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Keep it Simple: Data-efficient Learning for
Controlling Complex Systems with Simple Models

Thomas Power1 and Dmitry Berenson1

Abstract—When manipulating a novel object with complex
dynamics, a state representation is not always available, for exam-
ple for deformable objects. Learning both a representation and
dynamics from observations requires large amounts of data. We
propose Learned Visual Similarity Predictive Control (LVSPC),
a novel method for data-efficient learning to control systems
with complex dynamics and high-dimensional state spaces from
images. LVSPC leverages a given simple model approximation
from which image observations can be generated. We use these
images to train a perception model that estimates the simple
model state from observations of the complex system online. We
then use data from the complex system to fit the parameters
of the simple model and learn where this model is inaccurate,
also online. Finally, we use Model Predictive Control and bias
the controller away from regions where the simple model is
inaccurate and thus where the controller is less reliable. We
evaluate LVSPC on two tasks; manipulating a tethered mass
and a rope. We find that our method performs comparably to
state-of-the-art reinforcement learning methods with an order of
magnitude less data. LVSPC also completes the rope manipulation
task on a real robot with 80% success rate after only 10 trials,
despite using a perception system trained only on images from
simulation.

Index Terms—Machine Learning for Robot Control; Motion
and Path Planning

I. INTRODUCTION

WHILE recent machine learning methods have been
effective for many manipulation tasks, they rely on

access to large datasets of the system being manipulated [1],
[2], [3]. Yet in many scenarios we do not have time to gather
extensive training data with an object before performing a
task. Sim-to-real transfer has been used to fine-tune parameters
on limited real-world data when the real object is similar to
those used in simulation [4], [5], but these methods struggle
if the objects are significantly different. We would like to use
prior knowledge about the object to reduce the data required
for learning, but the question of how to effectively use prior
knowledge when encountering a novel object remains open.

This paper addresses how to leverage dynamics models of
simple systems when learning to control much more complex,
but related, systems online. While it is possible to learn
dynamics using only online data (e.g. [6]), we wish to use our
knowledge of a simple model to make the learning much more
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data-efficient, and thus practical for real-world application. For
example, consider a tethered mass being swung by a gripper
(Figure 1). The dynamics of the system are complex and
require a great deal of data to learn. However, if we treat
the system as a cart with a rigid pendulum, we can predict the
dynamics fairly accurately for some subset of the state-action
space. We can exploit this subset to perform tasks such as
bringing the mass to a target, even without a globally-accurate
dynamics model. Simple models are often used in this way,
for example in deformable object manipulation [7], [8] and
control for humanoids [9].

To use knowledge of the dynamics of the simple model to
control the more complex true system, we must know which
states of the complex system correspond to which states of the
simple system. What makes this problem especially difficult
is that, while we can design a useful state representation
for the simple system offline, we do not know what state
representation to use for the complex system, so we cannot
explicitly define a correspondence between states.

Our key insight for overcoming this problem is that the
simple system (and its state representation) is a good approx-
imation of the complex system when it gives rise to similar
image observations to the complex system. By using a metric
for observation similarity that reasons about uncertainty we
can build a controller for the complex system and also learn
where our approximation is inaccurate (to avoid visiting those
parts of the state space). By utilizing domain randomization
during training, we enable a single simple system state to elicit
a wide variety of image observations; i.e. shapes, colors, and
obstacles can vary while still producing an image we consider
to be visually-similar. We use online system identification
to estimate the parameters of the simple model, however,
deciding which class of simple model to use for a given task is
not within the scope of this paper. Here we made this decision
manually but seek to automate selecting the class of simple
model in future work.

This paper makes the following contributions: 1) Learned
Visual Similarity Predictive Control (LVSPC), a novel frame-
work for learning how to perform manipulation tasks with a
complex system given only a simple model and images from
a small number of trials online; 2) Evaluation of LVSPC on
manipulating a tethered mass (using a cart-pole as a simple
model) and a rope (using a rigid body as a simple model)
(See Fig. 1) in simulation, showing large improvements in
data-efficiency over baselines (PlaNet [6] and CURL [10]).
LVSPC also completes the rope manipulation task on a real
robot with 80% success rate after only 10 trials.

