
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1

TAMPC: A Controller for Escaping Traps in Novel Environments
Sheng Zhong1, Zhenyuan Zhang1, Nima Fazeli1, and Dmitry Berenson1

Abstract—We propose an approach to online model adaptation
and control in the challenging case of hybrid and discontinuous
dynamics where actions may lead to difficult-to-escape “trap”
states, under a given controller. We first learn dynamics for a
system without traps from a randomly collected training set (since
we do not know what traps will be encountered online). These
“nominal” dynamics allow us to perform tasks in scenarios where
the dynamics matches the training data, but when unexpected
traps arise in execution, we must find a way to adapt our
dynamics and control strategy and continue attempting the task.
Our approach, Trap-Aware Model Predictive Control (TAMPC),
is a two-level hierarchical control algorithm that reasons about
traps and non-nominal dynamics to decide between goal-seeking
and recovery policies. An important requirement of our method
is the ability to recognize nominal dynamics even when we
encounter data that is out-of-distribution w.r.t the training data.
We achieve this by learning a representation for dynamics that
exploits invariance in the nominal environment, thus allowing
better generalization. We evaluate our method on simulated
planar pushing and peg-in-hole as well as real robot peg-in-hole
problems against adaptive control, reinforcement learning, trap-
handling baselines, where traps arise due to unexpected obstacles
that we only observe through contact. Our results show that
our method outperforms the baselines on difficult tasks, and is
comparable to prior trap-handling methods on easier tasks.

Index Terms—Machine Learning for Robot Control, Reactive
and Sensor-Based Control.

I. INTRODUCTION

IN this paper, we study the problem of controlling robots in
environments with unforeseen traps. Informally, traps are

states in which the robot’s controller fails to make progress
towards its goal and gets “stuck”. Traps are common in
robotics and can arise due to many factors including geometric
constraints imposed by obstacles, frictional locking effects,
and nonholonomic dynamics leading to dropped degrees of
freedom [1], [2], [3]. In this paper, we consider instances of
trap dynamics in planar pushing with walls and peg-in-hole
with unmodeled obstructions to the goal.

Developing generalizable algorithms that rapidly adapt to
handle the wide variety of traps encountered by robots is
important to their deployment in the real-world. Two central
challenges in online adaptation to environments with traps
are the data-efficiency requirements and the lack of progress
towards the goal for actions inside of traps. In this paper, our
key insight is that we can address these challenges by ex-
plicitly reasoning over different dynamic modes, in particular

Manuscript received: October, 15, 2020; Revised January, 6, 2021; Ac-
cepted February, 1, 2021.

This paper was recommended for publication by Editor Dana Kulic upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported in part by NSF grant IIS-1750489.

1Robotics Institute, University of Michigan, MI 48109, USA {zhsh,
cryscan, nfz, dmitryb}@umich.edu

Digital Object Identifier (DOI): see top of this page.
For code, see https://github.com/UM-ARM-Lab/tampc

Fig. 1: TAMPC on peg-in-hole tasks with obstacles near the goal.
The robot has no visual sensing (cannot anticipate walls) and has not
encountered walls in the training data. Path segments show (1) the
initial direct trajectory to goal, (2) detecting non-nominal dynamics
from reaction forces and exploration of it by sliding along the wall,
(3) detecting a trap due to the inability to make progress using
non-nominal dynamics, (4) recovery to nominal dynamics, (5) going
around seen traps to goal, (6) spiraling to find the precise location of
the hole, and (7) sliding against the wall (non-nominal) towards the
goal.

traps, together with contingent recovery policies, organized as
a hierarchical controller. We introduce an online modeling and
controls method that balances naive optimism and pessimism
when encountering novel dynamics. Our method learns a
dynamics representation that infers underlying invariances and
exploits it when possible (optimism) while treading carefully
to escape and avoid potential traps in non-nominal dynamics
(pessimism). Specifically, we:

1) Introduce a novel representation learning approach that
effectively generalizes dynamics and show its efficacy
for task execution on out-of-distribution data when used
with our proposed controller;

2) Introduce Trap-Aware Model Predictive Control
(TAMPC), a novel control algorithm that reasons about
non-nominal dynamics and traps to reach goals in novel
environments with traps;

3) Evaluate our method on real robot and simulated peg-
in-hole, and simulated planar pushing tasks with traps
where adaptive control and reinforcement learning base-
lines achieve 0% success rate. These include difficult
tasks where trap-handling baselines achieve less than
50% success, while our method achieves at least 60%
success on all tasks.

