modules could be spread across the
cloud, as well as parallelizing the computation in the PFS
modules and the path repair module. We intend to investigate
the applicability of various types of parallel computation and
cloud computing frameworks in future work.

C. Learning to Forget

One issue we have yet to address is limiting the size of
the path library by forgetting paths that are not useful. Our
results show that after a certain library size (depending on
the type of task), adding new paths is not helpful. To address
this issue, we could remove a path from the library based
on how often the path is retrieved and whether the repair
algorithm outperforms PFS when using this path.

VII. CONCLUSION

We proposed a framework, called Lightning, for planning
paths in high-dimensional spaces that is able to learn from
experience. The Lightning framework consists of two main
modules, which are run in parallel: a planning-from-scratch
module, and a module that retrieves and repairs paths stored
in a path library. After a path is generated for a new query,
a library manager decides whether to store the path based
on computation time and the generated path’s similarity to
the retrieved path. We have demonstrated the framework on
several example tasks for the PR2 and a minimally-invasive
surgery robot. We found that the retrieve-and-repair module
produced paths faster than planning-from-scratch in over

90% of test cases for the PR2 and in 58% of test cases
for the minimally-invasive surgery robot.
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