LVSPC consists of two phases: 1) Offline, we train an
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Fig. 1: (a-c): LVSPC controlling a tethered mass to a desired position (blue) from images by treating it as a cart-pole; (d-g): LVSPC brings
a rope to a target location in a narrow passage between two obstacles while avoiding protrusions by treating the rope as a rigid object. The
robot starts with the rope slack but pulls it taut to keep the approximation more accurate, allowing it to complete the task.

ensemble Convolutional Neural Network (CNN) perception
system on image observations of the simple system, outputting
an estimate of the simple system’s state. 2) Online, given
image observations of the complex system, we do system
identification to estimate parameters of the simple system
dynamics and learn a Gaussian Process (GP) that predicts
where the simple model is accurate. We use the simple model
and the GP to track the object via a Gaussian Process Un-
scented Kalman Filter (GPUKF) [11] and perform control via
Model Predictive Path Integral Control (MPPI) [12], biasing
the system away from inaccurate transitions.

II. RELATED WORK

Dynamics from Images: Learning-based approaches using
dynamics models for control with images observations have
included learning dynamics models directly in image space [1],
[3], [13]. Dynamics in image space are highly complex, and
these methods require large amounts of data. Other methods
learn dynamics in a lower-dimensional latent space [14], [2],
[6], [15]. None of these methods incorporate prior knowledge.
SE3-PoseNets [16] learn dynamics in pose-space from point
cloud data. [17] use the positions of a set of ordered points as
the representation of a rope and pre-trains a state estimator on
ground truth in a simulator. Unlike LVSPC, neither of these
methods use a given model approximation nor do they reason
about model uncertainty.

Using simplified models: Simplified models have been
widely explored in the legged robotics literature, in particular
using spring-mass damper models [18], [9]. Simplified models
have been used to generate trajectories for a lower-level con-
troller to track with guarantees [19]. However, these guarantees
require access to a high-fidelity model. Other work [20] has
used a set of simple models and a selection mechanism to
choose between them. [8] use a given simplified dynamics
model and learns a classifier on whether a given transition is
reliable. We use GP uncertainty to model transition reliability
rather than a classifier. We also use image observations and
perform tracking concurrently.

Incorporating model uncertainty: Previous work has shown
that reasoning about model uncertainty can improve data
efficiency [21], [22]. PILCO [21] uses a Gaussian Process
dynamics model for model uncertainty and achieves high data
efficiency on learning control policies. Gaussian Processes
dynamics have also been used for the purpose of both avoiding
uncertainty [23], or explicitly seeking it [24]. PETS [22] uses a
probabilistic ensemble of neural networks to model uncertainty
and is able to outperform PILCO on control tasks with high
state dimension. These methods have only been demonstrated

on tasks for which state is available, and not on image domains
where parameterizing uncertainty can be difficult. LVSPC aims
to combine modeling of uncertainty in the dynamics with
strong priors to maintain high data efficiency when learning
from images.

III. PROBLEM STATEMENT

We consider a nonlinear discrete-time system with state x ∈
X and controls u ∈ U . The system has unknown true dynamics
given by xt+1 = f(xt, ut). We assume X may be arbitrarily
high-dimensional and unobserved. Instead we may only have
access to observations o ∈ O via an observation function at
the current state ot = g(xt).

We define a trial as a time-limited attempt to find a sequence
of controls {u1, ..., uT } such that the final state xT ∈ Xgoal
where Xgoal is the trial’s goal region. We assume that we
can fully observe when the system has reached the goal i.e.
o ∈ Ogoal ⇐⇒ x ∈ Xgoal. The goal in observation
space is defined as Ogoal = {g(x) : x ∈ Xgoal}. We
assume that data collection on the true system is expensive.
The unknown dynamics and high-dimensional state make this
problem intractable to solve with a small dataset. Instead
we seek to model the system in a latent state of lower
dimensionality z ∈ Z with simple dynamics f̂ρ parameterized
by ρ with input-dependent noise. The transition distribution,
which we will denote as pz for shorthand is given by

p(zt+1|zt, ut) = N (f̂ρ(zt, ut), Q(zt, ut)) (1)

We assume that f̂ρ is given and is differentiable with respect
to (z, u, ρ). Q is an input-dependent uncertainty term. We also
assume that the simple dynamics are Markovian. The simple
system has the same observation space O and has a given
observation function ot = ĝ(zt). We assume that we can a
priori specify some subset of the goal region in Z as Zgoal,
i.e that {ĝ(z) : z ∈ Zgoal} ⊂ Ogoal. This could also be done
by specifying Ogoal directly (as is common in learning to
control from images, e.g. [25]) and using this to infer zgoal.
We then seek to design a feedback policy ut = π(zt) such that
zT ∈ Zgoal for some time T . Our goal is to design π using
f̂ρ so that it achieves high success rate after a small number
of trials.