We show that state-of-the-art techniques [4], [5], while
capable of adapting to novel dynamics, are insufficient for
escaping traps that our approach handles by their explicit
consideration. Additionally, our method performs well on tasks
that prior trap-handling methods struggle on.

https://github.com/UM-ARM-Lab/tampc

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

II. PROBLEM STATEMENT

Let x ∈ X and u ∈ U denote the Nx dimensional state
and Nu dimensional control. Under test conditions the system
follows novel dynamics ∆x = fv(x,u). The objective of our
method is to reach a goal x ∈ G ⊂ X as quickly as possible:

arg min
u0,...,uT−1

T

s.t. xt+1 = xt + fv(xt,ut), t = 0, ..., T − 1
xT ∈ G

(1)

This problem is difficult because the novel dynamics fv are
not known. Instead, we assume we have access to a dataset of
sampled transitions with random actions, which can be used to
learn an approximate dynamics model f̂ of the system under
nominal dynamics f where:

fv(x,u) = f(x,u) + e(x,u) (2)
We assume the error dynamics e are relatively small (w.r.t.
nominal) except for non-nominal regions X̄ ⊂ X for which:

|e(x,u)|∼ |f(x,u)|, ∀x ∈ X̄ , ∃ u ∈ U (3)

In nominal regions where f̂ ≈ f ≈ fv a Model Predictive
Controller (MPC) can provide high quality solutions without
direct access to fv . Using a specified cost function C : X ×
U → [0,∞), following the MPC policy u = MPC(x, f̂ , C)
creates the dynamical system:

∆x = fv(x,MPC(x, f̂ , C)) (4)

This dynamical system may have attractors [6], which are
subsets A ⊆ X where:
• xt0 ∈ A =⇒ xt ∈ A ∀t ≥ t0
• A has a basin of attraction
B(A) ⊆ X = {x | x0 = x, ∃ t ≥ 0, xt ∈ A}

• A has no non-empty subset with the first two properties
We define a trap as an attractor A such that A ∩ G = ∅, and
the trap set T ⊆ X as the union of all traps. Escaping a
trap requires altering the dynamical system (Eq. 4) by altering
f̂ , C, or the MPC function. Traps can be avoided in nominal
regions with a sufficiently-powerful and long-horizon MPC,
and a sufficiently-accurate dynamics approximation f̂ . This
work addresses detecting, recovering from, and avoiding traps
caused by non-nominal dynamics. To aid in trap detection,
recovery, and avoidance we assume a state distance function
d : X × X → [0,∞) and a control similarity function s :
U × U → [0, 1] are given.

III. RELATED WORK

In this section, we review related work to the two main
components of this paper: handling traps and generalizing
models to out-of-distribution (OOD) dynamics.

Handling Traps: Traps can arise due to many factors
including nonholonomic dynamics, frictional locking, and
geometric constraints [1], [2], [3]. In particular, they can occur
when the environment is partially unknown, as in the case of
online path planning.

Traps have been considered in methods based on Artificial
Potential Fields (APF) [7], [8]. Traps are local minima in the
potential field under the policy of following the gradient of
the field. In the case where the environment is only partially

known a priori, local minima escape (LME) methods such
as [8], [9] can be used to first detect then escape local minima.
Our method uses similar ideas to virtual obstacles (VO) [8]
for detecting traps and avoiding revisits while addressing
weaknesses common to APF-LME methods. Specifically, we
are able to handle traps near goals by associating actions with
trap states (using s) to penalize similar actions to the one
previously entering the trap while near it, rather than penalize
being near the trap altogether. We also avoid blocking off paths
to the goal with virtual obstacles by shrinking their effect over
time. Lastly, having an explicit recovery policy and using a
controller that plans ahead lets us more efficiently escape traps
with “deep” basins (many actions are required to leave the
basin). We compare against two APF-LME methods in our
experiments.

Another way to handle traps is with exploration, such
as through intrinsic curiosity (based on model predictabil-
ity) [10], [11], state counting [12], or stochastic policies [13].
However, trap dynamics can be difficult to escape from and
can require returning to dynamics the model predicts well (so
receives little exploration reward). We show in an ablation
test how random actions are insufficient for escaping traps
in some tasks we consider. Similar to [14], we remember
interesting past states. While they design domain-specific state
interest scores, we effectively allow for online adaptation of
the state score based on how much movement the induced
policy generates while inside a trap. We use this score to direct
our recovery policy.

Adapting to trap dynamics is another possible approach.
Actor-critic methods have been used to control nonlinear
systems with unknown dynamics online [15], and we evaluate
this approach on our tasks. Another approach is with locally-
fitted models which [4] showed could be mixed with a global
model and used in MPC. Similar to this approach, our method
adapts a nominal model to local dynamics; however, we do not
always exploit the dynamics to reach the goal.

Generalizing models to OOD Dynamics: One goal of
our method is to generalize the nominal dynamics to OOD
novel environments. A popular approach for doing this is
explicitly learning to be robust to expected variations across
training and test environments. This includes methods such
as meta-learning [16], [17], domain randomization [18], [19],
Sim-to-real [20], and other transfer learning [21] methods.
These methods are unsuitable for this problem because our
training data contains only nominal dynamics, whereas they
need a diverse set of non-nominal dynamics. Instead, we
learn a robust, or “disentangled” representation [22] of the
system under which models can generalize. This idea is active
in computer vision, where learning based on invariance has
become popular [23]. Using similar ideas, we present a novel
architecture for learning invariant representations for dynamics
models.

IV. METHOD

Our approach is composed of two components: offline
representation learning and online control. First, we present
how we learn a representation that allows for generalization

ZHONG et al.: TAMPC: A CONTROLLER FOR ESCAPING TRAPS IN NOVEL ENVIRONMENTS 3

Fig. 2: Architecture for learning (left) and using (right) an invariant
representation f̂ . Grey = given data, green = parameterized trans-
forms, white = computed values, and red dotted lines = losses.

by exploiting inherent invariances inferred from the nominal
data, shown in Fig. 2. Second, we present Trap-Aware Model
Predictive Control (TAMPC), a two-level hierarchical MPC
method shown in Fig. 3. The high-level controller explicitly
reasons about non-nominal dynamics and traps, deciding when
to exploit the dynamics and when to recover to familiar
ones by outputting the model and cost function the low-level
controller uses to compute control signals.

A. Offline: Invariant Representation for Dynamics

In this section, our objective is to learn f̂ while exploiting
potential underlying invariances in X × U to achieve better
generalization to unseen data. More formally, our represen-
tation consists of an invariant transform hφ and a predictive
module g, shown in Fig. 2. hφ maps X ×U to a latent space
(z ∈ RNz) that g maps to latent output (v ∈ RNv) that is then
mapped back to X using hρ. We parameterize the transforms
with neural networks and build in two mechanisms to promote
meaningful latent spaces:

First, we impose Nz < Nx + Nu to create an informa-
tion bottleneck which encourages z to ignore information
not relevant for predicting dynamics. Typically, Nz can be
iteratively decreased until predictive performance on τ drops
significantly compared to a model in the original space.
Further, we limit the size of g to be smaller than that of hφ
such that the dynamics take on a simple form.

Second, to reduce compounding errors when x,u is OOD,
we partially decouple z and v by learning v in an autoencoder
fashion from x,∆x with encoder hη and decoder hρ. Our
innovation is to match the encoded v with the v̂ output from
the dynamics predictor. To further improve generalization, we
restrict information passed from x to v with a dimension
reducing transform hω : X → Rnω . These two mechanisms
yield the following expressions:
∆x ≈ ∆̂x = hρ(v, hω(x)) v = hη(∆x, hω(x)) ≈ v̂ = g(z)

and their associated batch reconstruction and matching loss:

Lr =
E ||∆x− hρ(v, hω(x))||2

E ||∆x||2
Lm =

E ||v− v̂||2
E ||v||2

Lb(τ i) = λrLr(τ i) + λmLm(τ i)

These losses are ratios relative to the norm of the quantity we
are trying to match to avoid decreasing loss by scaling the
representation. In addition to these two losses, we apply Vari-

Fig. 3: High-level control architecture.

ance Risk Extrapolation (V-REx [23]) to explicitly penalize
the variance in loss across the M trajectories:

L(τ) = β var {Lb(τ 1), ...,Lb(τM)}+

M∑
i=1

Lb(τ i) (5)

We train on Eq. (5) using gradient descent.
After learning the transforms, we replace g with a higher

capacity model and fine-tune it on the nominal data with just
Lm. For further details, please see App. C. Since we have no
access to ∆x online, we pass v̂ to hρ instead of v:

f̂(x,u) = hρ(g(hφ(x,u)), hω(x)) (6)

B. Online: Trap-Aware MPC

Online, we require a controller that has two important
properties. First, it should incorporate strategies to escape from
and avoid detected traps. Second, it should iteratively improve
its dynamics representation, in particular when encountering
previously unseen modes. To address these challenges, our
approach uses a two-level hierarchical controller where the
high-level controller is described in Alg. 1.

TAMPC operates in either an exploit or recovery mode, de-
pending on dynamics encountered. When in nominal dynam-
ics, the algorithm exploits its confidence in predictions. When
encountering non-nominal dynamics, it attempts to exploit a
local approximation built online until it detects entering a trap,
at which time recovery is triggered. This approach attempts to
balance between a potentially overly-conservative treatment
of all non-nominal dynamics as traps and an overly-optimistic
approach of exploiting all non-nominal dynamics assuming
goal progress is always possible.

The first step in striking this balance is identifying non-
nominal dynamics. Here, we evaluate the nominal model
prediction error against observed states (“nominal model ac-
curacy” block in Fig. 3 and lines 5 and 13 from Alg. 1):

||(∆x− f̂(x,u))/E||2 > εN (7)
where εN is a designed tolerance threshold and E is the
expected model error per dimension computed on the train-
ing data. To handle jitter, we consider transitions from Nn
consecutive time steps.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

Algorithm 1: TAMPC high-level control loop
Given : C(x,u) cost, x0, MPC, parameters

from Tab. III
1 s← NOM, t← 0, d0 ← 0, x← x0, Tc ← {},

α← 1, w ← 0
2 MAB arms ← Na random convex combs.
3 while C(x, 0) > acceptable threshold do
4 if s is NOM then
5 if not nominal from Eq. 7 then
6 s← NONNOM
7 initialize GP ê with (xt−1,ut−1,∆xt−1)
8 else
9 α← α · αa // anneal

10 d0 ← max(d0, d(xt−Nd
, x)/Nd)

11 else
12 fit ê to include (xt−1,ut−1,∆xt−1)
13 n← was nominal last Nn steps // Eq. 7