IV. METHODS

Our approach to this problem requires input in the form of
a simple model approximation that is believed to accurately
represent the dynamics over some subset of the complex
system (X ,U). By using this simple model in simulation we
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Algorithm 1 LVSPC

Inputs: Simple model dynamics: f̂ρ; Simple model cost: c;
Simple model renderer ĝ; Initial data size N ; # Episodes K

Offline Training with simple system data
1: {yi, oi}Ni=1 ← CollectData(f̂ρ, ĝ, N );
2: φ← TrainStateEstimator({yi, oi}Ni=1);

Online Training with complex system data
3: D ← ∅; ρ,Q← Initialize;
4: for k ∈ {1, ...,K} do
5: pz ← N (f̂ρ(zt, ut), Q(zt, ut));
6: D ← D ∪; Rollout(pz , c, φ);
7: ρ←; FitSimpleSystem(D, f̂ρ);
8: Q← FitGP(D, f̂ρ, Q, ρ);

can generate large amounts of data. The key to our approach is
to leverage this data and our knowledge of the simple system.
We then reduce the problem of unsupervised representation
and dynamics learning to that of supervised learning of a per-
ception system for the simple model representation (offline),
and then learning when this representation and the dynamics
are accurate (online).

Our full method is shown in Algorithm 1 and Figure 2.
The overall procedure is to first generate a dataset of images
with corresponding simple model configurations and then to
train a perception system to estimate these configurations from
images. Once this perception system is trained offline, we
move to the online execution/learning phase, where we must
manipulate the never-before-seen complex system.

The goal of the online execution is to reach a given
goal region. However, because the perception system and
the simple model dynamics can only account for some com-
plex model states, we must try to avoid states where the
perception/dynamics are inaccurate. To this end, we collect
data as we attempt the task and use that data to train a
GP that captures the error in the simple model predictions.
This error distribution is input into a Kalman Filter variant to
better estimate the state and into a trajectory optimizer, which
attempts to avoid regions of state space where the simple
model predictions are inaccurate. The process of planning
trajectories, executing one action, estimating the resulting
state, and replanning a trajectory (Alg. 2) repeats until the
goal (or a timeout) is reached.

A. Simple Model

The simple system state may contain elements which cannot
be estimated from a single image, e.g. velocities. Thus we
define the components of the simple state that can be noisily
observed from a single image as latent observations y. We
then have the non-linear discrete-time state space model with
dynamics described in Eq. (1). In general there will be a non-
linear mapping from z to y. In this paper we consider only a
linear mapping, which is sufficient for our models:

yt = Czt + ε, (2)

For an n-dimensional simple model system (z ∈ Rn) with
m-dimensional (m ≤ n) observations (y ∈ Rm), C =

Algorithm 2 Rollout
Inputs: Transition distribution pz; Simple model cost: c; CNN
Ensemble φ

1: D ← ∅; µz1,Σz1 ← Initialize;
2: for t ∈ {1, ..., T} do
3: µyt ,Σ

y
t ← φ(ot);

4: yt ∼ N (µyt ,Σ
y
t );

5: µzt ,Σ
z
t ←GPUKF(µzt−1,Σ

z
t−1, ut−1, pz, yt);

6: ut ← MPPI(µzt , c, pz);
7: D ← D ∪ (µyt ,Σ

y
t , ut);

8: ExecuteAction(ut);
9: if AtGoal then break;

10: return D
[Im×m,, 0m×n−m] selects the latent observations from z. For
example, if z is the position and velocity of a point, then y
is only the position, which is all that can be observed from
a single image. In the case where ε ∼ N (0, R) for positive-
definite R we can use noisy measurements y to estimate z
by filtering using non-linear techniques such as the Unscented
Kalman Filter (UKF) [26]. We will show how to use a GP to
learn Q(zt, ut) in Eq. (1) from data in Sec. IV-D.