14 if EnteringTrap(d0) then
15 s← REC
16 expand Tc according to Eq. 10
17 if s is REC then
18 if n or Recovered(d0) then
19 s← NONNOM
20 α← normalize α so |CT |∼ |C|
21 else if Nm steps since last arm pull then
22 reward last arm pulled with

d(xt, xt−Nm
)/Nmd0

23 w ← Thompson sample an arm
24 if n then
25 s← NOM

26 MPC.model ← f̂ if s is NOM else f̂ + ê
27 MPC.cost ← ρ · (w1CR(X0) + w2CR(Xf)) if s is

REC else C + αCT // Eq. 12 and 11

28 u← MPC(x), t← t+ 1
29 x← apply u and observe from env

When in non-nominal dynamics, the controller needs to
differentiate between dynamics it can navigate to reach the
goal vs. traps and adapt its dynamics models accordingly.
Similar to [8], we detect this as when we are unable to
make progress towards the goal by considering the latest
window of states. To be robust to cost function shape, we
consider the state distance instead of cost. Specifically, we
monitor the maximum one-step state distance d(xt, xt−1) in
nominal dynamics, d0, and compare it against the average state
distance to recent states: d(xt, xa)/(t − a) < εT d0 (depicted
in “movement fast enough” block of Fig. 3). Here, t is the
time from task start. We consider a = t0, ..., t − Nd, where
t0 is the start of non-nominal dynamics or the end of last
recovery, whichever is more recent. We ensure state distances
are measured over windows of at least size Nd to handle jitter.
εT is how much slower the controller tolerates moving in non-
nominal dynamics. For more details see Alg. 2.

Our model adaptation strategy, for both non-nominal dy-
namics and traps, is to mix the nominal model with an online
fitted local model. Rather than the linear models considered

in prior work [4], we add an estimate of the error dynamics
ê represented as a Gaussian Process (GP) to the output of
the nominal model. Using a GP provides a sample-efficient
model that captures non-linear dynamics. To mitigate over-
generalizing local non-nominal dynamics to where nominal
dynamics holds, we fit it to only the last Ne points since en-
tering non-nominal dynamics. We also avoid over-generalizing
the invariance that holds in nominal dynamics by constructing
the GP model in the original state-control space. Our total
dynamics is then

f̂v(x,u) = f̂(x,u) + ê(x,u) (8)

fv(x,u) ≈ E[f̂v(x,u)] (9)
When exploiting dynamics to navigate towards the goal, we
regularize the goal-directed cost C with a trap set cost CT to
avoid previously seen traps (line 27 from Alg. 1). This trap set
Tc is expanded whenever we detect entering a trap. We add
to it the transition with the lowest ratio of actual to expected
movement (from one-step prediction, x̂) since the end of last
recovery:

b = arg min
a

d(xa, xa+1)

d(xa, x̂a+1)
, Tc ← Tc ∪ {(xb,ub)} (10)

To handle traps close to the goal, we only penalize revisiting
trap states if similar actions are to be taken. With the control
similarity function s : U × U → [0, 1] we formulate the cost,
similar to the virtual obstacles of [8]:

CT (x,u) =
∑

x′,u′∈Tc

s(u,u′)
d(x, x′)2

(11)

The costs are combined as C + αCT (line 27 from Alg. 1),
where α ∈ (0,∞) is annealed by αa ∈ (0, 1) each step in
nominal dynamics (line 9 from Alg. 1). Annealing the cost
avoids assigning a fixed radius to the traps, which if small
results in inefficiency as we encounter many adjacent traps,
and if large results in removing many paths to the goal set.

We switch from exploit to recovery mode when detecting
a trap, but it is not obvious what the recovery policy should
be. Driven by the online setting and our objective of data-
efficiency: First, we restrict the recovery policy to be one
induced by running the low-level MPC on some cost function
other than one used in exploit mode. Second, we propose
hypothesis cost functions and consider only convex combina-
tions of them. Without domain knowledge, one hypothesis is
to return to one of the last visited nominal states. However, the
dynamics may not always allow this. Another hypothesis is to
return to a state that allowed for the most one-step movement.
Both of these are implemented in terms of the following cost,
where S is a state set and we pass in either X0, the set of last
visited nominal states, or Xf , the set of Nf states that allowed
for the most single step movement since entering non-nominal
dynamics:

CR(x,u, S) = min
x′∈S

d(x, x′)2 (12)

Third, we formulate learning the recovery policy online as a
non-stationary multi-arm bandit (MAB) problem. We initialize
Na bandit arms, each a random convex combination of our
hypothesis cost functions. Every Nm steps in recovery mode,
we pull an arm to select and execute a recovery policy. After

ZHONG et al.: TAMPC: A CONTROLLER FOR ESCAPING TRAPS IN NOVEL ENVIRONMENTS 5

Fig. 4: Annotated simulation environments of (left) planar pushing,
and (right) peg-in-hole.

executing Nm control steps, we update that arm’s estimated
value with a movement reward: d(xt, xt−Nm

)/Nmd0. When
in a trap, we assume any movement is good, even away from
the goal. The normalization makes tuning easier across envi-
ronments. To accelerate learning, we exploit the correlation
between arms, calculated as the cosine similarity between the
cost weights. Our formulation fits the problem from [24] and
we implement their framework for non-stationary correlated
multi-arm bandits.