B. Probabilistic CNN Ensemble for Perception
In order to use the simple model for the complex system,

we need a perception system φ that maps images to simple
model states (even if the image is generated from the complex
system). We would also like a way to estimate how well a
simple model state approximates the complex system at a
given state, as this gives us an estimate of confidence in the
simple system dynamics at this state. We use the uncertainty
in the perception estimate as a proxy for correspondence
between the simple state and the unknown complex state. The
perception output is

µyt ,Σ
y
t = φ(ot) (3)

yt ∼ p(yt|ot) = N (µyt ,Σ
y
t ), (4)

where the variance Σyt estimates the uncertainty, and φ is the
perception system. We assume an isotropic Gaussian in Eq. 3,
thus Σyt can be described by a vector σyt ∈ Rm. Ensembles
have been empirically shown to give useful estimates of
prediction uncertainty, which can be used to evaluate if a given
input is out-of-distribution w.r.t the training data [27]. Thus
using ensembles avoids manually defining a similarity between
the complex system observations and observations generated
from the simple system. Instead we can input observation ot
from the complex system into our perception system, and if
it produces a high-certainty estimate of yt (i.e. where ||σyt ||
is small), this implies that yt is a good approximation for the
complex system at time t.

We parameterize φ as a CNN ensemble which is trained
with data generated from the simple system. Each CNN
in the ensemble is a probabilistic CNN which outputs the
parameters of a Gaussian, these are then combined into one
Gaussian estimate. We train the CNN via supervised learning
on observations of the simple system which we collect from
simulation, along with correspond simple system states. Im-
portantly, we assume that we can generate observations from
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Fig. 2: Method overview. Left: Training the CNN ensemble on image observations generated from the simple system offline. φ is a CNN
ensemble with variance used as a measure of uncertainty; Center: Online execution using the simple model CNN with GPUKF filtering and
MPPI for control; Right: Procedure for fitting parameterized simple model and GP from observations of the complex system. The transition
probability (red) is trained to predict the future uncertainty of φ, allowing us to avoid avoid areas where φ is not confident.

the simple system which are similar to the complex system
observations. To avoid requiring precise knowledge of the
complex system before generating the simple model data, we
generate a diverse training set of observations from the simple
model. For example, we generate cart-poles with varying
pendulum length for the tethered mass scenario. By generating
diverse observations via domain randomization, our notion of
visual similarity means that there is a simple system with some
appearance and system parameters that looks similar to the
complex system. See in Fig. 3 for examples.

Given an ot of the complex system online, we sample yt
from the output of the φ and use this along with the learned
GP transition distribution (Sec. IV-D) to track a Gaussian
distribution over the simple model state (p(zt|u1:t−1, y1:t) =
N (µzt , σ

z
t )) with a GPUKF [11]—an extension to the UKF

for GP dynamics. When predicting p(zt+1|u1:t, y1:t) in the
GPUKF we use the posterior mean of the GP (Sec. IV-D)
to perform the unscented transform, while the process noise
is the posterior covariance of the GP, Q(zt, ut), evaluated at
(µzt , ut).

C. System Identification

The simple model dynamics may be parameterized by ρ
(for example mass, length, etc.) and in order to use it, we
must estimate the ρ which best approximates the complex
system. One approach is using the Kalman filter to jointly
estimate ρ and the latent state z, but we found that this was
not numerically stable. Instead we use maximum-likelihood
estimation on observed trajectories from the complex system.

Given an observed trajectory of the complex system
consisting of {ot, ut}Tt=1 we encode the observations into
{µyt , σ

y
t , ut}Tt=1. Since our trajectory may contain transitions

which the simple model cannot accurately predict, we split the
trajectory into N trajectories of length K < T , and discard
trajectories with average uncertainties above threshold α so
we are left with high-certainty sub-trajectories. For each sub-
trajectory we rollout the actions u1:T using Eq. (1) and (2) to
get estimated observations ŷ1:T and perform gradient ascent

Fig. 3: Examples of data generated from the simple system for
training the CNN ensemble. (a) Tethered mass experiment, showing
different geometries of the cart-pole. (b) Simulated rope manipulation
experiment, showing different geometries of rigid link, and differing
number and geometries of objects. (c) Real robot rope manipulation
experiment. We randomize textures, lighting, obstacle configuration,
camera pose, and rigid link geometry and add noise.

on the parameters ρ and the trajectory initial states {zi1}Ni=1 by
maximizing the log likelihood of ŷ1:T in the distribution output
by the CNN ensemble N (µy1:T , σ

y
1:T ). The CNN weights are

held constant. This process optimizes ρ to match the observed
dynamics for high-certainty transitions in (Z,U).

D. Predicting Future Uncertainty with GP Regression

From φ we have a confidence in our simple model approx-
imation at a given y (the uncertainty σy). To keep the system
in regimes where the approximation is accurate we also need
to predict the future uncertainty conditioned on actions. Our
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uncertainty expresses uncertainty over the validity of the state
as a description of the complex system, rather than the value
of the state. Since we are using state uncertainty as a measure
of confidence in the simple model approximation we model
this uncertainty as state and action-dependent and use a GP
with mean function f̂ρ and kernel function K to model the
transition distribution. The GP posterior is

p(zt+1|zt, ut) = N (f̂ρ(zt, ut, ρ)+µf (zt, ut), Q(zt, ut)), (5)

where µf and Q are typically found via conditioning on some
training set. However in our case this is a Gaussian Process
State Space Model (GPSSM) [28] with transition probability
above and emission probability defined in Eq. (2). Training
this GP is non-trivial as we do not have access to z directly.
Instead we must jointly infer both the transition probability
and z during training.

We use a Parametric Predictive GP (PPGP)[29] in order
to train a GP with state-dependent aleatoric uncertainty via
stochastic gradient descent. The uncertainty of the GP σz

is used to predict the uncertainty of the CNN ensemble σy

via Eq. (2). The PPGP is a sparse GP method which fits
psuedo-inputs (ζ) and psuedo-ouputs (γ ∼ N (m,S)) such
that conditioning the GP on (γ, ζ) approximates the true GP
posterior. The GP parameters are thus (m,S, ζ) as well as
the kernel hyper-parameters. The GP posterior contains an
additional µf term compared with Eq. (1). This allows the
GP posterior mean to deviate from that of the simple model,
attempting to fit transitions which do not conform to the simple
model dynamics. Since our representation is known to be
insufficient to model the true dynamics of the system, we are
conservative and do not allow the GP to fit such transitions
by constraining m = 0 and thus µf = 0. We compare to a
variant of our method where we do not enforce µf = 0 in our
experiments.

We now describe how to train this GP using trajectories
from the complex system of the form {µyt , σ

y
t , ut}Tt=1. We

would like Eq. (2, 5) and an initial p(z1) to be able to
reproduce the trajectory and uncertainties from the CNN. The
learning objective to be minimized is then

L = KL(p(y1:T |o1:T )||p(y1:T |u1:T )), (6)

where KL is the Kullback–Leibler divergence, p(y1:T ) rep-
resents the joint distribution p(y1, ..., yT ), p(y1:T |o1:T ) is the
output of the CNN, and p(y1:T |u1:T ) is the prediction from
the dynamics and Eq. (2). The GP predicted uncertainty σzt is
used with Eq. (2) to predict a latent observation uncertainty
σ̂yt . This objective aims to make the predicted uncertainty σ̂yt
and the observed uncertainties σyt consistent, i.e. the GP will
predict the future uncertainty.
p(y1:T |o1:T ) is fixed (i.e. we are not retraining the CNN

online). Given this, we can rewrite the objective in terms of
expectations over p(y1:T |o1:T )

L = −Ep(y1:T |o1:T ) [log p(y1:T |u1:T )]+H [p(y1:T |o1:T )] , (7)

where H is the entropy and this entropy term can be dropped
as it only depends on the pre-trained CNN. We can then
optimize by maximizing the conditional expectation in Eq.

(7) of y1:T . To do this we construct a variational lower bound
on p(y1:T |u1:T ). This lower bound is given by

ELBO =

T∑
t=1

Eq(zt) [log p(yt|zt)]−KL(q(z1)||p(z1))−

T∑
t=2

Eq(zt−1) [KL (q(zt) || p(zt|zt−1, ut−1))] ,

(8)

where the prior on the initial state is p(z1) ∼ N (0, I) and
q(zt) = p(zt|y1:t, u1:t−1) is the GPUKF filtering distribution
[11]. The final objective to minimize is given by L1

L1 = −Ep(y1:T |o1:T )[ELBO] ≥ L (9)

To evaluate this objective we use the reparameterization trick
to sample from the CNN and estimate gradients for L1. After
performing this training procedure we obtain the transition
distribution pz , which is used by the GPUKF to perform
filtering and by the MPC to predict future uncertainty.