Finally, we return to exploit mode after a fixed number
of steps NR, if we returned to nominal dynamics, or if we
stopped moving after leaving the initial trap state. For details
see Alg. 3.

V. EXPERIMENTS

In this section, we first evaluate our dynamics representation
learning approach, in particular how well it generalizes out-
of-distribution. Second, we compare TAMPC against baselines
on tasks with traps in two environments.

A. Experiment Environments

Our two tasks are quasi-static planar pushing and peg-in-
hole. Both tasks are evaluated in simulation using PyBullet
[25] and the latter is additionally evaluated empirically using a
7DoF KUKA LBR iiwa arm depicted in Fig. 1. Our simulation
time step is 1/240s, however each control step waits until
reaction forces are stable. The action size for each control step
is described in App B. In planar pushing, the goal is to push a
block to a known desired position. In peg-in-hole, the goal is to
place the peg into a hole with approximately known location.
In both environments, the robot has access to its own pose and
senses the reaction force at the end-effector. Thus the robot
cannot perceive the obstacle geometry visually, it only
perceives contact through reaction force. During offline
learning of nominal dynamics, there are no obstacles or
traps. During online task completion, obstacles are introduced
in the environment, inducing unforeseen traps. See Fig. 4 for
a depiction of the environments and Fig. 6 for typical traps
from tasks in these environments, and App. B for environment
details.

In planar pushing, the robot controls a cylindrical pusher
restricted to push a square block from a fixed side. Fig. 6
shows traps introduced by walls. Frictional contact with a
wall limits sliding along it and causes most actions to rotate
the block into the wall. State is x = (x, y, θ, rx, ry) where
(x, y, θ) is the block pose, and (rx, ry) is the reaction force
the pusher feels, both in world frame. Control is u = (p, δ, α),
where p is where along the side to push, δ is the push distance,
and α is the push direction relative to side normal. The state

Fig. 5: Learning curves on validation and OOD data sets for planar
pushing representation. Mean across 10 runs is solid while 1 std. is
shaded.

distance is the 2-norm of the pose, with yaw normalized
by the block’s radius of gyration. The control similarity is
s(u1,u2) = max(0, cossim((p1, α1), (p2, α2))) where cossim
is cosine similarity.

In peg-in-hole, we control a gripper holding a peg (square
in simulation and circular on the real robot) that is con-
strained to slide along a surface. Traps in this environment
geometrically block the shortest path to the hole. The state is
x = (x, y, z, rx, ry) and control is u = (δx, δy), the distance
to move in x and y. We execute these on the real robot
using a Cartesian impedance controller. The state distance
is the 2-norm of the position and the control similarity is
s(u1,u2) = max(0, cossim(u1,u2)). The goal-directed cost
for both environments is in the form C(x,u) = xTQx+uTRu.
The MPC assigns a terminal multiplier of 50 at the end of the
horizon on the state cost. See Tab. IV for the cost parameters
of each environment.
τ for simulated environments consists of M = 200 tra-

jectories with T = 50 transitions (all collision-free). For the
real robot, we use M = 20, T = 30. We generate them by
uniform randomly sampling starts from [−1, 1]× [−1, 1] (θ for
planar pushing is also uniformly sampled; for the real robot we
start each randomly inside the robot workspace) and applying
actions uniformly sampled from U .

B. Offline: Learning Invariant Representations

In this section we evaluate if our representation can learn
useful invariances from offline training on τ . We expect
nominal dynamics in freespace in our environments to be
invariant to translation. Since τ has positions around [−1, 1]×
[−1, 1], we evaluate translational invariance translating the
validation set by (10, 10). We evaluate relative MSE ||∆̂x −
∆x||2/E ||∆x||2 (we do not directly optimize this) against
a fully connected baseline of comparable size mapping x,u
to ∆̂x learned on relative MSE. As Fig. 5b shows, our
performance on the translated set is better than the baseline,
and trends toward the original set’s performance. Note that
we expect our method to have higher validation MSE since
V-REx sacrifices in-distribution loss for lower variance across
trajectories. We use Nz = 5, Nv = 5, nω = 2, and implement
the transforms with fully connected networks. For network
sizes and learning details see App. C.

C. Online: Tasks in Novel Environments

We evaluate TAMPC against baselines and ablations on
the tasks shown in Fig. 1 and Fig. 6. For TAMPC’s low-
level MPC, we use a modified model predictive path integral

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

Fig. 6: (top) Initial condition and (bottom) typical traps for planar
pushing and peg-in-hole tasks. Our method has no visual sensing and
is pre-trained only on environments with no obstacles.

TABLE I: Success counts across all tasks, as defined by achieving
distance below the thresholds in Fig. 7.

Method Success over 10 trials
B-H B-D P-U P-I P-T P-T(T) RP-T RP-U

TAMPC 8 9 7 7 9 6 10 6
TAMPC e=0 6 1 5 0 9 7 9 3
TAMPC rand. rec. 1 4 5 0 9 7 - -
APF-VO 0 1 4 10 10 10 8 2
APF-SP 1 0 5 10 10 8 10 4
adaptive MPC++ 0 0 0 0 0 0 0 0
non-adaptive 0 0 0 0 0 0 0 0
SAC 0 0 0 0 0 0 - -

controller (MPPI) [26] where we take the expected cost across
R = 10 rollouts for each control trajectory sample to account
for stochastic dynamics. See Alg. 4 for our modifications to
MPPI. TAMPC takes less than 1s to compute each control step
for all tasks. We run for 500 steps (300 for Real Peg-T).