E. Model Predictive Control

For MPC we use MPPI [12] with a cost c for the given
task. To encourage the controller to keep the system in the
domain of the simple model we add a cost to penalize the
predicted uncertainty. Thus the cost function has the form
c(z, σz, u) (examples are shown in the experiments). Note
that typically in this setting the expected cost is computed,
but as mentioned in the previous section, our uncertainty
does not express uncertainty over the value of the state.
When rolling out a predicted trajectory with the model we
propagate the expectation through the dynamics and record
the one-step uncertainty for each step resulting in a trajectory
(µzt , σ

z
t , ut)

T
t=1 with which to calculate the cost. If we do

not penalize this uncertainty, it will be ignored, which is
equivalent to assuming the simple model is always accurate
(we compare to this method in our experiments). Also, because
we manually design the simple model state representation,
we can incorporate additional information, such as avoiding
collision, into the cost, which would have to be learned for an
unsupervised learned representation.

V. EXPERIMENTS

We evaluate LVSPC on 1) manipulating a tethered mass,
and 2) placing a rope in a narrow opening vs. baselines in
the low-data regime. An episode is a time-limited attempt to
reach the goal (terminating early when the goal is reached).
See the accompanying video for example task executions.

A. Environments

a) Tethered Mass: This task involves controlling a teth-
ered mass by applying force to the base of the tether. The goal
is to bring the mass to a target without the tether contacting
the target (tether contact results in failure). We implement this
system in MuJoCo [30]. There is a single actuated horizontal
joint at the top of the tether (see Figure 4). Goals are randomly
assigned at the start of each trial. This example demonstrates
the applicability of LVSPC to highly-dynamic systems where
velocity must be considered.
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The simple system we choose here is the pendulum on
a cart (i.e. a cart-pole); we choose this because we ob-
served that when the tether is taut the system will behave
like a pendulum. We use an analytical dynamics function
for f̂ρ. We define z = [pxcart

, pxmass
, pymass

, ṗxcart
, θ̇],

where θ is the angle of the pendulum. We define the la-
tent observations as y = [pxcart

, pxmass
, pymass

] and thus
C = [I3×3 03×2]. The parameters ρ are [mass_cart,
mass_pole, angular_damping].

b) Rope Manipulation: This task consists of two KUKA
iiwa 7-DOF arms holding the ends of a rope. The goal to
bring the center of the rope to the center of a narrow gap
between two obstacles. These obstacles have small protrusions
on which the rope can become caught. We implement this en-
vironment in Gazebo with the ode45 back-end (Figure 4). The
action space of the robot is [∆pL,∆pR] ∈ R6 where pL, pR
are the left and right end-effector positions, respectively. We
use a Jacobian-based method for inverse kinematics so that
transitions in the robot’s configuration space are smooth. The
observations consists of RGBD data from an overheard Kinect.
The goal and obstacle configuration for the task remain fixed
across trials, but the starting locations of the end-effectors vary.
We choose this example because it mimics cable installation,
which is necessary for manufacturing and repair applications,
where there are often narrow gaps and protrusions.

The simple system we choose here is to treat the rope as
if it is a rigid link. The simple dynamics are then specified
by adding a constraint that the gripper distances remain fixed.
This approximation will be accurate so long as the rope is kept
taut for the duration of the task. We define z = y = [pL, pR]
and C = [I6×6]. Since this model does not require dynamic
parameters we forego the sysid step of our method.

B. Baselines

We compare LVSPC to two recent methods from the litera-
ture. The first method is PlaNet [6], a model-based reinforce-
ment learning algorithm. PlaNet learns a low-dimensional state
representation along with dynamics and cost functions. The
second is CURL [10], which uses a contrastive loss to learn a
representation in which to learn a policy and has shown state-
of-the-art sample-efficiency. For each of these baselines we test
them by training them directly on the task with the complex
system. We also show results for when the baselines are pre-
trained on the simple system and fine-tuned on the complex
system to investigate if these methods can take advantage
of the data from the simple system. Both baselines were
originally proposed with RGB observations, and we extend
them to use RGBD for the rope experiment.

We also test with three variants of LVSPC: 1) The full
method which does both system identification and GP learn-
ing; 2) LVSPC without the GP, this is equivalent to only
using the simple model for control, and assuming it will be
sufficiently accurate for all transitions. We choose this variant
to investigate whether learning and avoiding inaccurate areas
of the simple model state space is helpful for task performance;
and 3) LVSPC without constraining the GP posterior to be
zero-mean, hence attempting to learn a better approximation

of the dynamics in the simple system state space, rather than
only where the simple model is accurate.

C. Simple Model Data

a) Tethered Mass: For pre-training the state estimator we
generate 5000 trajectories of 20 time-steps from the cart-pole
using random actions and render the cart-pole configurations to
produce images. This corresponds to 100000 64×64 grayscale
frames. For domain randomization, we vary the dimensions
and parameters of the system (see Figure 3(a)).

b) Rope Manipulation: For pre-training the state estima-
tor we generate 800 trajectories of 50 time-steps length using
random actions from the rigid body system and render the
configuration. This corresponds to 80000 128×128×4 RGBD
frames. For domain randomization, we vary the dimensions
of the rigid link and the obstacles, as well as the obstacle
locations (examples shown in Figure 3(b)).

D. Cost Functions

For both LVSPC and PlaNet we use an MPC horizon
of 40 and sample 1000 trajectories per timestep. We do
not have a cost on control. CURL and PlaNet use the true
environmental cost i.e. cenv(xt), whereas LVSPC and variants
use an equivalent cost based on the simple model state with
an uncertainty penalty c(zt, σzt ). The environmental costs use
the true state from the simulator to calculate the cost (because
CURL and PlaNet have no knowledge of the simple model),
whereas LVSPC uses the simple model state to approximate
this cost, effectively giving CURL and PlaNet an advantage.

a) Tethered Mass: The environmental cost consists
of three parts; a euclidean distance to goal, a colli-
sion penalty for the tether and mass, and a penalty
when the system goes out of view of the camera.
The cost functions are c(zt, σ

z
t ) = δgdistToGoalZ +

OffScreen(zt) + 10checkCollision(zt) + βσzt and
cenv(xt) = δgdistToGoalX + OffScreen(xt) +
10checkCollision(xt), where β is a parameter on how
heavily to weigh uncertainty, and δg is 0 if the goal is reached
before time t and 1 otherwise. To balance exploiting vs.
exploring we increase β from 0 to 2.0 in the first 10 episodes.
This cost is not memoryless; δg depends on the state for times
t′ < t. This is because we only wish to hit the target, we do
not have to reach the target and stay there.

b) Rope Manipulation: The environmental cost is the
distance to the goal, computed by considering the centre of the
rope to be a floating point, discretizing the 3D environment
into a 8-connected graph and solve for the shortest path to
the goal for every point in the graph. We do not penalize
contact for the baselines, as we found that they could exploit
contact to help complete the task. The cost for LVSPC
penalizes contact (because the simple model is rigid), where
we do a collision-check for the rigid-link approximation. The
cost functions are c(zt, σ

z
t ) = distToGoalZ + βσzt +

100checkCollision(zt) and cenv(xt) = distToGoalX .
To balance exploiting vs. exploring we increase β from 0

to 1000 in the first 10 episodes.
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Fig. 4: (a) Tethered mass input image (64x64 grayscale) with the target (left) and the single prismatic joint (blue); (b) output from CNN
ensemble and GPUKF estimation (red); (c) planned trajectory from MPPI (green). Only the first action from this trajectory is executed before
replanning; (d) The rope manipulation environment. The goal is to bring the centre of the rope to the centre of the narrow gap. The sides
of the gap have protrusions which can catch the rope; (e, f) Example RGB and D observations from overhead Kinect.

E. Network Architectures

Networks are implemented in PyTorch [31], and the GPs
are implemented in GPytorch [32], which allows us to exploit
parallelism on the GPU for GP inference when performing
MPPI. Thus, for the rope manipulation experiment, an iteration
of MPPI takes only 0.89s on average using an Intel i7-8700K
CPU and an Nvidia 1080Ti GPU. For both experiments we use
a CNN ensemble consisting of 10 networks. All convolutional
filters have filter size 3×3 and stride 2 for downsampling, all
layers other than the output layers use ReLU activations. We
use the Adam optimizer with a learning rate of 10−3, except
when fine-tuning the pretrained CURL and PlaNet models
where we use 10−4.

For the GP dynamics model, we use 200 inducing points.
We train an independent GP for each output dimension using
the RBF kernel with automatic-relevance determination [33].
We use a learning rate of 10−2 to train the GP and perform
sysid. For each experiment CURL and PlaNet use encoders
with the same architecture as our CNN. The transition and
reward models for PlaNet are the same architecture as [6].
The actor-critic architecture for CURL is the same as in [10].
Both CURL and PlaNet are trained end-to-end.

a) Tethered Mass: Each CNN consists first of 4 convolu-
tional layers. There is then a fully connected layer with 2048
hidden units, followed by an output layer.

b) Rope manipulation: Each CNN seperately processes
depth and RGB, consisting of an RGB module and a depth
module which are combined downstream. Each module con-
sists first of 4 convolutional layers. There is then a fully-
connected layer with 512 hidden units. After passing the RGB
image through both the RGB module, and the depth image
through the depth module, the output from each module is
combined and passed through a final hidden layer of 1024
units, followed by an output layer.