Baselines: We compare against five baselines. The first is
the APF-VO method from [8], which uses the gradient on
an APF to select actions. The potential field is populated
with repulsive balls in X based on d as we encounter local
minima. We estimate the gradient by sampling 5000 single-
step actions and feeding through f̂ . Second is an APF-
LME method from [9] (APF-SP) using switched potentials
between the attractive global potential, and a helicoid obstacle
potential, suitable for 2D obstacles. The APF methods use
the f̂ learned with our proposed method (Section IV-A) for
next-state prediction. Third is online adaptive MPC from [4]
(“adaptive MPC++”), which does MPC on a linearized global
model mixed with a locally-fitted linear model. iLQR (code
provided by [4]’s author) performs poorly in freespace of the
planar pushing environment. We instead use MPPI with a
locally-fitted GP model (effectively an ablation of TAMPC
with control mode fixed to NONNOM). Next is model-free
reinforcement learning with Soft Actor-Critic (SAC) [5]. Here,
a nominal policy is learned offline for 1000000 steps on the
nominal environment, which is used to initialize the policy at
test time. Online, the policy is retrained after every control
on the dense environment reward. Lastly, our “non-adaptive”
baseline runs MPPI on the nominal model.

We also evaluated ablations to demonstrate the value of
TAMPC components. “TAMPC rand. rec.” takes uniform
random actions until dynamics is nominal instead of using
our recovery policy. “TAMPC original space” uses a dynamics
model learned in the original X × U (only for Peg-T(T)).
Lastly, “TAMPC e = 0” does not estimate error dynamics.

D. Task Performance Analysis

Fig. 7 and Tab. I summarizes the results. For Fig. 7, ideal
controller performance would approach the lower left corners.
We see that TAMPC outperforms all baselines on the block
pushing tasks and Peg-U, with slightly worse performance on
the other peg tasks compared to APF baselines. APF baselines
struggled with block pushing since turning when the goal is
behind the block is also a trap for APF methods, because any
action increases immediate cost and they do not plan ahead.
On the real robot, joint limits were handled naturally as traps
by TAMPC and APF-VO.

Note that the APF baselines were tuned to each task,
thus it is fair to compare against tuning TAMPC to each
task. However, we highlight that our method is empirically
robust to parameter value choices, as we achieve high success
even when using the same parameter values across tasks
and environments, listed in Tab. III. Peg-U and Peg-I were
difficult tasks that benefited from independently tuning only
three important parameters, which we give intuition for: We
control the exploration of non-nominal dynamics with Nd. For
cases like Peg-U where the goal is surrounded by non-nominal
dynamics, we increase exploration by increasing Nd with the
trade-off of staying longer in traps. Independently, we control
the expected trap basin depth (steps required to escape traps)
with the MPC horizon H . Intuitively, we increase H to match
deeper basins, as in Peg-I, at the cost of more computation.
Lastly, αa ∈ (0, 1) controls the trap cost annealing rate.
Too low a value prevents escape from difficult traps while
values close to 1 leads to waiting longer in cost function
local minima. We used Nd = 15, H = 15 for Peg-U, and
H = 20, αa = 0.95 for Peg-I.

For APF-VO, Peg-U was difficult as the narrow top of the
U could be blocked off if the square peg caught on a corner at
the entrance. In these cases, TAMPC was able to revisit close
to the trap state by applying dissimilar actions to before. This
was less an issue in Real Peg-U as we used a round peg, but
a different complicating factor is that the walls are thinner
(compared to simulation) relative to single-step action size.
This meant that virtual obstacles were placed even closer to
the goal. APF-SP often oscillated in Peg-U due to traps on
either side of the U while inside it.

The non-TAMPC and non-APF baselines tend to cluster
around the top left corner in Fig. 7, indicating that they entered
a trap quickly and never escaped. Indeed, we see that they
all never succeed. For adaptive MPC, this may be due to a
combination of insufficient knowledge of dynamics around
traps, over-generalization of trap dynamics, and using too short
of a MPC horizon. SAC likely stays inside of traps because
no action immediately decreases cost, and action sequences
that eventually decrease cost have high short-term cost and
are thus unlikely to be sampled in 500 steps.