F. Results

a) Tethered Mass: An example of the system tracking
and MPC is demonstrated in Figure 4. Our statistical results
are shown in Figure 5(a, b). PlaNet achieves it’s maximum
performance at 200-300 episodes and has a success rate of
approximately 26% with large variation. We see that CURL
shows the highest asymptotic performance, with 97% after 400
episodes. Higher asymptotic performance is typical of model-
free learning methods. Pre-training both PlaNet and CURL
on data from the simple system results in improved initial
performance, but lower final performance. In contrast, LVSPC

achieves approximately 90% after 20 episodes, outperforming
PlaNet and matching CURL’s performance after 200 episodes,
demonstrating 10x improved data efficiency. We also see that
seeking to learn the dynamics in the simple state space with the
GP results in substantially worse performance. This is likely
because the simple state representation is insufficient to model
the full complex dynamics.

b) Simulated rope manipulation: Our statistical results
are shown in Figure 5(c, d). PlaNet’s performance after 500
episodes is approximately 30%, while CURL solves the task
with almost 100% success rate after 250 episodes. Pre-training
CURL on data from the simple system results in improved
initial performance, but lower final performance, however
pretraining PlaNet led to poor performance which it could not
recover from, getting caught on the obstacles in every episode.
Our full method achieves 80% success rate after 20 episodes,
again equivalent to CURL’s performance after 200 episodes
(thus we have 10x better data-efficiency) and outperforming
PlaNet’s final performance. We see that naively treating the
rope as a rigid object results in approximately 46% success
and almost all failures result from the rope snagging on the
protrusions on the side of the gap. As in the tethered mass
experiment, attempting to fit the complex dynamics in the
simple mode space is ineffective, causing frequent snagging
on obstacles.

G. Rope Manipulation on a Real Robot

Our simulation experiments show that LVSPC is effective
at transferring within the same simulation environment. To
validate that we can still use LVSPC when the simple model
and complex environments are very different, we perform the
rope manipulation experiment described above on a real robot
using a perception system trained only in simulation. We use
domain randomization to improve the transfer of the CNN
ensemble to real data [34] (see Figure 3(c)). We observed
better generalization when we randomized the pose of the
camera and trained the CNN ensemble to produce an estimate
in the camera frame instead of the world frame.

We perform the experiment on the real robot over 5 random
seeds. For each seed, after every 5 episodes we record the
success rate on 10 test episodes. The results are shown in Table
I. Using LVSPC we can complete this task with 80% success
using only 10 episodes of data collected on the real robot.
This experiment demonstrates that using LVSPC is promising
for real-world tasks, as we only need data from simulation to
train an effective perception system.
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Fig. 5: Average Success over 10 test tasks vs number of episodes for both experiments. Shaded region shows minimum and maximum success
rate over 5 runs for LVSPC and ablations and 3 runs for the baselines for a total of 50 and 30 test tasks for LVSPC and the baselines,
respectively. a) LVSPC and ablations for tethered mass, dotted lines show baseline performance after 500 episodes. b) Baselines for tethered
mass. c) LVSPC and ablations for rope, dotted lines show baseline performance after 500 episodes. d) Baselines for rope.

Episode 0 5 10 15 20
Success rate 0.3 0.7 0.8 0.78 0.82

TABLE I: Results over 5 random seeds for real robot experiment

VI. CONCLUSION

We have presented LVSPC for leveraging a given simple
model approximation to improve data efficiency for control
tasks on systems with complex dynamics from image obser-
vations. We demonstrated this method on two tasks, showing
substantially improved performance in the low-data regime
over recent reinforcement learning methods. We have also
demonstrated that we can apply our framework to a real robot
while only using simulated data for pre-training. We assumed
that the user specifies a type of simple model, but choosing
a simple model which can approximate the complex system
is an open problem, made difficult by the requirement that it
must be possible to complete the task while operating only in
the regime where the simple model is accurate. In future work
we intend to incorporate multiple simple models and create a
way to decide which is most appropriate.
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