E. Ablation Studies

Pushing task performance degraded on both TAMPC rand.
rec. and TAMPC e = 0, suggesting value from both the
recovery policy and local error estimation. This is likely
because trap escape requires long action sequences exploiting

ZHONG et al.: TAMPC: A CONTROLLER FOR ESCAPING TRAPS IN NOVEL ENVIRONMENTS 7

Fig. 7: Minimum distance to goal after 500 steps (300 for Real Peg-T) accounting for walls (computed with Djikstra’s algorithm). Median
across 10 runs is plotted with error bars representing 20–80th percentile. Task success is achieving lower distance than the dotted red line.

the local non-nominal dynamics to rotate the block against
the wall. This is unlike the peg environment where the
gripper can directly move away from the wall and where
TAMPC rand. rec. performs well. Note that ablations used
the parameter values in Tab. III for Peg-I and Peg-U, instead
of the tuned parameters from Section V-D. This may explain
their decreased performance on them. The Peg-T(T) task
(copy of Peg-T translated 10 units in x, y) highlights our
learned dynamics representation. Using our representation, we
maintain closer performance to Peg-T than TAMPC original
space (3 successes). This is because annealing the trap set
cost requires being in recognized nominal dynamics, without
which it is easy to get stuck in local minima.

VI. CONCLUSION

We presented TAMPC, a controller that escapes traps in
novel environments, and showed that it performs well on a
variety of tasks with traps in simulation and on a real robot.
Specifically, it is capable of handling cases where traps are
close to the goal, and when the system dynamics require many
control steps to escape traps. In contrast, we showed that trap-
handling baselines struggle in these scenarios. Additionally,
we presented and validated a novel approach to learning
an invariant representation. Through the ablation studies, we
demonstrated the individual value of TAMPC components:
learning an invariant representation of dynamics to generalize
to out-of-distribution data, estimating error dynamics online
with a local model, and executing trap recovery with a multi-
arm-bandit based policy. Finally, the failure of adaptive control
and reinforcement learning baselines on our tasks suggests that
it is beneficial to explicitly consider traps. Future work will
explore higher-dimensional problems where the state space
could be computationally challenging for the local GP model.

APPENDIX A: PARAMETERS AND ALGORITHM DETAILS

Making U-turns in planar pushing requires H ≥ 25. We
shorten the horizon to 5 and remove the terminal state cost of
50 when in recovery mode to encourage immediate progress.
ρ ∈ (0,∞) depends on how accurately we need to model

trap dynamics to escape them. Increasing ρ leads to selecting

TABLE II: MPPI parameters for different environments.

Parameter block peg real peg
K samples 500 500 500
H horizon 40 10 15
R rollouts 10 10 10
λ 0.01 0.01 0.01
u′ [0, 0.5, 0] [0, 0] [0, 0]
µ [0, 0.1, 0] [0, 0] [0, 0]
Σ diag [0.2, 0.4, 0.7] diag [0.2, 0.2] diag [0.2, 0.2]

TABLE III: TAMPC parameters across environments.

Parameter block peg real peg
αa trap cost annealing rate 0.97 0.9 0.8
ρ recovery cost weight 2000 1 1
εN nominal error tolerance 8.77 12.3 15
εT trap tolerance 0.6 0.6 0.6
Nd min dynamics window 5 5 2
Nn nominal window 3 3 3
Nm steps for bandit arm pulls 3 3 3
Na number of bandit arms 100 100 100
NR max steps for recovery 20 20 20
Ne local model window 50 50 50
εc converged threshold 0.05εT 0.05εT 0.05εT
εm move threshold 1 1 1

only the best sampled action while a lower value leads to more
exploration by taking sub-optimal actions.

Nominal error tolerance εN depends on the variance of the
model prediction error in nominal dynamics. A higher variance
requires a higher εN . We use a higher value for peg-in-hole
because of simulation quirks in measuring reaction force from
the two fingers gripping the peg.

TABLE IV: Goal cost parameters for each environment.

Term block peg real peg
Q diag [10, 10, 0, 0, 0] diag [1, 1, 0, 0, 0] diag [1, 1, 0, 0, 0]
R diag [0.1, 0.1, 0.1] diag [1, 1] diag [1, 1]

Algorithm 2: EnteringTrap
Given: t0 time since end of last recovery or start of

local dynamics, whichever is more recent,
xt0 , ..., xt, d0, Nd, εT

1 for a← t0 to t−Nd do
2 if d(xt, xa)/(t− a) < εT d0 then
3 return True

4 return False

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

Algorithm 3: Recovered
Given: x0, ..., xt since start recovery, d0, parameters

from Tab.III
1 if t < Nd then
2 return False
3 else if t > NR then
4 return True
5 converged ← d(xt, xt−Nd

)/Nd < εcd0
6 away ← d(xt, x0) > εmd0
7 return converged and away

Algorithm 4: MPC Implementation: multi-rollout
MPPI. Differences from MPPI [27] are highlighted.

Given: cost, model, x, Ũ, Tab. II parameters
1 ε← N (µ,Σ) // u perturbation for H steps

2 U, ε← clip Ũ to control bounds
3 X0 ← x
4 c← 0 // R×K
5 for r ← 0 to R− 1 do
6 for t← 0 to H − 1 do
7 Xt+1 ← model(Xt,Ut) // sample rollout

8 cr,t ← cost(Xt+1,Ut)
9 cr ← cr + cr,t

10 c← mean c across R
11 U← softmax mix perturbations
12 return U

APPENDIX B: ENVIRONMENT DETAILS

The planar pusher is a cylinder with radius 0.02m to push
a square with side length a = 0.3m. We have θ ∈ [−π, π],
p ∈ [−a/2, a/2], δ ∈ [0, a/8], and α ∈ [−π/4, π/4].
All distances are in meters and all angles are in radians.
The state distance function is the 2-norm of the pose,
where yaw is normalized by the block’s radius of gyration.

d(x1, x2) =
√

(x1 − x2)2 + (y1 − y2)2 +
√
a2/6(θ1 − θ2)2.

The sim peg-in-hole peg is square with side length 0.03m,
and control is limited to δx, δy ∈ [0, 0.03]. These values are
internally normalized so MPPI outputs control in the range
[−1, 1].

APPENDIX C: REPRESENTATION LEARNING & GP

Each of the transforms is represented by 2 hidden layer
multilayer perceptrons (MLP) activated by LeakyReLU and
implemented in PyTorch. They each have (16, 32) hidden units
except for the simple dynamics g which has (16, 16) hidden
units, which is replaced with (32, 32) for fine-tuning. The
feedforward baseline has (16, 32, 32, 32, 16, 32) hidden units
to have comparable capacity. We optimize for 3000 epochs
using Adam with default settings (learning rate 0.001), λr =
λm = 1, and β = 1. For training with V-REx, we use a
batch size of 2048, and a batch size of 500 otherwise. We
use the GP implementation of gpytorch with an RBF kernel,
zero mean, and independent output dimensions. For the GP,
on every transition, we retrain for 15 iterations on the last

50 transitions since entering non-nominal dynamics to only fit
non-nominal data.

REFERENCES

[1] J. Borenstein, G. Granosik, and M. Hansen, “The omnitread serpentine
robot: design and field performance,” in Unmanned Ground Vehicle
Technology VII, vol. 5804. SPIE, 2005, pp. 324–332.

[2] I. Fantoni, R. Lozano, and R. Lozano, Non-linear control for underac-
tuated mechanical systems, 2002.

[3] D. E. Koditschek, R. J. Full, and M. Buehler, “Mechanical aspects of
legged locomotion control,” Arthropod structure & development, vol. 33,
no. 3, pp. 251–272, 2004.

[4] J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation
skills with online dynamics adaptation and neural network priors,” in
IROS, 2016.

[5] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in ICML, 2018, pp. 1861–1870.

[6] J. Milnor, “On the concept of attractor,” in The theory of chaotic
attractors, 1985, pp. 243–264.

[7] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles, 1986, pp. 396–404.

[8] M. C. Lee and M. G. Park, “Artificial potential field based path planning
for mobile robots using a virtual obstacle concept,” in AIM, 2003.

[9] G. Fedele, L. D’Alfonso, F. Chiaravalloti, and G. D’Aquila, “Obstacles
avoidance based on switching potential functions,” Journal of Intelligent
& Robotic Systems, vol. 90, no. 3-4, pp. 387–405, 2018.

[10] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in CVPR Workshops, 2017.

[11] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” arXiv preprint arXiv:1810.12894, 2018.

[12] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
in NeurIPS, 2016, pp. 1471–1479.

[13] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped dqn,” in NeurIPS, 2016, pp. 4026–4034.

[14] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “Go-
explore: a new approach for hard-exploration problems,” arXiv preprint
arXiv:1901.10995, 2019.

[15] T. Dierks and S. Jagannathan, “Online optimal control of affine nonlinear
discrete-time systems with unknown internal dynamics by using time-
based policy update,” IEEE Trans Neural Netw Learn Syst, vol. 23, no. 7,
pp. 1118–1129, 2012.

[16] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in ICML, 2017.

[17] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Learning to
generalize: Meta-learning for domain generalization,” in AAAI, 2018.

[18] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in IROS. IEEE, 2017, pp. 23–30.

[19] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Transactions on Neural Networks,
vol. 22, no. 2, pp. 199–210, 2010.

[20] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in ICRA.
IEEE, 2018, pp. 1–8.

[21] A. Zhang, H. Satija, and J. Pineau, “Decoupling dynamics and reward
for transfer learning,” arXiv preprint arXiv:1804.10689, 2018.

[22] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets,” in NeurIPS, 2016.

[23] D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, R. L.
Priol, and A. Courville, “Out-of-distribution generalization via risk
extrapolation (rex),” arXiv preprint arXiv:2003.00688, 2020.

[24] D. McConachie and D. Berenson, “Bandit-based model selection for de-
formable object manipulation,” in Algorithmic Foundations of Robotics
XII, 2020, pp. 704–719.

[25] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

[26] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in ICRA, 2017.

[27] S. Zhong and T. Power, “Pytorch model predictive path integral con-
troller,” https://github.com/LemonPi/pytorch mppi, 2019.

https://github.com/LemonPi/pytorch_mppi

	INTRODUCTION
	PROBLEM STATEMENT
	RELATED WORK
	METHOD
	Offline: Invariant Representation for Dynamics
	Online: Trap-Aware MPC

	EXPERIMENTS
	Experiment Environments
	Offline: Learning Invariant Representations
	Online: Tasks in Novel Environments
	Task Performance Analysis
	Ablation Studies

	CONCLUSION
	Appendix A: Parameters and Algorithm Details
	Appendix B: Environment details
	Appendix C: Representation learning & GP
	References

